The giant challenges in our understanding of giant planet...

44
OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models The giant challenges in our understanding of giant planet internal structures Nadine Nettelmann (U Rostock) acknowledgements: R. Redmer, M. French, M. Bethkenhagen, A. Becker (U Rostock), J.J. Fortney, (UCSC), S. Hamel (LLNL) Introduction Method of GP internal structure modeling EGPs: M-R relations & composition estimates Jupiter & Saturn: EOS, standard models, new approaches Uranus & Neptune: ices and ice-rich models Republic of Kasakhstan UCSC Keck NASA Cassini / NASA M. French / VASP Sun

Transcript of The giant challenges in our understanding of giant planet...

Page 1: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

The giant challenges in our understanding of giant planet internal structures

Nadine Nettelmann (U Rostock)

acknowledgements: R. Redmer, M. French, M. Bethkenhagen, A. Becker (U Rostock), J.J. Fortney, (UCSC), S. Hamel (LLNL)

Introduction Method of GP internal structure modeling

EGPs: M-R relations & composition estimates Jupiter & Saturn: EOS, standard models, new approaches

Uranus & Neptune: ices and ice-rich models

Republic of Kasakhstan

UCSC

Keck

NASACassini / NASA

M. French / VASP

Sun

Page 2: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

1-100 bar , ~100-1000 K

• mostly H-He M-R

• high pressures ( < ~100 Mbar) M-R

• warm (~10 000 K)

luminosity, formation theory

• non-ideal, dense matter, conducting , H+, e-, ionized C,N,O plasma / conducting,

convective, adiabatic

fluid, mostly H2 , convective, adiabatic

~1 Mbar, few 1000 K

~5 - 50 Mbar, ~5 - 150,000 K

Introduction

<100 Mbar

transition region

2 / 37

Page 3: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

1-100 bar , ~100-1000 K

~1 Mbar, few 1000 K

~5 - 50 Mbar, ~5 - 150,000 K

Introduction

<100 Mbar

what do we mean by “internal structure“ ? • composition (e.g. bulk water content, bulk rock content)

• size and number of chemically distinct layers (e.g. core)

what do we want to know, and why ? • core mass -> formation (!?!)

• bulk enrichment -> formation

• atmospheric energy balance -> fundamental science

• magnetic dynamo operation -> fundamental science

fluid, mostly H2 , convective, adiabatic

transition region

plasma / conducting, convective, adiabatic

3 / 37

Page 4: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Outline

Method of EGP internal structure modeling EGPs: M-R relations & composition estimates Jupiter & Saturn

Uranus & Neptune

Page 5: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

EGP structure: general assumptions

ad∇

• 2 Layer (core + envelope)

• adiabatic interior

• radiative atmosphere (BC)

• hydrostatic equilibrium

a t m o s p h e r e

5 / 37

Page 6: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

general assumptions : adiabatic interior

2D EOS { T, P, ρ(T, P), s(T,P) } -> 1D path { T(P)s, ρ(P)s } at constant entropy s

output: internal Temperature – Pressure – Density profile input: (i) entropy

(ii) EOS of single components, (ii) composition

LOW-MASS STARS / BROWN DWARFS thermal convection because of high opacity adiabatic

EARTH: thermal convection + thermal diffiusion

(Fe) core -- (Mg,Si,O) mantle boundary: magnetic field

T ad( )∇ >∇

5T ad( ~ 10 )−∇ −∇

T ad( )∇ ∇�

T ad( )∇ =∇

T ( , , , ,..., )tot TF κ γ η κ∇

logT log

d Td P∇ ≡

6 / 37

Page 7: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

atmosphere (boundary condition)

output: entropy s input: inbound heat flow Teq (Tstar, obital a) ; outbound heat flow Teff ; model atmosphere (composition, opacities, Teff, ...)

9.5 AU (Saturn)

0.1 AU

atmospheric Pressure – Temperature profiles

hot / young / weakly

irradiated

cold / old / strongly

irradiated

➢ Fortney, Marley, Barnes 2007

7 / 37

Page 8: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

general assumptions : 2-Layer structure

HeHO,C,N, Si, Mg

rocks, ices

adiabatic, convective,

homogeneousFree parameters: • core mass (Mcore)

• envelope Z (Zenv)

• composition of Z-material (Zi)

