The isomorphism problern for circulant digraphs with pn...

42
, .-- *---- , AKPSBIE DER WISSWSCHllFTEN DBR üDR PREPRINT Michail Ch. Klin and Reinhard Pöschel The isomorphism problern for circulant digraphs with pn vertices (Comuiunicated by H. Koch)

Transcript of The isomorphism problern for circulant digraphs with pn...

Page 1: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

, .-- * - - - - , A K P S B I E DER WISSWSCHllFTEN DBR üDR

PREPRINT

Michail Ch. Klin and Reinhard Pöschel

The isomorphism problern for circulant digraphs

with pn vertices

(Comuiunicated by H. Koch)

Page 2: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

Keywords

C i r cu l an t graph

Graph isomorphism

Ad6m's con jec tu re

Isomorphism problem

CI-graph

Schur r i n g (S-ring)

AMS Subject c l a s s i f i c a t i o n (1980)

05C20, 05C25, 20B25, 68E10

Received November 27th , 1980

Page 3: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

ABSTRACT

A (directed) graph with vertex set z,={o,I, ... ,r-lf is called circulant over Zr if its automorphism group contains the cycle (0 1 ... r-1 ) . In this paper, a necessary and sufficient condition for circulant graphs over Zr (where r=pn, p being an odd prime number, n€lN) to be isomorphic is given. This result proves a generalization of ad&tnqs conjecture which

holds for n=l but fails for n) I. hloreover, an algorithm de- ciding whether ad&'~ conjecture holds for a circulant graph

over Z pn

(i.e. whether the graph is a CI-graph) is presented. The proof of the isomorphism theorem uses the method of

Schur rings (S-rings). In order to make the paper self-con- tained, the results on S-rings are developed (and proved) as far as necessary; however the results are of their own in-

terest, too.

Ein (gerichteter) Graph mit der Eckpunktmenge z,={o ,I ., ,r-13 heiBt zirkulant, wenn seine Automorphismengruppe den Zyklus 0 I . 1 ) enthslt . In der vorliegenden Arbeit wird eine notwendige und hinreichende Bedingung dafiir angegeben, daf3

n zwei zirkulante Graphen uber Zr (mit r=p , p ungerade Prim- zahl, n€BJ) isomorph sind. Das Ergebnis beweist eine Vesall- gemeinerung der Hypothese von adfun, die fur n=l ,nicht aber fiir n > I gilt. Dariiberhinaus wird ein Algorithmus angegeben,

der entscheidet, ob die adhsche Hypothese fur einen gegebe- nen Waphen iiber Z PE e: ilt (d.h. ob ein CI-Graph vorliegt ). Der Beweis des Isomorphietheorems verwendet die Methode der Schurschen Ringe (S-Ringe), Die Ergebnisse uber S-Ringe werden so weit wie natig entwickelt (und bewiesen); sie sind dariiberhinaus auch von eigepstandigem Interesse.

Page 4: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

O ~ H ~ H T E ~ O B ~ H & rpaQ C imOZeCTBoM BepmEH &={0,1~. .. S-IJ

H83XBaeTCff qEPICyJIBHTHElM H a Z zT BCXE eI'0 I'pPIIa E ~ B T o M O ~ ~ E ~ M O B

COJJepXET qEIcJr (01 .. .r-1 1. B J J ~ H H O ~ p 8 6 0 ~ e AOXEL3890 H B O ~ X O A H -

MOe E A O C T B T O m O e YCXOBEe &XR TOPO, K O r A a J,Ba qEIPKYXRfITHEEC

aag Zr mama n a o ~ o p m m /rAe r=pn, p - npocroe mcno, n. m/. Tex CaacrsY IIOJI~eHO AOKa3aTeX5CTBO O ~ O ~ I ~ ~ H E R I'EIIOTe3TZ A~aya ,

xozopa~ BnoaxaeTca , ~ J I R n=? HO H e ~ I R n>l. Ijonee Toro, o~mcaa: 8JIrOpETMl K O T O ~ ~ pemaeT BOIQIOC 0 TOM1 EMeeT JIE MeCTO EJIE HeT

ranoreaa A z a ~ a p a g-or0 rpama H ~ A Zpn IT. e. 6 y g o ~ alla JWH-

qam ~ ~ - r p a p o ~ an= Her/. ~ o x a s a ~ e n ~ c r ~ o reope- ~ s o u o p - m n a ~ a onapaezca =a MeToA Koneq mypa IS-xoneq/. Pesynaraza o s -xonaqax Hsnorega /E &oxas-/ no vepe H~?O~XOJJHMOCTE. OEE

XlpeACTaBJIRDT H C B Y O C T O R T ~ J I ~ H ~ EHFepeC.

CONTENTS

$ 1 In t roduct ion ......................................... 3 $2 Main r e s u l t .......................................,. 7 $3 Proof of t h e theorem (sufficiency 2.3(2)+[1)) ...... 10

54 S-rings and S-isomorphisms .......................... 1 2

$5 Graphs, groups and S-rings ..................... (restatement of t h e problem) 18

6 Proof o f t h e theorem (necessi ty 2.3C1)+(2)) ........ 22

................... $7 Cayley graphs and the CI-property 25 ....................................... 9 8 Some examples 31

REFERENCES ........................................... 38

Page 5: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

$7 In t roduc t ion

The isomorphism problem f o r graphs c o n s i s t s i n f i n d i n g

llgoodtl necessary and s u f f i c i e n t c o n d i t i o n s f o r graphs t o be

isomorphic. From t h e t h e o r e t i c a l po in t of view t h e r e i s no-

t h i n g t o do: There always e x i s t s a f i n i t e a lgori thm t o de-

c i d e (e.g. by checking a l l b i j e c t i v e mappings between t h e

v e r t e x s e t s ) whether two f i n i t e graphs a r e isomorphic o r not.

But even a high-speed computer could not manage t h e number

of computations necessary f o r t h i s a lgor i thm i n genera l . One has t o r e s t r i c t t h e c l a s s of graphs under c o n s i d e r a t i o n f o r

more e f f e c t i v e r e s u l t s .

In t h i s paper we cons ide r d i r e c t e d c i r c u l a n t graphs. The

isomorphism problem f o r such c i r c u l a n t graphs i s of g r e a t

importance f o r a p p l i c a t i o n s ( f o r some more d e t a i l s c f .(A], [KIJP~.~). We completely so lve ( i n 52) t h e isomorphism prob-

lem f o r c i r c u l a n t d igraphs w i t h pn v e r t i c e s (p an odd

prime number). Moreover we mention an easy a lgor i thm deci -

d ing whether l l ~ d & n t s Conjecturet1 holds f o r a g iven c i r c u l a n t

d igraph (57) . Throughout t h e paper we w i l l use t h e word g r a ~ h --- - f o r

d i r e c t e d g r a p h s (d igraphs) without m u l t i p l e edges,

Therefore a graph i s simply a b ina ry (not n e c e s s a r i l y sym-

m e t r i c ) r e l a t i o n on t h e v e r t e x s e t !

f .f Def in i t ions . Let r (where denotes t h e s e t of - a l l n a t u r a l numbers) and Zr = {0,f , ... ,r-13. A graph

LfZrxZr wi th v e r t e x s e t Zr i s c a l l e d c -__---_-___-- i r c u 1 a n t ( o r

c y - ------- c 1 i c [ k l . / ~ b ] ) i f t h e r e e x i s t s a s e t I? c Zr - such t h a t

t h e r e i s an arrow from x t o y

( l e e . (x ,y)a m ) i f f y - xer ( a l l a r i t h m e t i c i s done modulo r ) , For s i m p l i c i t y and

Page 6: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

without l o s s of g e n e r a l i t y we demand 0#I! f o r c i r c u l a n t

graphs. It i s easy t o see t h a t t h e c i r c u l a n c y of i s

c h a r a c t e r i z e d by t h e proper ty

( o r i n o t h e r words, 5 i s c i r c u l a n t i f f Autih c o n t a i n s t h e

c y c l i c group genera ted by t h e permutat ion (01 2.. .r-1 ) ) . We have a 1-1 correspondence between t h e c i r c u l a n t graphs

iti and t h e i r s e t s I! :

I? = { y r z r I ( o , Y ) ~

B = f (X,Y)EZ,XZ~ ( y - x ~ r j . Therefore i n t h e fo l lowing we s h a l l speak of t h e c i r c u l a n t

graph I? EZ, i n s t e a d of t h e corresponding 8 .

