The Herschel Reference Survey

28
The Herschel Reference Survey Author(s): A. Boselli, S. Eales, L. Cortese, G. Bendo, P. Chanial, V. Buat, J. Davies, R. Auld, E. Rigby, M. Baes, M. Barlow, J. Bock, M. Bradford, N. Castro-Rodriguez, S. Charlot, D. Clements, D. Cormier, E. Dwek, D. Elbaz, M. Galametz, F. Galliano, W. Gear, J. Glenn, H. Gomez, M. Griffin, S. Hony, K. Isaak, L. Levenson, N. Lu, S. Madden, B. O’Halloran, K. Okamura, S. Oliver, M. Page, P. Panuzzo, A. Papageorgiou, T. Parkin, I. Pere ... Source: Publications of the Astronomical Society of the Pacific, Vol. 122, No. 889 (March 2010), pp. 261-287 Published by: The University of Chicago Press on behalf of the Astronomical Society of the Pacific Stable URL: http://www.jstor.org/stable/10.1086/651535 . Accessed: 23/05/2014 20:27 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. . The University of Chicago Press and Astronomical Society of the Pacific are collaborating with JSTOR to digitize, preserve and extend access to Publications of the Astronomical Society of the Pacific. http://www.jstor.org This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PM All use subject to JSTOR Terms and Conditions

Transcript of The Herschel Reference Survey

The Herschel Reference SurveyAuthor(s): A. Boselli, S. Eales, L. Cortese, G. Bendo, P. Chanial, V. Buat, J. Davies, R. Auld, E.Rigby, M. Baes, M. Barlow, J. Bock, M. Bradford, N. Castro-Rodriguez, S. Charlot, D.Clements, D. Cormier, E. Dwek, D. Elbaz, M. Galametz, F. Galliano, W. Gear, J. Glenn, H.Gomez, M. Griffin, S. Hony, K. Isaak, L. Levenson, N. Lu, S. Madden, B. O’Halloran, K.Okamura, S. Oliver, M. Page, P. Panuzzo, A. Papageorgiou, T. Parkin, I. Pere ...Source: Publications of the Astronomical Society of the Pacific, Vol. 122, No. 889 (March2010), pp. 261-287Published by: The University of Chicago Press on behalf of the Astronomical Society of the PacificStable URL: http://www.jstor.org/stable/10.1086/651535 .

Accessed: 23/05/2014 20:27

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .http://www.jstor.org/page/info/about/policies/terms.jsp

.JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range ofcontent in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new formsof scholarship. For more information about JSTOR, please contact [email protected].

.

The University of Chicago Press and Astronomical Society of the Pacific are collaborating with JSTOR todigitize, preserve and extend access to Publications of the Astronomical Society of the Pacific.

http://www.jstor.org

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

The Herschel Reference Survey

A. BOSELLI,1 S. EALES,2 L. CORTESE,2 G. BENDO,3 P. CHANIAL,3 V. BUAT,1 J. DAVIES,2 R. AULD,2 E. RIGBY,4 M. BAES,5

M. BARLOW,6 J. BOCK,7 M. BRADFORD,7 N. CASTRO-RODRIGUEZ,8 S. CHARLOT,9 D. CLEMENTS,3 D. CORMIER,10

E. DWEK,11 D. ELBAZ,10 M. GALAMETZ,10 F. GALLIANO,12 W. GEAR,2 J. GLENN,13 H. GOMEZ,2 M. GRIFFIN,2

S. HONY,10 K. ISAAK,2 L. LEVENSON,7 N. LU,7 S. MADDEN,10 B. O’HALLORAN,3 K. OKAMURA,10

S. OLIVER,14 M. PAGE,15 P. PANUZZO,10 A. PAPAGEORGIOU,2 T. PARKIN,16 I. PEREZ-FOURNON,8

M. POHLEN,2 N. RANGWALA,13 H. ROUSSEL,9 A. RYKALA,2 N. SACCHI,17 M. SAUVAGE,10

B. SCHULZ,18 M. SCHIRM,16 M. W. L. SMITH,2 L. SPINOGLIO,17 J. STEVENS,19

M. SYMEONIDIS,19 M. VACCARI,20 L. VIGROUX,9 C. WILSON,16

H. WOZNIAK,21 G. WRIGHT,19 AND W. ZEILINGER22

Received 2008 August 17; accepted 2010 January 26; published 2010 February 26

ABSTRACT. The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmarkstudy of dust in the nearby universe. The survey will complement a number of other Herschel key projects includinglarge cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of astatistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containingsources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effectsassociated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spansthe whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to thecenter of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the surveyto investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) theconnection between the dust content and composition and the other phases of the interstellar medium; and (iii) theorigin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sampleand some of the auxiliary observing programs that we have started to collect complementary data. We also use theavailable multifrequency data to carry out an analysis of the statistical properties of the sample.

Online material: color figures

1. INTRODUCTION

Understanding the processes that govern the formation andevolution of galaxies is one of the major challenges of modern

astronomy. Ideally this work can be done by analyzing and com-paring the physical, structural and kinematical properties of dif-ferent objects at various epochs to model predictions. Howprimordial galaxies transform their huge gas reservoir into stars

1 Laboratoire d’Astrophysique de Marseille, UMR6110 CNRS, 38 rue F.Joliot-Curie, F-13388 Marseille, France.

2School of Physics and Astronomy, Cardiff University, Queens Buildings TheParade, Cardiff CF24 3AA, UK.

3Astrophysics Group, Imperial College, Blackett Laboratory, Prince ConsortRoad, London SW7 2AZ, UK.

4School of Physics & Astronomy, University of Nottingham, University Park,Nottingham NG7 2RD, UK.

5Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000Gent, Belgium.

6Department of Physics and Astronomy, University College London, GowerStreet, London WC1E 6BT, UK.

7Jet Propulsion Laboratory, Pasadena, CA 91109, Department of Astronomy,California Institute of Technology, Pasadena, CA 91125.

8 Instituto de Astrofísica de Canarias, C/Va Lctea s/n, E-38200 La Laguna,Spain.

9 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre &Marie Curie, 98 bis Boulevard Arago, F-75014 Paris, France.

10Laboratoire AIM, CEA/DSM–CNRS–Université Paris Diderot, Irfu/Serviced’Astrophysique, 91191 Gif sur Yvette, France.

11 Observational Cosmology Lab, NASA Goddard Space Flight Center,Greenbelt, MD 20771.

12Department ofAstronomy,University ofMaryland,CollegePark,MD20742.13 Department of Astrophysical and Planetary Sciences, University of Color-

ado, Boulder, CO 80309.14 Astronomy Centre, Department of Physics and Astronomy, University of

Sussex, UK.15Mullard Space Science Laboratory, University College London, Holmbury

St Mary, Dorking, Surrey RH5 6NT, UK.16 Dept. of Physics & Astronomy, McMaster University, Hamilton, Ontario

L8S 4M1, Canada.17 Istituto di Fisica dello Spazio Interplanetario, INAF, Via del Fosso del

Cavaliere 100, I-00133 Rome, Italy.18Infrared Processing and Analysis Center, California Institute of Technology,

Pasadena, CA 91125.

261

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 122:261–287, 2010 March© 2010. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

and become the objects that we now observe in the local uni-verse is a key question. Awide coverage of the electromagneticspectrum to probe the atomic (21 cm line) and molecular (gen-erally through the 2.6 mm CO line) gas components, the differ-ent stellar populations (UV to near-IR spectral range), the dust(mid- and far-IR) and the electrons in magnetic fields (radiocontinuum) is necessary to address this important question.

The importance of dust resides in the fact that it is formedfrom the aggregation of the metals produced in the latest phasesof stellar evolution, and contains approximately half the metalsin the interstellar medium (Whittet 1992). Injected into theinterstellar medium (ISM) by stellar winds and supernovaeexplosions, dust acts as a catalyst in the process of transforma-tion of the atomic to molecular hydrogen necessary to feed starformation (Hollenbach & Salpeter 1971; Duley & Williams1986). Dust also contributes to the shielding of the UV radiationfield, preventing the dissociation of molecular clouds, and thusplaying a major role in the energetic equilibrium of the ISM(Hollenbach & Tielens 1997). Dust contributes to the coolingand heating of the ISM in photodissociation regions throughphotoelectric heating. Furthermore, by absorbing the stellarlight, dust modifies our view of the different stellar components(e.g., Buat & Xu 1996): because dust obscuration is so impor-tant in star-forming regions, the emission from dust is one of themost powerful tracers of the star formation activity in galaxies(Kennicutt 1998; Hirashita et al. 2003). Dust emission cantherefore be used to study the relationship between the gassurface density and the star formation activity, generally knownas the Schmidt law.

The importance of dust in the study of the formation and evo-lution of galaxies became evident after the IRAS spacemission which provided us with a whole sky coverage in fourinfrared bands. Despite its low sensitivity and poor angular res-olution, IRAS detected tens thousands of extragalactic sources(Soifer et al. 1987). The IRAS survey showed that the stellar lightin some galaxies is so heavily obscured that the only way to de-termine their star formation activity is through the dust emissionitself. Among these highly obscured galaxies, the UltraluminousInfrared Galaxies (ULIRGs) are the most actively star-formingobjects in the local universe. With their improved sensitivity,spectral and angular resolution, other space missions such asISO and Spitzer have brought a better understanding of the chem-ical and physical properties of interstellar dust in a wide range ofdifferent galactic and extragalactic sources. IRAS, ISO, Spitzer,and the recently launched AKARI satellite, however, are sensi-

tive to dust emitting in the mid- (∼5 μm) to far- (≤200 μm)infrared domain. The 5–70 μm spectral range corresponds tothe emission of the hot dust generally associated to star forma-tion, while at longer wavelengths, up to 1mm, the contribution ofcold dust becomesmore andmore important (Draine et al. 2007).The emission of the ISM in the range 3 μm≲ λ ≲ 15 μm is gen-erally dominated by polycyclic aromatic hydrocarbons (PAHs).Between 10 μm and≲70 μm the dust emission is usually due tovery small grains, while that at longerwavelengths (70 μm ≲ λ≲1000 μm) is probably produced by large grains of graphite andsilicate in thermal equilibriumwith theUVand optical photons ofthe interstellar radiation field (Désert et al. 1990; Dwek et al.1997; Zubko et al. 2004; Draine & Li 2007).

There is, however, strong empirical evidence to suggest thatmuch of the dust in normal galaxies has been missed by pre-vious space missions because it is too cold to radiate in themid- and far-infrared. Devereux & Young (1990), for example,showed that when the dust masses of galaxies were estimatedfrom IRAS data, the gas-to-dust ratios were ≃10 times higherthan the Galactic value, implying that 90% of the dust ingalaxies is too cold to radiate significantly in the IRAS bands.ISO 200 μm images of nearby galaxies revealed the presence ofcold (∼20 K) dust in the external parts of galaxies (Alton et al.1998). Even Spitzer, with its longer wavelength coverage, isonly sensitive to dust that is warmer than ≃15 K (Bendo et al.2003; Draine & Li 2007; Draine et al. 2007). Simple estimatesshow that the temperature of a dust grain in thermal equilibriumin the average interstellar radiation field is ∼20 K, which wouldproduce a modified black body spectrum with a peak at∼200 μm with a flux rapidly decreasing at longer wavelengths(Boselli et al. 2003a; Dale et al. 2005, 2007; Draine & Li 2007;Draine et al. 2007). It is important to remember, however, thatmost of the dust in a galaxy is likely to be at a much lower tem-perature than 20 K because it is self-shielded, and so unaffectedfrom the interstellar radiation field. For example, in molecularclouds the temperature of the dust is usually well below thecanonical 20 K value once the average dust extinction (AV )is greater than one, unless it is close to a newly formed star(Ward-Thompson et al. 2002).

The submillimeter waveband (200–1000 μm) is crucial fordetecting this missing cold dust component and thus for makingaccurate estimates of the total dust mass. Mass estimates madefrom far-infrared measurements are highly uncertain because ofthe strong dependence of flux on dust temperature which is dif-ficult to determine using data on the Wien side of the black bodypeak. At long wavelengths (Rayleigh-Jeans domain) the emis-sivity depends only on the first power of the dust temperature,making it possible to use a submillimeter flux to make an ac-curate estimate of the mass of dust (Eales et al. 1989; Gallianoet al. 2003; 2005).

Submillimeter continuum observations of galaxies have beenmade previously, in particular with the ground-based submilli-meter cameras, such as SCUBA on the James Clerk Maxwell

19 Centre for Astrophysics Research, Science and Technology ResearchCentre, University of Hertfordshire, College Lane, Herts AL10 9AB, UK.

20 University of Padova, Department of Astronomy, Vicolo Osservatorio 3,I-35122 Padova, Italy.

21 Observatoire Astronomique de Strasbourg, UMR 7550 Université deStrasbourg–CNRS, 11, rue de l’Université, F-67000 Strasbourg, France.

22 Institut für Astronomie, Universität Wien, Türkenschanzstr. 17, A-1180Wien, Austria.

262 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

Telescope. These have confirmed that galaxies do indeedcontain a large amount of cold dust (Dunne & Eales 2001;Galliano et al. 2003). Until now, the largest submillimeter sur-vey has been the SCUBA Local Universe and Galaxy Survey(SLUGS), a survey of ≃200 galaxies in two samples, oneselected from the IRAS survey and one selected at opticalwavelengths. The survey produced the first estimates of the sub-millimeter luminosity and dust-mass (the space density of gal-axies as a function of dust mass) functions (Dunne et al. 2000;Vlahakis et al. 2005), and also indicated that some ellipticals aresurprisingly strong submillimeter sources. Its limitation, and thelimitation of all ground-based submillimeter observations, isthat of sensitivity: SLUGS struggled to detect galaxies not al-ready detected by IRAS.

The solution is to go into space and the Herschel space tele-scope is finally making this possible. In particular the relativelylarge field of view, high sensitivity, and coverage of a waveband(250–500 μm) in which galaxies are intrinsically bright, makeSPIRE on Herschel the ideal instrument for a study of all extra-galactic sources (Griffin et al. 2006, 2007; Wasket et al. 2007).SPIRE has the sensitivity to map large areas of the sky down tothe confusion limit in quite modest integration times, providingsubmillimeter data for large samples of galaxies at different red-shifts, and is thus well adapted for pointed observations for allkind of nearby extragalactic sources.

The SPIRE consortium has defined a number of coordinatedguaranteed time programs to get the best possible benefit of theunique Herschel facilities for the study of galaxy evolution.These include deep cosmological surveys, pointed observationsof local galaxies and surveys of representative regions in theMilkyWay. To better characterize the dust properties in the localuniverse, the SPIRE extragalactic group has selected a volume-limited sample of 323 galaxies to be observed in guaranteedtime in the three SPIRE bands at 250, 350, and 500 μm.The importance of the local universe resides in the fact thatit represents the endpoint of galaxy evolution, providing impor-tant boundary conditions to models and simulations. Further-more, at ≤30 Mpc the angular resolution of SPIRE (a coupleof kpc) allow us to resolve the different galaxy components suchas nuclei, bulges, disks, and spiral arms. Moreover, dwarfgalaxies, by far the most common (yet still very poorly under-stood) galaxies in the universe, can only be observed locally.

A volume-limited sample was chosen as a way to limit dis-tance dependent selection biases. To limit any possible contam-ination due to the cosmic variance, the volume should be muchlarger than the typical dimension of large-scale structures(∼30 Mpc). At the same time it should be representative ofthe whole galaxy population inhabiting the local universe. Anear-infrared K-band selection was adopted for two majorreasons: (i) unlike optical surveys, which have strong selectioneffects due to the presence of dust, near-IR data are only margin-ally affected by dust extinction; (ii) whereas the optical flux ishighly dependent on the number of relatively young stars and

thus sensitive to recent episodes of star formation, the near-IRluminosity is a good measure of the overall stellar mass (e.g.,Gavazzi et al. 1996), which recent studies suggest as the mostimportant parameter in characterizing the statistical and evolu-tionary properties of galaxies. Indeed galaxy properties that ap-pear to be tightly correlated with the galaxy’s stellar massinclude the following: physical properties, such as the star for-mation activity, the gas content and the metallicity (Boselli et al.2001; 2002a; Zaritsky et al. 1994; Gavazzi et al. 2004; Tremontiet al. 2004); structural properties, such as the concentrationindex and the galaxy’s light profile (Boselli et al. 1997; Gavazziet al. 2000a; Scodeggio et al. 2002); the amount and distributionof dark matter, as indicated by the Tully-Fisher relation and theshape of the rotation curve for spirals (Tully & Fisher 1977;Catinella et al. 2006) and the fundamental plane for ellipticals(Dressler et al. 1987; Djorgovski & Davis 1987); the stellarpopulation, shown through the color-magnitude relations forearly-type (Visvanathan & Sandage 1977, Bower et al. 1992)and late-type galaxies (Tully et al. 1982, Gavazzi et al. 1996)and the galaxy spectral energy distributions (Gavazzi et al.2002b, Kauffmann et al. 2003). These correlations all indicatea down-sizing effect (e.g., Gavazzi et al. 1996; Cowie et al.1996; Heavens et al. 2004), in which galaxies with high stellarmasses formed most of their stars at a much earlier cosmicepoch than those with low stellar masses. This underline thedominant role of mass, rather than morphology, in shapinggalaxies.

The final sample includes galaxies with a large range in lu-minosity (mass) and includes all Hubble types. Because of itsdefinition, the selected sample also includes galaxies belongingto different density regions such as the core of the Virgo cluster,groups and pairs and isolated objects. Given its completeness,the Herschel Reference Sample (HRS) will be a suitable refer-ence for any statistical study. Combined with KINGFISH (theHerschel extension of SINGS, Kennicutt et al. 2003) and VNGS(see § 3, footnote 23), two samples optimized for the study ofthe different phases of the ISM in individual galaxies, thesesamples will provide the community with a unique datasetfor studying the ISM properties of galaxies in the local universe.

The paper is organized as follows. Section 2 describes thescientific goals of the survey. Section 3 gives a descriptionof the selection criteria used to define the sample. Section 4gives details of the SPIRE observations we will carry out and§ 5 gives an overview of the multifrequency data that is avail-able for the sample. Section 6 gives a brief description of thedata processing and products. The multifrequency statisticalproperties of the sample will be described in § 7.

2. SCIENTIFIC OBJECTIVES

The overall goal of this Herschel survey is to improve ourknowledge of the cold dust properties of the most commonextragalactic sources populating the local universe. Combinedwith multifrequency ancillary data covering the entire electro-

HERSCHEL REFERENCE SURVEY 263

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

magnetic spectrum (see § 5), the new Herschel data will provideus with a unique data set with which to:

1. Trace, for the first time, the variation of the properties ofthe cold dust component (dust mass and temperature, dust to gasratio,z…) of normal galaxies along the Hubble sequence, and asa function of luminosity. Given the large dispersion in galaxyproperties (Morton & Haynes 1994), it is important that thesample to be large enough to contain representatives of all gal-axy types and include both early- and late-type galaxies span-ning the largest possible range in luminosity. Where galaxies areresolved, we can analyze the distribution of the cold dust in thedifferent galaxy components, e.g., the nuclei, bulges, spiralarms, and diffuse disks. This will provide important constraintson dust formation and evolution in galaxies (Gallianoet al. 2008).

