The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3...

15
The Nano-Optic-Measuring Machine - NOM - Characterisation of the NOM as the prototype for a high precision measurement machine for plane and low curved optical surfaces. A new development by Berliner Elektronenspeicherringgesellschaft mbH - BESSY - Berlin-Adlershof , Germany Albert-Einstein-Strasse 15, D 12489 Berlin. Presented by OEG GmbH Frankfurt (Oder), Germany September 8, 2005 1 OEG-BESSY- NOK-Characterisation Sept.8, 200; Lammert OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Transcript of The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3...

Page 1: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

The Nano-Optic-Measuring Machine - NOM -

Characterisationof the NOM as the prototype for a

high precision measurement machine

for plane and low curved optical surfaces.

A new development by

Berliner Elektronenspeicherringgesellschaft mbH

- BESSY -

Berlin-Adlershof , Germany

Albert-Einstein-Strasse 15, D 12489 Berlin.

Presented by

OEG GmbH

Frankfurt (Oder), Germany

September 8, 2005

1OEG-BESSY- NOK-Characterisation Sept.8, 200; LammertOEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 2: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

NOM-principle

� Hybrid system with two deflectometry sensors

(Long Trace Profiler LTP and Autocollimator AKF) on the same machine base

� Comparison of the systematic measuring deviations

of the both measuring channels LTP and AKF

�Reduction of the measuring parameters

To only two base measuring parameters: length and angle,

consequently no reference surface like interference principle is necessary

� Highest accuracy for the mooved components

���� Lovest influences of the invironmental factors

�Systematical measuring deviations are extensive ascertainable and manageable

���� The low not ascertainable systematical deviations are extensive

reduced partially with help of measuring strategies

� Randomise measuring deviations are very low

by optimisation of the internal and external error sources,

such as noises, drifts, movement deviations,

and furthermore reduceable through complete automatisation

Main attributes of the NOM

1. Accuracy: 10 marcsec rms; < 0,5 nm rms, reproducibility < 0,05 nm/200 mm

2. 3-D-Profilometry of the whole measured surface

3. Presently NOM is a prototype of a measuring machine with industry-like meashuring times

The Nano-Optic-Measuring Machine - NOM -

The NOM is a non-contact deflectrometry sub-nm topography measuring machine

for highest precision optical surfaces like EUV or Synchrotron Radiation application

2OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 3: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

Optical set-up scheme of the NOM (front view)

3

The Nano-Optic-Measuring Machine - NOM -

OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 4: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

Auto-

collimator

Lateral -

positioning

carriage

Air bearing main carrigage

LTP

Beam-

guide

reflector

Drive-

carriage

Stone base

Specimen

Carriage beam

Stone Table and Carriage System with aerostatic bearings

4

The Nanometer-Optical-Measurement Machine - NOM -a non-contact deflectrometry sub-nm topography measuring machine

for highest precision optical surfaces like EUV or Synchrotron Radiation application

OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 5: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

• material

of main mechanical parts: stone

- high heat capacity- low thermal conductivity- low coefficient of thermal expansion

- sluggish response due to thermal change

- physically stable

• total weight: 4t- low eigenfrequency -vibration damping

• scanning unit - low weight • double carriage system linked

by a torque free coupling

The Prototype of the machine at BESSY - Berlin

The Nano-Optic-Measuring Machine - NOM -

5OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 6: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

Technical Parameters of the NOMMeasuring area: 1200 mm in length, 300 mm (600 mm) laterally

Accuracy of guidance of the scanning carriage: < 1 µm

Reproducibility of the scanning carriage movement:

< 0.01 arcsec rms; < 0.2 nm rms

Technical Parameters of the NOM-SensorsLong Trace Profiler LTP Autocollimator AKF

Viewing angle ± 6.6 mrad ± 6.6 mrad

Measurable radiusof curvature 1 m 10 m

Spatial resolution >/= 1 mm >/= 2 mm

Footprint 1 mm 1.5 - 5 mm

Reflectance 4 - 100 % 4 - 100 %

6

The Nano-Optic-Measuring Machine - NOM -

OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 7: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

The Nanometer-Optical-Measurement Machine - NOM -a non-contact deflectometry sub-nm topography measuring device for X-ray optics

Comparison of two different measurements

ESAD (PTB) and NOM (BESSY)

510 mm plane mirror of 510 mm x 118 mm

with 0,02arcsec rms (best fit),

Conformity of both measurementsfor the central scan-section of 130 mm:

< 0.3 nm rms

Reproducibility of a 480 mm measured length

< 0.3 nm rms; 0.2 marcsec rms = 1nrad rms

3D-mapping with reproducibility < 0.1 nm rms

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

189 201 213 225 237 249 261 273 285 297 309

Prüflingsausdehnung x [mm]

Fo

rmab

weic

hu

ng

en

[n

m]

NOM 1.5.2003[K2 umgek]

ESAD [verkippt-verscho)

Differenz . ESAD minus NOM

NOM-Meßergebnis im Vergleich mit ESAD-Ergebnis Feb. 2003

NOM: [2Ku-plan--1Ku-1Ke-Auflage] PK520 2/2 1.Mai 2003

0 6 nm 12

7position on sample x [mm]

hei

gh

t/d

evia

tion

(yel

low

) [m

m]

OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 8: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

Samples in different dimension ranges

Diameter [mm]: Ø 6 Ø 50 Ø 250 Ø 500 (Ø 650)

Length [mm] x width[mm]: 20x5 100x20 500x100 1000x200 1200x300

Meas. accuracymeas. time at

differentplane surfaces

surface [cm²]: 0.5 20 500 2000 3600

Measuring accuracy ranges meas. point

stand.dev.97´% peak to valley distance number

Rms p-v mm 1/cm²

Required meas. time for a plane surface

in surface measurement (3-D-mapping)

in automated measurement run

λ/25 50 nm λ/5 120 nm 50 0,2 20 min 20 min

λ/40 15 nm λ/8 80 nm 10 1 40 min 1 h

λ/60 10 nm λ/12 50 nm 5 4 3 min 1 h 2 h 4 h

λ/300 2 nm λ/60 10 nm 2 25 10 min 4 h 0.5 d 1 d

λ/1200 0.5 nm λ/ 200 3 nm 1 220 90 min 1 d

λλλλ/2000 0.3 nm λλλλ/600 1 nm 0.4 1500 20 min 8 h

Measurement accuracy

Relationship between : Sample dimension

Required measurement times

8

The Nano-Optic-Measuring Machine - NOM -

OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 9: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

Line-scan on a 510mm mirror - substrate material: ZerodurTM

The Nano-Optic-Measuring Machine - NOM -

9OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 10: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

NOM (AKF)- Measuring result ZerodurTM-specimen 510 mm - Reproducibility

-5

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

x-position [mm]

he

igh

t [n

m]

M1

M2

Diff M1-M2

Measuring result:

sagitta:

(26,5 +/- 1,2) nm p-v

(33,5 +/- 4,5) marcsec rms

Reproducibility (480 mm)

< 0.5 nm rms;0,2 marcsec rms = 1nrad rms

-1

-0,5

0

0,5

1

0 50 100 150 200 250 300 350 400 450

x-position [mm]

he

igh

t [n

m]

Diff M1-M2

Radius: - 1083 km;

residual height: 4,4 nm p-vresidual slope: 20,4 marcsec rms= 98 nrad rms (spatial resolution 5 mm)

Difference of measurement 1 and 2 :

1,4nm p-v, 0,5nm rms

The Nano-Optic-Measuring Machine - NOM -

10OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 11: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

-20

-15

-10

-5

0

5

15 51 87 123 159 195 231 267 303 339 375 411 447 483

sample position x [mm]heig

ht devia

tions [n

m]

-10

-5

0

5

10

15

20

15 45 75 105 135 165 195 225 255 285 315 345 375 405 435 465 495

Prüflingsausdehnung x [mm]

Höhenabw

eic

hung [nm

]

123

4

5

76

NOM-Example: Bending of Zerodur mirror of 510 mm x 110 mm

at defined 4-ball-support during a time sequence of 14 days

as result of temprerature differences of 0,09 mK/min = 0.9 K/week

Measure-

ment

results

for

7 different

serial stress

conditions

unbent

Adjustment of the measured curves into the

positions of the bearing balls

11OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 12: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

height profile of center line - residual height200

150

100

50

0

[nm

]

height pv rms

initial state: 191 nm 47.3 nm 1st IBF: 58 nm 13.3 nm2nd IBF: 14 nm 2.9 nm3rd IBF: 9 nm 1.4 nm

residual height at opticalactive area:

1st IBF: 87 nm

3rd IBF: 14 nm

slope [arcsec rms]

initial state: 1.21

1st IBF: 0.26

3rd IBF: 0.14

Measuring control by the NOM:Ion Beam Finishing of a plane-elliptical refocussing mirror

- Progress in shape optimization by 3 iterations of IBF -

The Nano-Optic-Measuring Machine - NOM -

12OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 13: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

What accuracy can be optained by the combination NOM - IBF ?

