The Observation and Properties of the Tau-Neutrino: Results From DONuT

59
1 G. Tzanakos, BNL Seminar, 1-5-2008 George S. Tzanakos University of Athens, Greece Outline Indirect Evidence The DONUT Experiment Spectrometer Data Analysis Emulsion Data Analysis Backgrounds τ- signal ν τ -Ν CC cross section ν τ Magnetic Moment ν τ Mass S-M properties of the ν τ from τ-decay Summary and Conclusions

description

The Observation and Properties of the Tau-Neutrino: Results From DONuT. George S. Tzanakos University of Athens, Greece. Outline Indirect Evidence The DONUT Experiment Spectrometer Data Analysis Emulsion Data Analysis Backgrounds τ- signal ν τ -Ν CC cross section - PowerPoint PPT Presentation

Transcript of The Observation and Properties of the Tau-Neutrino: Results From DONuT

Page 1: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

1 G. Tzanakos, BNL Seminar, 1-5-2008

George S. TzanakosUniversity of Athens, Greece

OutlineIndirect Evidence

The DONUT Experiment

Spectrometer Data Analysis

Emulsion Data Analysis

Backgrounds

τ- signal

ντ-Ν CC cross section

ντ Magnetic Moment

ντ Mass

S-M properties of the ντ from τ-decay

Summary and Conclusions

Page 2: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

3 G. Tzanakos, BNL Seminar, 1-5-2008

Historical Development

1975- τ - lepton discovered ; ‘ντ’ postulated to exist:

Late 70’s: DELCO, MARK II, : τ - decay studies, Michel Parameter ρ, τ-lifetime, τ-μ Universality.

1980’s - MARK II, TASSO, CLEO, ARGUS, LEP: τ - decay studies, ‘ντ’ helicity = -1, spin = ½.

1986 - E531 : Is it possible that ‘ντ’ is in fact νe, νμ? No, no direct

couplings of the τ-lepton to νe,or νμ.

1991 - LEP demonstrates 3.00 ν ’s

2000 – DONUT: Direct Observation: First 4 ντ CC events

v

Page 3: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

4 G. Tzanakos, BNL Seminar, 1-5-2008

• τ – ντ coupling: V-A

(Ee spectrum in τ e νν)

Measurement of the Michel parameter ρ.

e.g. DELCO Experiment (1979): ρ = 0.72 0.15

(All evidence from τ-decays consistent with V-A coupling)

• Strength of coupling from τ-lepton lifetime.

If Gτ = Gμ (Universality)

ττ (mμ/mτ)5τμBR(τ e) = 2.91 10-13 s

First measurement from MARK II : ττ = (4.6 1.9) 10-13 s

A. From early studies of τ - lepton decays

Page 4: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

5 G. Tzanakos, BNL Seminar, 1-5-2008

• ντ helicity: Negative

(from τ- a1- ντ π+π-π-ντ), ARGUS, 1990

Measure parity violating asymmetry :

(Asymmetry of orientation of 3-π plane wrt the τ-direction (in the 3-π rest

frame) proportional to γAV )

γAV = 2gAgV/(gA2+gV

2) = 1.14 0.34+0.34-0.17

(SM: γAV = 1)

• ντ spin: J = ½, ARGUS, 1992, from τ- ρ-ντ π- π0ντ

(J=3/2 would require the ρ helicity to be in a pure Hρ = -1 state, excluded by the measurements)

ρ- ντ

Ηρ=0ρ- ντ

Ηρ=-1

τ- τ-

Page 5: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

6 G. Tzanakos, BNL Seminar, 1-5-2008

B. From Neutrino Experiments

Q. Can the J=1/2, H = -1, V-A partner of the τ be identified with νe, νμ ?

Α. E531, 1986 measured:

Γ(τ- l-νl νμ) < 8.3 10-13 MeV,

Γ(τ- l-νl νe) < 3.0 10-11 MeV

• Experimental average from

semileptonic BRs and lifetime:

Γ(τ- l-νl νx) (3.5+0.5-0.4) 10-10 MeV

• No direct couplings τ - νe, νμ : GF/GF < 0.002 (0.073) to νμ (νe)