2. Study the role of dust in the physics of the ISM. As dis-cussed in the introduction, dust plays a major role in the ener-getic equilibrium of the ISM. It acts as catalyst for the formationof the molecular hydrogen (Hollenbach & Salpeter 1971; Duley&Williams 1986) and shields the molecular gas component pre-venting dissociation from the diffuse interstellar radiation field(Hollenbach & Tielens 1997). To understand the nature of theISM we thus need to know how the cold dust properties (tem-perature, composition, geometrical distribution…) relate toother physical properties such as metallicity and interstellarradiation field (Boselli et al. 2004; Galliano et al. 2008). Bycombining dust surface brightnesses with metallicity dependentgas-to-dust ratios and HI column densities, submillimeter mea-surements can be used to determine H2 column densities(Guélin et al. 1993; 1995; Neininger et al. 1996; Boselli et al.2002a). SPIRE data will therefore provide us with an indepen-dent measure of the molecular hydrogen component, and can beuse for an accurate calibration of the still highly uncertain CO toH2 conversion factor.

3. Study the relationship between dust emission and star for-mation. Dust participates in the cooling of the gas through theshielding of the interstellar radiation field, in particular of theUV light, and thus plays a major role in the process of star for-mation (Draine 1978; Dwek 1986; Hollenbach & Tielens 1997).The energy absorbed by dust is then radiated in the infrared do-main. For the same reason dust emission has often been used asa tracer of star formation. We still do not know, however, what isthe relationship between the cold dust emission and star forma-tion. The study of resolved galaxies will allow us to analyze therelationship between the infrared surface brightness and the dusttemperature (Chanial et al. 2007) and to trace the connectionsbetween the star formation and the dust and gas properties atgalactic scales, extending the recent results of Spitzer to allphases of the ISM (Gordon et al. 2004, Calzetti et al. 2005,2007; Perez-Gonzalez et al. 2006; Kennicutt et al. 2007, Pre-scott et al. 2007; Thilker et al. 2007).

4. Study the dust extinction properties in galaxies. Astrono-mers have tackled with the problem of dust opacity in galaxies

for over 40 yr (e.g., Holmberg 1958; Disney et al. 1989; Calzetti2001), but have reached no consensus. The key problem is thatoptical catalogs contain huge selection effects because of theexistence of dust. We will be able to address this issue in twoways. First, the submillimeter images will, for the first time,allow us to determine the distribution of the dust column densityin a very large number of galaxies. Second, we will be able todetermine the global dust opacity in each galaxy by using theenergy balance between the absorbed stellar light and the dustemitted radiation (Buat & Xu 1996, Witt & Gordon 2000, Buatet al. 2002, Cortese et al. 2006; 2008a). This requires an accu-rate determination of the UV to near-IR (stellar light) and mid-IR to submillimeter (dust emission) spectral energy distribution(Boselli et al. 2003a). By comparing the dust attenuation proper-ties of different classes of objects, this analysis will allow us todefine standard recipes for correcting UV and optical data, auseful tool for the interpretation of all modern surveys.

5. Determine whether there is an intergalactic dust cycle.Apart from the obvious possibility that dust is ejected from gal-axies by the same methods that gas is ejected, such as throughinteractions with the surrounding environment (see point 9) andstarburst-driven “superwinds” as indeed observed in M82(Engelbracht et al. 2006), there is also the possibility that dustis ejected from galaxies by radiation pressure (Davies et al.1998, Meiksin 2009, Oppenheimer & Davé 2008). The ejectionof dust from galaxies might explain the huge reservoir of metalsfound in the intergalactic medium (Rayan-Weber et al. 2006).There is clear evidence for dust in superwinds (Alton et al.1999) and there is tantalizing evidence from ISO observationsfor extended distributions of dust around galaxies (Alton et al.1998; Davies et al. 1999). Observations so far have been limitedby either sensitivity (SCUBA) or resolution (ISO and Spitzer).The Herschel Reference Survey will be able to determinewhether dust ejection is important because (i) we will beobserving several hundred galaxies, so even if these phenomenaare rare our sample should contain some examples, and (ii) ourobservations will have the sensitivity to detect dust well outsidethe optical disk of each galaxy.

6. Determine the amount of interstellar dust in ellipticals.Very little is known about dust in ellipticals. Despite the stereo-type that ellipticals do not contain any dust, the structures seenin optical images imply that at least 50% of ellipticals containsome dust (Ferrarese et al. 2006). The amount of interstellar dustis too small, however, to be easily detected through its far-infra-red emission; IRAS, for example, detected only about 15% ofellipticals (Bregman et al. 1998). Although Spitzer has now de-tected many ellipticals, these studies have mostly been ofsources known a priori to contain some dust (Kaneda et al.2007; Temi et al. 2007; Panuzzo et al. 2007) or moleculargas (Young et al. 2008). The SLUGS did contain a small sta-tistically-complete sample of 11 ellipticals, although some ofthe six 850 μm detections may well have been of synchrotronrather than dust emission (Vlahakis et al. 2005). Other ellipticals

264 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

have been detected at 350 μm by Leeuw et al. (2008). The HRScontains 65 early-type (E, S0, and S0a) galaxies and our obser-vations will have sufficient sensitivity to detect dust massesdown to ∼104 M⊙. The Herschel Reference Survey will there-fore provide an unambiguous answer to the question of howmuch dust is in ellipticals.

7. Determine the origin of dust in ellipticals. The three pos-sible origins of the dust in ellipticals are that (i) it has been pro-duced in the atmospheres of the old evolved stars that dominatethe light of ellipticals today, (ii) its origin is external to the el-liptical and is the result of a merger, (iii) it is the relic of dustformed during the active star-forming phase early in the historyof the galaxy. The distribution of dust is an important clue tounderstand its true origin. The presence of the first mechanismis suggested by Spitzer mid-infrared spectra of Virgo ellipticals(Bressan et al. 2006) which show the silicate emission producedby dust in circumstellar envelopes of evolved stars. The originof this feature (predicted by Bressan et al. 1998) is supported bythe finding that the mid-infrared emission has the same profileas optical light (Xilouris et al. 2004) in many early-type gal-axies. It is unclear, however, whether this is the predominantmechanism producing the interstellar dust in these galaxies.For example, a submillimeter map of the nearby elliptical Cen-taurus A, has revealed a dusty disk, implying that the dust (andthe galaxy itself) has been formed as the result of a merger(Leeuw et al. 2002). Temi et al. (2007) also found little correla-tion between the Spitzer 70 and 160 μm emission and opticalstarlight, which also suggests the dust has an external origin.

We will use the Herschel Reference Survey results to inves-tigate the origin of the dust by, first, investigating the detailedmorphology of the dust, in particular how it compares with thestellar distribution, and, second, by investigating whetherthe mass of dust is correlated with other global properties ofthe galaxy such as stellar mass. It has often been argued thatsputtering by the ubiquitous, hot X-ray emitting gas in earlygalaxies should destroy any dust formed more than 108 yearsin the past (Tielens et al. 1994). However, the fact that dustis seen visually in 50% of ellipticals (Ferrarese et al. 2006)and the recent discovery of small grains, which are preferen-tially destroyed by sputtering, in ellipticals (Kaneda et al.2007) suggests that dust is protected in some way. We will in-vestigate whether sputtering from the hot gas destroys the dustgrains and will test the internal origin hypothesis by investigat-ing any possible correlation between X-ray excess anddust mass.

8. Measure the local luminosity and dust-mass distributions.These distributions are important benchmarks for the deepHerschel surveys. These have already been estimated as partof SLUGS (Dunne et al. 2000; Vlahakis et al. 2005): the muchgreater sensitivity of the Herschel Reference Survey will pushthese limits down by a factor of ∼50.

9. Understand the role of the environment on the evolution ofgalaxies. The well-known phenomenon that spiral galaxies in

clusters are HI-deficient and have truncated HI disks (e.g.,Cayatte et al. 1990) demonstrates that the environment of a gal-axy can have a strong effect on its interstellar medium. Indeedthere is clear evidence for tidally-stripped dust in interactinggalaxies (Thomas et al. 2002) and indications for ram-pressurestripped dust in cluster objects (Boselli & Gavazzi 2006). At thesame time the presence of metals (Sarazin 1986) and possibly ofdust (Stickel et al. 2002; Montier & Giard 2005) in the diffuseintracluster medium has been shown by X-ray and far-IR obser-vations. The comparison of the submillimeter emission of clus-ter and isolated galaxies within the HRS will allow us to make adetailed study on the effects of the environment on the dustproperties of galaxies, and thus understand whether the hotand dense cluster intergalactic medium can be polluted throughthe gas stripping process of late-type galaxies (Boselli &Gavazzi 2006).

10. Provide a multifrequency reference sample suitable forany statistical study. Our aim is that the HRS will be the firstlarge sample of galaxies with observations of all phases of theISM, as well as measurements over the entire wavelength rangeof the spectral energy distribution (SED) for each galaxy. Thesample will then serve for many purposes; e.g., the UV to radiocontinuum SEDs could, for example, be used to determine thenature of unresolved sources or as templates for estimatingphotometric redshifts.

3. THE SAMPLE

The Herschel Reference Sample (HRS) has been selected ac-cording to the following criteria:

1. Volume-limited: A volume limit was imposed to reducedistance uncertainties due to local peculiar motions and ensurethe presence of low-luminosity, dwarf galaxies, not accessible athigh redshift. By applying a lower distance (D) limit we excludethe very extended sources, the observing of which would be tootime consuming23. We have selected all galaxies with an op-tical recessional velocity (vel, taken from NED) in between1050 km s�1 and 1750 km s�1 that, for H0 ¼ 70 km s�1

Mpc�1 and in the absence of peculiar motions, correspondsto 15 ≤ D ≤ 25 Mpc24. In the Virgo cluster region(12h < R:A:ð2000Þ < 13h; 0° < decl: < 18°), where peculiarmotions are dominant, we have included all galaxies with vel <3000 km s�1 and belonging to cluster A, the North (N) and East(E) clouds, and the Southern extension (S) (17 Mpc) and VirgoB (23 Mpc), where the subgroup membership has been takenfrom Gavazzi et al. (1999a). W and M clouds objects, at a dis-tance of 32 Mpc, have been excluded.25

23 A small sample of very nearby and extended galaxies will be observed indetail as part of another guaranteed time project: Physical Processes in the Inter-stellar Medium of Very Nearby Galaxies.

24Given the possible discrepancy between optical and HI recessional velocitymeasurements, heliocentric velocities given in Table 1 can be outside this range.

HERSCHEL REFERENCE SURVEY 265

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

2. K band selection: Given the expected low dust contentof quiescent galaxies, whose emission would be hardly detect-able within reasonable integration times, a more stringent limithas been adopted for early-types than for star-forming galax-ies. Among those galaxies in the required recessional velocityrange, we thus selected all late-type spirals and irregulars(Sa-Sd-Im-BCD) with a 2MASS K band total magnitudeKStot ≤ 12 and all ellipticals and lenticulars (E, S0, S0a)with KStot ≤ 8:7.

3. High galactic latitude: To minimize galactic cirrus contam-ination, galaxies have been selected at high galactic latitude(b > þ55°) and in low galactic extinction regions (AB < 0:2;Schlegel et al. 1998).

The resulting sample is composed of 323 galaxies located inthe sky region between 10h17m < R:A:ð2000Þ < 14h43m and�6° < decl: < 60° (see Fig. 1), of which 65 are early-type(E, S0 and S0a) and 258 are late-type (Sa-Sd-Im-BCD) (seeFig. 2). Figure 2 shows that the only galaxies which are clearlyundersampled are blue compact galaxies and dwarf irregulars,the most numerous galaxies in the nearby universe. They will bethe targets of another SPIRE key program.26 As selected, the

sample spans a large range in environment since it includesthe Virgo cluster, many galaxy groups and pairs as well as re-latively isolated objects (Fig. 1). Using the Virgo cluster mem-bership criteria defined in Gavazzi et al. (1999a), the HRSincludes 82 members of cluster A and B (Fig. 2) The other gal-axies are members of nearby clouds such as Leo, Ursa Majorand Ursa Major Southern Spur, Crater, Coma I, Canes VenaticiSpur and Canes Venatici–Camelopardalis and Virgo-LibraClouds (Tully 1988). As defined, the sample is thus ideal forenvironmental studies (Cortese & Hughes 2009; Hughes &Cortese 2009). The whole sample is given in Table 1 with col-umns arranged as follows:

Column 1: Herschel Reference Sample (HRS) name. This isthe position of the galaxy in the sample list when sorted by in-creasing right ascension.

Column 2: Zwicky name, from the Catalogue of Galaxiesand of Cluster of Galaxies (CGCG; Zwicky et al. 1961–1968).

Column 3: Virgo Cluster Catalogue (VCC) name, fromBinggeli et al. (1985).

Column 4: Uppsala General Catalog (UGC) name (Nil-son 1973).

Column 5: New General Catalogue (NGC) name.Column 6: Index Catalogue (IC) name.Column 7: J2000 right ascension, taken from NED.Column 8: J2000 declinations, taken from NED.Column 9: Morphological type, taken from NED, or from

FIG. 1.—Sky distribution of the HRS for early-type (E-S0-S0a; circles) and late-type (Sa-Sd-Im-BCD; crosses) galaxies (left panel). Dashed contours delimit thedifferent clouds. The large concentration of galaxies in the center of the figure is the Virgo cluster (red) with its outskirts (dark green) Orange symbols are for Coma ICloud, magenta for Leo Cloud, brown for Ursa Major Southern Spur and Cloud, cyan for Crater Cloud, light green for Canes Venatici Spur and Camelopardalis, andblue for Virgo-Lybra Cloud galaxies, respectively. The Virgo cluster region (right panel): black contours show the diffuse X-ray emission of the cluster (from Böhringeret al. 1994). Red symbols are for galaxies belonging to the Virgo A cloud, blue to Virgo B, orange to Virgo E,magenta to Virgo S, cyan to Virgo N, and dark green to theVirgo outskirts, as defined by Gavazzi et al. (1999a).

25The sample was selected before distances were available on NED. Accord-ing to these new NED estimates, the distance of the HRS galaxies outside theVirgo cluster are generally included in the 15 ≤ D ≤ 25 Mpc range. In the Virgoregion, however, our distances are determined according to subgroup member-ship criteria, and are thus generally different than those given by NED.

26 The ISM in Low-Metallicity Environments: Bridging the Gap BetweenLocal Universe and Primordial Galaxies

266 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

our own classification if not available.Column 10: Total K band magnitude (KStot), from 2MASS

(Skrutskie et al. 2006).Column 11: Optical isophotal distance D 25 (25 mag

arcsec�2), from NED.Column 12: Heliocentric radial velocity (in km s�1), from

HI data when available, otherwise from NED.Column 13: Cluster or cloud membership, fromGavazzi et al.

(1999a) for Virgo, and Tully (1988) or Nolthenius (1993) when-ever available, or from our own estimate otherwise.

Column 14: Pair/groupmembership, fromKarachentsev et al.(1972) or from NED whenever available, or from our own es-timate elsewhere. Pair/group membership has been assigned ac-cording to the following criteria: close pairs (CP) are those witha nearby companion at a distance less than 50 kpc and a differ-ence in redshift <600 km s�1, as in Gavazzi et al. (1999b),while pairs (P) up to 150 kpc. The number indicates whetherthe galaxy belongs to a triplet (3), quadruplet (4), and quintuplet(5). Groups outside Virgo and its immediate surroundings havebeen determined by counting the number of bright galaxies27

within 25′ (which, at a median distance of 20 Mpc, correspondsto ∼150 kpc) and 600 km s�1. Pairs in the Virgo region are onlythose catalogued by Karachentsev et al. (1972).

Column 15: Galactic extinction AB (Schlegel et al. 1998).Column 16: Alternative names.

4. SPIRE OBSERVATIONS

With its large field of view (40 × 80), its sensitivity(S ∼ 7 mJy, 5σ in 1 hr, point source mode), and angular resolu-tion (∼30 arcsec; see Table 2), SPIRE on Herschel is the idealinstrument for the proposed survey.

In constructing our observing program, we have used differ-ent integration times for early- and late-type galaxies becausethe former are known to contain less dust.

Integration times for early-types were determined by assum-ing a lower limit of ∼104 M⊙ to their total dust mass as deter-

mined from IRAS observations (Bregman et al. 1998) ormeasured from optical absorption line measurements (Goud-frooij et al. 1994; Van Dokkum & Franx 1995; Ferrari et al.1999). At 20 Mpc, a galaxy with a dust mass of ∼104 M⊙would have a flux density at 250 μm of 11 mJy. We estimatethat with the adopted integration times we should detect an el-liptical with ∼104 M⊙ of dust at the 3σ level.

Integration times for spirals have been chosen so that weshould be able to detect dust outside the optical radius,28 forwhich there is evidence from ISO observations (Alton et al.1998; Davies et al. 1999). By combining ISOPHOT (Alton et al.1998) and SCUBA (Vlahakis et al. 2005) observations of ex-tended sources with the spectral energy distribution of normalgalaxies of different type (Boselli et al. 2003a), and assuming astandard gas-to-dust ratio of ∼100with the extragalactic calibra-tion for the dust-emissivity coefficient (James et al. 2002), weestimate that the dust associated with the extended HI diskwould have a flux density of ∼14 mJy beam�1 at 250 μm forHI column densities of ∼1020 atoms cm�2. In normal galaxiessuch gas column densities are generally reached well outside thestellar disk, at ∼1:5 optical radii (Cayatte et al. 1994; Broelis &Van Woerden 1994). Because of metallicity gradients, however,the gas-to-dust ratio is expected to increase in the outer disks, asobserved in M31 by Cuillandre et al. (2001). We would there-fore expect to observe lower far-IR flux densities. With 12 min-utes of integration time (3 scan-maps) we will get to aninstrumental noise of 6:9 mJy beam�1, when the expected emis-sion is 14 mJy beam�1; this sensitivity will allow us to detect thedust emission in the outer disk by integrating flux densitiesalong elliptical annuli with a sensitivity of ∼30 better than thatof previous observations (Alton et al. 1998).