Examg&e. ---- I? = 1 5 Z i s t h e fo l lowing c i r c u l a n t graph a

over Z, :

We denote by

BUT I?

t h e ~ ~ - i ~ - ~ _ o _ r ~ - h I ~ s ~ g - z . 2 ~ ~ of 6 o r I!, resp . It con-

sists of a l l permutat ions f : Zr -+ Zr s a t i s f y i n g

(xf denotes t h e image of x by f ). l o r e o v e r , t h e c i r c u l a n t

graphs I? a r e c h a r a c t e r i z e d by t h e proper ty t h a t AUT r c o n t a i n s 2; - t h e r i g h t --- --I r e g u l a r -no ------ ---I r e ~ r e s e n t a - ----------- t i o n ------ of Zr c o n s i s t i n g of all permutat ions

a'': x c t x + a (acZr).

Page 7: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

Two c i r cu l an t graphs I?, T c - Z, a r e i --------- s o m o r 2 ----- h i c

(no ta t ion F I? ' ) iff t h e r e i s a permutation f : Zr --+ Zr

such t h a t

Isomorphism c r i t e r i a f o r c i r cu l an t graphs were invest iga- t e d by many authors (c f . r e fe rences i n [K~/PO]). There i s a well-known c o n j ,,,- ,,,,,,,,,, e c t u r e o f ,-, A. ,-,,,--,,) Adam namely

T,I? ' 5 Zp a r e isomorphic i f f t h e r e e x i s t s an m

r e l a t i v e l y prime t o r such t h a t I? = r m (mod r ) . Unfortunately k d h ' s conjecture i s not t r u e i n general . It holds f o r squarefree numbers r = P ~ * . . . ~ P ~ a s shown by V.N. Egorov and A . I . Markov [ ~ g / ~ d . On the o the r hand B. Alspach and T.D. Parsons ([Al/~c$) proved t h a t r must be equal t o 2em where ee{0,1 ,2) and m = l o r m i s squarefree and odd i f Wd&mfs conjecture holds f o r a l l c i r cu l an t graphs over

zr . A d h l s conjecture remains v a l i d a l s o f o r some very spec i a l c l a s s e s of c i r c u l a n t graphs over Zr (r a r b i t r a r y ) inves t iga ted by D.Z. Djokovi6, B. Elspae, S . Tdida and J. Turner ([~jf , f~l/Tu],fTo], cf. [%d(p.191 )]).

But what can be done i n t he general case where r i s not squarefree? A s shown by t h e authors i n 1975 (cf . e,g.

[ P G / K ~ ( ~ . 5.1 9 ) I ) f o r r=p2 the re can e x i s t isomorphism c r i t e - r i a very similiar t o Adfun's conjecture. I n t h i s paper we genera l ize t h i s r e s u l t .

I n we formulate an isomorphism theorem f o r c i r c u l a n t

graphs over Z pn*

This theorem solves problem4 and 5 s t a t e d i n [Ad(pp. 191 ,I 93J.7 f o r graphs with pn ve r t i ce s . The proof e s s e n t i a l l y uses t h e method of Schur-rings (S-rings) , i n par- t i c u l a r t h e desc r ip t ion of a l l S-rings over fib;]. Nevertheless t he reader need not be fami Zfn i a r given with t h e in theory of S-rings; a l l needed p rope r t i e s a r e formulated and proved i n and without much S-ring theory i n o rder t o make t h e paper self-contained (of course, t h i s extends t h e

Page 8: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

paper cons iderably) . A s a c o r o l l a r y t o our main theorem we

formulate i n a necessary and s u f f i c i e n t cond i t ion f o r a c i r c u l a n t graph t o s a t i s f y Ad&nfs con jec tu re . The proof of

t h i s r e s u l t w i l l be publ ished elsewhere,

The r e s u l t s a r e i l l u s t r a t e d by some examples g iven i n

t h a t The p resen t au thors t h i n k t h e methods used i n t h i s paper

can a l s o be a p p l i e d t o t h e genera l case y i e l d i n g an isomor-

phism theorem f o r a r b i t r a r y c i r c u l a n t graphs wi th r v e r t i c e s

- provided t h a t i t i s p o s s i b l e t o f i n d a c h a r a c t e r i z a t i o n of

a l l S-rings over 2,. Some i n v e s t i g a t i o n s i n t h i s d i r e c t i o n

a r e done r e c e n t l y by Ja.Ju. Goltfand (AN SSSR, Moscow).

Be Alspach and T.D. Parsons i n v e s t i g a t e d t h e isomorphism

problem wi th d i f f e r e n t methods. The i r r e s u l t f o r n = p2

can be found i n [~l/Pa(Thm.3, p.1 07)] and as Prof . T.D. Par-

sons poin ted o u t t o u s he h a s some r e s u l t s f o r r = p n ( n ) 2 ) , too. A s d i scussed i n [ ~ l / P a ( p . 107)] t h e r e i s now some hope

t o so lve completely t h e isomorphism problem f o r c i r c u l a n t

graphs.

There i s another problem c l o s e l y r e l a t e d t o t h e isomorphism problem, namely t h e so-ca l led KEnig-problem ( c f . e ,g. 0101, [ P ~ / K ~ J , [K1/~8]) : Which permutation groups occur as automor-

phism groups of c i r c u l a n t graphs wi th r v e r t i c e s ? V.A, Vy-

gensk i j , P.H. K l i n and N.I. Eerednizenko solved t h i s problem

comple te l~ r i n caae rzp3 (and n e a r l y f o r rSPn, t o o ) and worked

o u t a computer program f o r t h e c o n s t r u c t i o n o f a l l S-rings 3 over Zr ( r=p 1. These r e s u l t s provide (among o t h e r t h i n g s )

a c l a s s i f i c a t i o n and e f f e c t i v e l i s t i n g of a l l non-isomorphic

c i r c u l a n t graphs wi th g iven a u t omorphism group (, [Vy/~l/Ee]).

ACRNOVfLEDGEMENTS, We wish t o express our thanks t o P ro f ,

L.A. ~ a l u z n i n who had d i r e c t e d our a t t e n t i o n t o t h e i n v e s t i -

g a t i o n of Schur r i n g s and showed a cont inous i n t e r e s t on our work. O u r thanks a r e a l s o due t o P ro f . A. ad& f o r some sti- mulat ing d i s c u s s i o n s and remarks.

Page 9: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

92 Main r e s u l t

Before s t a t i n g o w main r e s u l t we in t roduce some more no-

t a t i o n s used i n t h i s paper.

2.1 Notat ions. Let Sr ( r e m ) be t h e ful l symmetric group - of a l l permutat ions f : Zr--+ Zr. The a c t i o n of some f t S r

f on an element xeZ, i s denoted by x . The composition of

f , f f c S r i s def ined by

X f f l f f f :=(x ) .

For s u b s e t s G , G 1 S Sr and xeZr l e t

G G f :={ggl 1 gpG, g f r G f ] (and Dg:=GG1 f o r G1=lg3),

xG :=I@ lgeG].

G ~ : = { ~ E G I a k a 1 i s t h e s t a b i l i z e r --------------- of G a t t h e po in t

arZr (we always choose a=O). Dealing wi th Zr ( i n p a r t i c u l a r

r=pn) a l l a r i t h m e t i c ( a d d i t i o n , m u l t i p l i c a t i o n ) i s done mo-

dulo r ( i .e . i n t h e r i n g 2,). If t h e r e a r e diffentntmodules

under c o n s i d e r a t i o n we w r i t e e x p l i c i t e l y

x a y m o d r l

when x equa l s y modulo r f . For xcZr, rls r ,

[ ~ I m o d r (o r mod r f ) )

means t h e i n t e g e r which i s l e a s t h a n r f and congruent t o x

modulo r l .

