The geological cycle of plastics and a the Anthropocene · the Anthropocene Jan Zalasiewicz a,* ......

37
1 The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene Jan Zalasiewicz a,* , Colin N. Waters b , Juliana Ivar do Sul c , Patricia L. Corcoran, d Anthony D. Barnosky e , Alejandro Cearreta f , Matt Edgeworth g , Agnieszka Gałuszka h , Catherine Jeandel i , Reinhold Leinfelder j , J.R. McNeill k , Will Steffen l , Colin Summerhayes m , Michael Wagreich n , Mark Williams a , Alexander P. Wolfe o , Yasmin Yonan a . Addresses: a Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK b British Geological Survey, Keyworth, Nottingham NG12 5GG, UK c Association of Polar Early Career Scientists (APECS‐Brazil), Rua Edgar Gerhke, Piratini, Sapucaia do Sul‐ RS. CEP 93216180 d Dept. of Earth Sciences, University of Western Ontario, London, ON, Canada, N6A 5B7 e .Dept. of Integrative Biology, Museum of Paleontology, Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA f Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain. g School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK h Geochemistry and the Environment Division, Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska St, 25‐406 Kielce, Poland i LEGOS (CNRS/CNES/IRD/Université Paul Sabatier), 14 avenue Edouard Belin, 31400 Toulouse, France. j Department of Geological Sciences, Freie Universität Berlin, Malteserstr. 74‐ 100/D, 12249 Berlin, Germany. k Georgetown University, Washington DC, USA l The Australian National University, Canberra ACT 0200, Australia. m. Scott Polar Research Institute, Cambridge University, Lensfield Road, Cambridge CB2 1ER, UK.

Transcript of The geological cycle of plastics and a the Anthropocene · the Anthropocene Jan Zalasiewicz a,* ......

1

ThegeologicalcycleofplasticsandtheiruseasastratigraphicindicatoroftheAnthropocene

JanZalasiewicza,*,ColinN.Watersb,JulianaIvardoSulc,PatriciaL.Corcoran,dAnthonyD.Barnoskye,AlejandroCearretaf,MattEdgeworthg,Agnieszka

Gałuszkah,CatherineJeandeli,ReinholdLeinfelderj,J.R.McNeillk,WillSteffenl,ColinSummerhayesm,MichaelWagreichn,MarkWilliamsa,AlexanderP.Wolfeo,

YasminYonana.Addresses:aDepartmentofGeology,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,UKbBritishGeologicalSurvey,Keyworth,NottinghamNG125GG,UKcAssociationofPolarEarlyCareerScientists(APECS‐Brazil),RuaEdgarGerhke,Piratini,SapucaiadoSul‐RS.CEP93216180dDept.ofEarthSciences,UniversityofWesternOntario,London,ON,Canada,N6A5B7e.Dept.ofIntegrativeBiology,MuseumofPaleontology,MuseumofVertebrateZoology,UniversityofCalifornia,Berkeley,CA94720,USAfDepartamentodeEstratigrafíayPaleontología,FacultaddeCienciayTecnología,UniversidaddelPaísVascoUPV/EHU,Apartado644,48080Bilbao,Spain.gSchoolofArchaeologyandAncientHistory,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,UKhGeochemistryandtheEnvironmentDivision,InstituteofChemistry,JanKochanowskiUniversity,15GŚwiętokrzyskaSt,25‐406Kielce,PolandiLEGOS(CNRS/CNES/IRD/UniversitéPaulSabatier),14avenueEdouardBelin,31400Toulouse,France.jDepartmentofGeologicalSciences,FreieUniversitätBerlin,Malteserstr.74‐100/D,12249Berlin,Germany.kGeorgetownUniversity,WashingtonDC,USAlTheAustralianNationalUniversity,CanberraACT0200,Australia.m.ScottPolarResearchInstitute,CambridgeUniversity,LensfieldRoad,CambridgeCB21ER,UK.