8 / 37

Page 9: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

hydrostatic equilibrium

Boundary Conditions: (i) P(M) ~ 0 , (ii) r(0) = 0 input: P-ρ- relation , i.e. EOSs & composition { Mcore, Zenv, Zi }

output: R(M) for given ρ(P) -> M-R relations

alternative output: bulk Z, i.e. one of { Mcore, Zenv, Zi } for given R(M)

44dP Gmdm rπ

= −

2 1(4 )dr rdm

π ρ −=

0.... pm M=

9 / 37

Page 10: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Outline

Method of GP internal structure modeling

EGPs : M-R relations & composition estimates Jupiter & Saturn

Uranus & Neptune

Page 11: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

M-R relations for given compositions

➢ Fortney, Marley, Barnes 2007

• Zenv = 0

• Zice = Zrocks = 0.5

• Mcore = 10...100 MEarth

11 / 37

Page 12: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

EGP composition estimates for observed Mp-Rp

weakly irradiated (Miller &Fortney 2011)

(Guillot 2006) (Maciejewski et al 2011)

(Deleuil et al 2011) perhaps brown dwarfs (Leconte, Baraffe, Chabrier 2009)

Jup

12 / 37

Page 13: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

results for Mz, Zp for weakly irradiated planets

➢ Miller & Fortney 2011

MZ ~ 10 ME, Zp ~ 2-10x ZstarZ p

lane

t / Z

star

Mz

/ MEa

rth

Zp

planet

MZM

=

?

?

13 / 37

Page 14: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Tidal Love number k2 breaks the degeneracy

Given: Mp , Rp , . + temperature profile and atmospheric boundary condition

The total heavy element content can be determined, but not the core mass or envelope enrichment .

Given: Mp , Rp , and the Love number k2 . + temperature profile and atmospheric bounday condition

Assuming a 2L structure, both Mcore and Zenv can be

determined.

H

H H He

core

envelope metallicity

He

He

➢ Kramm et al. (2011), A&A

14 / 37

Page 15: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

➢ Kramm, Nettelmann, Fortney et al 2012 ➢ Batygin et al 2009 ➢ Winn et al 2010

Mp = 0.85 MJ , Rp = 1.3 RJ , and also k2 = 0.27-0.38

HAT-P-13b model, similar to Jupiter

HHem

e

t

a

l

s

HAT-P13b, the only planet with inferred k2

15 / 37

Page 16: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Observable Solar GP Extrasolar GP

Mass Mp 14.5 – 318 MEarth RV & Transit

Radius Rp equatorial radius Req mean R (Transit)

Pressure P (Rp) 1 bar 1 mbar

T (Rp) 70 - 170 K 500 - 2000 K

mean helium mass fraction Y 0.27 (solar) 0.25 - 0.28

atmospheric He mass fraction Y1 0.27 Y1 = Y

atmospheric metallicity Z1 2 x solar spectroscopy

period of rotation ω 9 – 17 h ω orbital period (days)

gravitational moments J2n J2, J4, J6 -

Love number k2 - k2 (e, TTV )

age 4.56 Gyr 0.3 – 10 Gyr

Teff 60 - 120 K secondary eclipse / imaging

≈≥

Observational constraintsobservational constraints

16 / 37

Page 17: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Outline

Method of GP internal structure modeling

EGPs: M-R relations & composition estimates

Jupiter & Saturn EOS, standard models, new approaches

Uranus & Neptune

Page 18: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

EOS from simulations in comparison with experiments

DEUTERIUM [1,2] quasi-isentropic and isothermal compression

WATER [3] single & double shock compression

M. French / VASP

[1] Becker et al 2013

[2] Loubeyre et al 2007

[3] Knudson et al 201218 / 37

Page 19: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Single shock experiments to probe the H EOS

The different H EOS are stiff/compressible at individual pressure levels.

Sesame: chem. picture ➢ Los Alamos database

SCvHi: chem. picture ➢ Saumon et al. (1995), ApJS

H-REOS: simulations ➢ Holst et al. (2008), PRB

Experiments:

➢ Knudson & Desjarlais (2009) ➢ Boriskov et al. (2005) ➢ Knudson et al. (2004), PRB

➢ Nellis et al (1983)

19 / 37

Page 20: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Jupiter standard models

Yatm=0.238

helium

hydrogen

Zouter = Zinner(J2) ➢ Saumon & Guillot 2004 ➢ Militzer, Hubbard et al . 2008 (Y=0.238)

Zouter(J4), Zinner(J2) ➢ Chabrier et al 1992 ➢ Guillot 1999 ➢ Nettelmann et al 2008,2012, . Becker et al 2014

1-10 Mbar, 6-11 000 K

~40 Mbar, 17-21 000 K

T1bar=165-170 K

OCNSP...

spacetelescope.org

20 / 37

Page 21: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Core mass and outer envelope metallicity of Jupiter models with different EOS

Ab initio LM-REOS.2 gives Jupiter models in agreement with the

measured noble gas abundances, while SCvHi and Sesame EOS

support the values of N,C.