For T,T l $ Zp, xrZr we s e t :

T + x :=[t+x 1 ~ C T ]

~ + ~ l : = { t + t l I t , t l c ~ f j

Tx :={tx I t r ~ ) and pf:={tf I tcrJ f o r f€sr.

Page 10: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

The g r i m e r e s i d u e c l a s s ,----- ,-,,,,,--- ,-,,,,,- ~-cOXF! of a l l numbers

qcZr r e l a t i v e l y prime t o r i s denoted by

I P ( ~ ) : = [ ~ ~ z ~ ( g.c.d. ( q , r ) = 1 f .

Let r = pn (n E 3T). Then we def ine :

P; :={]pi I X=0,l, ...,p n-i-ll ( O s i d n ) .

mote t h a t n-1 i i+l

n-j )pJ = P(P"){P ,P 9 - 9P n-1) ~ f ; = u P ( P

j =i (mod pn).

2.2Notat ion. For T 5 Z n - we def ine P

n-i i r ( i ) := { X B T I g.c. d . (x ,pn)=pi ) =I! n ~ ( p )P . n-1

Clear ly , 3?= u 3?( i )* i = O

Now we a r e ready t o formulate the theorem ( the proof i s

given i n $3 and 56).

2.3 Main Theorem. I! , r ' 5 Z be (d i r ec t ed ) c i r cu l an t ===Zf======= P -

graphs, p 7 2 prime number, neBJ. -- Then t h e following condi-

t i o n s a r e equivalent: 7-

(1 ) I! - and I! ' - a r e isomorphic : r Z F. ( 2 ) There e x i s t mo,ml ,- ,mn-l r P ( p n ) -- such t h a t

y i ) = q i ) mi ( 0 5 i j n - 1 where - the following llequality conditions1' - a re s a t i s f i e d :

j -i ( l + p ) r ( i l # T ( i ) # % , 0 6 i < j S n - l , - - then

mod p j -i 1 mi i mi+l

mod p jmt ( i s t ~ j - 1 )

m j l z m j mod p .

Page 11: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

2.4 Remarks. - ------- a ) The above "equa l i ty cond i t ions t t can be w r i t t e n a l s o i n

t h e form:

If P + ( ) # q i ) 7

f (8 ( O S i 4 j g n - 1 ) t h e n

(*I$ mi mt mod p jmt+' f o r i g t ( j . (This immediately fo l lows from Lemma 3.2, too ) .

b ) Because I.? = T(i)ml (mod pn) i f m l m l n-i (i Irn (modp ),

t h e m i l s i n t h e above c o n d i t i o n 2.3(2) can be chosen as

m E (0 6 i n-1 ); t h e r e f o r e e,g, we can t a k e i mi=mi+l =... =m i f (1 +p n-1 -i

n-1 ) ' ( i ) f ' ( i ) '

c ) If 2.3(2) i s f u l f i l l e d t h e concre te form of a n isomor-

phism (which has t o e x i s t ) can be found i n t h e next para-

graph $3.

d ) What concerns t h e case p=2 , i t i s not q u i t e c l e a r whether

theorem 2.3 remains v a l i d . The answer seems t o be "yesv.

However t h e proof depends on t h e d e s c r i p t i o n of S-rings

over Z2" which r e c e n t l y w a s g iven by Ja.Ju. Gol t fand,

M.lI. K l i n and N. Najmark (unpublished r e s u l t , Oct, 1980).

The isomorphism theorem f o r c i r c u l a n t graphs over z2"

i s no t y e t formulated but i t followa immediately from

t h i s d e s c r i p t i o n .

Page 12: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

53 Proof of t h e theorem ( s u f f i c i e n c y 2.3(2)=>(1 ) )

The proof 2 .3 (2 )+(1) , namely t h a t t h e c o n d i t i o n s i n 2.3

a r e s u f f i c i e n t , i s more o r l e s s t e c h n i c a l l y . We need t h e

fo l lowing lemma:

3.1 Lemma. - I n Z we have P --

We omit t h e p r o o f o f t h i s well-known number t h e o r e t i c a l

r e s u l t (cf , e.g. Da($5)]). I

ITOW, l e t I?, F '=Zpn and mo,...,m n-1 be g iven such t h a t

2,3(2) i s f u l f i l l e d , shg.l_ p-o_pg ' by - c o n s t r u c t i n g -----------

For each ie{0 , l , ... ,n-2) w e d e f i n e ki t o be t h e g r e a t e s t

number such t h a t i 4 - ki 6 n-1 and k, -1

mod p .L mi E mi+l

k - -t mt E d m t + l

mod p 1

%.-I smki mod p 1

i n case mi o mi+l mod p o r i f i=n-1 we t a k e ki=i.

Obviously

0 j k o $ k1 5 ... 6kn-25kn-l=n-I .

Page 13: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

3.2 Lemma, For 0 $ i j n-1 -- we have

n n ' ( i ) ='(i) +pki+l - and I'li) =I ' i i)+Pki+l ,

------- j P r o o f . By d e f i n i t i o n of ki and cond i t ion 2 , 3 ( r ) i we

have (1 +pki+l -' ) F(i) = Z(i ) , t h e r e f o r e a l s o T i i )= I l ( i )mi - - ki+l -i =( l+p . )T(i)mi = (l+p ki+I -i )rti), Elor t h e lemma fo l lows

from 3.1. 1

Every xcZ pn

has a unique r e p r e s e n t a t i o n i n t h e form

t n-1 X = X(0)+X(l )P+. . .+X(t)p + * a .+X (n-1 )P

where O g x C t ) $ p - l .

Now we d e f i n e a permutation f6Spn as fo l lows:

where

For x , y t l n l e t X-ys~(pn-i)pim Then pi d i v i d e s x-y P

and we have x ( ~ ) = Y ( ~ ) f o r t < i , i , e .

n-1 k i X-Y =& E x ( ~ ) - Y ( ~ ) )pt + 9 - ki+l

We g e t k 4

k +I -i Because ki kt and m i a t mod p t t ( i .e . mip =mtp t k . + l ) mod p 1

f o r i s t 6 k i , we have

t t x ( t ) m i P = x ( t ) m t p t k ( t ) m t b o d $i+l-t r[x(t)mt]modpkt+l-t

k*+f *pt 5 ztpt mod p 1 . Thus k 2

Page 14: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

I

Consequently, f f +pn (x;Y) c qj) +=+ X -Y a miT(i) ki+l = rii),

(cf, 3,2), i.e., f is an isomorphism. This finishes the

proof of Theorem 2.3(2)=$(1). 1

$4 S-rings and S-isomorphisms

For the proof of theorem 2.3(1)+(2) we shall use the me-

thod of so-called Schur rings (S-rings). We do not go into

details here and mention some properties of S-isomorphisms

of "basic quantities" af S-rings only. For more information

the reader is referred to [wie], [PO/K~],[N~~, [MIPO].

Revertheless this paper is self-contained as much as possible;

therefore no knowledge on S-rings is needed, almost all re-

sults are proved completely (one exception is the characte-

rization of the basic quantities of S-rings over Z n given P

in n6]).

4.1 Definitions and Notations. Let r s m and let - n

be a d i s j o i n t union of subsets with the following pro-

perties:

(i) %={03 ,

Page 15: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

(ii) -T~E{T, ,TI , ... ,T~) where -Ti: ={r-x 1 xt!FiS ( = I [-xlmod r I xq$) 9

(iii) For yeTk, the cardinality pi of ,j

Tin(y-T.) depends only on j , but J

not on the choice of y (Osi,j,kfn).

R e It is easy to see that (iii) is equivalent to

ciii) If xeTi, yeTj and x+ycTk then all ele-

ments of Tk appear in Ti+T with the j

k same multiplicity pi (i,e,, counting ,j

multiplicities, T +T is the union of sui- i j

table Tkls with corresponding multiplici- k ties pi $.

