THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m,...

39
THE PODHALE GEOTHERMAL THE PODHALE GEOTHERMAL SPACE HEATING PROJECT SPACE HEATING PROJECT
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    1

Transcript of THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m,...

Page 1: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

THE PODHALE GEOTHERMAL THE PODHALE GEOTHERMAL

SPACE HEATING PROJECTSPACE HEATING PROJECT

Page 2: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

• Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc)

• Great landscape and nature values (4 National Parks, Tatra Park – the Man

& Biosphere Reservation System)

• Extremely popular tourist and sport centre in Poland (4 mln tourists/y)

• Large geothermal water resources

THE PODHALE REGION – AN OUTLINETHE PODHALE REGION – AN OUTLINE

• Intensive pollution of natural environment caused by coal-based heating systems (~ 8 months/y, 150 000 tonnes of coal/y)

• Regional geothermal heating project ongoing since the end of 1980-s – fundamental to stop the pollution, to protect natural environment

Page 3: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

PODHALE - GEOLOGICAL SETTING PODHALE - GEOLOGICAL SETTING

Two main parts of the Carpathians:• The Inner Carpathians: Tatra Mts., Podhale Basin, Pieniny Klippen Belt

(components of the Podhale geothermal system)• The Outer Flysch Carpathians

Page 4: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

1. Production wells; 2. Injection wells;3. Geothermal wells not in use;4. Other wells; 5. Locality with geothermal district

heating system on-line (2003); 6. Locality under connection; 7. Localities planned to be

geothermally heated; 8. Geothermal Base Load Plant;9. Geothermal plants planned; 10. Peak Load Plant; 11. Geothermal spring (existing until

1960s); 12. Main transmission pipeline; 13. Transmisssion pipelines planned

Podhale region - geology, location of geothermal wells and heating network under construction

Page 5: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

PODHALE - GEOLOGICAL SETTING

The Podhale geothermal system:

• Aquifers – in Mesozoic basement of the Podhale Basin. The main: Triassic limestones / dolomites and Eocene carbonates in upper part• Main recharge area - the Tatra Mts.• Impermeable barrier - the Pieniny Klippen Belt• Caprock – the Podhale Flysch

Page 6: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

RESERVOIR AND EXPLOITATION PARAMETERS – MAIN GEOTHERMAL AQUIFER

   

• Flowrate: several - 550 m3/h (artesian)

• Depth of aquifer: 1- 3.5 km

• Max. reservoir temperatures: 80-95ºC (2 - 3.2 km)

• Max. wellhead temperatures: 86-93ºC

• Wellhead static pressure: to 26-27 atm

• Total thickness: 100 -700 m

• Effective thickness: max. 100 m

• Secondary fractured porosity: 10-20% (primary max. 3-4%)

• Secondary permeability: up to 1000 mD (primary 0.01-1 mD) 

Page 7: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

THE PODHALE GEOTHERMAL HEATING PROJECT

Main objective:

  

To reduce the air pollution and improve the state of the natural environment by introducing geothermal energy for heating  This will be achieved by replacing the consumption of fossil fuels – in particular coal – for space heating and domestic warm-water

(over 150 000 tonnes of coal and coke burnt per year)

Zakopane, 1997

Page 8: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

• 19thc.-1960s: 20ºc spring water used for bathing• 1963: 1st exploration well (3073 m). Several geothermal aquifers found• 1970s-2001: 26-36ºc water from 2 wells used for swimming pools • 1979-1981: Milestone - Banska IG-1 well (5263 m) - Artesian outflow 60 m3/h, 72°C, TDS 3 g/dm3

• 1980s: Geothermal space heating-oriented activities initiated:• 1987-1995: Project to evaluate geothermal reserves of Podhale Basin and drilling of 5 deep wells• 1987–1994: R&D phase of a geothermal heating system resulted in 1992 Experimental Geothermal Plant PAS MEERI launched - first houses and cascaded uses supplied with geothermal heat • 1994: Large-scale phase of a geothermal heating project started• 2001: Zakopane – main city of the region connected to geothermal grid 2004: Geothermal heating project underway (by PEC GP S.A.) Basic research, R&D, monitoring, cascaded uses (by PAS MEERI)

