The ortho:para Ratio of H in Laboratory and Astrophysical...

36
The ortho:para Ratio of H The ortho:para Ratio of H 3 3 + + in in Laboratory and Astrophysical Plasmas Laboratory and Astrophysical Plasmas Ben McCall Ben McCall Dept. of Chemistry Dept. of Astronomy Nick Indriolo Kyle Crabtree Holger Kreckel

Transcript of The ortho:para Ratio of H in Laboratory and Astrophysical...

  • The ortho:para Ratio of HThe ortho:para Ratio of H33

    ++

    in in Laboratory and Astrophysical PlasmasLaboratory and Astrophysical Plasmas

    Ben McCallBen McCall

    Dept. of Chemistry Dept. of Astronomy

    Nick Indriolo

    Kyle Crabtree

    Holger

    Kreckel

  • Metallurgical and Chemical EngineeringVol. IX, No. 6, p.298 (1911)

  • Richard Payne (Arizona Astrophotography)

    Interstellar gas ~1/6th

    of mass!

    ~1066

    molecules

    ~half in diffuse clouds

  • Interstellar Cloud ClassificationInterstellar Cloud Classification

    T. P. Snow and B. J. McCall, Annu. Rev. Astron. Astrophys. (2006), 44, 367-414.T. P. Snow and B. J. McCall, Annu. Rev. Astron. Astrophys. (2006), 44, 367-414.

  • n ~ 101–103

    cm-3[~10-15

    Torr]T ~ 60 K

    PerseiPersei

    Photo: Jose Fernandez Garcia

    Diffuse Molecular CloudsDiffuse Molecular Clouds

    B. L. Rachford

    et al., Astrophys. J. 577, 221 (2002)

    1.00

    0.96

    0.92

    0.88

    8780877087608750Wavelength (Å)

    R6

    R4

    R2R0

    Q2Q4

    P2

    Q6 Q8P4Q10 P6

    HD 204827

    C2

    H2H2

    J=0 (para) & J=1 (ortho)thermalized by proton swap

    H2

    + H+

    → H2

    + H+

  • Importance of HImportance of H22

    & H& H33

    ++

    He

    C N O Ne

    Mg

    Fe

    Si S Ar

    8

    7

    6

    5

    4

    3

    N

    O2H2

    ON2

    CO2CH4

    OHCC2

    H2

    O

    H2

    COCH

    NH2

    SiNH3

    CO

    Pro

    ton

    Affi

    nity

    (eV

    )

  • HH33

    ++: Cornerstone of Interstellar Chemistry: Cornerstone of Interstellar Chemistry

    8

    7

    6

    5

    4

    3

    N

    O2H2

    ON2

    CO2CH4

    OHCC2

    H2

    O

    H2

    COCH

    NH2

    SiNH3

    CO

    Pro

    ton

    Affi

    nity

    (eV

    )

    H2+

    H3+CH+

    CH2+

    CH3+

    CH5+CH4

    C2

    H3+C2

    H2

    C3

    H+

    C3

    H3+C4

    H2+

    C4

    H3+

    C6

    H5+

    C6

    H7+ C6

    H6

    H2

    H2

    H2

    H2

    H2

    C

    e

    C+

    e

    C+

    C

    H

    C2

    H2

    H2e

    OH+H2

    O+H3

    O+H2

    O

    OHe

    OH2

    H2HCO+

    CO

    HCNCH3

    NH2

    CH3

    CN

    C2

    H5

    CN

    N, eNH3, e

    HCN, eCH3C

    N, e

    eCO, e

    H2O, e

    CH3OH, e

    CHCH2

    CO

    CH3

    OH

    CH3

    OCH3

    CH3+C2

    H5+e

    C2

    H4

    eC3

    H2e

    C3

    H

    eC2

    H

  • HH22

    TemperatureTemperature

    B. L. Rachford

    et al., ApJ (2002), 577, 221-244.B. L. Rachford

    et al., ApJ (2002), 577, 221-244.