All galaxies outside the Virgo cluster will be observed inscan-map mode (30″ s�1). For each galaxy, the size of thescan-map has been chosen based on the optical size of the gal-axy. For late-type galaxies, the observing mode has been chosenso that our images will cover the galaxy at least out to 1:5 ×D25

(where D25 is the 25 mag arcsec�2 isophotal diameter) i.e. outto the approximate HI radius. For spirals we will make threepairs of cross-linked observations, which will reach a 1σ sensi-tivity in instrumental noise of 6.9, 4.6, and 6:9 mJy beam�1 at250, 350, and 500 μm, respectively as determined during thescience verification phase. These values are comparable tothe noise from the confusion of faint unrelated sources (4, 5,and 6 mJy beam�1 in the three bands). Elliptical galaxies arelikely to be weaker and thus need longer integration times,we have compromised by only requiring the image to containthe galaxy out toD25. For ellipticals and S0s we will make eightpairs of cross-linked observations reaching a 1σ sensitivity ininstrumental noise of 4.2, 2.8, and 4:2 mJy beam�1 at 250,

FIG. 2.—Distribution in morphological type of the HRS for all (empty histo-gram) and cluster (filled histogram) galaxies. The cluster sample is composed ofgalaxies members of the Virgo A and B clouds.

27 For bright galaxies, we intend those included in major catalogs such asNGC, UGC, IC, or CGCG. 28 Defined as the B-band isophotal radius at 25 mag arcsec�1

HERSCHEL REFERENCE SURVEY 267

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE1

THEHERSCHELREFERENCESA

MPLE

HRS

(1)

CGCG

(2)

VCC

(3)

UGC

(4)

NGC

(5)

IC (6)

R.A.(J20

00)

(hm

s)(7)

Decl.

(°′″)

(8)

Type

(9)

KStot

(mag)

(10)

D25 (′) (11)

Velocity

(kms�

1)

(12)

Mem

ber

(13)

Group

(14)

AB

(mag)

(15)

Other

name

(16)

1.......

1230

35-

--

-10

1739

.66

2248

35.9

Pec

11.59

1.00

1175

Leo

Cl.

0.13

2.......

1240

04-

5588

--

1020

57.13

2521

53.4

S?11

.03

0.52

1291

Leo

Cl.

0.10

3.......

9402

6-

5617

3226

-10

2327

.01

1953

54.7

E2:pec;LIN

ER;Sy3

8.57

3.16

1169

Leo

Cl.

CP

0.10

KPG

234A

,ARP9

44

.......

94028

-5620

3227

-102330.58

195154.2

SAB(s)pec;Sy1.5

7.64

5.37

1148

Leo

Cl.

CP

0.10

KPG

234B

,ARP9

45

.......

9405

2-

--

610

1026

28.37

2013

41.5

Sc9.94

1.86

1170

Leo

Cl.

0.09

6.......

1540

16-

5662

3245

A-

1027

01.16

2838

21.9

SB(s)b

11.83

3.31

1322

Leo

Cl.

CP

0.12

NGC

3245

A7

.......

1540

17-

5663

3245

-10

2718

.39

2830

26.6

SA(r)0:?;HII;LIN

ER

7.86

3.24

1314

Leo

Cl.

CP

0.11

8.......

1540

20-

5685

3254

-10

2919

.92

2929

29.2

SA(s)bc;Sy

28.80

5.01

1356

Leo

Cl.

0.09

9.......

1540

26-

5731

3277

-10

3255

.45

2830

42.2

SA(r)ab;HII

8.93

1.95

1415

Leo

Cl.

0.11

10......

1830

28-

5738

--

1034

29.82

3515

24.4

S?11

.31

0.91

1516

Leo

Cl.

0.12

11......

1240

38-

5742

3287

-10

3447

.31

2138

54.0

SB(s)d

9.78

2.09

1325

Leo

Cl.

0.10

12......

1240

41-

--

-10

3542

.07

2607

33.7

cI11

.98

0.59

1392

Leo

Cl.

0.10

13......

1830

30-

5753

3294

-10

3616

.25

3719

28.9

SA(s)c

8.38

3.55

1573

Leo

Cl.

0.08

14......

1240

45-

5767

3301

-10

3656

.04

2152

55.7

(R’)SB

(rs)0/a

8.52

3.55

1341

Leo

Cl.

0.10

15......

6508

7-

5826

3338

-10

4207

.54

1344

49.2

SA(s)c

8.13

5.89

1300

Leo

Cl.

30.14

16......

9411

6-

5842

3346

-10

4338

.91

1452

18.7

SB(rs)cd

9.59

2.69

1260

Leo

Cl.

0.12

17......

9501

9-

5887

3370

-10

4704

.05

1716

25.3

SA(s)c

9.43

3.16

1281

Leo

Cl.

0.13

18......

1550

15-

5906

3380

-10

4812

.17

2836

06.5

(R’)SB

a?9.92

1.70

1604

Leo

Cl.

0.11

19......

1840

16-

5909

3381

-10

4824

.82

3442

41.1

SBpec

10.32

2.04

1630

Leo

Cl.

0.09

20......

1840

18-

5931

3395

2613

1049

50.11

3258

58.3

SAB(rs)cd

pec:

9.95

2.09

1617

Leo

Cl.

CP

0.11

KPG

249A

,ARP2

7021

......

1550

28-

5958

--

1051

15.81

2750

54.9

Sbc

11.56

1.45

1182

Leo

Cl.

30.11

22......

1550

29-

5959

3414

-10

5116

.23

2758

30.0

S0pec;LIN

ER

7.98

3.55

1414

Leo

Cl.

30.11

23......

1840

28-

5972

3424

-10

5146

.33

3254

02.7

SB(s)b:?;HII

9.04

2.82

1501

Leo

Cl.

40.10

24......

1840

29-

5982

3430

-10

5211

.41

3257

01.5

SAB(rs)c

8.90

3.98

1585

Leo

Cl.

40.10

25......

1250

13-

5995

3437

-10

5235

.75

2256

02.9

SAB(rs)c:

8.88

2.51

1277

Leo

Cl.

0.08

26......

1840

31-

5990

--

1052

38.34

3428

59.3

Sab

11.71

1.35

1569

Leo

Cl.

0.08

27......

1840

34-

6001

3442

-10

5308

.11

3354

37.3

Sa?

10.90

0.62

1734

Leo

Cl.

0.08

28......

1550

35-

6023

3451

-10

5420

.86

2714

22.9

Sd10

.23

1.70

1332

Leo

Cl.

0.09

29......

9506

0-

6026

3454

-10

5429

.45

1720

38.3

SB(s)c?sp;HII

10.67

2.09

1101

Leo

Cl.

40.15

KPG

257A

30......

9506

2-

6028

3455

-10

5431

.07

1717

04.7

(R’)SA

B(rs)b

10.39

2.38

1105

Leo

Cl.

40.14

KPG

257B

31......

2670

27-

6024

3448

-10

5439

.24

5418

18.8

I09.47

5.62

1374

UrsaMaj.SS

CP

0.05

ARP2

0532

......

9506

5-

6030

3457

-10

5448

.63

1737

16.3

S?9.64

0.91

1158

Leo

Cl.

40.13

33......

9508

5-

6077

3485

-11

0002

.38

1450

29.7

SB(r)b:

9.46

2.10

1432

Leo

Cl.

0.09

34......

9509

7-

6116

3501

-11

0247

.32

1759

22.2

Scd

9.41

3.89

1130

Leo

Cl.

P0.10

KPG

263A

35......

2670

37-

6115

3499

-11

0311

.03

5613

18.2

I010

.23

0.81

1522

UrsaMaj.SS

0.04

36......

1550

49-

6118

3504

-11

0311

.21

2758

21.0

(R)SAB(s)ab;HII

8.27

2.69

1536

Leo

Cl.

P0.12

37......

1550

51-

6128

3512

-11

0402

.98

2802

12.5

SAB(rs)c

9.65

1.62

1373

Leo

Cl.

P0.12

38......

3812

9-

6167

3526

-11

0656

.63

0710

26.1

SAcpecsp

10.69

1.91

1419

Leo

Cl.

0.14

39......

6611

5-

6169

--

1107

03.35

1203

36.2

Sb:

11.13

1.86

1557

Leo

Cl.

0.07

40......

6701

9-

6209

3547

-11

0955

.94

1043

15.0

Sb:

10.44

1.91

1584

Leo

Cl.

P0.10

41......

9601

1-

6267

3592

-11

1427

.25

1715

36.5

Sc?sp

10.78

1.78

1303

Leo

Cl.

0.07

42......

9601

3-

6277

3596

-11

1506

.21

1447

13.5

SAB(rs)c

8.70

4.06

1193

Leo

Cl.

0.10

43......

9602

2-

6299

3608

-11

1658

.96

1808

54.9

E2;LIN

ER:

8.10

3.16

1108

Leo

Cl.

50.09

KPG

278B

44......

9602

6-

6320

--

1118

17.24

1850

49.0

S?10

.99

0.89

1121

Leo

Cl.

CP

0.10

45......

2910

54-

6330

3619

-11

1921

.60

5745

27.8

(R)SA(s)0+:

8.58

2.69

1544

UrsaMajor

Cl.

50.08

46......

9602

9-

6343

3626

-11

2003

.80

1821

24.5

(R)SA(rs)0+

8.16

2.69

1494

Leo

Cl.

CP

0.09

47......

1560

64-

6352

3629

-11

2031

.82

2657

48.2

SA(s)cd:

10.50

2.29

1507

Leo

Cl.

0.08

48......

2680

21-

6360

3631

-11

2102

.85

5310

11.0

SA(s)c

7.99

5.01

1155

UrsaMajor

Cl.

0.07

49......

3913

0-

6368

3640

-11

2106

.85

0314

05.4

E3

7.52

3.98

1251

Leo

Cl.

40.19

50......

9603

7-

6396

3655

-11

2254

.62

1635

24.5

SA(s)c:;H

II8.83

1.55

1500

Leo

Cl.

0.11

51......

9603

8-

6405

3659

-11

2345

.49

1749

06.8

SB(s)m

?10

.28

2.09

1299

Leo

Cl.

0.08

52......

2680

30-

6406

3657

-11

2355

.57

5255

15.5

SAB(rs)cpec

10.29

1.45

1204

UrsaMajor

Cl.

0.07

53......

6707

1-

6420

3666

-11

2426

.07

1120

32.0

SA(rs)c:

9.23

4.37

1060

Leo

Cl.

0.14

54......

9604

5-

6445

3681

-11

2629

.80

1651

47.5

SAB(r)bc;

LIN

ER

9.79

2.25

1244

Leo

Cl.

40.11

55......

9604

7-

6453

3684

-11

2711

.18

1701

49.0

SA(rs)bc;HII

9.28

2.89

1158

Leo

Cl.

40.11

56......

2910

72-

6458

3683

-11

2731

.85

5652

37.4

SB(s)c?;HII

8.67

1.86

1708

UrsaMajor

Cl.

30.07

57......

9604

9-

6460

3686

-11

2743

.95

1713

26.8

SB(s)bc

8.49

3.19

1156

Leo

Cl.

40.10

58......

9605

0-

6464

3691

-11

2809

.41

1655

13.7

SBb?

10.51

1.35

1067

Leo

Cl.

40.11

268 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE1(Contin

ued)

HRS

(1)

CGCG

(2)

VCC

(3)

UGC

(4)

NGC

(5)

IC (6)

R.A.(J20

00)

(hm

s)(7)

Decl.

(°′″)

(8)

Type

(9)

KStot

(mag)

(10)

D25 (′) (11)

Velocity

(kms�

1)

(12)

Mem

ber

(13)

Group

(14)

AB

(mag)

(15)

Other

name

(16)

59......

6708

4-

6474

3692

-11

2824

.01

0924

27.5

Sb;LIN

ER;HII

9.52

3.16

1717

Leo

Cl.

0.14

60......

2680

51-

6547

3729

-11

3349

.34

5307

31.8

SB(r)a

pec

8.73

2.82

991

UrsaMajor

Cl.

P0.05

KPG

209B

61......

2920

09-

6575

--

1136

26.47

5811

29.0

Scd:;HII

11.40

1.95

1217

UrsaMajor

Cl.

40.07

62......

1860

12-

6577

3755

-11

3633

.37

3624

37.2

SAB(rs)cpec

10.60

3.16

1571

UrsaMaj.SS

0.10

63......

2680

63-

6579

3756

-11

3648

.02

5417

36.8

SAB(rs)bc

8.78

4.17

1289

UrsaMajor

Cl.

0.05

64......

2920

17-

6629

3795

-11

4006

.84

5836

47.2

Sc;HII

10.64

2.14

1213

UrsaMajor

Cl.

30.06

65......

2920

19-

6640

3794

-11

4053

.42

5612

07.3

SAB(s)d

11.60

2.24

1383

UrsaMajor

Cl.

0.06

66......

1860

24-

6651

3813

-11

4118

.65

3632

48.3

SA(rs)b:

8.86

2.24

1468

UrsaMaj.SS

0.08

67......

2680

76-

6706

--

1144

14.83

5502

05.9

SB(s)m

:11

.28

1.91

1436

UrsaMajor

Cl.

0.06

NGC

3846

A68

......

1860

45-

--

-11

4625

.96

3451

09.2

S?11

.44

0.32

1412

UrsaMaj.SS

0.09

MRK

429

69......

2680

88-

6787

3898

-11

4915

.37

5605

03.7

SA(s)ab;LIN

E;HII

7.66

4.37

1171

UrsaMajor

Cl.

0.09

70......

--

--

2969

1152

31.27

−035

220.1

SB(r)bc?;HII

11.15

1.23

1617

CraterCl.

30.12

71......

2920

42-

6860

3945

-11

5313

.73

6040

32.0

SB(rs)0+

;LIN

ER

7.53

5.25

1259

UrsaMajor

Cl.

0.12

72......

--

-39

5229

7211

5340

.63

−035

947.5

IBm:sp;HII

11.01

1.58

1577

CraterCl.

30.11

73......

2690

13-

6870

3953

-11

5348

.92

5219

36.4

SB(r)bc;HII/LIN

ER

7.05

6.92

1050

UrsaMajor

Cl.

P0.13

74......

2690

19-

6918

3982

-11

5628

.10

5507

30.6

SAB(r)b:;H

II;Sy2

8.85

2.34

1108

UrsaMajor

Cl.

40.06

75......

2690

20-

6919

--

1156

37.51

5537

59.5

Sdm:

11.56

1.45

1283

UrsaMajor

Cl.

40.06

76......

2690

22-

6923

--

1156

49.43

5309

37.3

Im:

11.32

2.00

1069

UrsaMajor

Cl.

40.12

77......

1303

3-

6993

4030

-12

0023

.64

−010

600.0

SA(s)bc;HII

7.33

4.17

1458

CraterCl.

P0.11

78......

9801

9-

6995

4032

-12

0032

.82

2004

26.0

Im:

10.45

1.86

1269

Com

aICl.

0.15

79......

6902

4-

7001

4019

755

1201

10.39

1406

16.2

SBb?

sp11

.33

2.40

1508

Virgo

Out.

0.14

80......

6902

7-

7002

4037

-12

0123

.67

1324

03.7

SB(rs)b:

10.11

2.51

932

Virgo

Out.

0.12

81......

1304

6-

7021

4045

-12

0242

.26

0158

36.4

SAB(r)a;HII

8.75

3.00

2011

Virgo

Out.

0.10

82......

9803

7-

--

-12

0335

.94

1603

20.0

Sab

11.19

0.60

931

Virgo

Out.

0.13

KUG1201

+16

383

......

4103

1-

7035

--

1203

40.14

0238

28.4

SB(r)a:;H

II11

.82

1.10

1232

CraterCl.

0.12

84......

6903

6-

7048

4067

-12

0411

.55

1051

15.8

SA(s)b:

9.90

1.20

2424

Virgo

Out.

0.11

85......

2430

44-

7095

4100

-12

0608

.60

4934

56.3

(R’)SA

(rs)bc;HII

8.03

5.37

1072

UrsaMajor

Cl.

0.10

86......

4104

1-

7111

4116

-12

0736

.82

0241

32.0

SB(rs)dm

10.27

3.80

1309

Virgo

Out.

P0.10

KPG

322A

87......

6905

8-

7117

4124

-12

0809

.64

1022

43.4

SA(r)0+

8.49

4.10

1652

Virgo

Out.

0.12

88......

4104

2-

7116

4123

-12

0811

.11

0252

41.8

SB(r)c;Sbrst;HII

8.79

5.00

1326

Virgo

Out.

P0.09

KPG

322B

89......

6908

866

7215

4178

-12

1246

.45

1051

57.5

SB(rs)dm

;HII

9.58

5.35

369

Virgo

NCl.

0.12

90......

1310

4-

7214

4179

-12

1252

.11

0117

58.9

Sb(f)

7.92

3.80

1279

Virgo

Out.

0.14

91......

9810

892

7231

4192

-12

1348

.29

1454

01.2

SAB(s)ab;HII;Sy

6.89

9.78

−135

Virgo

NCl.

0.15

M98

92......

6910

113

172

55-

3061

1215

04.44

1401

44.3

SBc?

sp10

.64

2.60

2317

Virgo

NCl.

0.16

93......

1870

29-

7256

4203

-12

1505

.06

3311

50.4

SAB0-:;L

INER;Sy3

7.41

3.39

1091

Com

aICl.

0.05

94......

6910

414

572

6042

06-

1215

16.81

1301

26.3

SA(s)bc:

9.39

5.10

702

Virgo

NCl.

0.14

95......

6910

715

272

6842

07-

1215

30.50

0935

05.6

Scd

9.44

1.96

592

Virgo

NCl.

0.07

96......

6911

015

772

7542

12-

1215

39.36

1354

05.4

SAc:;HII

8.38

3.60

−83

Virgo

NCl.

0.14

97......

6911

216

772

8442

16-

1215

54.44

1308

57.8

SAB(s)b:;H

II/LIN

ER

6.52

9.12

140

Virgo

NCl.

0.14

98......

6911

918

772

9142

22-

1216

22.52

1318

25.5

Sc10

.33

3.52

226

Virgo

NCl.

0.14

99......

6912

321

373

05-

3094

1216

56.00

1337

31.0

S;BCD

11.25

0.93

−162

Virgo

NCl.

0.15

100

.....

9813

022

673

1542

37-

1217

11.42

1519

26.3

SAB(rs)bc;HII

10.03

2.01

864

Virgo

NCl.

0.13

101

.....

1580

60-

7338

4251

-12

1808

.31

2810

31.1

SB0?

sp7.73

3.63

1014

Com

aICl.

0.10

102

.....

9814

430

773

4542

54-

1218

49.63

1424

59.4

SA(s)c

6.93

6.15

2405

Virgo

NCl.

0.17

M99

103

.....

4201

534

173

6142

60-

1219

22.24

0605

55.2

SB(s)a

8.54

3.52

1935

Virgo

B0.10

104

.....

9901

5-

7366

--

1219

28.66

1713

49.4

Spiral

11.99

1.20

925

Virgo

Out.

0.11

105

.....

9901

435

573

6542

62-

1219

30.58

1452

39.8

SB(s)0-?

8.36

1.87

1369

Virgo

A0.15

106

.....