HISTORY OF GEOTHERMAL RECOGNITION AND USE

Page 9: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Background

• 1993 - Feasibility study for geothermal heating (by PAS MEERI, Poland and House & Olsen Ltd., Denmark) • The main focus: the most densely populated central area of Podhale (2 main cities, 2 x 30 000 population, the best exploration by several wells) • Project constantly corrected and optimised: 2003 -2005 – 80 MWt, 600 TJ/y planned, about 2000 buildings will be connected to geothermal grid

Page 10: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

METHOD OF GEOTHERMAL WATER EXPLOITATION AND HEAT EXTRACTION

Geothermal doublet working in 1992 –2001, PAS MEERI Geothermal Laboratory

Closed system of geothermal water exploitation

1992-2001:• 1 production and 1 injection well• 2 plate heat exchangers • Capacity 4 MWt, ca. 30 TJ/y • Production 30–60 m3/h of 76–80°C water• Heat supply to 195 houses and cascaded

uses Since 2001: • 2 production and 2 injection wells. • Heat exchangers’ station (target 60 MWt)• Max. production 670 m3/h of 80-87°C

water

500

500

0

0

[m]

[m]

1000

1000

1500

1500

200025003000

toheat receivers

Main Geothermal HeatExchanges Stationinjection wellproduction well

geothermal aquiferl

BAŃSKA IG-1 BIAŁY DUNAJEC PAN-1500

500

0

0

[m]

[m]

1000

1000

1500

1500

200025003000

toheat receivers

Main Geothermal HeatExchanges Stationinjection wellproduction well

geothermal aquiferl

BAŃSKA IG-1 BIAŁY DUNAJEC PAN-1500

500

0

0

[m]

[m]

1000

1000

1500

1500

200025003000

toheat receivers

Main Geothermal HeatExchanges Stationinjection wellproduction well

geothermal aquiferl

BAŃSKA IG-1 BIAŁY DUNAJEC PAN-1

Page 11: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Podhale – main data on geothermal exploitation wells

WellBanska IG-1

ProductionBanska PGP-1

ProductionDunajec PAN-1

InjectionDunajec PGP-2

Injection

Year of drilling 1979-1981 1997 1989 1996-1997

Year of starting 1992 2001 1992 2001

Total depth 5261 3242 2394 2450

Reservoir depth 2565-3345 2709-2340 2113-2394 m 2048-2450 m

Lithology Carbonate conglomerates, limestones, dolomites (Middle Eocene - MiddleTriassic)

Production casing

Casing 6 5/8”,

Perforated interval

2588 – 2683 m

Casing 6 x7 5/8”, Perforated interval

2772 – 3032 m,

Open hole 3032-3242 m

Casing 9 5/8”, Perforated interval

2117 - 22132 m,

Open hole 2132-2394 m

Casing 9 5/8”,

Perforated interval

2040 - 2450 m

Maximum flowrate 120 m3/h 550 m3/h

Maximum temperature 82ºC 87ºC

Static wellhead pressure

26 bar 27 bar 60 bar (injection pressure)

TDS 2.5 g/dm3 2.6 g/dm3

Injection capacity 200 m3/h 400 m3/h

Page 12: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

First geothermally heated locality in Poland, Bańska Niżna village

Plate heat exchangers, 4 MWt PAS MEERI Geothermal Laboratory

500

500

0

0

[m]

[m]

1000

1000

1500

1500

200025003000

toheat receivers

Main Geothermal HeatExchanges Stationinjection wellproduction well

geothermal aquiferl

BAŃSKA IG-1 BIAŁY DUNAJEC PAN-1500

500

0

0

[m]

[m]

1000

1000

1500

1500

200025003000

toheat receivers

Main Geothermal HeatExchanges Stationinjection wellproduction well

geothermal aquiferl

BAŃSKA IG-1 BIAŁY DUNAJEC PAN-1500

500

0

0

[m]

[m]

1000

1000

1500

1500

200025003000

toheat receivers

Main Geothermal HeatExchanges Stationinjection wellproduction well

geothermal aquiferl

BAŃSKA IG-1 BIAŁY DUNAJEC PAN-1

Page 13: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Energy sources   1. Geothermal Base Load Plant, Banska 2. Gas Peak Load Plant, Zakopane  Plants are connected by 14 km main transmission pipeline