9

Por zeZr let T(,) be the uniquely determined Ti such

that .€Ti. The system

with the above properties (i)-(iii) is called the system of

all basic ------- quantities -------------- of an S-ring over Zr. For

--I---- over short we will speak of the S - r i n g S =<T (z)>zEZr ------

zr

Remark. ------ For readers who axe interested in S-ring theory we

mention that a S-ring as precisely defined e.g, in [wie], fpa/~a] is nothing else thm the 2-module generated by the Tits in the group ring(^(^,);+,.>.

Let S=(T(~))~~~ and S'-(T[~)>~~Z~ be S-rings over Zp r

and let f: Zr + Zr be a permutation. The f is called

S - i s o m o r ~ h i s m of S onto S' if an ------------ ------ (T(,) +xlf = T1 f ($1 + X

f for all x,z6Zr. In particular we have (T(,)) =T1 (zf), 0 f =0.

Page 16: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

Now we c o l l e c t some p r o p e r t i e s o f S-r ings and S-isomor-

P r o p o s i t i o n ( [ ~ i e (~hm,23,9(a))]). Let S = ( T ( ~ ) ) ~ ~ ~ ~

be an S-r ing ove r Z2 ( ~ E R ) . Then -- T ( z ) q = T(zq)

f o r all q e l P ( r ) . -- (The p r o o f i s similiar t o t h e proof of 4.3, ~ f . [ W i e ( ~ . 5 9 ~ )

4.3 'Proposi t ion, Let f be an S-isomorphism of t h e S-ring - -- Then we have s =('(z))nezr

f o r zeZk, q e E ( r ) . -

P ------- r o o f . (The proof f o l l o w s t h e i d e a o f t h e proof of h i e

(Thm. 23.9)]): If t h e s ta tement h o l d s f o r q , q q e P ( r ) t h e n

a l s o f o r qq' s i n c e f f - ( ~ ( ~ q q ' ~ = (T(yq)q ' ) = ( T ( Z q ) ) 9 ' -

f 4.2 - -4.2 q q ' = ( ~ ( , ) l fqq ' Thus i t s u f f i a e s t o prove t h e p r o p o s i t i o n on ly f o r prime nun-

b e r s q € P ( r ) . Consider U = TI(^)+ ... I +-T(z),

coun t ing t h e

9 m u l t i p l i c i t i e s . The m u l t i p l i c i t y of every element xl+...+x

q € U is d i v i s i b l e by q except t h e elementrs x+.. .+x = xq

(which appear wLth a m u l t i p l i c i t y ~ l m o d q ) , i , e , , except t h e ?.

elements of t h e simple q u a n t i t y T(,)q. The same ho lds f o r

U 1 = T1 +...+ T ' (q t imes ) where T' q i s e x a c t l y t h e (zf 1 (af 1 ( z f )

s e t of t h o s e e lements i n U ' which do no t have a m u l t i p l i c i t y

d i v i s i b l e by q . S ince f i s an S-isomorphism (cf.4.1) we

Page 17: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

f have U =(T(z)+...+T )f =T' +...+I1 ( 2 )

= U1. (zf) (zf)

By 4.l(iii)l, U is the union of simple quantities of S

(Remark: This implies also that T(,)q is a simple quantity

what finishes the proof of 4.2). Therefore U1 must be'the

union of the images of these quantities (of coursewith tor-

responding multiplicities),. This yields (T(,)~)'=T' q. 1 (z 1

4.,4 Now we corisider S-rings over Z n ('p > 2 prime, n 2 1, ) . - P For a simple quantity

(3 1 *

is called the trace -___-_- of T (.z

By a result o.f R, Poschel

( [ ~ b ] ) , every S-ring S =(T ( , I)ZeZpn is fully characterized

by its -__- S - sy _------ s t em (cf. e.g. [~1/~6(2.7)],fi6(4.11 )J)

CCS) 7 = (Ao,% ,-,A,-,; e(S))

where

is a subgroup of the (multiplicative) prime residue class

group P(~") and B(S), for short 0, is the equivalence

relation on {O ,l , ... ,n-1! defined bg. 0 0

(i,j]eQ :* T = !y' (pi) (pj)'

Each % has the form

where Wi is a subgroup of a cyclic subgroup Fn of P(~") of order p-1 satisfying the property wzwl mod p +w=wl

for all w,w1eWn (cf. 4.5). By 3.1 , ki is the greatest num-

ber such that ( I + ~ I ~ ~ - ~ ) T fT (Pi) (Pi) '

Page 18: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

The S-systems of S-rings were described e x p l i c i t e l y i n (PO].

We mention here only some p rope r t i e s needed l a t e r ( f o r proofs

see (Pal) . If [ : = I f i , j )€@j) , then (obviously)

T P and 1 %bpi f o r b € ~ ( ~ " ) . (pi (bpi )=

If ( i , j and i # j then [I]@ i a a f u l l i n t e r v a l 1 of t h e

0 u P ( P n-j j

F(pJ ) = T c P j ) = )p . E Li3@

1f [Ole={Oj , A,= wo+p; +I ('d.(p~)) a n d i f k o l l - then 0 n

[1Ie = 11) and A1 = Wo+ P" (mod pn-I 1, i.e. T. 1 =Wop+Pk +l , kl (P 1 1

with kl _Z ko (c f . [~0(4.11 1 1 ) ; i n case ko=O no condit ion

f o r A, i s required.

4.5 We give here some remarks concerning t h e s t r u c t u r e of - t h e prime res idue c l a s s group p ( p n ) (w. r . t . mu l t i p l i ca t i on

mod $). For more d e t a i l s see e.g. [~a].

Let w O ~ I P ( p n ) be a pr imi t ive roo t modulo p ( i .e . ,

~ ~ - ~ } z P ( p ) m o d p ) s u c h t h a t wo n 41 ,w0 ,w0 9 - 9 (, p-lsl mod p . Then every element x s B ( p n ) has a unique represen ta t ion

at' x = wo ( I +p )*I1 mod pn

(where oc' mod p-1 and 08 mod pn-' ). Moreover, every (multi-

p l i c a t i v e ) subgroup A of ( the c y c l i c group) 3P(pn) can be

(uniquely) writ-bsn I n t h e form

A = V + P: = W(l + P:) mod pn, 2 where W i s a subgroup of Wn:={l ,wo,wo,,,wo P-*!. W

4.6 Lemma. Let f be an S-isomorphism of 3 = <T > - - -- - 0 0

( 2 ) z ~ Z n onto S' = (T*{. . P - Then (T (P i 1 If = T i p i ) for 0 S i 6 n - 1 . - -

P

Page 19: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

(4.7)

Remark. ...----- 4,6 Impl ies 8 ( S ) = 8 ( S 1 ) ( c f . 4.4).

0 - 1 0 ' P r o o f . .----.- Let ~ = { l I ~ l e ~ ~ ~ ~ ) f a n d J 1 = f 1 I p ~ T i f .

((P ) ) t

By 4.4 we know t h a t s t h e r e a r e j , j , s , s 1 such t h a t

j = [ j , j + l ,-., j + s j , J 1 = { j l , j l + l ,..., j l + s l ) * Therefore

0 These numbers must co inc ide because ( ~ ( ~ i ) ) ~ = g 1

( ( P by 4,3. It i s easy t o s e e $hat t h i s i m p l i e s j=j l and s=sl,

0 0 i .e . , J P J f . Consequently T' = T ' s i n c e irJ=J l . I

U P ) 1 (Pi)

4.7 Propos i t ion . Let f be a s i n 4.6. Then - - ---- - f o r a l l zrZ n . *(z) = T i = ) - - P

P ------- r o o f . By 4.4 i t s u f f i c e s t o show t h a t E(S)=(Ao, ... ,Anwl ; - €3). and c ( S ~ ) = ( A A , , . , A I ; ~ ~ ; ~ ' ) - a r e equal. By 4.6 we have

8 = 8 l . Take ~ C { O ,I , ... ,n-13 and l e t ( i , j )€0=0 l f o r some

n j f i . Then Ai= P ( p )= A: by 4.4.In case [i]e={ij l e t a€%,

l e e . T i a - (P )