4203

239

373

8542

76-

1220

07.50

0741

31.2

S(s)cII

10.69

2.10

2617

Virgo

B0.12

107

.....

4203

340

473

87-

-12

2017

.35

0412

05.1

Sd(f)

10.74

1.89

1733

Virgo

SCl.

0.10

108

.....

4203

743

4-

4287

-12

2048

.49

0538

23.5

Sc(f)

11.02

1.76

2155

Virgo

B0.08

109

.....

4203

844

974

0342

89-

1221

02.25

0343

19.7

SA(s)cd:

sp9.89

4.33

2541

Virgo

SCl.

0.09

110

.....

7002

446

574

0742

94-

1221

17.79

1130

40.0

SB(s)cd

9.70

3.95

357

Virgo

NCl.

CP

0.15

KPG

330B

111

.....

9902

448

374

1242

98-

1221

32.76

1436

22.2

SA(rs)c

8.47

3.60

1136

Virgo

ACP

0.15

KPG

332A

112

.....

4204

449

274

1343

00-

1221

41.47

0523

05.4

Sa9.53

2.16

2310

Virgo

B0.09

113

.....

9902

749

774

1843

02-

1221

42.48

1435

53.9

Sc:sp

7.83

6.74

1150

Virgo

ACP

0.15

KPG

332B

114

.....

4204

550

874

2043

03-

1221

54.90

0428

25.1

SAB(rs)bc;HII;Sy2

6.84

6.59

1568

Virgo

SCl.

0.10

M61

115

.....

4204

751

774

22-

-12

2201

.30

0506

00.2

SBab(s)

10.79

1.41

1864

Virgo

SCl.

0.08

116

.....

7003

152

274

3243

05-

1222

03.60

1244

27.3

SA(r)a

9.83

2.60

1888

Virgo

ACP

0.18

KPG

333A

117

.....

7002

952

474

3143

07-

1222

05.63

0902

36.8

Sb8.72

3.95

1035

Virgo

B0.10

118

.....

4205

355

274

39-

-12

2227

.25

0433

58.7

SAB(s)cd

11.20

1.89

1296

Virgo

SCl.

0.10

HERSCHEL REFERENCE SURVEY 269

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE1(Contin

ued)

HRS

(1)

CGCG

(2)

VCC

(3)

UGC

(4)

NGC

(5)

IC (6)

R.A.(J20

00)

(hm

s)(7)

Decl.

(°′″)

(8)

Type

(9)

KStot

(mag)

(10)

D25 (′) (11)

Velocity

(kms�

1)

(12)

Mem

ber

(13)

Group

(14)

AB

(mag)

(15)

Other

name

(16)

119

.....

9902

955

974

4243

12-

1222

31.36

1532

16.5

SA(rs)ab:sp

8.79

5.10

153

Virgo

A0.12

120

.....

7003

457

074

4543

13-

1222

38.55

1148

03.4

SA(rs)ab:sp

8.47

5.10

1443

Virgo

A0.16

121

.....

7003

557

674

4743

16-

1222

42.24

0919

56.9

Sbc

9.25

2.48

1254

Virgo

B0.10

122

.....

9903

059

674

5043

21-

1222

54.90

1549

20.6

SAB(s)bc;LIN

ER;HII

6.59

9.12

1575

Virgo

A0.11

M10

012

3.....

4206

361

374

5143

24-

1223

06.18

0515

01.5

SA(r)0+

8.48

3.52

1670

Virgo

SCl.

0.10

124

.....

7003

963

074

5643

30-

1223

17.25

1122

04.7

Scd

9.51

5.86

1564

Virgo

A0.11

125

.....

4206

864

874

6143

39-

1223

34.94

0604

54.2

E0;Sy

28.54

2.31

1298

Virgo

B0.11

126

.....

9903

665

474

6743

40-

1223

35.31

1643

19.9

SB(r)0+

8.32

3.60

930

Virgo

A0.11

127

.....

4207

065

674

6543

43-

1223

38.70

0657

14.7

SA(rs)b:

8.97

2.48

1014

Virgo

B0.09

128

.....

4207

266

774

69-

3259

1223

48.52

0711

12.6

SAB(s)dm?

11.06

1.89

1420

Virgo

B0.10

129

.....

9903

868

574

7343

50-

1223

57.81

1641

36.1

SA0;LIN

ER

7.82

3.20

1241

Virgo

A0.12

130

.....

7004

569

274

7643

51-

1224

01.56

1212

18.1

SB(rs)ab

pec:

10.24

2.92

2324

Virgo

A0.13

131

.....

4207

969

774

74-

3267

1224

05.53

0702

28.6

SA(s)cd

10.95

1.55

1231

Virgo

B0.10

132

.....

4208

069

974

77-

3268

1224

07.44

0636

26.9

Sm/Im

11.49

1.95

727

Virgo

B0.11

133

.....

1580

99-

7483

4359

-12

2411

.06

3131

17.8

SB(rs)c?

sp10

.81

3.60

1253

Com

aICl.

0.11

134

.....

7004

871

374

8243

56-

1224

14.53

0832

08.9

Sc9.69

3.20

1137

Virgo

B0.12

135

.....

4208

373

174

8843

65-

1224

28.23

0719

03.1

E3

6.64

8.73

1240

Virgo

B0.09

136

.....

4208

975

874

9243

70-

1224

54.93

0726

40.4

Sa9.31

1.76

784

Virgo

B0.10

137

.....

7005

775

974

9343

71-

1224

55.43

1142

15.4

SB(r)0+

7.72

5.10

943

Virgo

A0.16

138

.....

7005

876

374

9443

74-

1225

03.78

1253

13.1

E1;LERG;LIN

ER;Sy2

6.22

10.07

910

Virgo

A0.17

M84

139

.....

4209

378

774

9843

76-

1225

18.06

0544

28.3

Im11

.23

1.84

1136

Virgo

B0.10

140

.....

4209

278

574

9743

78-

1225

18.09

0455

30.2

(R)SA(s)a;Sy2

8.51

3.06

2557

Virgo

SCl.

0.07

141

.....

7006

179

275

0343

80-

1225

22.17

1001

00.5

SA(rs)b:?

8.33

3.52

971

Virgo

B0.10

142

.....

9904

480

175

0743

83-

1225

25.50

1628

12.0

Sa?pec;HII

9.49

2.60

1710

Virgo

A0.10

143

.....

4209

582

775

13-

-12

2542

.63

0713

00.1

SB(s)cd:

sp9.79

3.60

992

Virgo

B0.11

IC33

22A

144

.....

7006

883

675

2043

88-

1225

46.82

1239

43.5

SA(s)b:sp;Sy2

8.00

5.10

2515

Virgo

A0.14

145

.....

7006

784

975

1943

90-

1225

50.67

1027

32.6

Sbc(s)

II10

.33

2.18

1103

Virgo

B0.13

146

.....

4209

885

175

18-

3322

1225

54.12

0733

17.4

SAB(s)cd:

sp10

.47

2.16

1195

Virgo

B0.12

147

.....

4209

985

975

22-

-12

2558

.30

0325

47.3

Sd(f)

10.18

2.92

1428

Virgo

SCl.

0.10

148

.....

9904

986

575

2643

96-

1225

58.80

1540

17.3

SAd:

sp10

.34

3.36

−124

Virgo

A0.11

149

.....

7007

187

375

2844

02-

1226

07.56

1306

46.0

Sb8.49

3.95

234

Virgo

A0.12

150

.....

7007

288

175

3244

06-

1226

11.74

1256

46.4

S0(3)/E3

6.10

11.37

−221

Virgo

A0.13

M86

151

.....

7007

691

275

3844

13-

1226

32.25

1236

39.5

(R’)SB

(rs)ab:

9.80

2.92

105

Virgo

A0.14

152

.....

4210

492

175

3644

12-

1226

36.10

0357

52.7

SB(r)b?pec;LIN

ER

9.65

1.89

2289

Virgo

SCl.

0.08

153

.....

4210

593

875

4144

16-

1226

46.72

0755

08.4

SB(rs)cd:;S

brst

10.97

2.18

1395

Virgo

SCl.

0.11

154

.....

7008

293

975

46-

-12

2647

.23

0853

04.6

SAB(s)cd

10.71

3.45

1271

Virgo

B0.13

NGC

4411

B15

5.....

7008

094

475

4244

17-

1226

50.62

0935

03.0

SB0:

s8.17

3.60

832

Virgo

B0.10

156

.....

9905

495

875

5144

19-

1226

56.43

1502

50.7

SB(s)a;LIN

ER;HII

7.74

3.52

−273

Virgo

A0.14

157

.....

4210

695

775

4944

20-

1226

58.48

0229

39.7

SB(r)bc:

9.66

2.01

1695

Virgo

SCl.

0.08

158

.....

4210

797

175

5644

23-

1227

08.97

0552

48.6

Sdm:

11.05

3.06

1120

Virgo

B0.09

159

.....

7009

097

975

6144

24-

1227

11.59

0925

14.0

SB(s)a:;H

II9.09

4.33

438

Virgo

B0.09

160

.....

4211

110

0275

6644

30-

1227

26.41

0615

46.0

SB(rs)b:

9.35

3.02

1450

Virgo

BCP

0.08

KPG

338A

161

.....

7009

310

0375

6844

29-

1227

26.56

1106

27.1

SA(r)0+;LIN

ER;HII

6.78

8.12

1130

Virgo

A0.14

162

.....

7009

810

3075

7544

35-

1227

40.49

1304

44.2

SB(s)0;LIN

ER;HII

7.30

2.92

775

Virgo

A0.13

163

.....

7009

710

4375

7444

38-

1227

45.59

1300

31.8

SA(s)0/a

pec:;LIN

ER

7.27

8.12

70Virgo

A0.12

164

.....

7009

910

4775

8144

40-

1227

53.57

1217

35.6

SB(rs)a

8.91

2.01

724

Virgo

A0.12

165

.....

4211

710

4875

79-

-12

2755

.39

0543

16.4

Sdm:

11.58

1.89

2252

Virgo

B0.09

166

.....

7010

010

6275

8344

42-

1228

03.89

0948

13.0

SB(s)0

7.29

5.05

517

Virgo

B0.10

167

.....

7010

410

8675

8744

45-

1228

15.94

0926

10.7

Sab:

sp9.83

3.20

328

Virgo

B0.11

168

.....

7010

810

9175

90-

-12

2818

.77

0843

46.1

Sbc

11.77

1.76

1119

Virgo

B0.09

169

.....

9906

3-

7595

-33

9112

2827

.28

1824

55.1

Scd:

10.45

1.10

1701

Com

aICl.

0.14

170

.....

9906

211

1075

9444

50-

1228

29.63

1705

05.8

SA(s)ab;LIN

ER;Sy3

7.05

6.15

1954

Virgo

A0.12

171

.....

7011

111

1876

0044

51-

1228

40.55

0915

32.2

Sbc:

9.99

1.96

865

Virgo

B0.08

172

.....

9906

511

2676

02-

3392

1228

43.26

1459

58.2

SAb:

9.26

2.92

1687

Virgo

A0.16

173

.....

4212

411

4576

0944

57-

1228

59.01

0334

14.2

(R)SAB(s)0/a;LIN

ER

7.78

2.92

884

Virgo

SCl.

0.09

174

.....

7011

611

5476

1444

59-

1229

00.03

1358

42.9

SA(r)0+;HII;LIN

ER

7.15

3.36

1210

Virgo

A0.20

175

.....

7011

511

5876

1344

61-

1229

03.01

1311

01.5

SB(s)0+:

8.01

3.52

1919

Virgo

A0.10

176

.....

7012

111

9076

2244

69-

1229

28.03

0844

59.7

SB(s)0/a?sp

8.04

4.33

508

Virgo

B0.09

177

.....

4213

212

0576

2744

70-

1229

37.78

0749

27.1

Sa?;HII

10.12

1.84

2339

Virgo

SCl.

0.10

178

.....

4213

412

2676

2944

72-

1229

46.76

0800

01.7

E2/S0

;Sy2

;LIN

ER

5.40

10.25

868

Virgo

SCl.

0.10

M49

270 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE1(Contin

ued)

HRS

(1)

CGCG

(2)

VCC

(3)

UGC

(4)

NGC

(5)

IC (6)

R.A.(J20

00)

(hm

s)(7)

Decl.

(°′″)

(8)

Type

(9)

KStot

(mag)

(10)

D25 (′) (11)

Velocity

(kms�

1)

(12)

Mem

ber

(13)

Group

(14)

AB

(mag)

(15)

Other

name

(16)

179

.....

7012

512

3176

3144

73-

1229

48.87

1325

45.7

E5

7.16

4.04

2236

Virgo

A0.12

180

.....

7012

912

5376

3844

77-

1230

02.17

1338

11.2

SB(s)0:?;Sy2

7.35

3.60

1353

Virgo

A0.14

181

.....

7013

312

7976

4544

78-

1230

17.42

1219

42.8

E2

8.36

1.89

1370

Virgo

A0.11

182

.....

4213

912

9076

4744

80-

1230

26.78

0414

47.3

SAB(s)c

9.75

2.01

2438

Virgo

SCl.

0.10

183

.....

7013

913

1676

5444

86-

1230

49.42

1223

28.0

E+0

−1pec;NLRG;Sy

5.81

11.00

1292

Virgo

A0.10

M87

184

.....

7014

013

2676

5744

91-

1230

57.13

1129

00.8

SB(s)a:

9.88

1.89

497

Virgo

A0.18

185

.....

4214

113

3076

5644

92-

1230

59.74

0804

40.6

SA(s)a?

9.08

1.96

1777

Virgo

SCl.

0.11

186

.....

1290

05-

7662

4494

-12

3124

.03

2546

29.9

E1−

2;LIN

ER

7.00

4.79

1310

Com

aICl.

0.09

187

.....

4214

413

7576

6845

05-

1231

39.21

0356

22.1

SB(rs)m

9.56

4.76

1732

Virgo

SCl.

0.11

NGC

4496

A,KPG

343A

188

.....

9907

513

7976

6944

98-

1231

39.57

1651

10.1

SAB(s)d

9.66

2.85

1505

Virgo

A0.13

189

.....

9907

713

9376

76-

797

1231

54.76

1507

26.2

SB(s)c

II.5

10.80

1.69

2100

Virgo

A0.13

190

.....

9907

614

0176

7545

01-

1231

59.22

1425

13.5

SA(rs)b;HII;Sy2

6.27

7.23

2284

Virgo

A0.16

M88

191

.....

9907

814

1076

7745

02-

1232

03.35

1641

15.8

Scd:

11.90

1.48

1629

Virgo

A0.13

192

.....

7015

214

1976

8245

06-

1232

10.53

1325

10.6

Sapec?

10.26

2.16

737

Virgo

A0.13

193

.....

7015

714

5076

95-

3476

1232

41.88

1403

01.8

IB(s)m

:10

.91

2.60

−173

Virgo

A0.15

194

.....

1406

3-

7694

4517

-12

3245

.59

0006

54.1

SA(s)cd:

sp7.33

11.00

1129

Virgo

Out.

P0.10

KPG

344B

195

.....

9908

714

7977

0345

16-

1233

07.56

1434

29.8

SB(rs)ab?

9.99

2.16

958

Virgo

A0.16

196

.....

7016

715

0877

0945

19-

1233

30.25

0839

17.1

SB(rs)d

9.56

3.60

1212

Virgo

SCl.

0.09

197

.....

7016

815

1677

1145

22-

1233

39.66

0910

29.5

SB(s)cd:

sp10

.35

4.04

2330

Virgo

SCl.

0.09

198

.....

1590

16-

7714

4525

-12

3351

.19

3016

39.1

Scd:

9.99

3.00

1174

Com

aICl.

0.10

199

.....

9909

015

3277

16-

800

1233

56.66

1521

17.4

SB(rs)cpec?

10.58

1.96

2335

Virgo

A0.16

200

.....

4215

515

3577

1845

26-

1234

03.03

0741

56.9

SAB(s)0:

6.47

7.00

448

Virgo

SCl.

0.10

201

.....

4215

615

4077

2145

27-

1234

08.50

0239

13.7

SAB(s)bc;HII;LIN

ER

6.93

5.86

1736

Virgo

SCl.

0.10

202

.....

7017

315

4977

28-

3510

1234

14.79

1104

17.7

S?11

.42

1.10

1357

Virgo

A0.13

203

.....

4215

815

5477

2645

32-

1234

19.33

0628

03.7

IBm;HII

9.48

2.60

2021

Virgo

SCl.

0.09

204

.....

4215

915

5577

2745

35-

1234

20.31

0811

51.9

SAB(s)c;HII

7.38

8.33

1962

Virgo

SCl.

0.08

205

.....

1406

815

6277

3245

36-

1234

27.13

0211

16.4

SAB(rs)bc;HII;Sbrst

7.52

7.23

1807

Virgo

SCl.

0.08

206

.....

4216

215

7577

36-

3521

1234

39.42

0709

36.0

SBm

pec;BCD

11.01

2.00

597

Virgo

SCl.

0.10

207

.....

9909

315

8877

4245

40-

1234

50.87

1533

05.2

SAB(rs)cd;LIN

ER;Sy1

9.24

2.60

1288

Virgo

A0.14

208

.....

9909

616

1577

5345

48-

1235

26.43

1429

46.8

SBb(rs);LIN

ER;Sy

7.12

6.00

484

Virgo

A0.16

M91

209

.....

--

-45

46-

1235

29.51

−034

735.5

SB(s)0-:

7.39

3.31

1050

Virgo

Out.

0.15

210

.....

7018

216

1977

5745

50-

1235

30.61

1213

15.4

SB0:

sp;LIN

ER

8.69

3.95

381

Virgo

A0.17

211

.....

7018

416

3277

6045

52-

1235

39.88

1233

21.7

E;LIN

ER;HII;Sy2

6.73

7.23

322

Virgo

A0.18

M89

212

.....

9909

8-

7768

4561

-12

3608

.14

1919

21.4

SB(rs)dm

10.63

1.51

1410

Com

aICl.

0.11

KPG

346A

213

.....

1290

10-

7772

4565

-12

3620

.78

2559

15.6

SA(s)b?sp;Sy3

;Sy1

.96.06

14.18

1233

Com

aICl.

30.07

214

.....

7018

616

6477

7345

64-

1236

26.99

1126

21.5

E6

7.94

4.33

1165

Virgo

A0.15

215

.....

7018

916

7377

7745

67-

1236

32.71

1115

28.8

SA(rs)bc

8.30

2.92

2277

Virgo

ACP

0.14

KPG

347A

216

.....

7018

816

7677

7645

68-

1236

34.26

1114

20.0

SA(rs)bc

7.52

5.10

2255

Virgo

ACP

0.14

KPG

347B

217

.....

7019

216

9077

8645

69-

1236

49.80

1309

46.3

SAB(rs)ab;LIN

ER;Sy

6.58

10.73

−216

Virgo

A0.20

M90

218

.....