2

nDepartmentofGeodynamicsandSedimentology,UniversityofVienna,A‐1090Vienna,AustriaoDepartmentofEarthandAtmosphericSciences,UniversityofAlberta,Edmonton,ABT6G2E3,Canada*Correspondingauthor.Tel.:+4401162523928.E‐mailaddress:[email protected](J.Zalasiewicz)AbstractTheriseofplasticssincethemid‐20thcentury,bothasamaterialelementofmodernlifeandasagrowingenvironmentalpollutant,hasbeenwidelydescribed.ItsdistributioninboththeterrestrialandmarinerealmssuggeststhatitcouldbeakeygeologicalindicatoroftheAnthropocene,withpotentialtobeacomponentoffuturegeologicalstrata.Mostimmediatelyevidentinterrestrialdeposits,itisclearlybecomingawidespreadcomponentofmarinesedimentarydepositsinbothshallow‐anddeep‐watersettings.Itisabundantandwidespreadasmacroscopicfragmentsandvirtuallyubiquitousasmicroplasticparticles;thesearedispersedbybothphysicalandbiologicalprocesses,notleastviathefoodchainandthe‘faecalexpress’routefromsurfacetoseafloor.Alreadyawidespreadanddistinctivelithologicalcomponentofstrata,theamountofplasticsseemslikelytogrowseveral‐foldoverthenextfewdecades,andtocontinuetobeinputintothesedimentarycycleovercomingmillenniaastemporarystores–landfillsites–areeroded.PlasticsalreadyenablefinetimeresolutionwithinAnthropocenedepositsviathedevelopmentofitsdifferenttypesandviatheartefacts(‘technofossils’)itismouldedinto,andmanyofthesemayhavelong‐termpreservationpotentialifburiedinstrata.KeywordsAnthropocene,Plastics,StratigraphyIntroductionTheconceptoftheAnthropocene,anepochoftimeinwhichhumanshavecometodominatemanysurfacegeologicalprocesses,hasbeenwidelydiscussedsinceitwasfirstproposedbyCrutzenandStoermer(2000)andCrutzen(2002).ThereisgeneralagreementthatsufficientevidenceisavailabletosuggestthattheAnthropoceneisarealgeologicalphenomenon,withthepotentialtobeformalizedwithintheGeologicalTimeScale(Zalasiewiczetal.,2008;Williamsetal.,2011;Watersetal.,2014).AlthoughmanysuggestionshavebeenputforthregardingthetimingoftheAnthropocene,thereisgrowingconsensusthatastartingtimearoundthemid‐twentiethcenturyandthepost‐WWII‘GreatAcceleration’ofpopulation,industryandresourceuse(Steffenetal.2007,2015)isoptimal.ThisispartlyaresultoftheincreaseinscaleofhumanimpactsontheEarthsystem,suchastheriseinCO2abovepre‐industriallevels.The“GreatAcceleration”periodisalsomarkedbykey,near‐synchronousstratigraphicmarkersthatenablethestrataofaputativeAnthropoceneEpochtobeidentified.Theseincludeartificialradionuclidesofthenuclearage(Hancocketal.,2014;Zalasiewiczetal.,2015;Watersetal.,2015),aluminiummetal(Zalasiewiczetal.,

3

2014),flyashparticles(Rose,2015;Swindlesetal.,2015),persistentorganicpollutants(MuirandRose,2007)andavarietyofbiologicalindicators(Barnosky,2014;Wilkinsonetal.,2014).Onefurtherpotentialindicatorisplastic,asthisisamaterialthathasbeenmanufacturedinabundancesincethemid‐20thcentury.Currentlyindispensible,plasticsmakeanextraordinarycontributiontoourlives,andarekeytothemomentumofthetechnologicalrevolutionsincethestartofthe‘GreatAcceleration’.Thisismainlyduetotheirremarkablyversatileandusefulpropertiesandapplications.Forexample,plasticsarefundamentaltocontemporaryhygiene,whetheraswrappingforfoodstuffsandothermaterials,asdisposablegloves,coatsandmedicineencapsulationsusedinhospitals,andttheprovisionofinexpensivecleanwatersystems,suchaswaterbottlesorpipelines.Plasticsarealsocomponentsofmanyofourbuildings,toolsandmachines.Althoughnowindispensible,plasticsareeasilydisposable.Discardedinvariouswaysafteruse,weseethemwidelyaroundusaslitter.Thescopeandrangeofplasticcontaminationhasbecomeincreasinglyapparentoverthelastfewyearsanddecades,anditisnowregardedasamajor,andgrowing,environmentalhazard(seebelow).Acorollaryofthisdispersalisthatplasticsmightbeusedasmarkersoftime,andindicatorsoftheprocessesthatoccurredduringdeposition,muchinthewaythatgeologistsusefossilstocharacterizeanddatestrata.Itisthispotentialthatweexploreinthispaper.Plasticsarerelativelyeasilyrecognizable,withouttheneedforsophisticatedanalyticalequipment,asinthecaseforthedetectionofradionuclides.Theymay,therefore,beeffectiveandwidelyuseableprimarystratigraphicmarkersforAnthropocenestrata.However,togainanoverviewoftheirtrueutilityrequiressomeconsiderationabouttheirdistributionandbehaviorasageologicalmaterial,ratherthanasaproductofmaterialscience,orasanenvironmentalpollutant.Thisideaofplasticsasasignificantcomponentofthepresent‐daysedimentarycycleisgrowing,althoughstudiestoprovideclearanddetailedglobalcharacterizationhaveonlyjustbegun(e.g.Reed,2015;Corcoran2015).Thispaperthusplacescurrentknowledgeabouttheenvironmentalbehaviorofplasticsintoageneralgeologicalperspective.Inparticular,weconsidertheextenttowhichplasticsmayprovideapragmaticstratigraphicmarker,notjustinsoilsandotherterrestrialdeposits,butalsofarintothemarinerealm.Wedevelopthisanalysistoprovidethefirstpredictivemodelofthetransport,distributionandburialofplasticsassedimentaryparticlesinarepresentativearrayofglobalsedimentologicalsettings,bothterrestrialandmarine.Wealsoexaminethepossibilitythatplasticsmaybecomepreservedintothegeologicalfuture,toprovideevidenceofthishuman‐dominatedphaseofEarthhistory.Plastics,seenthroughthisprism,mayrangemorewidelythroughtimeandspacethancanbeseenbythecasualeye.Thenatureandproductionofplastics

