THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP,...

19
THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1 , S. Koch 2 1 IPSL/SA, CNRS, Paris, France 2 NOAA FSL, Boulder, Colorado T. Weckwerth 3 , J. Wilson 3 , D. Parsons 3 , B. Demoz 4 , B. Gentry 4 , D. Whiteman 4 , G. Schwemmer 4 , F. Fabry 5 , W. Feltz 6 , M. Pagowski 7 , P. Di Girolamo 8 3 NCAR/ATD, Boulder, Colorado 4 NASA/GSFC, Greenbelt, Maryland 5 Mc Gill University, Montreal, Canada 6 CIMSS, U. of Wisconsin, Madison, Wisconsin 7 CIRA, Boulder, Colorado 8 U. degli Studi della Basilicata, Potenza, Italy

Transcript of THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP,...

Page 1: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT

PLAINS DURING IHOP_2002

6th ISTP, Leipzig, Germany, 14-20 September 2003

C. Flamant1, S. Koch2

1 IPSL/SA, CNRS, Paris, France 2 NOAA FSL, Boulder, Colorado

T. Weckwerth3, J. Wilson3, D. Parsons3, B. Demoz4, B. Gentry4, D. Whiteman4,G. Schwemmer4, F. Fabry5, W. Feltz6, M. Pagowski7, P. Di Girolamo8

3 NCAR/ATD, Boulder, Colorado 4 NASA/GSFC, Greenbelt, Maryland5 Mc Gill University, Montreal, Canada 6 CIMSS, U. of Wisconsin, Madison, Wisconsin

7 CIRA, Boulder, Colorado 8 U. degli Studi della Basilicata, Potenza, Italy

Page 2: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

Overview of the presentation

1. Introduction• Background on bores and solitons• Expected IHOP-related advances in bore studies

2. The 20 June 2002 mission• Objectives• Instruments deployed

3. The 2O June 2002 bore event• Life cycle (CIDD analyses)• Vertical structure (LEANDRE 2 and S-POL RHIs)

4. Conclusions and perspectives

Page 3: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

Background Bores may be produced when a cold front or outflow boundary impingeupon a stable surface layer in the presence of sufficient wind curvature.

stable layer

from Locatelli et al. (1998)

These wave events can play a role in convection initiationand nocturnal convection maintenance

A bore is type of gravity wavedisturbance propagatingahead of a gravity current(« permanent » displacementof a layer) …

… that may further evolves into a solitary waveSystem (layer is displacedupward and then returns backto its original height)

Page 4: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

Expected IHOP-related advances

What makes IHOP_2002 so special:• Wide spread networks of instruments:

WSR-88D radars surface mesonets (OK, SWKS, ASOS, AWOS, etc…)

• Daily forecast of bore events• Systematic measurements from Homestead Profiling site• Aircraft pool deployment (in situ and remote sensing)• « Bore » life cycle

Until now, observational investigations of solitarywaves/bore events over the SGP have been primarilylimited to individual case studies often using detailedmeasurements taken at a single location.

IHOP_2002: bore events are common features in the SGP !

Page 5: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

The 20 June 2002 ELLJ missionOn 20 June 2002, the life cycle of a bore (i.e. triggering, evolution andbreak-down) was sampled in the course of night time ELLJ mission duringwhich 2 aircraft and a number of ground- based facilities were deployed.

RUC 20 km (0300 UTC)

terrainS-POL

Homestead:MAPR, ISS,SRL, GLOW

NRL P-3(LEANDRE 2and ELDORA)

MCS

LearJetdropsondes

The bore was triggered by a thunderstorm outflow

Page 6: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

Objectives

terrain

4

3

2

• Analyse the life cycle of a bore event (how it is triggered,how it evolves, how it dies…)

• Compare observations with hydraulic theory,

• Understand the role of bores in nocturnal convectionmaintenance,

• Provide validatation for high-resolution numericalsimulations of this event.

Page 7: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

The 20 June 2002 bore event

terrain

1

4

3

Gravity current Bore Soliton

CIDD analyses (S-POL and DDC radar reflectivity + surface mesonets)

Data used to analyse the « bore » event life cycle:• Triggering (gravity current): DDC and S-POL radars, surface mesonets• Temporal evolution: airborne DIAL LEANDRE 2, DDC and S-POL radars,

surface mesonets, dropsondes, in situ P-3• Break-down: Profiling in Homestead (SRL, GLOW, MAPR), ISS soundings,

S-POL radar, surface mesonets

Page 8: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

CIDD analyses

terrain

1

4

3

Gravity current Bore Soliton

CIDD analyses (S-POL and DDC radar reflectivity + surface mesonets)

The different stages of the event:• Gravity current: radar fine line + cooling + pressure increase• Bore: 1 or 2 radar fine lines + no cooling + pressure increase• Soliton: train of wavelike radar fine lines + no cooling + pressure increase

A fine line in the radar reflectivity fields is indicative of either Bragg scattering associatedwith pronounced mixing or Rayleigh scattering due to convergence of insects or dust.