4217

816

9277

8545

70-

1236

53.40

0714

48.0

S0(7)/E7

7.69

3.52

1730

Virgo

SCl.

0.10

219

.....

7019

517

2077

9345

78-

1237

30.55

0933

18.4

SA(r)0:

8.40

3.77

2284

Virgo

ECl.

0.09

220

.....

7019

717

2777

9645

79-

1237

43.52

1149

05.5

SAB(rs)b;LIN

ER;Sy1

.96.49

6.29

1520

Virgo

A0.18

M58

221

.....

4218

317

3077

9445

80-

1237

48.40

0522

06.4

SAB(rs)apec

8.77

2.16

1032

Virgo

SCl.

0.10

222

.....

7019

917

5778

0345

84-

1238

17.89

1306

35.5

SAB(s)a?

10.46

1.96

1783

Virgo

A0.16

223

.....

4218

617

5878

02-

-12

3820

.82

0753

28.7

Sdm

11.76

1.89

1788

Virgo

SCl.

0.12

224

.....

4218

717

6078

0445

86-

1238

28.44

0419

08.8

SA(s)a:sp

8.47

4.33

792

Virgo

SCl.

0.16

225

.....

7020

217

7878

17-

3611

1239

04.14

1321

48.7

S?11

.42

1.76

2750

Virgo

ECl.

0.15

226

.....

4219

117

8078

2145

91-

1239

12.44

0600

44.3

Sb10

.24

1.96

2424

Virgo

SCl.

0.09

227

.....

1409

1-

7819

4592

-12

3918

.74

0−31

55.2

SA(s)dm:

10.22

5.75

1069

Virgo

Out.

0.10

228

.....

--

--

-12

3922

.26

−053

953.3

Pec

11.95

0.43

1199

Virgo

Out.

CP

0.11

LCRSB

1236

47.4−0

5232

522

9.....

7020

418

0978

25-

3631

1239

48.02

1258

26.1

S?11

.11

1.10

2839

Virgo

ECl.

0.17

230

.....

9910

618

1178

2645

95-

1239

51.91

1517

52.1

SAB(rs)b?

10.03

2.16

632

Virgo

ECl.

0.16

231

.....

7020

618

1378

2845

96-

1239

55.94

1010

33.9

SB(r)0+;LIN

ER:

7.46

4.76

1834

Virgo

ECl.

0.10

232

.....

7021

318

5978

3946

06-

1240

57.56

1154

43.6

SB(s)a:

9.17

5.10

1645

Virgo

ECl.

0.14

233

.....

7021

618

6878

4346

07-

1241

12.41

1153

11.9

SBb?

sp9.58

3.95

2255

Virgo

ECl.

0.14

234

.....

7021

418

6978

4246

08-

1241

13.29

1009

20.9

SB(r)0

8.16

4.30

1864

Virgo

ECl.

0.07

235

.....

4220

518

8378

5046

12-

1241

32.76

0718

53.2

(R)SAB0

8.56

2.16

1875

Virgo

SCl.

0.11

236

.....

7022

319

0378

5846

21-

1242

02.32

1138

48.9

E5

6.75

7.67

444

Virgo

ECl.

0.14

M59

237

.....

4220

819

2378

7146

30-

1242

31.15

0357

37.3

IB(s)m

?9.89

2.31

742

Virgo

SCl.

0.13

238

.....

1410

9-

7869

4629

-12

4232

.67

−012

102.4

SAB(s)m

pec

11.84

1.38

1116

Virgo

Out.

0.16

HERSCHEL REFERENCE SURVEY 271

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE1(Contin

ued)

HRS

(1)

CGCG

(2)

VCC

(3)

UGC

(4)

NGC

(5)

IC (6)

R.A.(J20

00)

(hm

s)(7)

Decl.

(°′″)

(8)

Type

(9)

KStot

(mag)

(10)

D25 (′) (11)

Velocity

(kms�

1)

(12)

Mem

ber

(13)

Group

(14)

AB

(mag)

(15)

Other

name

(16)

239

.....

9911

219

3278

7546

34-

1242

40.96

1417

45.0

SBcd:sp

9.25

2.92

116

Virgo

ECl.

CP

0.12

KPG

351B

240

.....

7022

919

3878

8046

38-

1242

47.43

1126

32.9

S0-

8.21

2.01

1147

Virgo

ECl.

0.11

241

.....

4300

219

3978

7846

36-

1242

49.87

0241

16.0

E/S0/1;LIN

ER;Sy3

6.42

9.63

1094

Virgo

SCl.

0.12

242

.....

7023

019

4378

8446

39-

1242

52.37

1315

26.9

SAB(rs)bc;Sy1

.88.81

3.20

1048

Virgo

ECl.

0.11

243

.....

1500

8-

7895

4643

-12

4320

.14

0158

42.1

SB(rs)0/a;LIN

ER

7.41

3.00

1346

Virgo

Out.

0.13

244

.....

7101

519

7278

9646

47-

1243

32.45

1134

57.4

SAB(rs)c

8.05

2.60

1422

Virgo

ECl.

CP

0.11

KPG

353A

245

.....

7101

619

7878

9846

49-

1243

40.01

1133

09.4

E2

5.74

5.10

1095

Virgo

ECl.

CP

0.11

M60

,KPG

353B

246

.....

1000

04-

7901

4651

-12

4342

.63

1623

36.2

SA(rs)c;LIN

ER

8.03

3.90

797

Virgo

Out.

0.12

247

.....

7101

919

8779

0246

54-

1243

56.58

1307

36.0

SAB(rs)cd;HII

7.74

4.99

1039

Virgo

ECl.

0.11

248

.....

7102

320

0079

1446

60-

1244

31.97

1111

25.9

E5

8.21

1.89

1115

Virgo

ECl.

0.14

249

.....

7102

620

0679

20-

3718

1244

45.99

1221

05.2

S11

.91

2.60

844

Virgo

ECl.

0.13

250

.....

4301

8-

7924

4665

-12

4505

.96

0303

20.5

SB(s)0/a

7.43

4.50

785

Virgo

Out.

0.11

251

.....

1501

5-

7926

4666

-12

4508

.59

−002

742.8

SABc:;HII;LIN

ER

7.06

4.57

1513

Virgo

Out.

CP

0.11

252

.....

1501

6-

7931

4668

-12

4532

.14

−003

205.0

SB(s)d:;N

LAGN

10.58

1.38

1619

Virgo

Out.

CP

0.11

253

.....

1501

9-

7951

4684

-12

4717

.52

−024

338.6

SB(r)0+;HII

8.39

2.88

1490

Virgo

Out.

0.12

254

.....

7104

320

5879

6546

89-

1247

45.56

1345

46.1

SA(rs)bc

7.96

5.86

1620

Virgo

ECl.

0.10

255

.....

4302

8-

7961

4688

-12

4746

.46

0420

09.9

SB(s)cd

11.16

4.40

984

Virgo

Out.

0.13

256

.....

1502

3-

-46

91-

1248

13.63

−031

957.8

(R)SB(s)0/a

pec;HII

8.54

2.82

1119

Virgo

Out.

0.12

257

.....

7104

520

7079

7046

98-

1248

22.92

0829

14.3

SA(s)ab;Sy

27.56

5.67

1008

Virgo

ECl.

0.11

258

.....

--

-46

97-

1248

35.91

−054

803.1

E6;AGN

6.37

7.24

1241

Virgo

Out.

0.13

259

.....

4303

4-

7975

4701

-12

4911

.56

0323

19.4

SA(s)cd

9.77

3.60

727

Virgo

Out.

0.13

260

.....

1000

11-

7980

4710

-12

4938

.96

1509

55.8

SA(r)0+?

sp;HII

7.57

4.30

1129

Virgo

Out.

0.13

261

.....

4304

0-

7982

--

1249

50.19

0251

10.4

Sd(f)

10.17

3.39

1158

Virgo

Out.

0.15

262

.....

4304

1-

7985

4713

-12

4957

.87

0518

41.1

SAB(rs)d;LIN

ER

9.75

3.20

652

Virgo

Out.

0.12

263

.....

1290

27-

7989

4725

-12

5026

.61

2530

02.7

SAB(r)abpec;Sy

26.17

9.66

1209

Com

aICl.

30.05

264

.....

1502

7-

7991

--

1250

38.96

0127

52.3

Sd(f)

11.61

1.70

1272

Virgo

Out.

0.11

265

.....

--

-47

20-

1250

42.78

−040

921.0

Pec

10.77

0.65

1504

Virgo

Out.

0.11

266

.....

--

-47

31-

1251

01.09

−062

335.0

SB(s)cd

9.79

6.61

1491

Virgo

Out.

0.14

267

.....

1290

28-

8005

4747

-12

5145

.96

2546

38.3

SBcd?pecsp

10.29

3.95

1179

Com

aICl.

30.04

268

.....

7106

0-

8007

4746

-12

5155

.37

1204

58.9

Sb:sp

9.50

2.20

1779

Virgo

Out.

0.15

269

.....

7106

220

9280

1047

54-

1252

17.56

1118

49.2

SB(r)0-:

7.41

5.03

1377

Virgo

ECl.

P0.14

KPG

356A

270

.....

1502

9-

8009

4753

-12

5222

.11

−011

158.9

I06.72

6.03

1239

Virgo

Out.

0.15

271

.....

1000

15-

8014

4758

-12

5244

.04

1550

55.9

Im:;H

II10

.93

3.00

1240

Virgo

Out.

0.11

272

.....

7106

520

9580

1647

62-

1252

56.05

1113

50.9

SB(r)0

sp;LIN

ER

7.30

8.70

985

Virgo

ECl.

P0.09

KPG

356B

273

.....

1503

1-

8020

4771

-12

5321

.27

0116

09.0

SAd?

sp;NLAGN

9.01

4.00

1119

Virgo

Out.

0.09

274

.....

1503

2-

8021

4772

-12

5329

.17

0210

06.0

SA(s)a;LIN

ER;Sy3

8.36

2.90

1038

Virgo

Out.

0.12

275

.....

--

-47

75-

1253

45.70

−063

719.8

SA(s)d

9.22

2.14

1566

Virgo

Out.

0.15

276

.....

7106

8-

8022

4779

-12

5350

.86

0942

35.7

SB(rs)bc;Sbrst

9.87

2.10

2832

Virgo

Out.

0.09

277

.....

4306

0-

-47

91-

1254

43.97

0803

10.7

cI11

.35

1.20

2529

Virgo

Out.

0.14

278

.....

7107

1-

8032

--

1254

44.19

1314

14.2

S10

.39

2.75

1121

Virgo

Out.

0.15

279

.....

1503

7-

8041

--

1255

12.68

0007

00.0

SB(s)d

11.98

3.10

1321

Virgo

Out.

0.10

280

.....

4306

6-

8043

4799

-12

5515

.53

0253

47.9

S?9.89

1.60

2802

Virgo

Out.

0.15

281

.....

4306

8-

8045

--

1255

23.62

0754

34.0

IBm:

11.82

0.91

2801

Virgo

Out.

0.18

282

.....

4306

9-

-48

03-

1255

33.67

0814

25.8

Com

p10

.71

0.50

2664

Virgo

Out.

0.13

283

.....

4307

1-

8054

4808

-12

5548

.94

0418

14.7

SA(s)cd:;HII

9.04

2.60

760

Virgo

Out.

0.16

284

.....

--

--

3908

1256

40.62

−073

346.1

SB(s)d?;HII

9.10

1.82

1296

Virgo

Out.

0.15

285

.....

1504

9-

8078

4845

-12

5801

.19

0134

33.0

SA(s)absp;HII

7.79

5.20

1097

Virgo

Out.

0.09

286

.....

7109

2-

8102

4866

-12

5927

.14

1410

15.8

SA(r)0+:

sp;LIN

ER

7.92

6.00

1986

Virgo

Out.

0.12

287

.....

1505

5-

8121

4904

-13

0058

.67

−000

138.8

SB(s)cd;Sb

rst

9.50

2.40

1174

Virgo

Out.

0.11

288

.....

--

-49

41-

1304

13.14

−053

305.8

(R)SAB(r)ab:;Sy2

8.22

3.63

1114

Virgo

Out.

0.16

289

.....

--

-49

81-

1308

48.74

−064

639.1

SAB(r)bc;LIN

ER

8.49

2.75

1678

Virgo

Out.

0.18

290

.....

1890

37-

8271

5014

-13

1131

.16

3616

54.9

Sa?sp

10.11

1.70

1136

Canes

Ven.Sp

ur3

0.03

291

.....

2170

31-

8388

5103

-13

2030

.08

4305

02.3

Sab

9.49

1.45

1297

Canes

Ven.Sp

ur0.08

292

.....

2180

10-

8439

5145

-13

2513

.92

4316

02.2

S?;HII;Sbrst

9.33

2.00

1225

Canes

Ven.Sp

ur0.05

293

.....

1606

9-

8443

5147

-13

2619

.71

0206

02.7

SB(s)dm

9.73

1.91

1092

Virgo

Out.

0.12

294

.....

2460

17-

8593

-90

213

3601

.22

4957

39.0

Sb10

.42

2.19

1608

Canes

Ven.Sp

ur0.05

295

.....

7305

4-

8616

5248

-13

3732

.07

0853

06.2

(R)SB(rs)bc;Sy2

;HII

7.25

1.79

1152

Virgo

-Libra

Cl.

P0.11

296

.....

1900

41-

8675

5273

-13

4208

.34

3539

15.2

SA(s)0;Sy1

.98.67

2.75

1064

Canes

Ven.Sp

ur0.04

KPG

391A

297

.....

2460

23-

8711

5301

-13

4624

.61

4606

26.7

SA(s)bc:

sp9.11

4.17

1508

Canes

Ven.Sp

ur0.07

298

.....

2180

47-

8725

5303

-13

4744

.97

3818

16.4

Pec

10.23

0.91

1419

Canes

Ven.Sp

urCP

0.06

KPG

397A

272 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE1(Contin

ued)

HRS

(1)

CGCG

(2)

VCC

(3)

UGC

(4)

NGC

(5)

IC (6)

R.A.(J20

00)

(hm

s)(7)

Decl.

(°′″)

(8)

Type

(9)

KStot

(mag)

(10)

D25 (′) (11)

Velocity

(kms�

1)

(12)

Mem

ber

(13)

Group

(14)

AB

(mag)

(15)

Other

name

(16)

299

.....

4510

8-

8727

5300

-13

4816

.04

0357

03.1

SAB(r)c

9.50

3.89

1171

Virgo

-Libra

Cl.

0.10

300

.....

2180

58-

8756

--

1350

35.89

4232

29.5

Sab

10.34

1.70

1354

Canes

Ven.Sp

ur0.06

301

.....

1708

8-

8790

5334

4338

1352

54.46

−010

652.7

SB(rs)c:

9.94

4.17

1380

Virgo

-Libra

Cl.

0.20

302

.....

4513

7-

8821

5348

-13

5411

.27

0513

38.8

SBbc:sp

10.87

3.55

1443

Virgo

-Libra

Cl.

50.12

303

.....

2950

24-

8843

5372

-13

5446

.01

5839

59.4

S?10

.65

0.65

1717

Canes

Ven-Cam

e.Cl.

0.04

304

.....

4600

1-

8831

5356

-13

5458

.46

0520

01.4

SABbc:sp;HII

9.64

3.09

1370

Virgo

-Libra

Cl.

50.11

305

.....

4600

3-

8838

5360

958

1355

38.75

0459

06.2

I011

.15

2.19

1171

Virgo

-Libra

Cl.

50.13

306

.....

4600

7-

8847

5363

-13

5607

.21

0515

17.2

I0?

6.93

4.07

1136

Virgo

-Libra

Cl.

50.12

307

.....

4600

9-

8853

5364

-13

5612

.00

0500

52.1

SA(rs)bc

pec;HII

7.80

6.76

1242

Virgo

-Libra

Cl.

50.12

308

.....

4601

1-

8857

--

1356

26.61

0423

48.0

Sb(f)

11.93

0.91

1091

Virgo

-Libra

Cl.

0.14

309

.....

2720

31-

9036

5486

-14

0724

.97

5506

11.1

SA(s)m

:11

.95

1.86

1383

Canes

Ven-Cam

e.Cl.

30.09

310

.....

4701

0-

9172

5560

-14

2005

.42

0359

28.4

SB(s)b

pec

9.98

3.72

1718

Virgo

-Libra

Cl.

30.13

ARP2

8631

1.....

4701

2-

9175

5566

-14

2019

.95

0356

00.9

SB(r)ab;LIN

ER

7.39

6.61

1492

Virgo

-Libra

Cl.

30.13

ARP2

8631

2.....

4702

0-

9183

5576

-14

2103

.68

0316

15.6

E3

7.83

3.55

1482

Virgo

-Libra

Cl.

30.14

313

.....

4702

2-

9187

5577

-14

2113

.11

0326

08.8

SA(rs)bc:

9.75

3.39

1490

Virgo

-Libra

Cl.

30.18

314

.....

1901

2-

9215

--

1423

27.12

0143

34.7

SB(s)d

10.54

2.19

1389

Virgo

-Libra

Cl.

0.14

315

.....

2200

15-

9242

--

1425

21.02

3932

22.5

Sc11

.73

5.01

1440

Canes

Ven.Sp

ur0.05

316

.....

4706

3-

9308

5638

-14

2940

.39

0314

00.2

E1

8.25

2.69

1845

Virgo

-Libra

Cl.

40.14

317

.....

4706

6-

9311

-10

2214

3001

.85

0346

22.3

S?11

.70

1.10

1716

Virgo

-Libra

Cl.

0.15

318

.....

4707

0-

9328

5645

-14

3039

.35

0716

30.3

SB(s)d

9.69

2.40

1370

Virgo

-Libra

Cl.

0.12

319

.....

7506

4-

9353

5669

-14

3243

.88

0953

30.5

SAB(rs)cd

10.35

3.98

1368

Virgo

-Libra

Cl.

0.12

320

.....

4709

0-

9363

5668

-14

3324

.34

0427

01.6

SA(s)d

11.71

3.31

1583

Virgo

-Libra

Cl.

P0.16

321

.....

4712

3-

9427

5692

-14

3818

.12

0324

37.2

S?10

.54

0.89

1581

Virgo

-Libra

Cl.

0.16

322

.....

4712

7-

9436

5701

-14

3911

.06

0521

48.8

(R)SB(rs)0/a;LIN

ER

8.14

4.27

1505

Virgo

-Libra

Cl.

0.16

323

.....

4800

4-

9483

-10

4814

4257

.88

0453

24.5

S9.55

2.24

1640

Virgo

-Libra

Cl.

CP

0.16

HERSCHEL REFERENCE SURVEY 273

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

350, and 500 μm, respectively, which in the latter two bands isbelow the noise expected from the confusion of faint sources.