    p-H2 ; J = 0

    o-H2 ; J = 1

    E170 K

    UV measurementsof H2

    absorption•

    99% of H2

    in J=0 (para) and J=1 (ortho) levels•

    Profile fitting gives accurate column densities for N(0) and N(1) T01

    UV measurementsof H2

    absorption•

    99% of H2

    in J=0 (para) and J=1 (ortho) levels•

    Profile fitting gives accurate column densities for N(0) and N(1) T01

  • ortho and ortho and parapara

    HH33

    ++

    +

    orthoI = 3/2

    paraI = 1/2

    +

    NoNp

    gogp

    e-ΔE/kT(H3+)=

    ΔE

    R(1,0) R(1,1)

  • Temperature DiscrepancyTemperature Discrepancy•

    Average T01

    in diffuse molecular clouds: 70 K (N = 66)•

    Average T(H3

    +) in diffuse molecular clouds: 30 K (N = 18)•

    Only 2 sight lines in common

    Recent observations expand this number to 6

    Average T01

    in diffuse molecular clouds: 70 K (N = 66)•

    Average T(H3+) in diffuse molecular clouds: 30 K (N = 18)

    Only 2 sight lines in common•

    Recent observations expand this number to 6

    Target Obs. p3 p2 T(H3+) T01 T

    Per UKIRT 0.65(4) 0.68(6) 25(3) 58(6) 33

    X Per UKIRT 0.66(5) 0.69(4) 24(4) 57(4) 33

    HD 154368 Gem. S. 0.69(6) 0.76(7) 22(4) 51(8) 29

    HD 73882 VLT 0.67(4) 0.76(5) 23(3) 51(6) 28HD 110432 VLT 0.60(2) 0.57(3) 30(2) 68(5) 38

    Cep UKIRT/ Keck

    0.57(7) 0.54(3) 34(10) 73(4) 39

  • Rate = ke

    [H3+] [e-]

    [H2

    ]

    parapara--HH33

    ++

    Fraction on FormationFraction on Formation

    H2

    H2+

    + e-H2

    + H2+

    H3+

    + H

    cosmic ray

    H3+

    + e-

    H + H2

    or 3H

    Rate =

    Formation

    Destruction

    M. Quack, Mol. Phys. 34, 477 (1977)T. Oka, JMS 228, 635 (2004)

    H2 H2+ ortho-H3+ para-H3+

    ortho ortho 2/3 1/3

    ortho para 1/3 2/3

    para ortho 1/3 2/3

    para para 0 1

    (1-p2

    )2

    (1-p2

    )p2p2

    (1-p2

    )

    p22

    (1-p2

    )2

    (1-p2

    )p2p2

    (1-p2

    )

    p22

    +

    +

    +

    (1/3 + 2/3 p2

    ) = p3 (p2

    = 0.68)

    Observedpara-H3+

    fractionp3

    ~ 0.62

    ?= 0.79

  • B. A. Tom, V. Zhaunerchyk, M. B.Wiczer, …, M. Larsson, R. D. Thomas, & B. J. McCall, J. Chem. Phys. 130, 031101 (2009)

    parapara--HH33

    ++

    + e+ e-- vs. orthovs. ortho--HH33

    ++

    + e+ e--

    CRYRING

    S.F. dos Santos, V. Kokoouline, and C. H. Greene, J. Chem. Phys. 127, 124309 (2007)

    para-H3+

    ortho-H3+

    theory

    T(K)

  • The Life of an HThe Life of an H33

    ++

    Birth rate:

    n(H2

    ) ~ 3×10-14

    cm-3

    s-1–

    in 1 mL, birth once every million years

    once per second in cube ~300m on a side–

    demographics: 79% para, 21% ortho

    Collision rate with H2

    : k n(H2

    ) ~ 1×10-7

    s-1–

    once every ~100 days

    happens 1052

    s-1

    in our galaxy!–

    influence on ortho:para ????