4

Plasticsaremalleablesolidsmadeofhighmolecularweightorganicpolymers.Mostareentirelysynthetic–primarilymadefrompetrochemicals–althoughsomearecellulose‐based.Thefirstplasticstobecomecommonlyusedwerepermanentlyhardandbrittle,suchasshellac,forgramophonerecordsfromthelatenineteenthcentury,andbakelite,producedwidelyfromthe1920stothe1940s(andstillinminorusetoday)(Albusetal.,2006).Viscosesilkandrayon,madefromacellulosebase,havebeenmanufacturedsincetheearly20thcentury,andremaininproduction.Nylon,polystyrene(PS),polyvinylchloride(PVC),polyethylene(PE)andpolytetrafluoroethylene(PTFE)begantobeproducedinthelate1930sand1940s,polypropylene(PP)andexpandedpolystyrenefoaminthe1950s,andpolyethyleneterephthalate(PET),fromwhichmostcontainersandbottlesarenowmade,waspatentedin1973(Fig.1).Developmentcontinuestothisday,withsome15‐20maingroupsofplastic.Manyofthesesubsequentplasticproductsretaintheirplasticityoncemoulded(Shahetal.,2008).

5

Fig.1.Stratigraphicappearanceofsomemajortypesofplasticsandplasticartefacts.Gutta‐percha,hardenedsapofanyofeighttreespeciesfromsoutheastAsia,isnotstrictlyaplastic.Nevertheless,itfeaturesinsomeearlyhistoriesofthismaterial;between1850and1899,some27,000tonswerelaidontheseafloortoserveasinsulationfortelegraphcablesduetoitsresistancetosaltwatercorrosion(Tully,2009).Adaptedfrominformationmostlyinhttp://www.bpf.co.uk/Plastipedia/Plastics_History/Default.aspx.

6

Theextraordinaryglobalexpansionofthisnowindispensiblematerial(AndradyandNeal,2009)canbeseeninthedramaticriseofproducedplastics,fromthelessthan2milliontonnesproducedin1950tothe300milliontonnesmadeannuallytoday(Fig.2).Thecumulativeamountproducedasof2015isontheorderof5billiontons,whichisenoughtowraptheEarthinalayerofclingfilm,orplasticwrap.Thecurrentglobalannualproductionrepresents~40kgofplasticsproducedannuallyforeachofthe7billionhumansontheplanet,approximatingthetotalhumanbiomass(Zettleretal.,2013).Theamountprojectedby2050,oncurrenttrends,isabout40billiontons(Rochmanetal.,2013),whichisenoughtowrap6layersofclingfilmaroundtheplanet.Itisanenormousindustry,currentlyusingapproximately8%ofglobaloilextractionforitsmanufacture(Thompsonetal.,2009).Approximately4%isusedasasourcematerialfortheplastics,and4%isusedtoprovidetheenergytoproducetheplastics:http://www.wastewatch.org.uk/data/files/resources/13/Plastics‐information‐sheet‐FINAL‐Oct‐08.pdf).