Sixty square degrees centered on the Virgo cluster region willbe covered by Herschel in parallel mode (i.e. using both SPIREand PACS) as part of the Herschel Virgo Cluster SurveyHeViCS.29 Eighty-three HRS galaxies fall into this region. Toavoid duplication, these galaxies will be observed only duringthe HeViCS survey. HeViCS will survey this region in fast-scanmode (60″ s�1) using both SPIRE and PACS. The survey willmake eight scans reaching a 1σ of instrumental noise of 4.5, 6.2,and 5:3 mJy beam�1 at 250, 350, and 500 μm, respectively, asdetermined using the Herschel Observation Planning Tool(HSpot ver. 4.2.0). This is not as deep as our observations ofellipticals and S0s outside Virgo, but the effect of confusionnoise means that the decrease in effective sensitivity is reallysmall. On the plus side, for the HRS galaxies in Virgo we willalso have PACS images at 110 and 160 μm.

5. COMPLEMENTARY DATA

A number of key aims of our survey (see § 2) can only beachieved through the combination of Herschel observationswith corollary data. UV to near-IR imaging is needed to deter-mine the distribution and content of the different stellar popula-tions, to quantify the intensity of the interstellar radiation fieldand to study the recent activity of star formation (UV and Hα).Optical spectroscopy is crucial to measure stellar and gas meta-llicities and to determine the presence of any nuclear activity. Atthe same time, the Balmer emission line can be used to measurethe dust extinction within HII regions and are thus essential forquantifying the current level of star formation activity. HI andCO line data are necessary for determining the content and dis-tribution of the gaseous component of the ISM, the principalfeeder of star formation in galaxies. High resolution HI imagingcan also be used to study the kinematical properties of the targetgalaxies. Mid-, far-IR and submillimeter data, combined withSPIRE data, will be used to study the physical properties of thedifferent dust components (PAHs, very small grains, and largegrains), and radio continuum data for measuring the thermal andsynchrotron emission.

Given its definition, the HRS is easily accessible for ground-based and space facilities: the selected galaxies are in fact re-latively bright (mB < 15 mag) and extended (∼2–3 arcmin).Listed in this section are the most important references for an-cillary data.

5.1. UV, Optical, Near-IR, and Hα Imaging

Of the 323 galaxies in the HRS, 280 have been observed bythe Galaxy Evolution Explorer (GALEX) in the two UV bandsFUV (λeff ¼ 1539 Å, Δλ ¼ 442 Å) and NUV (λeff ¼ 2316 Å,Δλ ¼ 1069 Å). Observations have been taken as part of theNearby Galaxy Survey (NGS; Gil de Paz et al. 2007), the Virgocluster survey (Boselli et al. 2005), the All Imaging Survey(AIS) or as pointed observations in open time proposals. AGALEX legacy survey has been recently accepted to completethe UV observation of the HRS galaxies at a deepness of theMedium Imaging Survey (1500 s per field).

SDSS (DR7 release, Adelman-McCarthy et al. 2008) imagesin the ugriz filters are available for 313 objects. All galaxieshave been observed in the JHK filters by 2MASS (Jarrett et al.2003). Deep B; V ; H, and K band images for all Virgo clustergalaxies and for some Coma I Cloud galaxies are available onthe GOLDMine database30 (Gavazzi et al. 2003). These havebeen taken with pointed observations during the near-infraredand optical extensive surveys of the Virgo cluster carried outby Boselli et al. (1997, 2000, 2003b) and Gavazzi et al. (2000b).

An Hαþ ½NII� imaging survey of the star-forming HRSgalaxies found outside the Virgo cluster under way at the2.1 m San Pedro Martir telescope is almost complete. Combinedwith images taken in the Virgo cluster region (Boselli &Gavazzi 2002, Boselli et al. 2002b; Gavazzi et al. 1998;2002a; 2006) Hαþ ½NII� data are now available for 221 ofthe 258 late-type objects and 26 of the 65 early-types.

5.2. Integrated Spectroscopy

A low resolution (R ∼ 1000), integrated spectroscopic sur-vey in the wavelength range 3500–7200 Å is under way atthe 1.93 m OHP telescope. In order to sample the spectral prop-erties of the whole galaxy, and not just those of the nuclear re-gions (these last provided by the SDSS for 106 galaxies in theDR6), observations have been executed using the drifting tech-nique described in Kennicutt (1992). Exposures are taken whileconstantly and uniformly drifting the spectrograph slit over thefull extent of the galaxy. A resolutionR ∼ 1000 is mandatory forresolving [NII] from Hα and measuring the stellar underlingBalmer absorption under Hβ.

Data for 64 Virgo cluster galaxies in the HRS have alreadybeen published in Gavazzi et al. (2004) along with a few othergalaxies in Moustakas & Kennicutt (2006), Jansen et al. (2000)and Kennicutt (1992b). We have data from the literature or from

TABLE 2

SPIRE PERFORMANCE

λ 250 μm 350 μm 500 μm

Ang. Res. . . . . . 18.1″ 25.2″ 36.9″Lin. Res. . . . . . . 1.7 kpc 2.4 kpc 3.6 kpcSensitivity . . . . . 12 mJy beam�1 8 mJy beam�1 12 mJy beam�1

NOTE.—1σ sensitivity (instrumental noise) for a standard map (one re-peat = two crosslinked scans) as determined during the science verificationphase (onboard observations). The linear resolution is at 20 Mpc.

29 At www.arcetri.astro.it/hevics. 30 At http://goldmine.mib.infn.it/; Gavazzi et al. 2003

274 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

our own observations for 256=258 of the late-types and 33=65of the early-types, making the whole sample complete at 89%.The remaining objects will be included in the future obser-ving runs.

5.3. HI and CO Lines

Single-beam HI observations are available from a large vari-ety of sources. Most of the galaxies have HI data in Springobet al. (2005) and Gavazzi et al. (2005), this last reference limitedto the Virgo cluster region. Out of the 8 late-type galaxies, 249have an HI measurements, as do 55=65 of the early-types. Allgalaxies in the 0° < decl: < 30° range (80%) will be observedduring the ALFALFA survey under way at the 305 m Areciboradio telescope (Giovanelli et al. 2005). Data will be gatheredwith an homogeneous sensitivity (rms ¼ 2:5 mJy) and spectralresolution (5:5 km s�1): at the average distance of the HRSthe ALFALFA survey will detect all sources withMHI ≥ 107:5 M⊙. VLA and WSRT HI maps are availablefor 236 HRS galaxies, from the WHISP (van der Hulst2002) and VIVA (Chung et al. 2009) survey, this last limitedto the Virgo region, from VLA archives or from our own WSRTobservations.

A 12COð1� 0Þ line (2.6 mm, 115 GHz) survey of the HRSgalaxies is under way at the 12 m Kitt Peak telescope. Fifty-eight spiral galaxies have been observed to date, with an averagerms of 3 mK in T �

R scale. Thanks to these new observations andto data in the literature, CO measurements are now available for161=258 late-type and 22=65 early-type galaxies, with a detec-tion rate of 83% and 55%, respectively. Data have been takenfrom different sources, mostly from the FCRAO survey ofYoung et al. (1995), or Kenney & Young (1988) and Boselliet al. (1995; 2002a) for the Virgo cluster region. We obtainedtime at the James Clerk Maxwell Telescope (JCMT) on the345 GHz HARP array receiver to search for CO(3-2) emissionfrom the central 30 × 30 region (with 15″ resolution) of a sub-sample of late-type galaxies with KStot < 8:7. As of the begin-ning of 2010 January, 42 of a total of 56 galaxies in thesubsample have been observed to completion.

5.4. Mid-IR, Far-IR, and Submillimeter

Infrared data for the HRS galaxies are already available fromdifferent sources. 208=258 late-type and 32=65 of the early-typegalaxies have been detected by IRAS at 60 and 100 μm, only103 (Sa-Sd-Im-BCD) and 17 (E-S0-S0a) at 12 and 25 μm. Vir-go galaxies have been observed with CAM (45), PHOT (26),and LWS (21) on ISO (Leech et al. 1999; Malhotra et al.2001; Roussel et al. 2001; Boselli et al. 2002c, 2003b; Tuffset al. 2002). Spitzer observations have been completed for157 HRS galaxies with IRAC and 181 galaxies with MIPS.The data for all of these galaxies will eventually be availablefrom the Spitzer archives. The pipeline-processed IRAC dataare sufficient for science analysis, but MIPS data have been re-

processed using the MIPS Data Analysis Tools (Gordon et al.2005) along with additional processing software.

All HRS galaxies have been observed during the recentlycompleted AKARI all sky survey in the 9, 20, 70, 90, and160 μm bands which covered ∼95% of the whole sky withan angular resolution comparable to that of SPIRE (∼30″ at90 μm) and a sensitivity ∼3 times better than IRAS. Pointedobservations with AKARI and SCUBA are also available ofa few ellipticals.

5.5. Radio Continuum Data

The HRS galaxies have been observed by the NVSS surveyat 20 cm (1415 MHz) (Condon et al. 1998) with an angular re-solution of 45″ and a sensitivity of 2.5 mJy. Twenty-two of65and 159=258 of the early- and late-type galaxies, respectively,have been detected at 20 cm. The data of the FIRST survey, at 5″resolution, are also available (Becker et al. 1995). For a fractionof galaxies, data at 6.3 cm and 2.8 cm are also available fromNiklas et al. (1995) and Vollmer et al. (2004).

5.6. X-ray data

X-ray data at 0.2–4 keV from the Einstein Observatory im-aging instruments (IPC and HRI) are available for 31 early-typeand 52 late-type galaxies from Fabbiano et al. (1992) and Shap-ley et al. (2001). Ten HRS galaxies have been detected by theROSAT all sky survey (Voges et al. 1999), while Chandra ob-servations of many of the early-type objects within the HRS arestill under way (Gallo et al. 2008).

Table 3 gives the complete sample at different wavelengths,while Table 4 shows the availability of ancillary data for theHRS galaxies.

6. HRS DATA PROCESSING, DATA PRODUCTS,AND WEB SITE

The HRS galaxies are distributed widely across the sky, thesurvey will progress along with the Herschel mission, that isexpected to last for three and a half years, with the first sixmonths for commissioning, performance verification, sciencedemonstration and the last three years for science. Data for eachsingle observation will be proprietary for one year after it is ta-ken. During this time, the data will be processed using the mostup-to-date pipeline developed by the SPIRE-Instrument Control

TABLE 3

COMPLETENESS OF THE DATA SAMPLE

λ E+S0+S0a Sa-Sm-Im-BCD

K . . . . . . . . . . . . . . . . . . . . . . . . . 100% 100%HI . . . . . . . . . . . . . . . . . . . . . . . . 85% (40%) 97% (93%)FIR (60 μm) . . . . . . . . . . . . 95% (62%) 89% (83%)Radio cont. (20 cm) . . . . . 100% (34%) 100% (62%)

NOTE.—Values in parentheses give the detection rate.

HERSCHEL REFERENCE SURVEY 275

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE 4

ANCILLARY DATA FOR THE HERSCHEL REFERENCE SAMPLE.

HRS 2MASS SDSS UV Hα IRAS 20 cm HI CO Spec

1 . . . . . . . X X - - X - - - X2 . . . . . . . X X X - X X X - X3 . . . . . . . X X - X - X X X -4 . . . . . . . X X - X X X X X X5 . . . . . . . X X - X X X X - X6 . . . . . . . X X X - - - X - -7 . . . . . . . X X X - X X X X -8 . . . . . . . X X X X X - X X X9 . . . . . . . X X X X X X X X X10 . . . . . . X X - - X X X - X11 . . . . . . X X X X X X X X X12 . . . . . . X X X - X - X - X13 . . . . . . X X X X X X X X X14 . . . . . . X X X - X X X - -15 . . . . . . X X X X X X X X X16 . . . . . . X X X X X - X X X17 . . . . . . X X X X X X X X X18 . . . . . . X X X X X X X - X19 . . . . . . X X X X X X X - X20 . . . . . . X X X X - X X X X21 . . . . . . X X X X - - X - X22 . . . . . . X X X X - X X - -23 . . . . . . X X X X X X X X X24 . . . . . . X X X X X X X X X25 . . . . . . X X X X X X X X X26 . . . . . . X X X - X - X - X27 . . . . . . X X X X X X X - X28 . . . . . . X X X X X X X - X29 . . . . . . X X X - - - X - X30 . . . . . . X X X - - X X - X31 . . . . . . X X X X X X X X X32 . . . . . . X X X X - - X X X33 . . . . . . X X X X - X X X X34 . . . . . . X X X X - X X X X35 . . . . . . X X - - - - - - X36 . . . . . . X X X X X X X X X37 . . . . . . X X X X X X X X X38 . . . . . . X X - X X X X X X39 . . . . . . X X X - - - X - X40 . . . . . . X X X X - X X - X41 . . . . . . X X X X - - X - -42 . . . . . . X X - X - X X X X43 . . . . . . X X X - - - X - -44 . . . . . . X X X - - X X - X45 . . . . . . X X X - X X X - -46 . . . . . . X X - - - X X - -47 . . . . . . X X X X - X X - X48 . . . . . . X X X X X X X X X49 . . . . . . X X X - - - X - -50 . . . . . . X X X X X X X X X51 . . . . . . X X - X X X X - X52 . . . . . . X X X - X X X - X53 . . . . . . X X X X X X X X X54 . . . . . . X X X X X - X X X55 . . . . . . X X X X X X X X X56 . . . . . . X X X X X X X X X57 . . . . . . X X X X X X X X X58 . . . . . . X X X X X X X - X59 . . . . . . X X X X X X X X X

276 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE 4 (Continued)

HRS 2MASS SDSS UV Hα IRAS 20 cm HI CO Spec

60 . . . . . . X X X X X X X X X61 . . . . . . X X X - X - X - X62 . . . . . . X X X X - X X - X63 . . . . . . X X - X X - X X X64 . . . . . . X X - - X - X - X65 . . . . . . X X X - X - X - X66 . . . . . . X X X X - X X X X67 . . . . . . X X - - - X X - X68 . . . . . . X X X - - X X - X69 . . . . . . X X - X X X X X X70 . . . . . . X - X X X X X - X71 . . . . . . X X X - X - - - -72 . . . . . . X - X - X X X - X73 . . . . . . X X - X X - X X X74 . . . . . . X X - X X X X X X75 . . . . . . X X - - - - X - X76 . . . . . . X X - X X - X - X77 . . . . . . X X X X X X X X X78 . . . . . . X X X X X - X X X79 . . . . . . X X X X X X X - X80 . . . . . . X X X X X - X - X81 . . . . . . X X X X X X X X X82 . . . . . . X X X - X X X - X83 . . . . . . X X X - X - X - X84 . . . . . . X X X X X X X X X85 . . . . . . X X X X X X X X X86 . . . . . . X X X X X X X X X87 . . . . . . X X X - X - X - X88 . . . . . . X X X X X X X X X89 . . . . . . X X X X X X X X X90 . . . . . . X X X - - - X - X91 . . . . . . X X - X X X X X X92 . . . . . . X X - X X - X - X93 . . . . . . X X X - X X X X -94 . . . . . . X X X X X - X X X95 . . . . . . X X X X X X X X X96 . . . . . . X X - X X X X X X97 . . . . . . X X X X X X X X X98 . . . . . . X X X X X X X X X99 . . . . . . X X X X X - X - X100 . . . . . X X X X X X X X X101 . . . . . X X X - X - X X -102 . . . . . X X X X X X X X X103 . . . . . X X X X X - X X X104 . . . . . X X X X - - - - -105 . . . . . X X - - - - X - X106 . . . . . X X X X X - X - X107 . . . . . X X X X - - X - X108 . . . . . X X X X - - X - X109 . . . . . X X X X X X X - X110 . . . . . X X X X X X X X X111 . . . . . X X X X X X X X X112 . . . . . X X - X X - X X X113 . . . . . X X X X X X X X X114 . . . . . X X X X X X X X X115 . . . . . X X X X - - X - X116 . . . . . X X - X - - X - X117 . . . . . X X - X X X X X X118 . . . . . X X X X X - X - X119 . . . . . X X X X X X X X X

HERSCHEL REFERENCE SURVEY 277

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE 4 (Continued)

HRS 2MASS SDSS UV Hα IRAS 20 cm HI CO Spec

120 . . . . . X X X X X - X X X121 . . . . . X X X X X X X X X122 . . . . . X X X X X X X X X123 . . . . . X X X X X - X - X124 . . . . . X X X X X X X X X125 . . . . . X X X - - - X - -126 . . . . . X X - - X - X - -127 . . . . . X X X X X X X X X128 . . . . . X X X X X - X - X129 . . . . . X X X - X - X - X130 . . . . . X X X X X - X X X131 . . . . . X X X X - - X - X132 . . . . . X X X X X X X - X133 . . . . . X X X X X - X X X134 . . . . . X X - X X - X - X135 . . . . . X X X X - - - - X136 . . . . . X X - X X - X X X137 . . . . . X X X - - - X - X138 . . . . . X X X X X X X X -139 . . . . . X X X X X - X - X140 . . . . . X X X X X - X X X141 . . . . . X X X X X - X X X142 . . . . . X X X X X X X X X143 . . . . . X X X X X X X - X144 . . . . . X X X X X X X X X145 . . . . . X X X X X - X X X146 . . . . . X X X X X X X - X147 . . . . . X X X X X - X - X148 . . . . . X X X X X X X X X149 . . . . . X X X X X X X X X150 . . . . . X X X X X - - X X151 . . . . . X X X X X - X X X152 . . . . . X X X X X X X X X153 . . . . . X X X X X X X X X154 . . . . . X X X X X - X X X155 . . . . . X X X - - - X - X156 . . . . . X X X X X X X X X157 . . . . . X X X X X - X X X158 . . . . . X X X X X X X X X159 . . . . . X X X X X X X X X160 . . . . . X X X X X X X X X161 . . . . . X X X X X - X X X162 . . . . . X X X - X - X X X163 . . . . . X X X X X X X X X164 . . . . . X X X X - - X X X165 . . . . . X X X X - - X - X166 . . . . . X X X - - - X - X167 . . . . . X X X X X - X - X168 . . . . . X X X X X X X - X169 . . . . . X X X X X - X - X170 . . . . . X X X X X X X X X171 . . . . . X X X X X X X X X172 . . . . . X X X X X X X X X173 . . . . . X X X X X X X X X174 . . . . . X X X X X - X X X175 . . . . . X X X X - - X - X176 . . . . . X X X X X - X - X177 . . . . . X X X X X X X X X178 . . . . . X X X X - X X X X179 . . . . . X X X X - - - - X

278 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE 4 (Continued)