- T(pi) . Thus we have ( ~ ( ~ i ) ) ~ a ~ . ~ ( T ( ~ i ) a ) ~ =

Z ( T ( ~ ~ ) ) ~ = T1 i f * Because (p i f o ) €!Pipi) by 4.6, t h e r e i s ( ( P 1

i a q ~ ~ ~ ( p n ) such t h a t (pi)f = qp . Consequently,

T 1 i q = T ' i f ' T 1 i f a = T 1 i aq ( ( P I 1 ( ( P I ) (P

=+ T i p i l a = T 1 i i.e. a t A i . ( P 1' Thus % c , A i . Analogously li.is%, i . e . 4-A+ I

Page 20: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

As a statement on S-rings the proposition 4.7 looks like

follows :

4,8 Theorem. S-isomorphic S-rings over Z are equal. I - pn -

$5 Graphs, groups and S-rings

(restatement of the problem)

5.1 Let I ? , I ? * c Z pn be isomorphic circulant graphs,

f: 2i'p-Z pn

an isomorphism of F onto T * and

G=AUICI1, Gf =AUTrl. Because of circulancy the permutations

a : xc,x+a (aaZ ,) P

belong to G and G t (cf. 1.1) and we can assume of = O f without loss of generality (otherwise t a k e f(-0 )* instead

of f ) . Obviously we have G '= fol Gf , in particular -1 f G b = f Gof (since 0 =0, notations cf. 2.1,). Now we consider

the orbits of Go and G b which we denote by

T(Z):= z Go and TiZ):= z G b (Z~Z n), P and let'

A famous result of I. Schur [~ch] yields:

5.2 Theorem. S(G,Z n) (& consequently S(Gf,Zpn)) & - - P - an S-rins over - Z ~ n fl ([sch])

Page 21: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

~ r o ~ o s i t i o n ( [ ~ l / P o (4.6)]). - Let f --- be as i n u. - Then

f -- i s an S-isomorphism - of S(G.2 n ) onto S(G1,Zp,). There- P - -

f o r e S(G,Zpn) =S(G1,Zpn) - - (by 4.8).

P -----.- r o o f (we fo l low t h e proof of 4.6 i n [ K ~ / P U ) , We have

(T(z)+~) f=(zGo+x)f= Gox*f =

because

f f u = f - l ~ ~ X ~ ( - ( x ) ) ~ c f - ' ~ x * f ( - ( x = )ln= f = f - ' ~ f ( - ( x ) ) * = G 1 (no te Z> 5 G n G 1 ) and

-1 oU=(of +xjf-xf = O , i . e . U ~ G ; .

f But (T.(,)+x) 5 T(.f) +xf i m p l i e s e q u a l i t y because t h e

c a r d i n a l i t i e s must co inc ide (no te U = G ; f o r x=O, i.e.

f ( T ( Z ) ) = T i f ) , i . e . f i s an S-isomorphism (c f . 4.1) and

z 1 we a r e done, I

The fo l lowing r e s u l t i s a c o r o l l a r y t o 5.3.

5.4 Corol la ry , Isomorphic c i r c u l a n t graphs over - z ~ " have t h e same automorphism group. --- (We r e f e r t o f ~ 1 / ~ 6 ( 4 . 6 ) ] f o r t h e p r o o f . ) I

Now we want t o r e s t a t e our o r i g i n a l isoniorphism problem

f o r c i r c u l a n t graphs, A t first we observe:

Page 22: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

t h e union of c e r t a i n o r b i t s of Go = (AUT 11 )0: - - -

k Moreover, ( l+p ) I ? ( i ) f T(i) impl ie s (1 +P k ) T ( p i ) f T ( p i )

( i o , , . 1 , kc41 ,2,...,n-1j 1.

P ------- r o o f . Because x=x-0 I r impl ie s xg=xg-Ogc F ( f o r @Go),

k r is t h e union of o r b i t s o f Go. Now, l e t (1+p ) T ( i ) # T ( i ) .

If ( i , j ) c e ( S ) (s:=s(G,Z,n)) f o r some j# i then IP(p n - i I p i =

k = ' ( i ) by 4.4 and t h u s ( l+p ) l ? ( i ) = I ? ( i ) . Thus r i ]e ts)=i i i .

But t h e n T ( i )

has t o be t h e union of o r b i t s of t h e form

n-i k T ( p i ) q , q s P ( p 1, and (I+p ) T ( p i ) = T ( p i ) wouldimply k

('+P I r ( i ) = r ( i ) . k Therefore (1+p )T(p i )# T(p i )* 1

5.6 Propos i t ion . Consider t h e assumption - - (A), : Every S-r ing S =<T( ) over Zpn has t h e f o l - Z ) zeZ n -

P lowing proper ty :

If f : Zpn -+ Zpn i s an 3-isomorphism of S onto S - - - t h a n t h e r e e x i s t mo , ,. ,mn-l E E (pn) such t h a t - --

( T ( ~ i ) lf = ~ ( ~ i ) m ~ j -i -- t hen mi,, ,m s a t i s f y a n d i f ( l+p ) T ( p i ) # T ( p i ) j

t h e cond i t ions - mod p j-i

mod p j -t mt *t+1 mod p (Of i d % < j 4 n - 1 ) I .

Under t h i s assumption (A) , c o n d i t i o n 2.3(1) impl ie s 2.3(2) -- (cf. Main Theorem p . 8 I.

Page 23: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

P r o ------- o f . Let f be an isomorphism between t h e c i r c u l a n t

graph I' and T 1 c Z n (i .e. 2.3(1) is f u l f i l l e d ) , o f = O P

(c f . 5.1 ). By 5.3, f i s an S-isomorphism of S = - S (AUT I', Zpn)

onto S1=S(AUTI",Zpn) - and we have S = S t (cf . 4.8). Under n t h e assumption (A) o f 5.6 t h e r e e x i s t mo,,.,mn,l~IP(p )

such that (T(p i ) l f = T ' and mi,...,mj s a t i s f y (*)$ . . (P i if ( l , + ~ ~ - ' ) ~ ( ~ i ) f . T ( p i ) .

If I ' ( i )=@ o r r ( i ) = P ( p n-i ),pi t h e n I? t i )= (d o r T1(i) =

= WP n-i)pi, i . e . , "(i)¶ '(i) mie

Otherwise [i]8(s)=jij and F ( i ) = u qP ilq (cf. 5.5) where seQ

Q:={~ s P ( ~ " ) I qpic T Therefore we have again:

(note that t h e f irst e q u a l i t y fo l lows from 4.6 arii t h e d e f i -

n i t i o n of an isomorphism). Moreover, ( l+pjoi) I! (i) $ J? (i)

impl ie s (r)! f o r mi,, ,m because o f 5.5 and assumption j

(A). Thus 2.362) i s f u l f i l l e d , too . B

Page 24: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

$6 Proof of t he theorem ( n e c e ~ s i t p 2.3(1%)+('2))

With t h e r e s u l t s of t h e preceeding pmagraphs we a re ready

t o pTove 2,3(1)53(2), For t h i s reason we a r e going t o pTove

assumption ( A ) i n 5.6:

Let. f be an S-isomorphism 05 S = < T ( ~ ) ) ~ ~ ~ onto it- P

s e l f . We prove the exis tence of mop, ,mn-l 6 IP ($1 by in -

duction on nc Be

For n=l. WE have (T .4po) ) f= T ( l f ) = T(po)mo f o r

f mo:=(po)f= 1 (cf . 4.1, 4.2).

Remark. -I---- The resul-b f o r n=2 i s proved i n [~i5/~a(8 .5 , lgV.