    Lifetime: 1/[ke

    n(e)] ~ 5×108

    s ~ 16 years

  • HH33

    ++

    + H+ H22 →→

    (H(H55

    ++)* )* →→

    HH2 2 + H+ H33

    ++

    “identity”

    “hop”

    “exchange”

    H5+

    1

    3

    6what is branching ratio? α

    = Shop/Sexch

    3/6 ? T-dependent?

    simplest bimolecular reaction involving a polyatomic

    most common bimolecular reaction in the universe! Sid

    Shop

    Sexch

  • Dynamics of ReactionDynamics of Reaction

    C2v

    D2d C2v

    “hop”

    “exchange”

    Not obvious that “statistical” hop/exchange = 0.5 is valid!

    ~300

    0 cm

    -1

    ~50 cm-1~1500 cm-1

    PES: Z. Xie, B. J. Braams, & J. M. Bowman,J. Chem. Phys. 122, 224307 (2005)

  • HighHigh--T Statistical Model (Oka)T Statistical Model (Oka)•

    Adopt constant α

    (ignore PES)

    Ortho & para

    as two species (ignore J,K)•

    Assume all pathways energetically possible

    Use “nuclear spin branching ratios”

    as k’s

    Cordonnier

    et al., J. Chem. Phys. 113, 3181 (2000)

    H3+ H2 proton hop hydrogen exchange

    ortho-H3+ para-H3+ ortho-H3+ para-H3+

    ortho ortho 2/3 1/3 2/3 1/3

    ortho para 0 1 2/3 1/3

    para ortho 2/3 1/3 1/3 2/3

    para para 0 1 1/3 2/3

  • Our HighOur High--T ModelT Model

    Assumptions:–

    Gas has constant p2

    [p-H2

    ]/[H2

    ]•

    Laboratory: p2

    established by preparation•

    Diffuse clouds: p2

    fixed by reaction with H+

    Steady state (reached in a few collisions)•

    Results independent of H3+

    formation, destruction

    Results:–

    p3

    [p-H3+]/[H3+] =

    If p2

    = ¼, p3

    = ½

    for all α•

    n-H2

    → n-H3+

    α+1+2αp23α+2

    p2

    p3

    ¼

    ½

  • HighHigh--T Model PredictionsT Model Predictions

    n-H2 p-H2

    full thermalequilibrium

  • Low Temperature EffectsLow Temperature Effects•

    Angular momentum restrictions–

    p-H3+

    + p-H2

    → o-H3+

    +

    p-H2–

    p-H3+

    + p-H2

    → o-H3+

    +

    o-H2•

    At low T in enriched p-H2

    , slower p-H3+

    → o-H3+

    orthoI = 3/2

    paraI = 1/2

    paraI = 0

    orthoI = 1

    170 K

    1/2

    0 ↔ 3/2

    0

  • Low Temperature Statistical ModelLow Temperature Statistical Model

    Still requires α

    as input parameter (no PES)•

    Does consider rotational states & energies

    Rate constants from ground state

    reactantse.g. koppo

    (Trot

    ,Tkin

    )

    k(o-H3+

    + p-H2

    → p-H3+

    + o-H2

    )

  • SteadySteady--State Model PredictionsState Model Predictions

    n-H2 p-H2

    Really should use state-to-state rate coefficients

    No reason α

    must be constant•

    Quantum reactive scattering calculations highly desirable!

  • Oka Group ExperimentsOka Group ExperimentsCordonnier

    et al. JCP 113, 3181 (2000)

    o-H3+

    p-H3+

    n-H2 p-H2

    hopexch ~2.4

    T ~ 400 K

    α

    = ≠

    0.5!

    How does p3vary with p2

    ,or α

    with T?