SCvHi

Sesame

LM-REOS

heavy element abundance (solar units) in the outer envelope

The maximum core mass is predicted to be 3 ME (Sesame),

5 ME (SCvHi), and 8 ME (LM-REOS).

P1-2

➢ Atreya et al. 2003, PSS

➢ Lodders 2003, ApJ

➢ Saumon & Guillot (2004), ApJ ➢ Fortney & Nettelmann (2010)

21 / 37

Page 22: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Expected O/H measurement by Juno (2016)

A discrimination of the competing Jupiter models (and EOS) is in reach if the O:H abundance will be measured by Juno.

3--12x solar

4--7

< 4.5 LM-REOS.2

SCvHi EOS

Sesame EOS

outer envelope metallicity (solar units)

NASA

22 / 37

Page 23: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

challenge: Jupiter‘s atmospheric helium depletion

Observed He depletion suggests helium rain.

23 / 37

Page 24: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

challenge: SATURN’s excess luminosity

Jupiter: standard models reproduce all observational constraints

Saturn: standard models predict too low luminosity

7 / 3224 / 37

Page 25: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

challenge: SATURN‘s dipolar magnetic field

➢ Stevenson 1980, 1982 ➢ Cao, Russell, Christensen et al 2011 ➢ Cao, Russell, Wicht et al 2012

H2, He poorly conducting convective

H/He demixing zone? (gradual He concentration? stably stratified? differentially rotating ? filtering of non-dipolar components?) H+, He rain

dynamo-generation of mag. field (convective, metallic)

core

Saturn‘s magnetic field is highly axis-symmetric. A thick stable, and/or differentially rotating region can axisymmetrize the B-field. Such a region may result from H/He demixing or core erosion.

1 Mbar, ~ 5000 K

H+, He

Cassini / NASA

www.lasp.colorado.edu/~bagenal/

< 1°

Magnetic axis Rotation axis

25 / 37

Page 26: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Inhomogeneous & Superadiabatic interior with layered instead of overturning convection?

➢ Leconte & Chabrier 2012, A&A

µ

An inhomogeneous, superadiabatic planet may be ~50% more enriched in heavy elements.

26 / 37

Page 27: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Semi-convection can dramatically change the cooling behavior. Figures show L(t) for different mixing lengths of layered-convection.

1 MJup, Z-gradient (Vazan et al 2015)

1 MSat, Z-gradient (Leconte & Chabrier 2013)

1 MJup, He-gradient (Nettelmann et al 2015)

log

L / L

sun

log time (Gyr)

time (Gyr)

Teff

(K)

Teff

(K)

27 / 37

Page 28: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Outline

Method of GP internal structure modeling

EGPs: M-R relations & composition estimates

Jupiter & Saturn

Uranus & Neptune: ices and ice-rich models for Uranus

Page 29: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Voyager 2 flyby 1986 Voyager 2 flyby 1989

Uranus Neptune

• Mass: 14.5 M , Radius: 4 R

• mean densitiy : 1.3 g/cm3

• orbital distance : 19.2 AU

• heat flow Teff ~ 59 K

• irradiation Teq ~ 59 K

⊕ ⊕ • Mass: 17 M , Radius: 3.9 R

• mean densitiy : 1.7 g/cm3

• orbital distance : 30 AU

• Teff ~ 59 K

• Teq ~ 46 K

⊕ ⊕

observational constraints

EGPs: - GJ 436b

- HAT-p 11b

- Kepler 4b

Cassini/NASASun

29 / 37

Page 30: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

phase diagrams

WATER

➢ Redmer et al 2010, Icarus

➢ Bethkenhagen, French, Redmer 2013. PRB

AMMONIA

Superionic

Dissociated

30 / 37

Page 31: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

phase diagram of 1:1 water-ammonia mixture

➢ Bethkenhagen, Cebulla, Redmer, Hamel 2015

31 / 37

Page 32: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Phase diagram of synthetic URANUS mixture (H:O:C:N ~ 28:7:4:1)

➢ Chau, Hamel, Nellis 2011

Carbon clustering or superionic deep interior?