Fig.2.Growthofplasticsproduction:fromPlasticsEurope(2013,2015).Syntheticfibresproduction(metrictonsperyear)fromThompsonetal.(2004)andhistoricalstagesinplasticsdevelopment,ingreyboxes,fromThompsonetal.(2009).Mostoftheglobalplasticsthathavebeenproducedarestillpresentintheenvironment.OftheplasticsproducedinEurope,abouthalfisaccountedforby

7

recycling,energyrecovery(i.e.incineration)andlandfill,withtheproportionsincineratedandputintolandfillvaryinggreatlyfromcountrytocountry(PlasticsEurope,2013,2015).Theproportionrecycled,withinthehalfthatisaccountedfor,istypically15‐25%inEurope(op.cit.),butfiguresprovidedbyBarnesetal.(2009)fortheUSAsuggestrecyclingratestherearebelow5%.Thehalfofplasticsproductionthatisnotaccountedfor(seealsoRochmanetal.,2013)presumablystaysintheenvironment,eitherascomponentsofsome‘permanent’objectorisdisposedofotherwise,includingcasuallyaslitter.PlasticsintheenvironmentPlasticsareusefultohumansbecausetheyarelight,strong,flexibleandrelativelyinert.Theyareinsolubleinwater,andresistanttobiologicaldecayandmuchchemicalattack,overatleastdecadestocenturies.Theyareeasilytransportedbywindandwaterthroughtheenvironment,wheretheymayaccumulate.Plasticsareprovingtobemuchmoremobilethananyotherhuman‐madematerial,suchasceramicsorglass.Ittookceramicsthousandsofyearstoachieveanythingresemblingaglobaldistribution,andtheyaredistributedmainlyinterrestrialdeposits,withverylittleincursionintomarineenvironments(Edgeworthetal.,2015).Frombeingalocal‘litter’problemafewdecadesago,plasticsareincreasinglyrecognizedasamajorenvironmentalcatastrophe,bothonlandandinthesea.Inresponse,therehasbeenarapidlyexpandingbodyofliteratureonthesubjectwithinthelastfewyears(e.g.seethereviewbyIvardoSulandCosta,2014).Plasticsintheenvironmentaredividedbroadlyintomacroplasticsandmicroplastics.Macroplasticsare>5mm,andincludeeverythingthatwewouldrecognizeaslitter,suchasplasticbagsandbottles,discardedfishingnets,plastictoys,andsectionsofplasticpiping(Fig.3).Insomesurveys,forinstancebycamerasonremotelyoperatedsubmarinevehicles,macroplasticsaretheonlyplasticsthatcanbeobserved(Wattersetal.,2010;RichardsandBeger,2011).

8

Fig.3.PlasticdebrisonKamiloBeach,Hawaii(itemonrightofphotoisplastiglomerate);Fieldofviewis20cmacross(Photo:P.Corcoran).Incontrast,microplastics,whichare<5mm,arecommonlyinvisibletothenakedeye,particularlywhenmixedintosediment.Somemicroplasticsareoftheiroriginalsize,suchasthe10−1000ηmplasticmicrobeads(polyethylenemicrospheresthatareputintosomecosmetics,facialscrubsandtoothpaste,aswellaslentil‐sizedresinpellets(“nurdles”)thataretherawmaterialsforplasticproducts.Othermicroplasticshavebeenphysicallyorphysico‐chemicallydegraded.Amicroplasticcategoryrecentlyrecognizedasimportantisplasticfibres(~0.1mmacrossandusuallyupto2‐3mmlong),whicharelargelydetachedfromsyntheticfabricsduringwashing.Asinglesyntheticgarment,forinstance,canreleaseoverathousandfibresinasinglewashcycle(Fig.4).Toosmalltobefilteredouteitherbymachineorsewageplant,thesecantravelfarbyriverandseacurrent,andbecomedepositedinsedimentlayers(Browneetal.,2010,2011;Woodalletal.,2014).

9

Fig.4.MicroplasticfibresfoundinbottomsedimentsofLakeOntario‐sampledbyglewcorer(Photo:AnikaBallent).Plasticscanbeconsideredsedimentarycomponentsinbothterrestrialandmarineenvironments,however,theirdistributiononlandappearstohavehadmuchlessstudythanthatinthesea(Thompsonetal.,2009;Rillig,2012).Thismaybearesultofthegreaterheterogeneityoflandscape,bothnaturalandanthropogenic,whichmakesanalysismoredifficult.Nevertheless,itisclearevenbycasualobservationthatmacroplasticdebrismaybefoundinmostinhabitedenvironments.Microplasticsarenoteasilyvisible,butmethodsfortheiranalysisintheenvironmenthavebeendeveloped.Theycanbeextractedfromwaterbyfiltering,andseparatedfromsedimentviasievingordensityseparationusingcentrifugeandsaltsolutions(Nuelleetal.,2014;Woodalletal.,2014;Corcoranetal.,2015).Nanoplasticsareparticlesthataretypicallytensofnanometersindiameter.Thesemaybeproducedintentionally,forexample,fordrugdelivery,detergentsorcosmeticuse,ortheymayresultfromfragmentationoflargerplasticparticles.Studiesofnanoplasticshaveindictedtheirlargesurfacetovolumeratio,which