Now, l e t 5.6(A)l be f u l f i l l e d f o r a l l n 1 < n and oonsidelp

t he above f and S. Let io be t h e g r e a t e s t i n t ege r such

t h a t ( o , i 0 ) ~ e ( s ) . By 4.6, ( Y ) f= 8 , i.e. f mapms (Pi01 (PiO) -

8 = I P ( ~ ~ - ~ ) ~ ~ onto i t s e l f ; the re fore (pi,) i=o

o n ($n\T i and we can conaider t he r e -

(P 0 ) n n s t r i c t i o n of f to Pi +,. Dividing all elements of Pio+l

0 by pie+' we ge t an S-ring

oves 2 no (where no - ( 1 ) ) defined by P

3 (ZpiO+l ) Moreover,

Page 25: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

is an S-isomorphism of onto i t s e l f . By induction the re - -. e x i s t mo , - ,mn -1 e IP(pno) such t h a t

0 T -

( T ( p j ) ) = T b j ) m j (J = O , I ,Ow, n o -1)

0

whereby (1 +pJ- i )~(p i ) f 5 ( p i ) h p l i e s (*Ii f o r Gi, ... ,mi. 0 I I

Define mi :=mop - , mio+l +j :=mj, .... , mnO7 :=mn 0 0

-1 '

Since ? ( p i p io+l = T (pi+io+ll by d e f i n i t i o n , we have 1

(Bipi))f = T (P i xn i f o r ie{iO+ll,... ,n-1{;

moreover, ( l+pJ- i )~(p i )# T (p i ) implies (*)! f o r mi,- ,m j

(io+l s i < j s n - 1 ) .

What happens f o r i $ i o ? - We dis t inguish two cases:

Case --_--- 1: i o ) O . Then, by 4.4,

T'(pO)= ". = T(p i ) - - 0 P ( p n-i i )P , ( is i o ) . id

Therefore t h e mi (i f i,) can be chosen a r b i t r a r i l y (e.g.

I o r m =m i i,+1 ) because they always s a t i s f y t he condi-

Case ------ 2: io= 0 . F i r s t l y , l e t (1 +p )T (PO )=T (po l* 2hen we have t o f i n d an

mo e z ( p n ) with ( T ( ~ ~ ) ) ~ = T ( ~ o ) ~ ~ (and with no o ther condi-

t i o n ) . Take mo:=lf; *hen

BOW, l e t ( l + p k o ) ~ ( p o ) f T( 0 f o r some k o b 1 and choose P 1

ko a s g rea t as possible. Then again by 4.4 (c f . p.16)

Page 26: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

24 ( 9 6 )

T ( p ~ ) = WQ+P: 0 +I TCpl) ' wop+p; +I 1 wi th kl - 2 k,. c l e a r l y (1 +pkl -I ) T ( ~ T

(P (o therwise

n T(P)=

=T +pn =Wop+Pk , c f . 3.1 ) , t h e r e f o r e (1 +pko-' ( P I kl 1 T ( P )

and ('as a l r e a d y proved above) ( t):~ is s a t i s f i e d f o r t h e

above cons t ruc ted ml , ... ,mk . It remains t o f i n d an mo c I P ( ~ " ) 0

s a t i e f y i n g (*)iO f o r mo, - ,mk , i .e . s a t i s f y i n g m o a ml 0

mod pkO and (r ):o f o r ml , ... ,mk . Thus t h e proof were f i n i - 0

shed i f t h e r e would e x i s t an ~ * E P ( ~ " ) such t h a t k and mo 2 ml mad p 0 .

To see t h i s , cons ide r ' (p)C T ( ~ ) .+ lp( l ) (p-I ). his impl ies

Since pmleT(p)ml and i . T ( l ) ) f o r p = l l f e ~ ( p n )

WR g e t

pal = xf + Y ~ ( P - 1 n f o r some x , y ~ T ( ~ ) = Wo+Pk Consequently, x p s yy mod p 0 + x s y mod p =+ x s y mod p kO+l . Thus pml t ypp mod p ko+l

* m1 zYp mod pkO.

Take mo:= y p . Then mo f u l f i l l e s t h e needed cond i t ions

because

(note T,(I )=T(y l ) and m o ~ m l mod p ko . Summarizing t h e r e s u l t s , we have found mo, ... ,mn-l

s a t i s f y i n g t h e c o n d i t i o n s i n 5,6(A). I

Page 27: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

47 Cayley graphs and t h e CI-property

A s mentioned i n t h e i n t r o d u c t i o n t h e b e s t p o s s i b l e solu-

t i o n of t h e isomorphism problem f o r c i r c u l a n t graphs were

i d k n ' s con jec tu re , I n t h i s paragraph we m e going t o chmac-

t e r i z e e x p l i c i t l y a l l c i r c u l a n t graphs over ipn which s a t i s -

f y Ad&nls c o n j e c t u r e , i . e . , which have t h e so-ca l led Cayley-

Isomorphism Properky (GI-property). The r e s u l t i s an easy

consequence of t h e main theorem 2.3 however i t needs some

t e d i o u s cons ide ra t ions and %herefore t h e proof w i l l be pub-

l i s h e d elsewhere.

F i r s t of a l l we r e c a l l some no t ions .

7.1 A g r a p h i i ~ % , x B ( r a m ) i s c a l l e d a C a y l e y - r --- --- - g_r_-p-h of Zp if c A u t B . Thus t h e Cayley graphs of

Zr a r e e x a c t l y t h e c i r c u l a n t graphs over 2 . 8 i s c a l l e d

a C I ---- - g --- r aq-h o --- f Zp i f a Cayley graph 6' of ( t h e addi-

t i v e c y c l i c group) Z i s isomorphic t o a i f f t h e r e e x i s t s r an mcAut Zr w i th L 1 = p. Because Aut 2, = P ( ~ " ) , a &-

c u l e n t g r a ~ h T f Zr is a CI-graph i f f f o r e v e q c i r c u l a n t

graph T'g ZL- isomorphic 42? P t h e r e e x i s t s rncIP(pn)

such t h a t T' =Tm. That means, CI-graphs of Zr a r e those -- f o r which A d h ' s con jec tu re i s f u l f i l l e d .

'r i s a C I - g r o u g ---- ----- f o r ---- - g r a p h s --- ---- ( o r ~ = G I g r o u ~ ) ----- i f a l l Cayley graphs of Zr a r e CI-graphs; e.g.

'P i s a 9 - C I group but

Z~ n (n 2 - 2 ) i s not. For some more d e t a i l s

s e e [~l/Pw,[~a].

Page 28: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

The p roper ty of being a CI-graph depends on ly on t h e automor-

phism group of t h e graph (cf. e ~ g . [B~],[K~/P~]I . Therefore

a permutat ion group 05 Sr i s c a l l e d an &$.._m_ gr -o -gz

(over 2,) i f G i s t h e automorphism group o f a CI-graph

of Zro Then ? i d b l s con jec tu re i s f u l f i l l e d f o r all c i r c u -

l a n t graphs wi th automorphism group G.

Using a r e s u l t g iven i n [~ l /P t i (~hm, 4.911 t o g e t h e r with

4,8 we g e t %he fo l lowing c h a r a c t e r i z a t i o n of ?id& groups

over Z . pn

7,2 Theorem. Le-k G be an automorphism group of a c i r cu - - - -- - - - l a n t graph over Zr where r = p n , p > 2 prime, n s N . - Then

C i s an Ad& ~roup i f f --7

[N (G) : O ] = [N (ZG) : N~(z~)]. 'r 'r

Hereby N ~ ( H ) = I @ ; C L 1 a= I&) denotes t h e n o m a l i e e r of H 4 - Sr

i n L b S r . B ( [ K ~ / P G ( ~ * Y ) ] ) *

For p r a c t i c a l a p p l i c a t i o n s t h e r e immediately a r i s e s t h e

question: How one can recognize a c i r c u l a n t graph I? p Zr

t o be a CI-graph without u s i n g t h e automorphism group? How

In avoid t h e g r e a t amount of cornputationa (e.g. on a compu-

t e r ) necessary f o r determining t h e CI-property v i a automor-

phism groups? The next theorem provides t h e answer f o r c i r -

cu lan t graphs over Zpn

Some pre l iminary c o n s i d e r a t i o n s a r e necessary:

Page 29: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

7.3 Let T = U T(l ) U ... U ) 5 Z be a c i r c u l a n t - P

graph. Then t h e s t a b i l i z e r

Stab := { q c W p n ) 1 I?(i)q = I?(i) 3 i s a subgroup o f and t h e r e f o r e ( c f . 4.5) of the form

n Stab I?(i) = Wi +Ps (i = O , l ,... ,n-1 ).

L e t Wi be genera ted by di (cf . 4.5) and l e t s = ki+l -i

( thus i L - k i c .I n-I ). For T(i)= @ WB d e f i n e Stab T(i)= P (~") .