3rd peak source - gas or oil peak load plant planned in Nowy Targ (30,000)

Page 14: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Page 15: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Geothermal Base Load Plant  TM

• 2 production wells: 670 m3/h (550 + 120) of 82-87ºC water

• 2 injection wells: 600 m3/h (400 + 200)

• Target 60 MWt, current 38 MWt (plate heat exchangers ca. 7 MWt each)

• Other installments: - Circulation water treatment system - Expansion system protecting pressure zones - Circulation pumps

Geothermal Base Load Plant – heat exchangers

Geothermal Base Load Plant

Page 16: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Central Peak Load Plant TM  • Target capacity - 44 MWt 1998-2001: basic heat source for the town   2001 - connecting to Base Load Plant

• Two functions: 1. Peak heat source 2. Reserve heat source  Two gas-fired water boilers (2x10 MWt) Economizers (1 MWt capacity each) 3 gas engines (10 MWe; co-generation) Boiler system hydraulically separated from network water by 3 HE’s (17 MWt each)   

Central Peak Load Plant – gas boiler

Central Peak Load Plant – general view

Page 17: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

ECOLOGICAL EFFECTS, END OF 2005

   • Number of consumers connected to geothermal heating network:  - > 410 individual consumers - > 120 large-scale receivers - 25 coal-fired heating plants that supplied over 100 blocks of flats  • Geothermal heat production - 180 GJ/2005 (total 230 GJ) • Limitation of emissions, i.e. CO, SO2, and dust – Zakopane:

  - Annual average concentrations of particulate matter (PM10) and SO2

dropped by ca. 50% - During winter heating season 2001/2002 the SO2 concentration dropped

by 67% (!) 

Page 18: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

ECOLOGICAL EFFECTS, END OF 2002

Limitation of SO2 emissions thanks to

geothermal space heating introduction in Zakopane:

1998/1999 – Gas Peak Load launched

2001/2002 – 1st geothermal heating season in Zakopane

                

a. Average annual SO2 concentrations

b. Average SO2 concentrations in heating seasons

35,1

32,6 32,4

35,1

28,0

15,2

19

23,6

17,8

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

1994 1995 1996 1997 1998 2000 2001 2002 2003

32,6 [μg/m3] average annual conentrations between 1994 and 1998

- 27,6%

- 45,3%

[μg/m3]

- 53,4%

- 41,7%

38,1

59,8

48,1

38,6

33,8

15,3

29,9

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

1994/1995 1995/1996 1996/1997 1997/1998 2000/2001 2001/2002 2002/2003

[μg/m3]

46,2 [μg/m3] average conentrations between 1994 and 1998

- 26,8%

- 66,9%

- 35,2%

Page 19: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

R&D CASCADED GEOTHERMAL USES (by PAS MEERI Geothermal Laboratory) 

 • Space heating and warm water supply • Wood-drying• Greenhouse• Stenothermal fish farming• Foil tunnels for growing vegetables in a heated soil   Other activities:• Basic research, R&D works• Monitoring of geothermal system Purpose: dissemination, demostration and education of geothermal energy and uses possible to be introduced in Poland

Page 20: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

   

Cascaded uses system PAS

MEERI Geothermal Laboratory

o

3420-3345 m

3420-33453420-3345

2400-2340m

Page 21: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

 The uses of special interest   

  Wood-drying

• Heating water temperature: 65/45C

• Inside temperature: 40C

• Drying cycle: 2 - 3 weeks

(2 - 3 years in natural conditions)

• Clean method of drying suitable for agricultural

products

  Stenothermal fish farming

•  Two main fish species: African catfish, Tilapia

• Optimum water temperature: 25-28ºC

• High weight-increase rates: commercial weight of fish (1-1.5 kg) in 6 months

(Traditional farming of popular fish (carp and trout) in open ponds - 2 years in the climate typical in Poland and many other countries)

 

Page 22: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

 The uses of special interest   

Foil tunnels for growing vegetables in a heated soil:

• Temperature of water in pipes: 40 - 45ºC

• Temperature of heated soil: 25-28ºC

Method more effective and cheaper than heating the air in classic greenhouse

Page 23: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

MONITORING AND PRODUCTION HISTORY OF THE PODHALE GEOTHERMAL SYSTEM

 

• Doublet IG-1/PAN-1 - monitoring of exploitation and chemical parameters since 1990:

- Stable flowrate and temperature of produced water

- Slight pressure drop at production well and pressure increase at injection well 

• In late 2001 exploitation extended by 2 wells PGP-1 (550 m3/h) and PGP-2

• Doublet PGP-1/PGP-2 – the SCADA system used since 2002 

• Monitoring of wells in progress Production history of Banska IG-1 well (the only production well in 1992 – 2001)

666870727476788082

1996 1997 1998 1999 2000 2001 2002°C TB [oC]

0102030405060708090

1996 1997 1998 1999 2000 2001 2002°C

0,00,51,01,52,02,53,0

1996 1997 1998 1999 2000 2001 2002p pB [MPa]

Page 24: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  FURTHER PROSPECTS OF GEOTHERMAL USES

 • Recreation and balneotherapy – important chance for development of tourism and economics, long awaited by tourists and local people

- Recreation complex in Zakopane underway. - 4 centres in different stages of preparation for realisation  • Multipurpose uses

Page 25: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

GEOTHERMAL WATER AND ENERGY IN BATHINGGEOTHERMAL WATER AND ENERGY IN BATHING

Zakopane - geothermal swimming pool existing till 2001

Zakopane – geothermally heated aquapark and using geothermal water in open pool.

Open in December 2006

Page 26: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

Zakopane – pool planned as geothermal one

(27 deg. C water will be supplied from the well drilled in 2006)

Bukowina T. - geothermal spa(beginning of construction – 2006)

Page 27: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

 CLOSING REMARKS

 • The Podhale system represents interesting and complex geological and

geothermal structure

• Offers good reservoir and exploitation conditions for a large-scale geothermal heating and other uses

• Geothermal heating project has already resulted in important ecological benefits expressed by significant reduction of emissions generated so far by coal burnt for heating

• Ecological, social and economic benefits will prove the purposefulness, feasibility and reliability of using geothermal energy in Poland and several other European countries

Page 28: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

   

The end

Thank you very much for your attention!

Page 29: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

GEOTHERMAL AS PART OF DEVELOPMENT STRATEGIES OF THE PODHALE REGION

 

• Important agent of the sustainable development

• Factor which should stimulate tourism coherent with world tendency to develop various forms of recreation using local resources and tourist attractions

• Chance for new jobs at local employment market

• Geothermal project realized along with the complex project of water–waste management

Page 30: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

System based on geothermal heat (75 - 80%), gas used in peak periods (more on 9th March)

Page 31: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

   

  Heating networks*

• Geothermal heating system consists of 3 main circulation loops:

1. Geothermal circulation

Standard pressure 40 bar in Base Load Plant and 64 bar behind injection geothermal pumps

2. Network water circulation. Standard pressure 16 bar

3. Boiler circulation in Peak Load Plant. Standard pressure 6 bar

To compensate large differences in ground topography (670 – 930 m a.s.l.) and to keep pressure not exceeding 16 bar, the network water system was divided into 4 pressure zones

• Distribution pipelines - preinsulated pipes with small heat losses (drop less than 2°C on a distance of 14 km)

All pipelines of DN 100 and more in diameter are equipped with the leakage detection system

• 90/50°C heating network (56 km) built practically from scratch - prior to the project, only the part of Zakopane was provided with a heating network

• Due to the great area covered by the project, the construction of the heating networks involved a major amount of expenditures (ca. 60% - 30 Mio USD)

 

Page 32: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

Groups of heat consumers depending of thermal power demand*

   

• Individual households - capacities from several to a dozen kWh

Equipped with dual-function plate heat exchangers (warm-water production for central heating and domestic water, in a flow system without a hot-water bunker)

·  Medium consumers (boarding houses, offices, schools, public buildings, etc.)

· Large consumers (buildings heated formerly by local coal-based boilers)

Equipped with compact dual-function plate heat exchangers, and automatic weather-sensitive system and programming many functions such as night drop, wind impact, etc.