Example: plane grating substrate 100 mm x 20 mm

with extremly high accuracy

slope error fit0.022 arcsec rmsradius: 300 km

height fit line

1.1 nm p-v

0.28 nm rms

height fit map2.8 nm p-v

0.35 nm rms

Reproducibility of 6 line scans: Raw data

slo

pe

[arc

se

]h

eig

ht

[nm

]

height [nm]

slope fit map

0.021 arcsec rmsl. rad.: -350 km

position on the sample x [mm]

height without fit

0.14 arcsec p-v4 nm p-v, 1 nm rms

EG-BESSY- NOK-Characterisation Sept.8, 200; Lammert13OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 14: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

Perspective

The new standards of accuracy may be applied

for hitherto unattainable goals:

1.1.1.1. •••• mirror and grating substrates of 0.02 arcsec rms ( < 0.5 nm rms)

2.2.2.2. •••• adaptive mirrors < 0.1 arcsec rms (1 nm rms)

3.3.3.3. •••• mechanical influence of the mounting systems below 0.1 arcsec rms

4.4.4.4. •••• determination of thickness constancy of coatings to less than 1 nm

5.5.5.5. •••• radius determination of test glasses to < 0.01 %

6.6.6.6. •••• reference normal specimen for interferometry

with subnanometer accuracy (λλλλ/1000 and less)

7.7.7.7. •••• plane surface measurements with radii > 1000 km

8.8.8.8. •••• determination of long term shape stability of optical materials

in the nm or subnanometer range

9.9.9.9. •••• determination of inhomogenities in optical glasses

in the range of ∆∆∆∆n < 10-6

The measurement technique with the NOM

is an outrider of the optics technology development

14OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert

Page 15: The Nano-Optic-Measuring Machine - · PDF fileOptical set-up scheme of the NOM (front view) 3 The Nano-Optic-Measuring Machine - NOM - OEG-BESSY- NOK-Characterisation Sept.8, 2005;

The Nano-Optic-Measuring Machine - NOM -

Refrerences:Heiner Lammert, Tino Noll, Thomas Schlegel, Frank Siewert, Thomas Zeschke; The Nanometer Optical Component Measuring Machine – NOM – at BESSY. BESSY Annual Report 2002, Published by BESSY Berlin, 2003, p. 399. httb: //www.bessy.de/

Heiner Lammert, Tino Noll, Thomas Schlegel, Frank Siewert, Thomas Zeschke; XUV-Optik, Messung mit der Nano-Optik-Messmaschine - NOM - bei BESSY. DgaO-Proceedings 2004; http://www.dgao-proceedings.de/download/105/105_a11.pdf

Heiner Lammert, Tino Noll, Thomas Schlegel, Frank Siewert, Thomas Zeschke. Break-through in the Metrology and Manufacture of Optical Components for Synchrotron Radiation. Annual Report 2003, Published by BESSY Berlin, 2004, p. 530-533. httb: //www.bessy.de/

Heiner Lammert, Nanometer-Optikkomponenten für die Synchrotonstrahlung;

Messen und Endbearbeitung bis in der Subnanometer-Bereich unter λλλλ/1000. Schlussbericht NOK-NOM, Teilvorhaben BmbF/VDI 13N7929. BESSY Berlin, 22.12.2004

Frank Siewert, Tino Noll, Thomas Schlegel, Thomas Zeschke and Heiner Lammert,

The Nanometer Optical Component Measuring Machine: a new Sub-nm Topography Measuring Device for X-ray Optics at BESSY,Mellville, New York, 2004, AIP Conference Proceedings, Volume 705, p. 847-850

Frank Siewert, Kai Godehusen, Heiner Lammert, Thomas Schlegel, Fred Senf, Thomas Zeschke, Thomas Hänsel,Andreas Nickel, Axel Schindler, NOM measurement supported ion beam finishing of a plane-elliptical refocussing mirror for the UE52-SGM1 beamline at BESSY, BESSY Annual Report 2003, Berlin 2004, httb: //www.bessy.de/

15OEG-BESSY- NOK-Characterisation Sept.8, 2005; Lammert