10

increasestheircapacitytoadsorborganiccompounds,potentiallyenablestheirabilitytopenetratecellwalls,andtheirempiricallydeterminedcapacitytoaffectgrowthandreproductionofatleastsomeaquaticinvertebrates(e.g.Besselingetal.,2014;DellaTorreetal.,2014;Velzboeretal.,2014).Thedistributionofnanoplasticparticlesinthenaturalenvironmentisverypoorlyknownbecauseofthetechnicaldifficultyofisolatingthemfromwaterorsediments,buttheyarealmostcertainlybecomingincreasinglycommonlydispersed.LandOnlandandawayfromshorelines,plasticlitteriswidelydistributedinthesurfaceenvironment,mostclearlyinandaroundurbanareasviacasuallittering.However,itsdistributionseemstohavehadlittledetailedstudy(Thompsonetal.,2009;Rillig,2012).Theuseofplasticsinagriculturehasgrownsincethe1960s,andHussainandHamid(2003)notedthatglobalagriculturalconsumptionofplasticsisat2.48milliontonsperyear.Theyareusedintransplantandbeddingplantproduction,asirrigationtape,traysandpots,tunnels,haybalewraps,andingreenhouseconstruction..Plasticsmaybecomeincorporatedintocultivationsoils,andthescaleofthisdistributionrequiresfurtherinvestigationandquantification.Anyplasticinclusionspresentinploughsoilsbecomethoroughlymixedwithothermaterialstothefulldepthofploughing.Thestratigraphicdistributionofplasticsbelowthesurfacecorrelatesstronglywiththedistributionoflandfillsites,whereplasticsinthelastfewdecadeshavecometomakeupapproximately10%byweightofthewasteburied(Thompsonetal.,2009).Wherelandfillsiteshavebeenmappedoutandtheiroperationdated,sedimentarydepositsuptoseveraltensofmetresthickwithconcentrationsofplasticsmaybedelineated(Figs.5,6).In1967,intheUK,plasticsformedabout3%ofmunicipallandfillwaste(Bridgewater,1986).However,increasingproductionofplasticsinthe1960scoincidedwithincreasedconsumerismandcasualdisposalofsingle‐usegoodsratherthanre‐useandrepair.Theproblemismorecriticalindevelopingcountrieswherethearrivalofpackagedgoodsisassociatedwithinefficientwastedisposal.Thiscontributedtotherapidincreaseintheproportionofplasticsinlandfillinthe1970s(Fordetal.,2014,fig.11).Subsequentlegislationacrossmanypartsoftheworldhasstimulatedincreasingreuseandrecyclingofplasticgoods,suchassupermarketplasticbags,butatbestthishasrestrictedratherthanoverturnedtherelentlessgrowthofplasticdisposal.Thedistributionoflandfillsitesalmostalwayscoincideswiththe(former)outcropofbulkminerals,suchasquarriesforaggregateandforbrickclay.Landfillsites,especiallymodernoneswithleak‐proofseals,tendtomummifymaterial‐evenpaperandfoodstuffs‐ratherthanencourageittodecay(RathjeandMurphy,1992).Inturn,plasticsmaybeexpectedtosurviveevenlongerinlandfillsthanatthesurface(cf.TanselandYildiz,2011),withthepotentialtobecomefossilizedorreworkedbyfutureerosion(seeDiscussionbelow).

11

Fig.5.Distributionof3055wastedisposalsitesacrossEnglandandWalesactiveduringtheperiod1971−3(source:BritishGeologicalSurveydatabase,heldonbehalfofDepartmentofEnvironment).BoxshowslocationofFig.6.BGS©NERC2015.Allrightsreserved.

12

Fig.6.LandfilllocationsinpartofeastLondon,showingoperationalhistory;sitesafter1960willincludesignificantplasticscontent(fromEnvironmentAgencydata).Roadnetworkshaveincreasinglybecomecorridorsofplasticdeposition,partlythroughsurfacedepositionofdiscardedmaterial,whereplasticsarelikelytodegradeorbedispersedrelativelyquicklyandnotaccumulateassubstantialdeposits.Notwithstandingthesearelikelytobezonesofmicroplasticsproductionthroughdegradationandfragmentation.Plasticsarealsousedinthelayingofcablesandpipesforservicesandcommunications,whicharedeliberatelyburiedinbackfilledtrenches,oftenunderoralongroads.Plasticsarealreadywidelyusedasstratigraphicmarkersinfieldarchaeologicalpractice‐asindicatorsofmodernorrecentlydisturbeddeposits(Fig.7).Evensmallamountsofplasticfoundasinclusionswithinalayercanbeusedasevidenceofdateofdeposition.Thiscanprovidepreciseconstraintsontheageofthespecificdepositwithinwhichitisfound,andalsoconfersrelativedatinginformationonlayersthatarestratigraphicallyabove(‘laterthan’)andbelow(‘earlierthan’)theplastics‐bearinglayer..