  All heat exchangers equipped with heat meters

Compact heat exchanger for individual households

Page 33: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

ECOLOGICAL EFFECTS, END OF 2002

Zakopane and Nowy Targ – main cities of Podhale region - SO2 emissions in 1999-

2001 (coal-based heating systems). Significant SO2 drop in Zakopane since December

2001 thanks to initiating geothermal space heating (Nowy Targ continues the coal-based heating system)

SO2

0

10

20

30

40

50

60

70

Zakopane

Nowy Targ Jana Kazimierza

Nowy Targ Szaflarska

Page 34: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

SOCIAL ASPECTS OF GEOTHERMAL SPACE HEATING INTRODUCTION

• Project accompanied by information and education

• Involvement of local authorities

• Cooperation and support from the community and Social Geothermal Committee of Banska - first geothermally heated locality in a country  • Benefits and advantages indicated by geothermal heat consumers:

- Considerable comfort of operating the heating facilities - Greater possibility of regulation of temperature inside rooms - Possibility of energy use bservation, which influences its saving       - Limitation of air pollution (particularly visible in winter –clean snow) - Geothermal heating in buildings attracts tourists for hire of rooms

Page 35: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

Geothermal heat consumers and anticipated heat sales upon project completion (planned in 2003)

  

Category – number of users Calculated annual heat consumption,

TJ/y

Percentage of total

consumption, %

Households – 1500 150 25

Large and medium consumers – 260 320 53

Nowy Targ town – sale for municipal heating plant

130 22

TOTAL 600 100

Page 36: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

HISTORY AND CURRENT STATEOF THE PROJECT

Main items realised in 1995-2005: • 2 new wells: production and injection• Well tests and acidizing treatments in 5 wells previously drilled• Geothermal Base Load Plant• Gas Peak Load Plant• DN 500 main transmission network, 14 km long connecting the above Plants• Rebuilding and growth of the distribution networks in Zakopane and several

villages • Conversion of individual, large heat consumers, coal and coke boiler houses

on heat exchangers units• 3D-seismic survey for exploited sector of the system aimed at proper siting of

new wells and gain information on tectonic reservoir structure and flow directions

Page 37: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

Outlays of investment and sources of financing, 1995 -2002     

• 1995 –2002 capital expenditures: 53 million USD 

• Financing: Polish and foreign sources (share capital, grants, loans, credits)

• High percentage of grants, almost 50%

• Part of funds comes from Ekofund - established on the basis of the Polish foreign dept extinguished for ecological purposes

Page 38: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

  

ECONOMIC ASPECTS OF GEOTHERMAL SPACE HEATING INTRODUCTION

 

Price comparison – heat from geothermal vs.other carriers

• The production cost of 1 GJ loco Geothermal Base Load Plant - 2.5 USD

• In the cost structure of producing 1 GJ of heat, electricity and gas amount 25%

• Price of 1 GJ – about 10 USD – comparable with coal, lower than other traditional fuels

• High percentage of expenses (10%) connected with new property tax (charged on built structures) introduced in 2002 

0,0%

20,0%

40,0%

60,0%

80,0%

100,0%

120,0%

140,0%

160,0%

180,0%

200,0%

50 GJ 70 GJ 90 GJ 120 GJ

Energy consumption

Coal Coke Oil Natural gas Geothermal

Page 39: THE PODHALE GEOTHERMAL SPACE HEATING PROJECT. Location: at the foot of the Tatra Mts., (Rysy 2499 m, Gerlach 2655 m; Alpine - Carpathian arc) Great landscape.

   

Source of finance Million Euro %

Share capital 9.900 18.8

Grants 26.175 49.7

PHARE

NFEPWM

EKOFUND

GEF

USAID

DEPA

17.700

2.650

1.050

2.500

1.750

0.525

Credits 16.625 31.5

World Bank

PKO Bank

10.525

6.100

TOTAL 52.700 100

PHARE– Poland Hungary Aid for Reconstruction, NFEPWM – National Fund for Environmental Protection and Water Management, GEF – Global Environmental Fund, USAID – United States Agency for International Development, DEPA – Danish Environmental Protection Agency

Outlays of investment and sources of financing, 1995 -2002