HRS 2MASS SDSS UV Hα IRAS 20 cm HI CO Spec

180 . . . . . X X X - X - X - X181 . . . . . X X X - - - - - -182 . . . . . X X X X X X X X X183 . . . . . X X X X - X - X X184 . . . . . X X X X X - X X X185 . . . . . X X X X - - X X X186 . . . . . X X - - - - X X -187 . . . . . X X X X X - X X X188 . . . . . X X X X X X X X X189 . . . . . X X X X X X X - X190 . . . . . X X X X X X X X X191 . . . . . X X X X X - X - X192 . . . . . X X X X X - X - X193 . . . . . X X X X X X X X X194 . . . . . X X X X X - X X X195 . . . . . X X - X - - X X X196 . . . . . X X X X X X X X X197 . . . . . X X X X X X X X X198 . . . . . X X X X X - X X X199 . . . . . X X X X X - X - X200 . . . . . X X X X X X X X -201 . . . . . X X X X X X X X X202 . . . . . X X - - - - - - X203 . . . . . X X X X X X X X X204 . . . . . X X X X X X X X X205 . . . . . X X X X X X X X X206 . . . . . X X X X X X X X X207 . . . . . X X X X X X X X X208 . . . . . X X X X X - X X X209 . . . . . X - X - X X X - -210 . . . . . X X X - - - X - X211 . . . . . X X X X X X - - X212 . . . . . X X X X X X X X X213 . . . . . X X X X X X X X X214 . . . . . X X X - - - X - -215 . . . . . X X X X - X X X X216 . . . . . X X X X X X X X X217 . . . . . X X X X X X X X X218 . . . . . X X X - - - X - -219 . . . . . X X - - - - X - -220 . . . . . X X X X X X X X X221 . . . . . X X X X X - X X X222 . . . . . X X X X - - X - X223 . . . . . X X X X - - X - X224 . . . . . X X X X X - X X X225 . . . . . X X X X - - X - X226 . . . . . X X X X X - X - X227 . . . . . X X X X X X X - X228 . . . . . X - - - - - - - -229 . . . . . X X X - - - X - X230 . . . . . X X X X X X X X X231 . . . . . X X - X X - X X X232 . . . . . X X X X X - X X X233 . . . . . X X X X X X X X X234 . . . . . X X - - - X X - X235 . . . . . X X X - - - X - -236 . . . . . X X X - - - - - X237 . . . . . X X X X X X X X X238 . . . . . X X - - - - X - X239 . . . . . X X X X X X X X X

HERSCHEL REFERENCE SURVEY 279

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

TABLE 4 (Continued)

HRS 2MASS SDSS UV Hα IRAS 20 cm HI CO Spec

240 . . . . . X X X - - - X - X241 . . . . . X X X X - X X X -242 . . . . . X X X X X X X X X243 . . . . . X X X X X - X - -244 . . . . . X X X X X X X X X245 . . . . . X X X X X X X X X246 . . . . . X X X X X X X X X247 . . . . . X X X X X X X X X248 . . . . . X X X - - - - - X249 . . . . . X X X X - - X - X250 . . . . . X X X - - - X - -251 . . . . . X X X X X X X X X252 . . . . . X X X - X - X - X253 . . . . . X X X - X X X - -254 . . . . . X X - X X X X X X255 . . . . . X X X X X X X X X256 . . . . . X X X - X X X X -257 . . . . . X X X X X - X X X258 . . . . . X X X X X - - X -259 . . . . . X X - X X X X X X260 . . . . . X X X X X X X X X261 . . . . . X X X - X - X - X262 . . . . . X X X X X X X X X263 . . . . . X X X X X X X X X264 . . . . . X X X - - - X - X265 . . . . . X - X - X X - - X266 . . . . . X - X X X X X X X267 . . . . . X X X X X X X - X268 . . . . . X X X X X X X X X269 . . . . . X X X - - - X - X270 . . . . . X X X - X - X X X271 . . . . . X X X X X X X - X272 . . . . . X X X - - - X - X273 . . . . . X X X X X - X X X274 . . . . . X X X X X - X X X275 . . . . . X - X X X X X X X276 . . . . . X X X X X X X X X277 . . . . . X X X - - - X - X278 . . . . . X X - X - - X - X279 . . . . . X X X X X - X - X280 . . . . . X X X X X X X X X281 . . . . . X X X X - - X - X282 . . . . . X X - - - - - - X283 . . . . . X X X X X X X X X284 . . . . . X - X - X X X X X285 . . . . . X X X X X X X X X286 . . . . . X X X X - - X X X287 . . . . . X X X X X X X X X288 . . . . . X - X X X X X X X289 . . . . . X - X X X X X X X290 . . . . . X X X X X X X - X291 . . . . . X X X - - - X X -292 . . . . . X X X X X X X X X293 . . . . . X X X X X X X X X294 . . . . . X X - X X X X - X295 . . . . . X X X X X X X X X296 . . . . . X X X X X X X - -297 . . . . . X X X X X X X X X298 . . . . . X X X X X X X - X299 . . . . . X X X X X - X X X

280 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

Centre since some members are also part of our consortium.This ensures we have access to the latest calibration files andbug fixes. Aside from the default data processing, the pipelinewill also include new steps developed by the key-project teams(such as cosmic ray removal and baseline subtraction) forproducing the most accurate representation of large-scale struc-tures, such as the extended emission around galaxies. Addi-tional postprocessing steps will be applied to prepare the dataso that it can be easily used by the broader astronomical com-munity. This will include reformatting the headers of the fitsfiles so that they are easy to understand. Furthermore, the datawill have been visually inspected so as to ensure that they sufferfrom no severe artefacts related to the observations or data re-duction, and in cases where problems are identified, the datawill be manually reprocessed to obtain the best results. Afterthe proprietary time the team plans to make the reduced dataavailable to the community through a dedicated web page.Herschel and ancillary data will be archived in an InformationSystem at the Laboratoire d’Astrophysique de Marseille devel-opped under the SITools middleware interface (http://vds.cnes.fr/sitools/) with a Postgresql database. Images will be stored asfits files, and distributed in fits format while catalogs will bedistributed in VO table and ASCII (cvs) format. The SPIRE datadelivered by the team will be optimized for use by the widerastronomical community. Given the legacy nature of this pro-ject, we will also present through an interactive database all the

ancillary data, X, UV, optical, near- and far-IR, submillimeter,and radio continuum fluxes and images, optical and line spec-troscopy and derived parameters (structural parameters, metal-licities, SFR…) with the aim of providing the community with aunique data set, a suitable reference for future studies.

7. THE STATISTICAL PROPERTIES OF THEHERSCHEL REFERENCE SAMPLE

In this section, we investigate how representative the HRS isof the galaxy population as a whole, thus unbiased versus cos-mic variance. This is necessary since, as selected, the HRS isbiased versus galaxies located in a high density environment(Virgo). One way to test this is to see whether the luminositydistributions at different wavelengths in the HRS are similarto the local galaxy luminosity functions at the correspondingfrequencies.

Shown in Figure 3 is a comparison of the HRS luminositydistribution in the K band (histogram) to the K-band luminos-ity function of Cole et al. (2001) (dotted-dashed line;α ¼ 0:96� 0:05, M�

K ¼ �23:44� 0:03) and Kochanek et al.(2001) (solid line; α ¼ 1:09� 0:06, M�

K ¼ �23:39� 0:05),this last also considering separately early- (red dotted line;α ¼ 0:92� 0:10, M�

K ¼ �23:53� 0:06; color details can beseen in the online Figures) and late-type (blue dashed line;α ¼ 0:87� 0:09,M�

K ¼ �22:98� 0:06) galaxies. The Kocha-nek et al. (2001) values of theK-band luminosity function have

TABLE 4 (Continued)

HRS 2MASS SDSS UV Hα IRAS 20 cm HI CO Spec

300 . . . . . X X - X X - X - X301 . . . . . X X X X X - X X X302 . . . . . X X X X X - X - X303 . . . . . X X X X X X - - X304 . . . . . X X X X X - X X X305 . . . . . X X X X - - X - X306 . . . . . X X X - X X X X X307 . . . . . X X X X X X X X X308 . . . . . X X X X - - - - X309 . . . . . X X - X X - X - X310 . . . . . X X X X - X X X X311 . . . . . X X X X X X X X X312 . . . . . X X X - X - X - -313 . . . . . X X X X X X X X X314 . . . . . X X X X X X X - X315 . . . . . X X X X - - X - X316 . . . . . X X X - - - X - -317 . . . . . X X X - - - X - X318 . . . . . X X X X X X X X X319 . . . . . X X X X X X X X X320 . . . . . X X X X X X X X X321 . . . . . X X X - X X X - X322 . . . . . X X X X X - X - X323 . . . . . X X X X X X X X X

HERSCHEL REFERENCE SURVEY 281

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

been corrected to take into account the different assumed H0,while the Cole et al. (2001) M�

K S Kron magnitudes have beenconverted into total magnitudes as in this work. The zero pointof the plotted luminosity functions is determined assuming thesame number of objects as HRS within the given magnitudelimit. Figure 3 shows that, when considered from the perspec-tive of the K band, the HRS is a good approximation to avolume-limited sample down to an absolute magnitude of

MK ≃�20. This absolute magnitude limit is relatively highand explains why the HRS is underrepresented in Im andBCD galaxies (Fig. 2). The sample includes only the brightestellipticals and lenticulars, whose K-band luminosity functionends at MK ∼�18, while it does not include any quiescentdwarf system (MK ≥ �20).

Figure 4 shows the HI mass distribution of the HI-detectedHRS early-type (black histogram) and late-type (gray histo-gram) galaxies compared to the HIPASS HI mass functiondetermined by Zwaan et al. (2005) (dashed line,α ¼ �1:37� 0:03, M�

HI ¼ 109:8�0:03 M⊙ and ϕ� arbitrarilynormalized to match the data). The sample includes galaxieswith HI masses ranging between ∼108 and 1010 M⊙ but it is

FIG. 3.—K band luminosity distribution of the HRS for all galaxies is com-pared to the 2MASS K band luminosity function of Kochanek et al. (2001)(solid line) and Cole et al. (2001) (dotted-dashed line), both in upper panel.The K band luminosity distributions of the E-S0-S0a (center panel) and Sa-Sd-Im-BCD (lower panel) galaxies in the HRS are compared to the Kochaneket al. (2001)K band luminosity function of early-type (center panel, dotted line)and late-type (lower panel,dashed line) galaxies. Poisson errors are also indi-cated. See the electronic edition of the PASP for a color version of this figure.

FIG. 4.—Atomic hydrogen mass distribution in linear (upper panel) and loga-rithmic (middle panel) scales for the HI-detected HRS galaxies (empty histo-gram). The black and gray histograms are for early-type (E-S0-S0a, 35%detected) and late-type (Sa-Sd-Im-BCD; 93% detected) galaxies, respectively.Lower panel: Atomic hydrogen mass distribution for late-type galaxies witha normal HI gas content (HI-deficiency <0:4; tiny spaced hashed histogram)and gas-poor galaxies (HI-deficiency ≥0:4; large spaced hashed histogram).Curved dashed line is the HI mass function determined by Zwaan et al.(2005); vertical dashed line indicates the detection limit of the ALFALFA sur-vey (2.5 mJy) at the distance of 20 Mpc. See the electronic edition of the PASPfor a color version of this figure.

282 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

clearly under-representing galaxies with HI masses in the range107:5 M⊙ ≤ MHI ≤ 109 M⊙ which are easily detectable by anHI blind survey such as ALFALFA. The HIPASS HI mass func-tion is dominated by gas rich, star-forming galaxies, while theHRS also includes quiescent, gas-poor early-types and HI-deficient cluster galaxies, as clearly observed in the Virgo clus-ter (Gavazzi et al. 2005; 2008) or in A1367 (Cortese et al.2008b). The difference between the HIPASS mass functionand the HRS HI mass distribution is due to (i) the fact thatthe HRS is K band selected and thus does not include gas rich,low-luminosity star-forming systems with HI masses in therange 107:5 ≤ MHI ≤ 108:5 M⊙ with K band magnitudes12 ≤ KStot ≤ 16, and (ii) the presence of cluster HI-deficientlate-type galaxies. Indeed, the HI mass distribution of galaxieswith a normal HI gas content (HI-deficiency31 <0:4) is moresimilar to the HIPASS mass function than the distribution ofgas-poor objects (HI-deficiency ≥0:4). Most of the late-typeHI-deficient objects (HI-deficiency ≥0:4) in the HRS are indeedlocated in the core of the Virgo cluster as shown in Figure 5.Galaxies in the outskirt of the Virgo cluster or in the surroundingclouds have a normal HI gas content (see Table 5) and can begenerally considered as unperturbed objects (unless belongingto groups or pairs) in the study of the effects of the environmenton the dust properties of galaxies. Indeed, despite the relativelypoor statistics, the average HI-deficiency of late-type galaxies inthe Coma I Cloud, Leo Cloud, Ursa Major Cloud and SouthernSpur, Crater Cloud, Canes Venatici Spur, Canes Venatici–Camelopardalis Cloud, and Virgo–Libra Cloud is consistentwith that of unperturbed galaxies in the reference sample ofHaynes & Giovanelli (1984; HI-deficiency ≤0:3). The HI-deficiency of late-type galaxies in the different substructuresof the Virgo cluster are generally consistent with those observedin a larger sample by Gavazzi et al. (1999a). The only exceptionis the Virgo E Cloud that we found to be dominated by HI-deficient objects. We notice, however, that the majority ofthe most HI-deficient galaxies (HI-deficiency >1:0) of theHRS belonging to this substructure are classified as early typesin the VCC. The Coma I Cloud, previously thought to includegas-deficient objects (Garcia-Barreto et al. 1994; Gerin &Casoli 1994), is composed of galaxies with a normal gas content(Boselli & Gavazzi 2009). A detailed and complete study of theHI properties of late-type galaxies belonging to the other Cloudshas not been done so far. A rather normal HI gas content of thespiral galaxies in the Ursa Major Cluster, a substructure of the

Ursa Major Cloud, has been observed by Verheijen & Sanci-si (2001).

Figure 6 shows the far-IR luminosity distribution of the HRSearly-type (black histogram) and late-type (gray histogram) gal-axies detected by IRAS at 60 μm compared the IRAS 60 μmluminosity function determined by Takeuchi et al. (2003)(α ¼ 1:23� 0:04, L�

60 ¼ 8:85 × 108 L⊙, and ϕ� in arbitraryunits). The luminosity distribution of the HRS follows theluminosity function over 2 orders of magnitude. The low-luminosity cutoff is due to the detection limit of the IRAS sur-vey. The lack of very luminous galaxies is because Luminous(LIRGs, L60 μm ¼ 1011 L⊙) and Ultra Luminous (ULIRGs,L60 μm ¼ 1012 L⊙) Infrared Galaxies are quite rare in the near-by universe and in particular inside rich clusters (Boselli &Gavazzi 2006).

FIG. 5.—Variation of the HI-deficiency parameter as a function of the angulardistance from the core of the Virgo cluster (M87). Empty symbols are for HI-detected galaxies, filled symbols for upper limits. See the electronic edition ofthe PASP for a color version of this figure with key to symbols.

TABLE 5

THE AVERAGE HI DEFICIENCY OF LATE-TYPE GALAXIES

IN THE SUBSTRUCTURES

Substructure AverageStandardDeviation

Number ofObjects

Virgo A . . . . . . . . . . . . . . . . . . . . . . 0.91 ±0.47 33Virgo B . . . . . . . . . . . . . . . . . . . . . . 0.71 ±0.46 25Virgo N Cloud . . . . . . . . . . . . . . . 0.39 ±0.24 12Virgo E Cloud . . . . . . . . . . . . . . . 0.83 ±0.53 12Virgo S Cloud . . . . . . . . . . . . . . . 0.47 ±0.47 26Virgo Outskirts . . . . . . . . . . . . . . . 0.26 ±0.60 38Coma I Cloud . . . . . . . . . . . . . . . . 0.07 ±0.35 8Leo Cloud . . . . . . . . . . . . . . . . . . . . 0.11 ±0.31 45Ursa Major Cloud . . . . . . . . . . . 0.05 ±0.34 15Ursa Major SouthernSpur . . . . . . . . . . . . . . . . . . . . . . .

−0.02 ±0.20 4

Crater Cloud . . . . . . . . . . . . . . . . . 0.13 ±0.40 4Canes Ven. Spur &Camelopardalis . . . . . . . . . . . .

0.19 ±0.03 9

Virgo-Libra Cloud . . . . . . . . . . . 0.31 ±0.35 18

NOTE.—Upper limits are considered as detections.

31The HI-deficiency parameter is defined as as the logarithmic difference be-tween the average HI mass of a reference sample of isolated galaxies of similartype and linear dimension and the HI mass actually observed in individualobjects: HI� def ¼ log MHIref � log MHIobs. According to Haynes &Giovanelli (1984), logMHIref ¼ aþ b × logðdiamÞ, where a and b are weakfunctions of the Hubble type and diam is the linear diameter of the galaxy(see Gavazzi et al. 2005).

HERSCHEL REFERENCE SURVEY 283

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

Figure 7 shows the radio continuum (1.4 GHz) luminosity dis-tribution of the radio-detected HRS early-type (black histogram)and late-type (gray histogram) galaxies, as compared to the 2dF/NVSS luminosity function of Mauch & Sadler (2007) (solidline). This radio luminosity function includes the con-tribution from both AGN (dashed line) and quiescent (dottedline) galaxies. The radio luminosity distribution of the HRSis quite typical of normal, nearby galaxies (1020 ≤ LRadio ≤1022 WHz�1; Condon et al. 2002). The two brightest sourcesare the radio galaxies M87 (Virgo A, LRadio ¼ 1024:8 WHz�1)and M84 (LRadio ¼ 1023:3 WHz�1). The radio-continuum lu-minosity distribution as a whole agrees well with the field lu-minosity function, indicating that the contamination of clustergalaxies with an enhanced radio-continuum emission is minimal(Gavazzi & Boselli 1999c, 1999d).

In summary, since the K-band light traces stellar mass, thegood agreement between the HRS luminosity distribution andK-band luminosity function implies that the HRS can be treatedas a volume-limited sample down to a minimum stellar mass.Figure 6 shows that the HRS is also representative of a far-IR selected sample once the most active and rare in the local

universe LIRG and ULIRG are excluded. The HRS matchesalso the distribution of a radio-continuum selected sample,although the statistic for the brightest radio galaxies is poor.However, Figure 4 shows that when viewed from the perspec-tive of gas mass, the HRS is not a fair sample of the local uni-verse. The presence of HI-deficient objects makes it ideal forstudying the effects of the cluster environment on the dust prop-erties of nearby galaxies.

We would like to thank the Herschel Project Scientist, G.Pilbratt; the SPIRE team; and all the people involved in the con-struction and the launch of Herschel. This research has made useof the NASA/IPAC Extragalactic Database (NED) which is op-erated by the Jet Propulsion Laboratory, California Institute ofTechnology, under contract with the National Aeronautics andSpace Administration; and of the GOLD Mine database. A. B.wishes to thank S. Boissier for his help in the construction of theHRS database. We are grateful to the anonymous referee forin-valuable comments and suggestions which helped to improvethe quality of the manuscript.