13

Fig.7.1980splasticbagsintheupperfillofanornamentalmoatinTudorgardensfromevaluationatCedarsPark,Broxbourne,HertsbyMuseumofLondonArchaeology,2010(imagedreproducedcourtesyofMOLA).Theplasticinthiscasehasbeeninthegroundfor30years.Itiswellpreserved,presentingavisualandcolourfulmarkerintheprofileofanarchaeologicaldepositoranthrosol(acompletelyornearlycompletehuman‐madesoil).Asadateablehorizonwithinastratigraphicsequence,theplastic‐bearinglayerhereprovidesrelativedatingforalllayersabove(1980sorlater)andalllayersbelow(1980sorearlier).Itsutilityasastratigraphicmarkerextendstothewholesequence.LakesandriversPlasticshavebeenfoundinfreshwaterecosystems(Eerkes‐Medranoetal.,2015),suchaslakes(e.g.Eriksenetal.,2013;Imhofetal.,2013;Freeetal.,2014;Zbyszewskietal.,2014),andinrivers,suchastheThames(Morrittetal.,2014),Danube(Lechneretal.,2014)andYangtze(Zhaoetal.,2014).Plasticsareconsideredtobeatleastaswidelydistributedinlakesastheyareintheoceans(seebelow),butalthoughtheirdistributiononshorelinesandasfloatingdebrisonwaterhaslocallybeendetermined,asintheGreatLakesofNorthAmerica,theirdistributioninlakebottomsedimentshasonlyrecentlybeeninvestigated(Corcoranetal.,2015).Microplasticsareintroducedtoriversviawind,stormsewers,andwastewatertreatmentplants,andalsohostdistinctmicrobialcommunities(McCormicketal.,2014).However,thelowdensityofthemostcommonlyproducedplastics,

14

polyethyleneandpolypropylene,meansthatasignificantproportionstayswithinoruponthewatercolumnandistransportedfartherdownstreamorouttolakesandseas(SadriandThompson,2014).Themajorityofplasticdebrisissourcedfromland,andthus,riversareconduitsforplasticstoentertheirfinalsink:themarineorlakerealms.Forexample,inSouthWalesabout80%oflitteronestuarinebeachescomesfromrivers(WilliamsandSimmons,1996),andnearToronto,Canada,plasticpelletswereobservedtravellingdowntheHumberRiverintoLakeOntario(Corcoranetal.,2015).Plasticsoftenactassedimentbafflesinrivers,asdoesvegetationandwooddebris.Alonglakeshorelinesandriverbanks,microplasticstendtobecometrappedinorganicdebrisbroughtinbywavesandcurrents(Zbyszewskietal.,2014;Corcoranetal.,2015).Inaddition,high‐densityplasticsmayrapidlyaccumulatewithinchannelbedloadwhere,mobileplasticelementsinthetractioncarpetmaybeabradedrapidly(WilliamsandSimmons,1996)andreducedtomicroplasticparticles.Betweenriversandthesea,mangrovescantrapplasticsaswellasmud(IvardoSuletal.,2014).NearshoremarineThatmacro‐andmicroplasticswereenteringtheseas,andwerelikelytocausesignificantenvironmentalimpact,wasobservedasearlyasthe1960sinseabirdpopulations(KenyonandKridler,1969;HarperandFowler,1987)andfromthe1970sontheseasurface(CarpenterandSmith,1972).Sincethen,boththephenomenonitself,andstudyintoit,havegrownmarkedly,particularlyinthelastdecade(seereviewofIvardoSulandCosta,2014formicroplastics;alsoLeinfelder,inpress).Attentionhasfocusedontheimpactofingestionandentanglementonbiota,ontheirdistributionwithinbothwaterandsediments,andonpossibletoxiceffects.Althoughplasticsaregenerallyinert,theycanaccumulatetoxins,suchasPCBs,ontheirsurfacesorreleaseharmfulconstituentssuchasbisphenolAastheyweather.Theseaisthefinalrestingplaceforarangeofdifferenttypesofhumanlitter,fromglasstometalstobuildingwaste,but.Plasticsformthemoststrikingcomponent.Makingupsome10%ofallhumanrefusebyweight,theselectivetransportofplasticsbywindandwatermeanthattheymakeup>50%ofmarinelitter,andlocallyconsiderablymore(Barnesetal.,2009).Asimilarselectiveconcentrationofcertainnaturalresistantrocktypes,suchasflintandveinquartz,occurswithinsedimentarydeposits.Therehavebeensomestudiesofphysicalsortingofplastics,particularlyincoastalareas.Forinstance,Browneetal.(2010)examinedthesortingofmicroplasticswithintheTamarestuarynearPlymouth,UK,andnotedsegregationoflighterandmoredensemicroplastics,althoughtheauthorsfoundnorelationshipbetweenmicroplasticsandclayparticledistribution.Isobeetal.(2014)notedselectivetransportofmesoplastics(~5mm)towardstheshoreandmicroplasticstowardsoffshoreintheSetoSeaofJapan.