C. From LEP 1989: Number of light neutrino species

• Z0 width: Nν = 3.01 0.15 (exp) 0.05 (theo) (ALEPH)

Page 6: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

7 G. Tzanakos, BNL Seminar, 1-5-2008

XNv

e

ve

v

Status in 1990:

e

e

Leptons:

u

d

c

s

t

b

Quarks:

v

t

b

v

DONUT 2000

TEVATRON

CDF, D0, 1995

Page 7: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

8 G. Tzanakos, BNL Seminar, 1-5-2008

1994: Proposal to Fermilab (P872)

- Lepton Production from + N +X

P872 Collab. (approved June 1994)

Preparation : 1994-1997

Data 1997

Physics Analysis 1997- present

First results announced: 2000

Published: 2001 (4 –events)

Page 8: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

9 G. Tzanakos, BNL Seminar, 1-5-2008

• Designed to observe directly and study the

CC interactions of the ντ.

• Used a prompt ν- beam from a proton beam dump.

• Used a hybrid emulsion spectrometer to locate and identify ντ – Nucleus CC

interactions.

• First 4 events published in Phys. Lett. B 504, 218(2001)

DONUT = Direct Observation of NU Tau

Page 9: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

10 G. Tzanakos, BNL Seminar, 1-5-2008

Page 10: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

11 G. Tzanakos, BNL Seminar, 1-5-2008

Aichi Univ. Of Education K. Kodama, N. Ushida

University of Athens C. Andreopoulos, N. Saoulidou. G. Tzanakos

University of California/DavisP. Yager

Fermilab B. Baller, D. Boehnlein, W. Freeman,B. Lundberg, J. Morfin, R. Rameika

Gyeongsang University J. S. Song, I. G. Park, S. H. Chung

Kansas State UniversityP. Berghaus, M. Kubanstev, N. W.Reay,

R. Sidwell, N. Stanton, S. Yoshida

Kobe University S. Aoki, T. Hara

Kon-kuk University J.T. Rhee

University of MinnesotaD. Ciampa, C. Erickson, K. Heller, R. Rusack

R. Schwienhorst, J. Sielaff, J. Trammell, J. Wilcox

Nagoya University T. Furukawa, N. Hashizume, K. Hoshino, H. Iinuma, K. Ito,

M. Kobayashi, M. Miyanishi, M. Komatsu, M. Nakamura, K. Nakajima, T. Nakano, K.Niwa, N. Nonaka, K. Okada, S. Takahashi, T. Yamamori

University of Pittsburgh

T. Akdogan, V. Paolone

Tufts University T. Kafka, W. Oliver, J. Schneps, T. Patzak

Page 11: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

13 G. Tzanakos, BNL Seminar, 1-5-2008

• Topological BR τ one charged particle: 86%

• τ e νν 18%• τ μ νν 18%

• τ π ντ 11%

• τ ρ ντ 26%

• τ a1 ντ 10%

• cττ = 87 μm 2.3mm mean decay lengthin DONUT

τ

Page 12: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

14 G. Tzanakos, BNL Seminar, 1-5-2008

Beam Dump (Tungsten alloy)

ShieldingSpectrometer

Ds

p

Emulsion/SciFi Target

800GeV Protons

cτ = 0.09mm

Kink

ντ

Trident

ντ

• 800 GeV protons Beam Dump (Ds ντ + ..)

• Absorb slowly decaying particles (π, Κ)

• Neutrino beam from Ds (ντ) , D± (νe, νμ)

• Magnetic/Passive shield to protect the emulsion

• Emulsion target at 36 m

• Spectrometer: vertex, track ID, P

• Emulsion scanning: Locate vertex, Decay search

• Find ντ by topology: Kinks and tridents

Page 13: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

15 G. Tzanakos, BNL Seminar, 1-5-2008

Beam Dump

Emulsion/SciFi

Target

36 m

Spectrometer

Sweeping Magnets

Shielding

Max charged particle flux ~ 105/cm2

~107/ spill @ 10 cm from emulsion edge~1012 / spill @ 2 m ~ 2104 per 1013 pot in target area

• ~ 8 x 1012 protons/spill, Spill = 20 sec/min• Emulsion Target at 36 m from beam dump

Page 14: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

16 G. Tzanakos, BNL Seminar, 1-5-2008

Muon ID

Calorimeter

Drift Chambers

MagnetPT kick = 225 MeV/c

5.5m

3.25m

Role• Trigger

• Electron ID• Muon ID

•Track Reconstruction• Momentum Analysis

• Vertex Prediction•Vertex Location

Veto Wall

Emulsion/SciFi Target

Page 15: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

17 G. Tzanakos, BNL Seminar, 1-5-2008

• AgBr suspended in a gel (Fuji ET7C ) coated on plastic sheets.

