THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

13
“THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT PREPARED BY : DISHANT PATEL S. 140123109009 VISHAL GOHEL R. 140123109003 JAY PANCHAL H. 140123109007 GUIDED BY : Prof. Yogesh patel

Transcript of THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Page 1: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

“THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON

CLOSED CIRCUIT”

PREPARED BY :

DISHANT PATEL S. 140123109009VISHAL GOHEL R. 140123109003

JAY PANCHAL H. 140123109007

GUIDED BY : Prof. Yogesh patel

Page 2: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Magnetic Forces, Materials and Inductance

The magnetic field B is defined from the Lorentz Force Law, and specifically from the magnetic force on a moving charge:

F = qv x B

1. The force is perpendicular to both the velocity v of the charge q and the magnetic field B.

2. The magnitude of the force is F = qvB sin where is the angle < 180 degrees between the velocity and the magnetic field. This implies that the magnetic force on a stationary charge or a charge moving parallel to the magnetic field is zero.

3. The direction of the force is given by the right hand rule. The force relationship above is in the form of a vector product.

Page 3: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

From the force relationship above it can be deduced that the units of magnetic field are Newton seconds /(Coulomb meter) or Newton per Ampere meter. This unit is named the Tesla.

It is a large unit, and the smaller unit Gauss is used for small fields like the Earth's magnetic field. A Tesla is 10,000 Gauss. The Earth's magnetic field is on the order of half a Gauss.

Page 4: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Force On A Moving Charge

Lorentz Force Law

• Both the electric field and magnetic field can be defined from the Lorentz force law:

• The electric force is straightforward, being in the direction of the electric field if the charge q is positive, but the direction of the magnetic part of the force is given by the right hand rule.

Page 5: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Force On A Moving Charge

Page 6: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Force on a Differential Current

dF = dQv x BJ v v

dF J Bdv dQ v dv

dF v dv v B

dF J Bdv

Jdv KdS IdL

dF K BdS

dF IdL B

F vJ B

dvol

F SK B

dS

F LI

d B I LB_x_

d

F IL B

Page 7: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Force And Torque On A Closed Circuit

F I LB_x_

d

F IB L1

d

T R F

Page 8: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Force And Torque On A Closed Circuit

dT IdS B

Magnetic Dipole Moment dm

dm IdS

dT dm B

T IS B m B

Page 9: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Force And Torque On A Closed Circuit

DC Motor - Illustration

Page 10: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

The Nature of Magnetic Materials

Magnetic Materials

Magnetic Materials may be classified as diamagnetic, paramagnetic, or ferromagnetic on the basis of their susceptibilities.

Diamagnetic materials, such as bismuth, when placed in an external magnetic field, partly expel the external field from within themselves and, if shaped like a rod, line up at right angles to a non-uniform magnetic field. Diamagnetic materials are characterized by constant, small negative susceptibilities, only slightly affected by changes in temperature.

Page 11: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Paramagnetic materials, such as platinum, increase a magnetic field in which they are placed because their atoms have small magnetic dipole moments that partly line up with the external field.

Paramagnetic materials have constant, small positive susceptibilities, less than 1/1,000 at room temperature, which means that the enhancement of the magnetic field caused by the alignment of magnetic dipoles is relatively small compared with the applied field.

Paramagnetic susceptibility is inversely proportional to the value of the absolute temperature. Temperature increases cause greater thermal vibration of atoms, which interferes with alignment of magnetic dipoles.

Page 12: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT

Ferromagnetic materials, such as iron and cobalt, do not have constant susceptibilities; the magnetization is not usually proportional to the applied field strength.

Measured ferromagnetic susceptibilities have relatively large positive values, sometimes in excess of 1,000. Thus, within ferromagnetic materials, the magnetization may be more than 1,000 times larger than the external magnetizing field, because such materials are composed of highly magnetized clusters of atomic magnets (ferromagnetic domains) that are more easily lined up by the external field.

Page 13: THE NATURE OF MAGNETIC MATERIAL FORCE & TORQUE ON CLOSED CIRCUIT