Page 9: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

CIDD analyses

Page 10: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

CIDD analyses

17

82

3 95

Homestead

Page 11: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

terrain

1

4

3

2

Vertical structure of the bore

The bore was best observedalong a N-S radial coincidingwith P-3 track 1

S-POL RHIs: contineouscoverage (0530-0730 UTC)

Airborne DIAL LEANDRE 2:4 overpasses of Homestead

3 legs of LearJet dropsondes

Homestead Profiling Site:SRL, GLOW, MAPR

Page 12: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

LEANDRE 2 : 1st pass track 1

0141-0209 UTC

Moistening

L2 WVMR retrievals:

100 shots (10 sec.) 800 m horizontal resolution 300 m vertical resolution Precision:0.05-0.1 g kg-1 at 3.5 km0.3-0.4 g kg-1 near surface

Page 13: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

0329-0352 UTC

LEANDRE 2 : 2nd pass track 115 km

0.8 km

0.8 km

• Amplitude ordered waves• Inversion surfaces lifted successfully higher by each passing wave • Trapping mechanism suggested by lack of tilt between the 2 inversion layers

Dry layer

Page 14: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

0408-0427 UTC

LEANDRE 2 : 3rd pass track 117 km

0.8 km

0.8 km

• Amplitude ordered waves• Inversion surfaces lifted successfully higher by each passing wave • Trapping mechanism suggested by lack of tilt between the 2 inversion layers

h0h1

h1/h0~2.1

Dry layer

Page 15: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

0555-0616 UTC

LEANDRE 2 : 4th pass track 111 km

• Waves are no longer amplitude ordered• Inversion surfaces lifted successfully higher by each passing wave (not expected)• Lifting weaker than previously• Trapping mechanism suggested by lack of tilt between the 2 inversion layers

0.6 km

Dry layer

Page 16: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

S-POL RHIsAzimuth 350°

Horizontal wavelengthconsistent with L2observations of the soliton

0530 UTC

0702 UTC

Page 17: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

Observations in Homestead

0

5

10

15

20

25

4 4.5 5 5.5 6 6.5 7 7.5 80

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

UTC (hrs)

Alt

itu

de

(km

)

June 20, 2002: 50 m, 3 minutes

SRL

MAPR

GLOW

Bore arrival

Drylayer

Page 18: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

SummaryThe life cycle of a « bore » event was observed as fine lines in S-POL reflectivityand Mesonet data (CIDD analyses) as well as by LEANDRE 2, S-POL RHIs, ISS,and MAPR: it occured along an outflow boundary that propagated southward at aspeed of ~11 m/s from SW KS into the Oklahoma panhandle

The GC that initiated the bore disapeared shortly after 0130 UTC over SW KS.The bore then propagated southward, and evolved in a soliton)

With h1/h0~2.1, the bore can be classified as a strong bore (however thetheoretical transition region appears at h1/h0=2…)

Solitary waves developed to the rear of the leading fine line atop a 700 – 900 mdeep surface stable layer. Depth of stable layer increased by 600 m with passageof leading wave. The inversion was then lifted by each passing wave. Similar trendsare observed in the elevated moist layer above

Solitary waves characteristics: horizontal wavelength = 16 km at an early stage,decreasing to 11 km upon reaching Homestead; phase speed = 8.8 m/s prior to0430 UTC, and 5 m/s afterward. Waves exhibited amplitude-ordering (leadingwave always the largest one) except at a latter stage. Evidence of wave trapping.

Page 19: THE LIFE CYCLE OF A BORE EVENT OVER THE US SOUTHERN GREAT PLAINS DURING IHOP_2002 6 th ISTP, Leipzig, Germany, 14-20 September 2003 C. Flamant 1, S. Koch.

Where do we go from here?• Verify to what extend observations are compatible with theory(Simpson, 1987; Rottman and Simpson, 1989; Koch et al., 1991 )

We have assessed a number of CG and bore related quantities need to confront hydraulictheory (propagation speed of GC and bore; cooling associated with the GC; pressureincrease associated with the GC and bore; lifting; horizontal wavelength).

• Assess the trapping mechanisms allowing the bore to maintain all theway to Homestead

We are (or will be) investigating this using Scorer parameter (RDS) and cross-spectralanalyses (in situ and L2). Possible generation of KH waves by wind shear will also beinvestigated.

• Understand the mechanisms leading to the bore breakdown south ofHomestead

Is this caused by orography, the presence of the strong, very narrow jet or the fact thatwe no longer have stably stratified conditions. In the latter case, is this related to theCAPE and CIN redistribution with altitude (induced by the bore itself), leading to theinjection of water vapor above the NBL ?