The n- tupels

a r e c a l l e d t h e c h a r a c - t i e r i z i n ~ ------------------- n u m b e r s y s t em --------- - ------- f o r I?. We reduce t h i e system ( k , f ) i n two s t e p s : ---- W

Step 1. : If g.c.d(Ii,p-l ) = I and k i t h e n d e l e t e t h e

ith compononent i n both , & and L, y i e l d i n g a sys-

t e m , say (k',hl) ( 0 5 i ~ n - I ) .

Step 2: If O ~ i l < i 2 6 k . & k il

then de le te t h e ipth com- =2

ponent i n and 1' tand s u b s t i t u t e Si by

The r e s u l t i n g system (kr t ,P t f ) W i s c a l l e d t h e F e d U C e d ---------- r e d r e d c h a r a c t e r i a i n g number system f o r T an denoted by (k W ,f ).

Page 30: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

7.4 Theorem ( C h a r a c t e r i z a t i o n Theorem f o r CI-gra~hs] . -------------------------------- -- -- Let. I? g Zpn ( p > 2, n E B ) be a c i r c u l a n t graph o v e r - -- - Z ~ n

red- a n d l e t k - . j -- - , fred=(fj, : , ... ,f ) --- be i ts r e - s

duced charac ter iz ing- number system, Then I' is 3 CI-graph - - ( i .e , ad6m1s con jec tu re holds f o r I?) -- i f and on ly i f t h e -- fo l lowing - two -- c o n d i t i o n s - a r e s a t i s f i e d :

( i ) For a l l i { j 1 , except a t most one we have i = ki ----- ( i .e . , f o r a t most one index ie{j l ,... , jsi we have

(1 +PI r ( i ) # r ( i ) I *

( t i ) For a l l i , ,...,js}, i # i l , we have 1 -- g . ~ . d . ( ~ , ~ , ) = I ( e WiuWil genera tes t h e

whole group P ( ~ " ) f o r a l l d i s t i n c t i , i l e { j l ,...,j$).

Remark. ------ The empty system - kred=@, Ired=$ i s thought t o

s a t i s f y c o n d i t i o n s (i) and ( i i ) t r i v i a l l y .

The p r o o f of 7.4 w i l l be publ ished elsewhere. (1)

7.5 Note t h a t cond i t ion (i) can be checked wi th computing

t h e system k reduced by Step 2 on ly (without us ing any i i ) .

Therefore, i n many c a s e s , one can e s t a b l i s h t h a t I' i s - not

a CI-graph by computing - k red only. This procedure reduces

cons iderably t h e number of computations concerned. ( c f . 8.2)

Now, we g ive an a lgor i thm ( i n informal way!) f o x dec id ing

t h e CI-property f o r c i r c u l a n t graphs over Zpn (of course ,

t h e r e a r e many ways for f u r t h e r improvements of t h i s algori-t;hm),

Page 31: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

7.6 Aigorithm dec id ina whether a c i r c u l a n t graph F 5 2 - - pn ( p 7 2 prime, n ~ m ) - - i s a CI-araph:

S t e p ( 1 ) : Working i n Z n , f i r s t l y f i n d a p r i m i t i v e r o o t P

wo modulo p s a t i s f y i n g wo ii 1 mod pn. (This can

be done as fol lows: Find a p r i m i t i v e r o o t U mo-

du10 p, i . e . , e.g., t a k e t h e l e a s t u.r lP(p) such

t h a t {u,u2 ,..., U P - ~ ~ Z [ I ,2 ,..., p-l] rnod p. Define

wo:= U (Pn-' mod pn. )

~ t e p ( 2 ) : Let a c i r c u l a n t graph F 5 Z pn

be given.

Det ermine n F(i),:= { X E T 1 g + ~ . d a (x,p ) = pi ) (0 5 i Sn-1 ).

~ t e ~ ( 3 ) : l o r a l l 0 1 , - 1 determine t h e l e a s t na-

t u r a l number ki such t h a t i f k i $ n - 1 and

X + pki+l (mod f o r a l l xei? ( i )

(ki is a l s o t h e g r e a t e s t nwnber such t h a t t h e r e i s

an ~ e i ? ( ~ ) wi th ~ + p ~ ~ + r ( ~ ) ) . i n c a s e I 4 t a k e &-g-/ = Lucckj t ; l ß ; - , $ , Let - k be t h e fo l lowing matrix:

s t e p ( 4 ) : For a l l i 0 1 , - 1 determine t h e l e a s t d i -

v i s o r fi of' p-1 such t h a t

W o Fixer(il (mod f o r a l i X E F ( ~ ) l

n (Remark: ti always e x i s t s inoa wo p - l x i x rnod p ).

Page 32: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

s tep( .5) : Reduce - k and I as fo l lows: For a l l

i€{0,1~... ,n-lf, hf k i and - 1 i- &hen d e l e t e

(id !!i in k and I , r e s p e c t i v e l y . Denote - t h e r e s u l t of t h i s r educ t ion again wi th - k and

1, resp . We obtiain

If k 4 , t h e n I? i s a GI-graph, - - - - 0

Stcep(6): Reduce & and as fol lows: If (ii) and @j) are columns o f - k s a t i s f y i n g i < j $ k . $ki

3 t h e n d e l e t e i n k and f i n and

s u b s t i t u t e f i by t h e number l*c*rn . ( f i , f j )*

Do t h i s u n t i l 1 no such i , j e x i s t . One o b t a i n s

t h e reduced c h a r a c t e r i z i n g number system f o r I!

denoted by

r e d If k 4 t h e n I! is a CI-maph. - - - 0

If s = 1 t hen P i s s CI-graph. - 7 -- S t e p ( 7 ) : If t h e r e a r e a t l e a s t two colums ( ) [

kred -- such t h a t i#si - and j#kj t h e n

S t e p ( 8 ) : If t h e r e -- a r e two ( d i s t i n c t ) components Ii of 1~ - Fed -- such t h a t g . c . d . ( f i 9 f j ) # l ~ - t hen

F i s no t a CI-graph. ---

Page 33: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

Step(9) r If (7) - and (8) -- are not fulfilled (i.e., if i=ki

for all but possibly one columns of k - red and

if g.c.d.(fi,i.)=I for all components of red) J

then r is a CI-graph. - 7 -

$8 Some examples

In this paragraph we mainly give some examples of iso-

morphic circulant graphs over Zpn. The isomorphism can be

easily established by theorem 2.3 whereas a direct checking

(e,g. in a geometrical representation or with adjacency ma-

trices) seems to be a hopeless task.

Let r = {I ,6,i i ,1)6,21 , 5 1

Then

The circulant graphs I? and over Z25 are isomorphic

by 2.3 (p0=2, rn1=3). According to the construction in $3,

the permutation

is an isomorphism from I? onto TI.

Page 34: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

l? ia not a CI-graph because mo and mi cannot be chosen

to be equal. The graphs S! and ape represented in fi~,f

a d fig.2a. Here the arrow --> between subgraphs means

that there is a (directed) edge from each vertex of the first

subgraph to each vertex of the second one.

S! a d are isomorphic; here this can be seen alsa by re-

drawing the graph Ft as given in fig.2b. Comparing fig.1

and fig.2b it is obvious that the permutation 2 f t : x+yp 2x+3yp (modp )

is also an isomorphism from I? onto .

Page 35: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

Fig. 2a

rf :

Fig. 2b

Page 36: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

F i n a l l y , l e t us s e e how, t h e a l g o r i t h 7;.6 works when

app l i ed t o I? :

1 : W o = 7

0 1 step(3)l: & = t o

~ t e ~ ( 4 ) : f = (4.4)

S t e p s ( 5 ) , ( 6 ) : f e d - O '1, red = (4,4) - (u 1

S$sp(8) : i s not a CI-graph. ---

Then

Theorem 2.3 shows t h a t I? i s ieomorphic t o r1 but no t

t o I?11. More g e n e r a l , a l l graphs l? ' isomorphic - t o - a r e

e x a c t l y of t h e form

r = Pii) , r t i ) = r(i)mi (i=O,1 ,2 ,3) i = O

where mo 5 ml m2 5 m3 mod p .