• 29±2 grains per 100 μm for minimum ionizing track

• Spatial Resolution: 0.3 μm• Vertex Resolution: 0.8 μm

• OPERA: Same idea 95% emulsion 5% emulsion

Basic Block: Steel / Emulsion / Acrylic / Emulsion

EAE SEAE SEAE BULK ECC800 ECC200

0.32 mm0.08 mm

1.0 mm

0.10 mm0.80 mm

1.0 mm

0.10 mm0.20 mm

2 tracks

Vertex + 3 tracks

3-D Tracker

Page 16: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

18 G. Tzanakos, BNL Seminar, 1-5-2008

Scintillating FiberTrackers

Emulsion Target Stations

Magnetic ShieldsFor IITs

Emulsion Station

SciFi Planes

• Fibers predict vertex• 4 Emulsion target stations• Interleaved with sci-fi•Total 7 modules exposed•260 kg total mass of emulsion

One Module: 2-3 X0 0.2 - 0.3 λint

Page 17: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

21 G. Tzanakos, BNL Seminar, 1-5-2008

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

/

cro

ss s

ect

ion

ra

tio

E (GeV)

Expected number of interactions: 4.8% of total

Uncertainties: DS production ±20% fDs BR ±15%

e + 2.510-4 /(pot m2) <E> = 52 GeV 2.110-5 /(pot m2) <E> = 54 GeV

Number of prompt νe νμ , from D decays

Total protons on target = 3.541017

Expected No. of interactions = 1040200 (, e, )

• 1. Primary Source: Ds+

↳ ντ + Χ

• 2. D+ X rate 5% of DS)

• 3DS from secondary interactions in dump (rate 8% of DS)

• 4. B X (rate 1.3% of DS)

BR(DS )

GF2

8DS

mDS

fDS

2 Vcs

2m

2 1m

2

mDS

2

2

= 6.1±1.0%

Page 18: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

23 G. Tzanakos, BNL Seminar, 1-5-2008

CC interaction

Page 19: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

24 G. Tzanakos, BNL Seminar, 1-5-2008

νe CC interaction

EMCAL: Beam View. Tracks disperse in the bend plane

Page 20: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

25 G. Tzanakos, BNL Seminar, 1-5-2008

Track/shower reconstruction, Vertex prediction:

• Info from SciFi, DCs, EMCAL, and Magnet.

• Drift Chambers: Δx Δy 320 μm

• SciFi: Δx Δy 170 μm

• EM Calorimeter: σE/E 20%/E

• Magnet: Bdl 0.75 Tm 225 MeV/c pT kick

• Predict vertex position, spatial resolution:

Δx Δy 0.7 mm, Δz 4 mm

Flavor Selection

- νμ CC interactions by μ - ID (Prompt vs non-prompt)

- νe CC Interactions by e -ID

- ντ CC Interactions by τ-ID (emulsion scanning)

- CC/NC separation by ANN technique

Page 21: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

26 G. Tzanakos, BNL Seminar, 1-5-2008

~103 expected vertices from spectrometer

866 within fiducial volume

578 vertex found

6.6106 triggers : 3.541017 POT

ντ candidates

charged charm candidates

67%Location efficiency:

DONUT Preliminary

Software Filter (300)

Physicist scan (20)

Vertex Reconstruction

Fiducial Volume

Vertex location in Emulsion

Decay search

Total efficiency for retaining an interaction (triggering, filtering, scanning)

νe CC νμ CC ντ CC NC

0.73 0.71 0.72 0.64

Page 22: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

28 G. Tzanakos, BNL Seminar, 1-5-2008

Calibrate plates

Vertex prediction from FT

Scan and Digitize 2.5 x 2.5 x 10 mm3

volume

Vertex found from digital

infoScan again for decay search

Look for kinks or

tridents in 1ry tracks

Special scans (momentum, electron ID)

