The Mare Nostrum Universe - Rijksuniversiteit Groningenbernard60/presentations/talks/yepes...The...

38
The Mare Nostrum Universe Gustavo Yepes Universidad Autónoma de Madrid

Transcript of The Mare Nostrum Universe - Rijksuniversiteit Groningenbernard60/presentations/talks/yepes...The...

  • The Mare Nostrum Universe

    Gustavo YepesUniversidad Autónoma de Madrid

  • What is Mare Nostrum?

    • IBM JS20 Blade Center:– 4812 PPC processors– 9.6 Tbytes of Memory– Myrinet interconection.– 233 Tbytes disk

  • What is Mare Nostrum?

    • IBM JS20 Blade Center:– 4812 PPC processors– 9.6 Tbytes of Memory– Myrinet interconection.– 233 Tbytes disk

    Still the most powerfullsupercomputer in Europe.It is located at the BSC in Barcelona

  • What is Mare Nostrum?

    • IBM JS20 Blade Center:– 4812 PPC processors– 9.6 Tbytes of Memory– Myrinet interconection.– 233 Tbytes disk

    Still the most powerfullsupercomputer in Europe.It is located at the BSC in Barcelona

    A perfect place to create a Universe, not only because of its power…

  • The MareNostrum UniverseTREEPM+SPH simulation

    ΛCDM model (WMAP1)• 500/h Mpc3 volume• GADGET 2 code (Springel 2005)• Adiabatic SPH+TREEPM Nbody

    – 10243 FFT for the PM force.– 15 kpc force resolution.

    • 2x10243 dark and sph particles– 109.33 partículas– 8x109 M dark matter– 109 M for gas particles

    • 1 million dark halos bigger thana typical galaxy (1012 Mo)

    • Simulation done at MareNostrum– 512 processors (1/8 total power)– 1Tbyte ram– 500 wallclock hrs (29 cpu years)– Output: 8600 Gbytes of data. – Same computing power than the

    Millenium Run.

  • SpringelSpringel et al 2005et al 2005

    Moore`sMoore`s LawLaw::

    CapacityCapacity ofof professorsprofessorsdoubledouble everyevery 18 18 monthsmonths

    N.BodyN.Body simulationssimulationsdoubledouble thethe numbernumber ofofparticlesparticles everyevery 16.4 16.4 monthsmonths

    ExtrapolatingExtrapolating::

    10101010 partpartíículas in 2008culas in 2008

    ……butbut itit waswas done in done in 20042004

    “Hubbel Volume”

    “Millenium Run”

  • SpringelSpringel et al 2005et al 2005

    “Hubbel Volume”

    “Millenium Run”Moore`sMoore`s LawLaw::

    CapacityCapacity ofof professorsprofessorsdoubledouble everyevery 18 18 monthsmonths

    N.BodyN.Body simulationssimulationsdoubledouble thethe numbernumber ofofparticlesparticles everyevery 16.4 16.4 monthsmonths

    ExtrapolatingExtrapolating::

    10101010 partpartíículas in 2008culas in 2008

    ……butbut itit waswas done in done in 20042004

    MareNostrumMareNostrum UniverseUniverse (SPH) (SPH)

  • SpringelSpringel et al 2005et al 2005

    “Hubbel Volume”

    “Millenium Run”Moore`sMoore`s LawLaw::

    CapacityCapacity ofof professorsprofessorsdoubledouble everyevery 18 18 monthsmonths

    N.BodyN.Body simulationssimulationsdoubledouble thethe numbernumber ofofparticlesparticles everyevery 16.4 16.4 monthsmonths

    ExtrapolatingExtrapolating::

    10101010 partpartíículas in 2008culas in 2008

    ……butbut itit waswas done in done in 20042004

    MareNostrumMareNostrum UniverseUniverse (SPH) (SPH)

    TheoreticalTheoretical NN--bodybody limitlimit atat MN MN

  • Collaborators:• S. Gottlober (AIP Germany)• R. Sevilla (UAM, Spain)• M. G. Rivero (UAM, Spain)• M. Hoeft (Bremen, Germany)• Massimo Meneghetti (ZAH, Heildelberg)• Christian Wagner (AIP Germany)• Arman Khalatyan (AIP, Germany)• V. Turchaninov (IAM Moscow)• A. Faltenbacher (USC, California)• M. Plionis, S. Basilakos (NOA, Greece)• F. Atrio (USAL, Spain)• A. Doroshkevich (Moscow)• …

  • Halo finder• Hierarchical Friend of Friends analysis delivers

    structures at virial overdensities and allsubstructures (Klypin,Gottlober,Kravtsov 1997)

    • Minimal Spanning Tree technique:– Sorting particles in a cluster ordered sequence

    • Mass, shapes, orientations, angular momentum, particle list, are obtained from the MST for eachobject.