15

Plasticsentertheseaviarivers,frompointanddiffusesourcesalongtheshoreline,andfromships(thoughsuchdumpingisnowintheorybannedbyinternationalshippingregulation)(Ryanetal.,2009,Fig.1).Estimatesofplasticscurrentlyenteringtheseaeachyearrangefrom6milliontons(UNEP2009inPhametal.,2014)tobetween4.8and12.7millionmetrictons(Jambecketal.,2015),withtheamountpredictedtoincreasebyanorderofmagnitudeby2025(Jambecketal.,2015).Differencesinsourceareevident,forexamplearoundtheUKcoastline,withvariousproportionsderivedfromrivers,fly‐tipping,sewageoutfalls,shipdischarges(WilliamsandSimmons,1996)andcoastaltourismactivities.Arecentlypublishedstudy(Obbardetal.,2014)foundsignificantmicroplastics(38to234particlespercubicmeter),frozeninArcticseaice,havingseeminglybeenderivedfromthePacificOcean.TheArcticisthusamajorglobalsinkforthesetinyplasticparticles.However,meltingatcurrentratescouldunlockoveronetrillionpiecesofmicroplasticsoverthenextdecade.Rayonwasthemostprevalentmaterial,muchofitfromcigarettefilters(onecigarettefiltertipcomprises~10,000fibres)andhygieneproducts.Othermaterialsincludedpolyester,nylon,polypropylene(PP),polystyrene(PS),acrylicandpolyethylene(PE).Oncewithinthesea,lowdensityplasticsfloatinseawater,suchaspolyethylene(PE)andpolypropylene(PP),whichtogethermakeup~55%ofoutputinEurope(PlasticsEurope,2015).Theselowdensityplasticscanbemovedbywindstressandbysurfacecurrents,andbythismeanscanencircletheEarth,tobecomeconcentratedinmid‐oceangyres(e.g.the‘GreatPacificGarbagePatch’,somethousandkilometresindiameter:Mooreetal.,2001;Ryanetal.,2009;Lawetal.,2014).Therehavebeenwidelyreportedexamplesofspilledcargoesofsuchdistinctiveobjectsasplasticducks,trackedtorevealmarinepathways(e.g.EbbesmeyerandScigliano,2009;Hohn,2011).Plasticsmayultimatelyeitherbeloadedinsomefashiontosinktotheseafloor(seebelow)orbewashedupondistantbeaches.OnKoreanbeaches,Jangetal.(2014)foundthatmorethanhalfoftheplasticmaterialbeachedhadcomefromtheocean,vialong‐distancetravel,andnotfromnearbyland.Onceplasticfragmentswithdensities>1gm/cm3(e.g.PVC)areinthesea,theycanbemovedbytidalandstorm‐drivencurrentsinshallowwater,andbyvariousgravity‐drivencurrents(e.g.turbidityandcontourcurrents)indeepwaterbeforefinallybeingdeposited.However,low‐densityplasticshavealsobeenfoundinlake‐bottomsediments,havingbeendepositedasaresultofdensityincreasebymineralfillersduringproduction,ormineraladsorptionwhileinthewatercolumn(Corcoranetal.,2015;Corcoran,2015).Itisalsobeingincreasinglyrealizedthatthetransportofplasticsthroughthewatercolumnisoftenmediatedbiologically(seebelow)becausemicrobialfilmsrapidlydeveloponsubmergedmicroplastics,andchangetheirbuoyancy(LobelleandCunliffe,2011).Studiesofplasticsinsedimenttodatehavetypicallyfocusedontheamountandtypeofplasticspresentandontheirgeographicaldistribution.However,very