Page 37: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

From t'his also follows that I? is not CI. The algorithm 7.6

gives at once t'he Same result:

St'ep (3) : 01 23) 1 2 3 3

Step(7) : - - W is not a CI-graph.

Leti I' ={I ,28955, 9,36,63, 27,541

r'={113,40,67, 9,36,63, 27,541

rt=E 3,40,67, i 8,45 ,P, 27-, 545

Then 3 2 r(,)={i ,28,55{= I +P:= (I+P )r(0)+(i+~ )r(0)

(+ ko=2, cf.7.3)

"(1 )= @ (3 kl=2) b=ruai(4,bs3

2 4 1?(~)={9,36,63J= P + p3=(1+~)r(2) (+ k2=2) 4 ~(~)={27,54$= p3 (k3=3)

and

Tio)= -1 3 r(0)-13

Ti1 )= $ ='(I )=

r(2) ~ ( ~ ~ - 2

ris)= T(3) ?3)= r(3)

According to theorem 2.3, F is isomorphic .t;o T but not

to Tl1 . In general, al1 graphs I" isomorphic to are exac%- - - urf urf ly of the form = (, ( 2 ) (3), '(iIrni

mhere mo 5 m2 mod p .

Page 38: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

From t h i s condit ion e a s i l y fol lows t h a t Adbrs conjecture

holds f o r I!. The algorithm 7.6 g ives t h e Same r e s u l t a s

f ollows :

Step(1) : wo.-I mod p n

Step63) : k = ( 2 1 2 3

Step(4) : = (2,1,2,1) 1- s t ep (6 ) : - k = (2 2) , f = (2.2)

So we have , f o r ins tance , I!' = T- 1 3 f o r t h e isomorphic graphs

I! and I!'.

We want to i l l u s t r a t e now t h e complexity of t h e c i r c u l a n t

graphs wider considerat ion. Therefore we present t he above

graph I? (see f i g . 3 ) using t h e following abbreviat ions:

/a\ denotes t he graph

a+54

> denotes t he graph cons i s t ing of two sub-

graphs /a\ and such t h a t t he re

i s a l s o an arrow from each ver tex of

/a\ t o each ve r t ex of .

denotes t h e graph A

%& A-A

Page 39: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

denotes the graph

A -A !%A :+a d & A -A

Then F can be presented in the following way:

Fig. 3:

Page 40: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

REFERENCES

[w A . ~ B , On some open problems of app l i ed automaton

theory and graph theory (suggested by t h e mathema-

t i c a l modelling of c e r t a i n neuronal networks).

Acta Cybernetics 2(1977) , 187-21 4. (For A d h f s con-

j e c t u r e see a l s o J. Comb. Theory 2(1967), 393).

[Al/Pa] B.USPACH & T.D,PARSOWS, Isomorphism of c i r c u l a n t

graphs and digraphs. D i s c r e t e Mathematics 2 ( 1 9 7 9 ) ,

97-1 08.

Da] L,BABAI, Isomorphism problem f o r a c l a s s of p o i n t

symmetric s t r u c t u r e s . Acta Math. Acad. Sci . Hung.

29(1977), 329-3360 - / D j l D.Z.DJOKOVIC, Isomorphism problem f o r a s p e c i a l c l a s s

of graphs. Acta Math. Acad. Sci . Hung. - 21 (1970),

267-270.

[ ~ g / ~ a ] V.N.EGOROV & A.I.NARKOV, 0 g ipo teze Adana d l j a gra-

f o v s c i r k u l j antnymi matricami smegnosti verx in .

DAN SSSR 2$9(1979), 529-532. ( R u s s i a . On a d b ' s

conj e c t u r e f o r graphs wi th c i r c u l a n t adjacency ma- t r i c e s . )

nl/~u/ B.ELSPAS & J.'PURNER, Graphs wi th c i r c u l a n t adjacency

matr ices . J. Comb. Theory - 9 (1970), 297-307.

a H.HASSE, Vorlesungen iiber Zahlentheorie . (2. neube-

a r b e i t e t e ~ u f l a g e ) , Springer-Verlag, B e r l i n , Giittin-

gen, Heidelberg, flew York 1 964.

Do] D.A.HOLTUN, The K5nig quest ion. Proc. 5th B r i t .

comb, Gonf., Aberdeen 1975, (1976), 323-3424

nl/~ijJ hl.H.KLIN & R.POSCHEL, The Kijnig problem, t h e isomor- phism problem f o r c y c l i c graphs and t h e c h a r a c t e r i - z a t i o n of Schur r i n g s . P r e p r i n t AdWdDDR, ZIMM, Ber-

l i n , Marz 1978. (A shortened v e r s i o n appears i n t h e

Proceedings of t h e I n t e r . Col l . on Algebraic methods

i n graph theory (Szeged 1978) ).

Page 41: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

' Deu] P.M,WEUMANN, Finite permutation groups, edge-coulou-

red graphs and matrices. In: Topics in group theom and computation (Proc. Summer school in Galway, 1973,

ed. by M,P.J,Curran), Academic press, London 1977, pp. 82-118.

[YB] R.POSCHEL, Untersuchungen von S-Ringen, insbesondere

im Gruppenring von p-Gruppen, Math. Nachr. &(1974),

1 -27.

fh/~a] R.P~sCHEL & L.A.KALuEWIN, Punktionen- und Relationen- algebren. Deutscher Verlag der Wissenschaften, Ber- lin 1979 (and also Birkhauser Verlag, Base1 und

Stuttgart 1979).

[~ch] I,SCHUR, Zur Theorie der einfach transitiven Permu- tationsgruppen. So-B. PreuD. &ad. Wiss. phys.-

math. K1. 1933, 598-623.

[TO] S.TOIDA, A note on Adhls conjecture. J, Combinato- rial Theory =(1977), 239-246.

fly/~l/Ee] V.A.W~ENSKIJ, M.H.KLIN &I.I.~EREDNIEENKO, 0 realizacii algoritma postroenija S-kolec cikliEes- kih grmpp porjadka pm i ego primenenie dlj a regenija

zadaEi katalogizacii ciklizeskih pm-ver8innyh grafov. In: vy8islenija v algebre i kombinatorike, pp. 73-86.

Institut Kibernetiki AN USSR, Kiev 1978, (Russian. On the realization of an algorithm for con- structing S-rings of the cyclic group of, order pm and its application to the solution of the listing

problem for cyclic graphs with pm vertices.)

hie] H.V?IELMTDT, Finite permutation groups. Academic

press, New York and London, 1964.

Page 42: The isomorphism problern for circulant digraphs with pn verticespoeschel/poePUBLICATIONSpdf/1980_Kli… · zwei zirkulante Graphen uber Zr (mit r=p n , p ungerade Prim- zahl, n ...

INDEX OF IJOTATIONS

Authorsf addresses

IN 3

%r 3 r 3

AUT I? 4

z; 4 a" 4 , 1 8

X f 7

f f f 7

X G 7,

7 Ga - - - 7

[~lrnod r 7

4

D r . M. Ch. Kl in D r . R. Poschel

SU - 248025 Kaluga Akademie der Wissenschaften der DDR

u l . Valentiny N i k i t o j 39/44 Z e n t r a l i n s t i t u t f u r Mathematik und Mechanik

DDR - 1080 B e r l i n Mohrenstr. 39

- - -- -__- -~-

-. - - - -

A g 521 /3 ? S / 0 , v 3 f W f f 7 ~ - --

T + x 7

T + T 1 7

TX 7

T~ 7

]P( r ) 8

8 P f; 8

(*Ii 3 8920

-T 1 3

13918 T ( z )

(T( z))zcZr 1 3 0

*(z) 1 5

C_(S) - 1 5

% 1 5

I

W S ) 1 5

Wo 16 ,29

mn 1 6

- S(G,Zgn) 18

CI 25

9-CI 25

S t a b I'(i) 27

- k 27 , 29

1 27 , 29 kred - 27 , 30 red 27 , 30

ki 29, (10915)

f i 29

a 32