Cuts for charm

Sample

charm Sample

Page 23: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

29 G. Tzanakos, BNL Seminar, 1-5-2008

• Predict interaction point in emulsion from spectrometer tracks (software + humans)

• Define a volume in emulsion around predicted interaction point. Digitize all track segments in emulsion volume (hardware processor at Nagoya University)

• Search digitized emulsion data for interaction (software pattern recognition)

•Use spectrometer to characterize event ( , )• Use emulsion data to locate kinks, tridents (software pattern recognition)

8 hrs/event

Plate

Page 24: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

31 G. Tzanakos, BNL Seminar, 1-5-2008

StagesTable

Microscope

CCD Cam

Page 25: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

36 G. Tzanakos, BNL Seminar, 1-5-2008

Vertex Location: NET-scan in DONUT

1 2

34

1. All track

segments(~50k seg)

Yellow : UpstreamRed : Downstream

2. 2 segments

connected(~3k track)

3. Not passing

through (~200 track)

4.Small impact

parameter

2.6 mm

2.6 mm

Page 26: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

37 G. Tzanakos, BNL Seminar, 1-5-2008

1. Long Decays• parent measured• 1-prong (kink)• 3-prong (trident)• τ no 1ry lepton• ~75% of kinks

2. Short Decays• IP wrt 1ry vertex• only daughter meas. • daughter seen in spect.• ~25% of kinks

Page 27: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

38 G. Tzanakos, BNL Seminar, 1-5-2008

Discriminating Variables

A. Kinks: 5 Parameters

• Production angle: θ• Decay length: L• Kink angle: α• Daughter momentum: Pd

• Azimuthal asymmetry: Δφ

B. Tridents: 4 Parameters

• Production angle: θ

• Decay length: L

• Azimuthal asymmetry: Δφ

• Sum of IPs: (IP)

Hadrons

PHAD

View Pν direction

pT

hadrons

e

L

pd

IP

Page 28: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

40 G. Tzanakos, BNL Seminar, 1-5-2008

Cond # Parameter Condition 1-Prong 3-Prong Comments

1 Parent slope

(rad)

< 0.2 0.2

2 Daughter slope

(rad)

< 0.3 0.3

3 α (rad) (*)

(kink angle)

< 0.25 0.25

4 IP (μm) < 500 500 IP of daughter wrt primary vtx

5 Pd (GeV/c) > 1.0 1.0 Daughter momentum

6 PT (GeV/c) > 0.25 had

(0.1) (e,μ)

0.2 Hadron (lepton)

Daughter PT

Topology and Kinematical Cuts

(*) For short decays: Min kink angle

Page 29: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

41 G. Tzanakos, BNL Seminar, 1-5-2008

• Randomly associated tracks– e.g. Primary track + stale muon track

• Charm background

• Interactions (scattering)

• Tau signal

D+

lepton : not recognized

h

τ

Page 30: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

47 G. Tzanakos, BNL Seminar, 1-5-2008

Page 31: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

48 G. Tzanakos, BNL Seminar, 1-5-2008

For each candidate produce individual probability of being Tau, Charm, or hadron interaction. Use Bayes’s Theorem:

= Probability of selecting event of type “i”

= prior probability for event type i

= set of parameters

= PDF of event “i” evaluated at {xk}

= (, L, , Pd, ) for kinks

= (, L, , IP) for tridents

Page 32: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

49 G. Tzanakos, BNL Seminar, 1-5-2008

Kink: ντ CC interaction

Page 33: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

50 G. Tzanakos, BNL Seminar, 1-5-2008

Kink: ντ CC interaction

Page 34: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

51 G. Tzanakos, BNL Seminar, 1-5-2008

Trident: ντ CC interaction

Page 35: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

52 G. Tzanakos, BNL Seminar, 1-5-2008

Charm event: e + c

Page 36: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

53 G. Tzanakos, BNL Seminar, 1-5-2008

103 expected

866 within fiducial volume

578 vertex found

6.6106 triggers : 3.541017 POT

9 ντ candidates

charged charm candidates 7

67% Location efficiency:

DONUT Preliminary

Page 37: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

54 G. Tzanakos, BNL Seminar, 1-5-2008

Run Event FL (mm)

kink (rad)

IP (μm)

Daugt P (GeV/c)

PT

(GeV/c)P(τ) P(c) P(int)

3024 30175 4.47 0.093 416 e 5.2 0.48 0.53 0.47 0.0

3039 01910 0.28 0.089 24 h4.6

0.41 0.96 0.04 0.0

3140 22143 4.83 0.012 60 μ+

22.20.20 0.97 0.03 0.0

3333 17665 0.66 0.011 8 e 59 0.69 0.98 0.02 0.0

3024 18706 1.71 0.014 23 e 50 0.70 1.00 0.00 0.0

3139 22722 0.44 0.027 12 h 15.8 0.35 0.50 0.29 0.21

Kinks

Page 38: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

55 G. Tzanakos, BNL Seminar, 1-5-2008

Run Event FL (mm)

d (rad)

IP (μm)

P (GeV/c) PT

(GeV/c)P(τ) P(c) P(int)

3296 18816

0.80 0.054 38 5.0 0.27 0.71 0.29 0.0

0.190 148 1.3 0.25

0.130 112 1.9 0.25

3334 19920

8.88 0.017 147 11.6 0.20 1.0 0.0 0.0

0.011 98 15.7 0.17

0.011 94 3.2 0.04

3250 01713

0.83 0.133 110 1.3 0.17 0.87 0.12 0.01

0.192 161 2.4 0.46

0.442 355 0.5 0.21

Tridents

Page 39: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

56 G. Tzanakos, BNL Seminar, 1-5-2008

Use the known DIS linear energy dependence of the cross section to extract absolute ντN cross

section:

• σν /E = slope = σconst K(E), K =1, for νe, νμ

(0.667 0.0014) 10-38 cm2/GeV/Nucleon, for νμ

(0.334 0.0080) 10-38 cm2/GeV/Nucleon, for νμ

• Equal numbers of prompt ν,ν s

• Can use <σν /E> = (0.505 0.016) 10-38 cm2/GeV/Nucleon

ντ

Ν

Page 40: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

57 G. Tzanakos, BNL Seminar, 1-5-2008

ντ

Ν

0.20 ± 0.02

Page 41: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

59 G. Tzanakos, BNL Seminar, 1-5-2008

ντ

Ν

Page 42: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

60 G. Tzanakos, BNL Seminar, 1-5-2008

ντ

Ν From MC vs b and n

b same for all charm species

n sensitive to quark content, left as parameter

Agrees with MC to within 10% for 4 < n < 10

Relative errors: Stat = 33%, Syst = 33%

Cross section estimate: Use Pythia-derived n = 6.1

SM: 0.50 10-38 cm-2GeV-1 Assuming lepton Universality

Page 43: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

61 G. Tzanakos, BNL Seminar, 1-5-2008

Page 44: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

62 G. Tzanakos, BNL Seminar, 1-5-2008

Interaction of ν with e- via a dipole moment has a distinct signature

- single, forward e-

- dominates EW process for Te/Eν < 0.2

1 event observed after cuts 2.3 Bgnd events expected

< 3.9 10-7 B 90% CL

e

e

l-

W+ W+

1

2

T

E

Bdy

d

Published in Phys. Lett. B 513, 23 (2001)

Page 45: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

64 G. Tzanakos, BNL Seminar, 1-5-2008

• The DONUT Experiment has directly detected the tau-neutrino as a neutral particle responsible for the reaction:

ντ + Ν τ + Χ

• 9 CC ντ-Nucleus interactions have been observed corresponding to 3.54 1017 Protons on the beam dump.

• Charm production consistent with expectations

• Preliminary DIS slope σν /E consistent with SM.