REFERENCES

Adelman-McCarthy, J., et al. 2008, ApJS, 175, 297Alton, P., Trewhella, M., & Davies, J., et al. 1998, A&A, 335, 807

Alton, P., Trewhella, M., Davies, J., & Bianchi, S. 1999, A&A, 343, 51Beker, R., White, R., & Helfand, D. 1995, ApJ, 450, 559

FIG. 6.—Infrared luminosity distribution in linear (upper panel) and logarith-mic (lower panel) scales for the FIR (60 μm) detected HRS galaxies (emptyhistogram). The black and gray histograms are for early-type (E-S0-S0a) andlate-type (Sa-Sd-Im-BCD) galaxies respectively. Curved dashed line is the IRAS60 μm luminosity function determined by Takeuchi et al. (2003); vertical dashedline indicates the typical detection limit of IRAS (0.4 mJy) at the distance of20 Mpc. See the electronic edition of the PASP for a color version of this figure.

FIG. 7.—Radio continuum (1415 MHz) luminosity distribution in linear(upper panel) and logarithmic (lower panel) scales for the detected HRS ga-laxies (empty histogram). The black and gray histograms are for early-type(E-S0-S0a) and late-type (Sa-Sd-Im-BCD) galaxies, respectively, comparedto the 2dF/NVSS luminosity function of Mauch & Sadler (2007, solid line).This radio luminosity function includes both the contribution of AGN (dashedline) and quiescent (dotted line) galaxies. Vertical dashed line indicates the ty-pical detection limit of NVSS (2.5 mJy) at the distance of 20 Mpc. See the elec-tronic edition of the PASP for a color version of this figure.

284 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

Bendo, G., Joseph, R., & Wells, M., et al. 2003, AJ, 125, 2361Binggeli, B., Sandage, A., & Tammann, G. 1985, AJ, 90, 1681Böhringer, H., Briel, U. G., Schwarz, R. A., Voges, W., Hartner, G., &

Trumper, J. 1994, Nature, 368, 828Boselli, A., & Gavazzi, G. 2002, A&A, 386, 124———. 2006, PASP, 118, 517———. 2009, A&A, 508, 201Boselli, A., Casoli, F., & Lequeux, J. 1995, A&AS, 110, 521Boselli, A., Tuffs, R., Gavazzi, G., Hippelein, H., & Pierini, D. 1997,

A&A, 121, 507Boselli, A., Gavazzi, G., Franzetti, P., Pierini, D., & Scodeggio, M.

2000, A&AS, 142, 73Boselli, A., Gavazzi, G., Donas, J., & Scodeggio, M. 2001, AJ,

121, 753Boselli, A., Lequeux, J., & Gavazzi, G. 2002a, A&A, 384, 33Boselli, A., Iglesias-Páramo, J., Vilchez, J. M., & Gavazzi, G. 2002b,

A&A, 386, 134Boselli, A., Gavazzi, G., Lequeux, J., & Pierini, D. 2002c, A&A,

385, 454Boselli, A., Gavazzi, G., & Sanvito, G. 2003a, A&A, 402, 37Boselli, A., Sauvage, M., Lequeux, J., Donati, A., & Gavazzi, G.

2003b, A&A, 406, 867Boselli, A., Lequeux, J., & Gavazzi, G. 2004, A&A, 428, 409Boselli, A., Cortese, L., & Deharveng, J. M., et al. 2005a, ApJ,

629, L29Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601Bregman, J., Snider, B., Grego, L., & Cox, C. 1998, ApJ, 499, 670Bressan, A., Granato, G. L., & Silva, L. 1998, A&A, 332, 135Bressan, A., Panuzzo, P., & Buson, L., et al. 2006, ApJ, 639, L55Broelis, A. H., & Van Woerden, H. 1994, A&AS, 107, 129Buat, V., & Xu, K. 1996, A&A, 306, 61Buat, V., Boselli, A., Gavazzi, G., & Bonfanti, C. 2002, A&A, 383, 801Calzetti, D. 2001, PASP, 113, 1449Calzetti, D., Kennicutt, R., & Bianchi, L., et al. 2005, ApJ, 633, 871Calzetti, D., Kennicutt, R., & Engelbracht, C., et al. 2007, ApJ,

666, 870Catinella, B., Giovanelli, R., & Haynes, M. 2006, ApJ, 640, 751Cayatte, V., Kotanyi, C., Balkowski, C., & van Gorkom, J. 1994, AJ,

107, 1003Cayatte, V., van Gorkom, J., Balkowski, C., & Kotanyi, C. 1990, AJ,

100, 604Chanial, P., Flores, H., Guiderdoni, B., Elbaz, D., Hammer, F., &

Vigroux, L. 2007, A&A, 462, 81Chung, A., van Gorkom, J., Kenney, J., Crowl, H., & Vollmer, B. 2009,

AJ, 138, 1741Cole, S., Norberg, P., & Baugh, C., et al. 2001, MNRAS, 326, 255Condon, J. J., Cotton, W. D., & Broderick, J. J. 2002, AJ, 124, 675Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A.,

Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693Cortese, L., Boselli, A., & Buat, V., et al. 2006, ApJ, 637, 242Cortese, L., Boselli, A., Franzetti, P., Decarli, R., Gavazzi, G., Boissier,

S., & Buat, V. 2008a, MNRAS, 386, 1157Cortese, L., Minchin, R., & Auld, R., et al. 2008b, MNRAS, 383, 1519Cortese, L., & Hughes, T. 2009, MNRAS, 400, 1225Cowie, L., Songaila, A., Hu, E., & Cohen, J. 1996, AJ, 112, 839Cuillandre, J. C., Lequeux, J., Allen, R., Mellier, Y., & Bertin, E. 2001,

ApJ, 554, 190Dale, D., Bendo, G., & Engelbracht, C., et al. 2005, ApJ, 633, 857

Dale, D., Gil de Paz, A., & Gordon, K., et al. 2007, ApJ, 655, 863Davies, J., Alton, P., Bianchi, S., & Trewhella, M. 1998, MNRAS,

300, 1006Davies, J., Alton, P., Trewhella, M., Evans, R., & Bianchi, S. 1999,

MNRAS, 304, 495Désert, F.-X., Boulanger, F., & Puget, J.-L. 1990, A&A, 237, 215Devereux, N., & Young, J. 1990, ApJ, 359, 42Disney, M., Davies, J., & Phillipps, S. 1989, MNRAS, 239, 939Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59Draine, B. 1978, ApJS, 36, 596Draine, B., & Li, A. 2007, ApJ, 657, 810Draine, B., Dale, D., & Bendo, G., et al. 2007, ApJ, 663, 866Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R., Faber, S.,

Terlevich, R., & Wegner, G. 1987, ApJ, 313, 42Duley, W., & Williams, D. 1986, MNRAS, 223, 177Dunne, L., & Eales, S. 2001, MNRAS, 327, 697Dunne, L., Eales, S., Edmunds, M., Ivison, R., Alexander, P., &

Clements, D. 2000, MNRAS, 315, 115Dwek, E. 1986, ApJ, 302, 363Dwek, E., Arendt, R., & Fixsen, D., et al. 1997, ApJ, 475, 565Eales, S., Wynn-Williams, C., & Duncan, W. 1989, ApJ, 339, 859Engelbracht, C., Kundurthy, P., & Gordon, K., et al. 2006, ApJ,

642, L127Fabbiano, G., Kim, D., & Trinchieri, G. 1992, ApJS, 80, 531Ferrarese, L., Côté, P., & Jordán, A., et al. 2006, ApJS, 164, 334Ferrari, F., Pastoriza, M. G., Macchetto, F., & Caon, N. 1999, A&AS,

136, 269Galliano, F., Madden, S., Jones, A., Wilson, C., Bernard, J-P., &

Le Peintre, F. 2003, A&A, 407, 159Galliano, F., Madden, S., Jones, A., Wilson, C., & Bernard, J-P. 2005,

A&A, 434, 867Galliano, F., Dwek, E., & Chanial, P. 2008, ApJ, 672, 214Gallo, E., Treu, T., Jacob, J., Woo, J. H., Marshall, P., & Antonucci, R.

2008, ApJ, 680, 154Garcia-Barreto, J., Dowens, D., & Huchtmeier, W. 1994, A&A,

288, 705Gavazzi, G., Pierini, D., & Boselli, A. 1996, A&A, 312, 397Gavazzi, G., Catinella, B., Carrasco, L., Boselli, A., & Contursi, A.

1998, AJ, 115, 1745Gavazzi, G., Boselli, A., Scodeggio, M., Pierini, D., & Belsole, E.

1999a, MNRAS, 304, 595Gavazzi, G., Carrasco, L., & Galli, R. 1999b, A&AS, 136, 227Gavazzi, G., & Boselli, A. 1999c, A&A, 343, 86———. 1999d, A&A, 343, 93Gavazzi, G., Franzetti, P., Scodeggio, M., Boselli, A., & Pierini, D.

2000a, A&A, 361, 863Gavazzi, G., Franzetti, P., Scodeggio, M., Boselli, A., Pierini, D., Baffa,

C., Lisi, F., & Hunt, L. 2000b, A&AS, 142, 65Gavazzi, G., Boselli, A., Pedotti, P., Gallazzi, A., & Carrasco, L. 2002a,

A&A, 396, 449Gavazzi, G., Bonfanti, C., Sanvito, G., Boselli, A., & Scodeggio, M.

2002b, ApJ, 576, 135Gavazzi, G., Boselli, A., Donati, A., Franzetti, P., & Scodeggio, M.

2003, A&A, 400, 451Gavazzi, G., Zaccardo, A., Sanvito, G., Boselli, A., & Bonfanti, C.

2004, A&A, 417, 499Gavazzi, G., Boselli, A., van Driel, W., & O’Neil, K. 2005, A&A,

429, 439

HERSCHEL REFERENCE SURVEY 285

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

Gavazzi, G., Boselli, A., Cortese, L., Arosio, I., Gallazzi, A., & Pedotti,P. 2006, A&A, 446, 839

Gavazzi, G., Giovanelli, R., & Haynes, M., et al. 2008, A&A, 482, 43Gerin, M., & Casoli, F. 1994, A&A, 290, 49Giovanelli, R., Haynes, M., & Kent, B., et al. 2005, AJ, 130, 25, 98Gil de Paz, A., Boissier, S., & Madore, B., et al. 2007, ApJS, 173, 185Gordon, K., Perez-Gonzalez, P., & Misselt, K., et al. 2004, ApJS,154, 215

Gordon, K., Rieke, G. H., & Engelbracht, C. W., et al. 2005, PASP,117, 831

Goudfrooij, P., Hansen, L., Jorgensen, H. E., & Norgaard-Nielsen,H. U. 1994, A&AS, 105, 341

Griffin, M., Abergel, A., Ade, P., André, P., Baluteau, J-P., Bock, J.,Franceschini, A., & Gear, W., et al. 2007, Adv. Space Res., 40(5), 612

———. 2006, Proc. SPIE, 6265, 7Guélin, M., Zylka, R., & Mezger, P. G., et al. 1993, A&A, 279, L37Guélin, M., Zylka, R., Mezger, P. G., Haslam, C. G. T., & Kreysa, E.1995, A&A, 298, L29

James, A., Dunne, L., Eales, S., & Edmunds, M. 2002, MNRAS,335, 753

Jansen, R., Fabricant, D., Franx, M., & Caldwell, N. 2000, ApJS,126, 331

Jarrett, T., Chester, T., Cutri, R., Schneider, S., & Huchra, J. 2003, AJ,125, 525

Haynes, M., & Giovanelli, R. 1984, AJ, 89, 758Heavens, A., Panter, B., Jimenez, R., & Dunlop, J. 2004, Nature,428, 625

Hirashita, H., Buat, V., & Inoue, A. 2003, A&A, 410, 83Hollenbach, D., & Salpeter, E. 1971, ApJ, 163, 155Hollenbach, D., & Tielens, A. 1997, ARA&A, 35, 179Holmberg, E. 1958, Lund Medd. Astron. Obs. Ser. II, 136, 1Hughes, T., Cortese, L. 2009, MNRAS, 396, L41Kaneda, H., Onaka, T., Kitayama, T., Okada, Y., & Sakon, I. 2007,PASJ, 59, 107

Karachentsev, I., Lebedev, V., & Shcherbanovskij, A. 1972, Publ.Special Astrophys. Obs. USSR 7

Kauffmann, G., Heckman, T., & White, S., et al. 2003, MNRAS,341, 54

Kenney, J., & Young, J. 1988, ApJS, 66, 261Kennicutt, R. 1992a, ApJ, 388, 310———. 1992b, ApJS, 79, 255———. 1998, ARA&A, 36, 189Kennicutt, R., Armus, L., & Bendo, G., et al. 2003, PASP, 115, 928Kennicutt, R., Calzetti, D., & Walter, F., et al. 2007, ApJ, 671, 333Kochanek, C., Pahre, M., Falco, E., Huchra, J., Mader, J., Jarrett, T.,Chester, T., Cutri, R., & Schneider, S. 2001, ApJ, 560, 566

Leech, K., Völk, H., & Heinrichsen, I., et al. 1999, MNRAS, 310, 317Leeuw, L., Hawarden, T., Matthews, H., Robson, I., & Eckart, A. 2002,ApJ, 565, L131

Leeuw, L., Davidson, J., Dowell, K., & Matthews, H. 2008, ApJ,677, L249

Malhotra, S., Kaufman, M., & Hollenbach, D., et al. 2001, ApJ,561, 766

Mauch, T., & Sadler, E. 2007, MNRAS, 375, 931Meiksin, A. 2009, Rev. Mod. Phys., 81, 1405Montier, L., & Giard, M. 2005, A&A, 439, 35Morton, R., & Haynes, M. 1994, ARA&A, 32, 115

Moustakas, J., & Kennicutt, R. 2006, ApJS, 164, 81Neininger, N., Guélin, M., Garcia-Burillo, S., Zylka, R., &

Wielebinski, R. 1996, A&A, 310, 725Niklas, S., Klein, U., & Wielebinski, R. 1995, A&A, 293, 56Nilson, P. 1973, The Uppsala General Catalogue of Galaxies (Uppsala:

Uppsala Univ. Press)Nolthenius, R. 1993, ApJS, 85, 1Oppenheimer, B., & Davé, R. 2008, MNRAS, 387, 577Panuzzo, P., Vega, O., & Bressan, A., et al. 2007, ApJ, 656, 206Perez-Gonzalez, P., Kennicutt, R., & Gordon, K., et al. 2006, ApJ,

648, 987Prescott, M., Kennicutt, R., & Bendo, G., et al. 2007, ApJ, 668, 182Rayan-Weber, E., Pettini, M., & Madau, P. 2006, MNRAS, 371, L78Roussel, H., Vigroux, L., & Bosma, A., et al. 2001b, A&A, 369, 473Sarazin, C. 1986, Rev. Mod. Phys., 58, 1Schlegel, F., Finkbeiner, D., & Davis, M. 1998, ApJ, 500, 525Scodeggio, M., Gavazzi, G., Franzetti, P., Boselli, A., Zibetti, S., &

Pierini, D. 2002, A&A, 384, 812Shapley, A., Fabbiano, G., & Eskridge, P. 2001, ApJS, 137, 139Skrutskie, M., Cutri, R., & Stiening, R., et al. 2006, AJ, 131, 1163Soifer, B., Neugebauer, G., & Houck, J. 1987, ARA&A, 25, 187Springob, C., Haynes, M., Giovanelli, R., & Kent, B. 2005, ApJS,

160, 149Stickel, M., Klaas, U., Lemke, D., & Mattila, D. 2002, A&A,

383, 367Takeuchi, T., Yoshikawa, K., & Ishii, T. 2003, ApJ, 587, L89Temi, P., Brighenti, F., & Mathews, W. 2007, ApJ, 660, 1215Tielens, A., McKee, C., Seab, C., & Hollenbach, D. 1994, ApJ,

431, 321Thilker, D., Boissier, S., & Bianchi, L., et al. 2007, ApJS, 173, 572Thomas, H., Dunne, L., Clemens, M., Alexander, P., Eales, S., Green,

D., & James, A. 2002, MNRAS, 331, 853Tremonti, C., Heckman, T., & Kauffmann, G., et al. 2004, ApJ,

613, 898Tuffs, R., Popescu, C., & Pierini, D., et al. 2002, ApJS, 139, 37Tully, B., & Fisher, J. 1977, A&A, 54, 661Tully, B., Mould, J., & Aaronson, M. 1982, ApJ, 257, 527Tully, B. 1988, Nearby Galaxy Catalog (Cambridge: Cambridge

Univ. Press)van der Hulst, J. 2002, in ASP Conf. Proc. 276, Seeing Through the

Dust: The Detection of HI and the Exploration of the ISM in Gal-axies, ed. A. R., Taylor, T. L., Landecker, & A. G., Willis (San Fran-cisco: ASP) 84

Van Dokkum, P. G., & Franx, M. 1995, ApJ, 110, 2027Verheijen, M., Sancisi, R. 2001, A&A, 370, 765Visvanathan, N., Sandage, A. 1977, ApJ, 216, 214Vlahakis, C., Dunne, L., Eales, S. 2005, MNRAS, 364, 1253Voges, W., Aschenbach, B., & Boller, T. 1999, A&A, 349, 389Vollmer, B., Thierbach, M., Wielebinski, R. 2004, A&A, 418, 1Ward-Thompson, D., André, P., Kirk, J. 2002, MNRAS, 329, 257Waskett, T., Sibthorpe, B., Griffin, J., Chanial, P. F. 2007, MNRAS,

381, 1583Whittet, D. 1992, in Dust in the galactic environment (Graduate Series

in Astronomy; Bristol: IOP Publishing)Witt, A., Gordon, K. 2000, ApJ, 528, 799Xilouris, E., Madden, S., Galliano, F., Virgoux, L., Sauvage, M. 2004,

A&A, 416, 41Young, J., Xie, S., Tacconi, L., et al. 1995, ApJS, 98, 219

286 BOSELLI ET AL.

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions

Young, L., Bendo, G., Lucero, D. 2008 in The Evolving ISM in theMilky Way and Nearby Galaxies, 4th Spitzer Science Center Conf.(Pasadena, December 2007

Zaritsky, D., Kennicutt, R., Huchra, J. 1994, ApJ, 420, 87Zubko, V., Dwek, E., Arendt, R. 2004, ApJS, 152, 211

Zwaan, M., Meyer, M., Staveley-Smith, L., & Webster, R. 2005,MNRAS, 359, L30

Zwicky, F., Herzog, E., Karpowicz, M., Kowal, C., & Wild, P. 1961 –1968, Catalogue of Galaxies and of Cluster of Galaxies (CGCG;Pasadena: Caltech)

HERSCHEL REFERENCE SURVEY 287

2010 PASP, 122:261–287

This content downloaded from 195.78.109.99 on Fri, 23 May 2014 20:27:26 PMAll use subject to JSTOR Terms and Conditions