  • pump Liquid-nitrogen cooled hollow cathode

    TakayoshiAmano

    (p2

    ) p-H2

    + (1-p2

    ) o-H2

    ortho-H3+ para-H3+measure steady state p3

    [p-H3+]/[H3+] vs

    p2

    Experimental ApproachExperimental Approach

  • Experimental ResultsExperimental Results

    Pulse on Pulse off

    FrequencyA

    bs. Tkin

    H3+

    H5+

    T ~ 130 K

    K. Crabtree, C. Kauffman, B. Tom, E. Becka, B. McGuire, & B. J. McCall, J. Chem. Phys., 134, 194311 (2011)

  • o/po/p--HH33

    ++

    vs. o/pvs. o/p--HH22

    K. Crabtree, C. Kauffman, B. Tom, E. Becka, B. McGuire, & B. J. McCall, J. Chem. Phys., 134, 194311 (2011)

  • o/po/p--HH33

    ++

    vs. o/pvs. o/p--HH22

    K. Crabtree, C. Kauffman, B. Tom, E. Becka, B. McGuire, & B. J. McCall, J. Chem. Phys., 134, 194311 (2011)

  • o/po/p--HH33

    ++

    vs. o/pvs. o/p--HH22

    T↓ → complex

    ↑ more scrambling

    K. Crabtree, C. Kauffman, B. Tom, E. Becka, B. McGuire, & B. J. McCall, J. Chem. Phys., 134, 194311 (2011)

  • IsotopicallyIsotopically

    Substituted SystemSubstituted System

    Higher energy → hop dominant

    Lower energy → more statistical

    Endothermic!Dieter Gerlich,J. Chem. Soc. Farad. Trans.89, 2199 (1993)

    D3+

    + H2H2

    D+

    + D2

    HD2+

    + HD

    hop

    exch.

    hop/

    exch

    ange

  • New Astronomical ObservationsNew Astronomical Observations

    K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., 729, 15 (2011)

  • HH33

    ++

    + H+ H22

    Reaction ResultsReaction Results

    K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., 729, 15 (2011)

    Sid=0.1

    Sid=0.9

    No agreement; H3+

    + H2

    reaction not solely responsible for T discrepancy

    10 K

    20 K

    30 K40 K

    50 K60 K70 K80 Ketc Note:p2

    = p2

    (T)

  • Steady State Model RevisitedSteady State Model Revisited•

    Include formation

    and destruction

    reactions:

    Assume steady state, simplify:

    K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., 729, 15 (2011)

  • Model Results for Model Results for kke,pe,p

    = = kke,oe,oRate Coefficients from McCall et al., PRA 2004, 70, 052716

    K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., 729, 15 (2011)

    Sid=0.1

    Sid=0.9

    Agree

    ment

    for S

    id ~0.9!

    Incompletethermalization by H3+

    + H2beforeDR

  • Model Results for Model Results for kke,pe,p

    >>

    kke,oe,oRate Coefficients from dos Santos et al., JCP 2007, 127, 124309

    K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., 729, 15 (2011)

    No ag

    reeme

    nt!

  • Future WorkFuture Work•

    Experiments–

    Cold o/p

    DR in storage ring (CSR?)

    H3+

    + H2

    in 22-pole ion trap (MPIK, Cologne)•

    test low temperature model

    measure Sid

    Observations (VLT)–

    Additional sightlines

    Theory–

    State-to-state model

    Quantum reactive scattering calculations?

  • Acknowledgments: Part 1Acknowledgments: Part 1

    http://bjm.scs.illinois.edu

    Nick Indriolo

    Kyle Crabtree

    Holger

    Kreckel

    Brian Tom

    Kisam

    Park

  • Acknowledgments: Part 2Acknowledgments: Part 2

    The ortho:para Ratio of H3+ in Laboratory and Astrophysical PlasmasSlide Number 2Slide Number 3Interstellar Cloud ClassificationDiffuse Molecular CloudsImportance of H2 & H3+H3+: Cornerstone of Interstellar ChemistryH2 Temperatureortho and para H3+Temperature Discrepancypara-H3+ Fraction on FormationSlide Number 12The Life of an H3+H3+ + H2 → (H5+)* → H2 + H3+Dynamics of ReactionHigh-T Statistical Model (Oka)Our High-T ModelHigh-T Model PredictionsLow Temperature EffectsLow Temperature Statistical ModelSteady-State Model PredictionsOka Group ExperimentsExperimental ApproachExperimental Resultso/p-H3+ vs. o/p-H2o/p-H3+ vs. o/p-H2o/p-H3+ vs. o/p-H2Isotopically Substituted SystemNew Astronomical ObservationsH3+ + H2 Reaction ResultsSteady State Model RevisitedModel Results for ke,p = ke,oModel Results for ke,p > ke,oFuture WorkAcknowledgments: Part 1Acknowledgments: Part 2