    • Full MPI implementation of the halo finder:– Timing: Analysis of 10243 particles is 4 hrs with 32

    cpus.

  • Halo Mass function

    • 4063 clusters with M > 1014 h-1 Msun• 58167 groups+clusters with M >1013 h-1 Msun• 506000 objects with M > 1012 h-1 Msun• More than 1 million objects with more than 100 particles

  • Spin parameter

    Dark halosλ = 0.023 for all overdensitiesno hint that substructures have a differentspin distribution

    “gas” halosλ ~ 0.05

  • Shape of the dark matter distribution atvirial overdensity:

    halos with more than 500 particles

    Shapes of halos

  • Shapes of halos

    Shape of dark matter halos atVirial overdensity

    Shape of dark matter halos at 64 times virial overdensity

  • Shape of halos

    Shape of dark matter halos atVirial overdensity

    Shape of the corresponding gas distribution in same halos

  • Baryon oscillations

    Dark HalosDark matter particles

  • Baryon oscillations

    Dark HalosDark matter particles

  • Baryon oscillations

    Dark HalosDark matter particles

  • Baryon phase space diagram

  • Baryon phase space diagram

  • Baryon phase space diagram

  • Baryon phase space diagram

    HOT

    Warm-Hot

    COLD

  • (T > 107 K)

    (105 K < T < 107 K)

    (T < 105 K)

    Evolution of baryon phases

  • Evolution of baryon phases

    All baryons WHIM baryons

  • Clusters of galaxies

    Most massive cluster:

  • Baryon fraction in clusters

  • X-ray Temperature function

  • Scaling relations:Resolution effects

    Comparison of Lx for two versionsof the same simulation:

    Colored points: MareNostrum run

    Black points: low-res version with2x5123 particles:(Basilakos et al 2005Ascasibar et al 2004-2005Rubiño’s talk this meeting)

  • Scaling relations:Resolution effects

    Comparison of Lx for two versionsof the same simulation:

    Colored points: MareNostrum run

    Black points: low-res version with2x5123 particles:(Basilakos et al 2005Ascasibar et al 2004-2005Rubiño’s talk this meeting)

    Green Points are data..

  • Evolution of scaling relations

  • Evolution of scaling relations

  • Evolution of scaling relations

  • Evolution of scaling relations

  • Evolution of scaling relations

    (R. Sevilla’s Thesis)

  • Strong Lensing

    • Arcs from our most massive cluster :• Composite U,B,V using ray tracing technique.• Collaboration with Massimo Meneghetti:

    •Study role of cluster mergers on strong lensing efficiency.•Create the largest database of lensed simulations from 4000clusters between z=0 and 1.5.

  • SUMMARY• The MareNostrum Universe simulation uses 2 billion particles to

    simulate both the dark and baryonic matter. It is one of the largestSPH simulations done up to now.

    • It constitutes a very useful data base to do different studies of large-scale structure formation and distribution in both components.

    • We have discussed here several of the analyses that are beingcarried out:– Halo identification and internal properties.– Baryon oscillations in the LSS of halos.– Baryon distribution.– Clusters of galaxies: scaling relations, baryon fractions, lensing..– S-Z signal from different structures (clusters, WHIM..)– etc..

    • We are open to any other interesting study you may have thought– So please contact us if you’d like to put your hands on the tons of Gbytes of

    data that the MareNostrum Universe is made of..

  • Thank you

    [email protected][email protected]

    • The MareNostrum supercomputer is run by• We thank BSC for giving access to this facility• http://www.bsc.es

    mailto:[email protected]://www.bsc.es/index.html

    The Mare Nostrum UniverseWhat is Mare Nostrum?What is Mare Nostrum?What is Mare Nostrum?The MareNostrum Universe�TREEPM+SPH simulationCollaborators:Halo finderSpin parameterShapes of halosShapes of halosShape of halosBaryon oscillationsBaryon oscillationsBaryon oscillationsBaryon phase space diagramBaryon phase space diagramBaryon phase space diagramBaryon phase space diagramEvolution of baryon phasesEvolution of baryon phasesClusters of galaxiesBaryon fraction in clustersX-ray Temperature functionScaling relations:�Resolution effectsScaling relations:�Resolution effectsEvolution of scaling relationsEvolution of scaling relationsEvolution of scaling relationsEvolution of scaling relationsEvolution of scaling relationsStrong LensingSUMMARYThank you