• Magnetic moment limit: < 3.9 10-7 B @ 90% CL

Page 46: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

65 G. Tzanakos, BNL Seminar, 1-5-2008

• Most stringent experimental limit: ALEPH, 1998 From τ- 2π- π+ντ @ τ- 3π- 2π+(π0)ντ

(From the fit of the distribution of Eh vs mh)

mντ < 18.2 MeV/c2 at 95% CL

Effective mass squared:

m2ντ = i|Uτi |2m2

i m2ντ Maxi {m2

i}

• Cosmological: From combined cosmological data (WMAP, CBI, ACBAR, 2dFGRS, and Lyman α data) and some cosmological assumptions:

Constraint: i mi ( 0.17 – 2.0) eV

(Seljak et al., astro-ph/0604335

J. Lesgourgues and S. Pastor , Phys. Rep. 429, 307(2006)

Page 47: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

66 G. Tzanakos, BNL Seminar, 1-5-2008

• Combine with Oscillation Data:

Δm212 = 8 10-5 eV2

Δm213 = 2.5 10-3 eV2

m1 m2 < 0.05 eV, m3 < 0.07 eV, Normal Hierarchy

m1 m2 < 0.062 eV, m3 < 0.045 eV, Inverted Hierarchy

(Seljak et al., astro-ph/0604335)

Same information to get limits on Heaviest νi

0.04 < Mass [Heaviest νi ] < (0.07 – 0.7) eV ( B. Kayser, arXiv:0804.1947v1 [hep-ph] 9 Apr 2008)

Page 48: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

67 G. Tzanakos, BNL Seminar, 1-5-2008

mi versus imi

68% 95%99.9%

Normal:

Inverted:

(Seljak et al., astro-ph/0604335)

Page 49: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

68 G. Tzanakos, BNL Seminar, 1-5-2008

• τ – ντ coupling: V-A : τ-lepton decay parameters: LEP (ALEPH, DELPHI, L3, OPAL), ARGUS, SLD, MAC, CLEO. Most precise ALEPH.

Michel Parameters

Parameter SM ALEPH PDG Fit PDG Average

ρ (e or μ) 3/4 0.7420.014 0.006 0.7450.008 0.7490.008

ξ (e or μ) 1 0.9860.068 0.031 0.9850.030 0.9810.031

η (e or μ) 0 0.0120.026 0.004 0.0130.020 0.0150.021

(δξ) (e or μ) 3/4 0.7760.045 0.024 0.7460.021 0.7440.022

V-A coupling: τ- decay

Page 50: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

69 G. Tzanakos, BNL Seminar, 1-5-2008

Strength of coupling from τ-lepton lifetime. If Gτ = Gμ (Universality)

ττ (mμ/mτ)5τμBR(τ e) = 2.91 10-13 s

Most precise data from DELPHI, ALEPH, L3, OPAL, CLEO

ττ = (2.909 0.014 0.010) 10-13 s (DELPHI)

ττ = (2.906 0.010) 10-13 s (PDG Average))

Universality

Number of Neutrinos from tle LEP Experiments

Nν = 2.9840 0.0082

Page 51: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

70 G. Tzanakos, BNL Seminar, 1-5-2008

• DONuT has directly observed the tau-neutrino as a particle via its CC interactions with nuclei.

• 9 (CC) tau events have been identified in DONuT. Number consistent with expectations from the S-M. (Also consistent with charm production from prompt νμ, νe ).

• First measurement of ντN DIS consistent with S-M.

• We have precise τ – decay studies from collider experiments (Michel parameters, life time) and Nν = 3 from LEP which are in excellent agreement with the S-M.

• Conclusion: Above properties justify assigning this neutral particle of J=1/2, H = -1, as the weak isospin ½ partner of the τ-lepton .

Page 52: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

71 G. Tzanakos, BNL Seminar, 1-5-2008

Page 53: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

72 G. Tzanakos, BNL Seminar, 1-5-2008

Page 54: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

73 G. Tzanakos, BNL Seminar, 1-5-2008

Page 55: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

74 G. Tzanakos, BNL Seminar, 1-5-2008

Page 56: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

75 G. Tzanakos, BNL Seminar, 1-5-2008

Page 57: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

76 G. Tzanakos, BNL Seminar, 1-5-2008

Page 58: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

77 G. Tzanakos, BNL Seminar, 1-5-2008

Page 59: The Observation and Properties of  the  Tau-Neutrino:  Results From DONuT

78 G. Tzanakos, BNL Seminar, 1-5-2008