32 / 37

Experiments (gas-gun):

reverberating shock

single shock

Theory: computer simulations

Page 33: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Standard URANUS model with H2O-CH4-NH3 EOS

assumptions: heavy elements = water, ammonia, methane

rocks confined to core 3-layer structure, adiabatic outstanding property: icy lower mantle achievements: presence of magnetic dynamo, O/C/N = solar

less convincing: ice/rock ratio ~ 15x solar

too high luminosity (~too long cooling time)

molecular

ionic

super-ionic

poly-mers

molecular: H2O, N2, H2, CH4 molecules

➢ Betkenhagen et al, in prep ➢ Podolak & Reynolds 1987

33 / 37

Page 34: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

challenge: Uranus‘ low luminosity

too long cooling time (too high luminosity) of adiabatic models, whatever one varies

➢ Hubbard & Marley 1980

➢ Hubbard et al 1995

➢ Fortney et al 2011 ➢ Nettelmann et al 2013

34 / 37

Page 35: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Uranus: compositional and thermal layer boundary

(cm2/s)

4.5 Gyr

If the layer boundary is diffusive, it‘ll stay stably stratified forever. This suggests presence of thermal boundary layer.

35 / 37

Page 36: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

First Uranus model with (very simplified) thermal boundary can explain both the luminosity and the gravity data.

➢ Nettelmann, Wang, Fortney, Hamel et al, submitted

1

T eff

(K)

L = LincTeq

36 / 37

Page 37: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Summary

• EGP: measured M-R allow to derive bulk mass of heavy elements.

• EGP: internal structure models indicate MZ >= 10 ME.

• Tidal Love number k2 may break the degeneracy.

• Interior models usually applied to EGPs do not hold for the solar GPs.

• Jupiter: O/H to be measured by Juno

• layered-convection consistent with luminosity of Jupiter and Saturn

• Uranus‘ may be ice-rock rich, without solid ices.

• Outlook: construction of solar GP models that also are consistent with the observed magnetic fields

Thank you for attention

Page 38: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Appendix

Page 39: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

H phase diagrams

21 / 41

Log Pressure (Mbar)

solid H2 solid H

degenerate TCP

classical TCP

fluid H2

fluid H

0-2-4-6 2 4 6

2

0

3

4

5

Log

T (K

)

Liquid-Liquid Transition

(ab initio sims)

➢ McMahon et al (2012), Rev. Mod. Phys.➢ Stevenson (1982), Ann. Rev. E&Planet Sci.

1 Mbar

Wigner & Huntington (1935): prediction of metallization of solid H at sufficiently high densities as ,

2/3~kin elE ρ 1/3~ie elE ρ−

Ebeling et al 1985 Saumon, Chabrier et al 1995 Schlanges, Bonitz et al 1995

Fortov et al 2007, quasi-isentropic compression

Page 40: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Reflectivity signal inferred from Z-machine experiment

24 / 41

absorption at 532 nm

deuterium transparent

deuterium metallizes

➢ Knudson et al (2015), . Science

Page 41: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Liquid-Liquid transition in D found at 3 Mbar using Sandia‘s Z-machine

25 / 41

PIMD

➢ PIMD: Morales et al 2013, PRL

➢ PBE: Lorenzen et al 2010, Morales et al 2010

➢ vdw-DF2: Lee et al 2010

PBE DF1 NQE

vdW-DF2 NQE

HSE DF2

➢ Knudson et al (2015), . Science

Page 42: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

simple thermal boundary layer model for Uranus

ΔT across layer boundary is varied with time (linear increase with T1bar)

ΔT (today) is adjusted to yield the proper cooling tome (luminosity)

11 / 20

Page 43: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

Brown dwarf radii, effect of H-He-REOS.3

• H-He REOS.3 predicts ~2 % larger radii for brown dwarfs.

• PLATO (launch 2024) accuracy <2%

• possible test of BD composition ~ stellar composition

➢ Becker, Lorenzen, Fortney, Nettelmann, Schöttler, Redmer 2014, ApJS

➢ Saumon, Chabrier, van Horn (1995), ApJS ➢ PLATO: Rauer et al 2013

17 / 41

Page 44: The giant challenges in our understanding of giant planet ...interferometer.osupytheas.fr/colloques/OHP2015/slides/...OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure

OHP colloquium, Okt2015 N.Nettelmann @ U Rostock Internal structure models

weak irradiation : Firr < 150 FEarth

➢ Miller & Fortney 2011

13 / 38