16

fewinvestigationsincludedataontheverticaldistributionofplasticswithinthesediment(exceptionsincludeKusuiandNoda,2003,NgandObbard,2006,Turraetal.,2014;Corcoranetal.,2015).Inferencesonsuchdistributionmustbemadeusinggeneralsedimentaryfaciesconsiderations.Coastlinesandbeacheshaveunderstandablyattractedmuchattention,giventheirsensitivestatusinhumansocietyandthehighvisibilityofplasticlitterdepositedthere.Themonitoringofbeachlitter,mostlymacroplastic,istypicallydonebycountingitemsatthesurfaceperunitlength(e.g.,per100m)ofcoastline,andnotingsuchaspectsastype,composition,weightandvolume.ArecentstudyofKoreanbeaches(Hongetal.,2014)found300‐1000items/100m,includingpolystyrene(PS)fishingbuoys,andplasticbagsandbottles.Cigarettefiltertipsaregenerallythesinglemostcommonitemfoundinstudiesofsuchsortandinbeachcleanups.Ofthe~6trillioncigarettessmokedannually,thefilter‐bearingtipsofover4trillionendupaslittereachyear(Carlozo,2008).Plasticsarevirtuallyomnipresentinthecoastalzoneglobally,notonlyindenselypopulatedregions,butalsobecauseoflong‐distancetransporttoremoteareas.Barnes(2005)notedsubstantialamountsofmacroplasticsonremoteislands.OnsomeislandssuchasDiegoGarcia,hermitcrabshavetakentousingplasticbottletopsashomes(seealsoReed,2015,p.32).Barnes(2005)henotedadiminishingtrendofplasticsfromequatortopoleintheSouthernOcean,althoughnoticeableamountsstillreachAntarcticcoasts.InHawaii,accumulationsofplasticdebrishaveformedwhatCorcoranetal.(2014)referredtoas‘plastiglomerates’inwhichmeltedplasticassociatedwithcampfires(Fig.3)hasbondedbeachpebblesandsandtoformarock(theoreticallytheactivityofwildfiresandvolcanicactivitycouldalsocausemelting).Thesedensehybridplastic‐sedimentmaterialshavegoodpotentialforburialandlong‐termpreservation.Successivesurveyshaveshownthatamountsofplasticsincoastalsedimenthaveincreasedthroughtime,broadlymirroringtheriseinglobalproduction(Ryanetal.,2009;Fig.8herein;Claessensetal.,2011).ThistrendcontinuesinthatBritishbeachesin2009sawrecordlevelsoflitter,withanaverageof2195items/kminasurveyof374beachesnationwide,comparedwith1045items/kmin1994(Adam,2009).Thisresultisdespitestrenuousclean‐upeffortsbylocalauthoritiesandvolunteergroups,andtheactivitiesofbeachcombers.Peaklevelscanbemuchgreater,exceeding30000items/kmor‘muchhigher’inbeachesinEurope,AsiaandSouthAmerica(Phametal.,2014andreferencestherein).

17

Fig.8.(Left)increaseinnumberofplasticbottles(leftbar)andlids(rightbar)onbeacheswithregularcleaningprogrammes(inblack)ornoformalcleaning(ingrey),redrawnfromRyanetal.(2009).(Right)MicroplastictimeseriesdatafromThompsonetal.(2004).Inthedynamicbeachenvironment,objectscanbeburiedandexhumedmanytimes(SmithandMarkic,2013).Overall,thefewstudies(e.g.Turraetal.,2014)examiningthethirddimensiononbeachessuggestthatplasticitemsmaylocallyextenddownwardsforasmuchas2m,withtherebeinganorderofmagnitudemoreburiedplasticthansurfaceplastic.Hence,thereisasedimentbodyforminginthecoastalzonethat,ifseenincrosssection,couldcontainsufficientmacroplasticmaterialtoberecognizabletothefieldgeologistasapost‐mid‐twentiethcenturydeposit(Fig.9).Insomeinstances,thesemacroplasticfragmentsarealreadyincludedinbeachrockdeposits,asintheBasquecoast(Irabienetal.,2015).

18

Fig.9.Plasticfragmentincarbonate‐cementedbeachrockonGorrondatxe‐Azkorribeach,Basqueregion,Spain(Photo:H.Astibia).Suchdistribution,andparticularlyinremoteareas,maybesufficientlysporadictopreventconsistentidentificationofAnthropocenedeposits.However,microplasticparticlesaremoreabundant,andmorewidelyandevenlydistributed,thanaremacroplastics,andcanberecognizedeveninsamplesassmallas50gofcoastalsediment(Browneetal.,2010,2011).Thiscanincluderelativelylargeparticlessuchasresinpellets,thatarenear‐ubiquitousinsomebeachsediments.AroundSãoPauloinBrazil,pelletsarecommonlypresentatlevelsofupto10000/m3insediment,andlocallyofupto25000/m3(Turraetal.,2014).Smallmicroplasticsareparticularlyabundant.Largelycomposedofmicrofibres(Fig.4)detachedfrommachine‐washedartificialfabrics(Browneetal.,2011)andtransportedviasewageoutfallstoriversanddumpedsewagesludge,thesehavebecomeverywidelydispersed.Browneetal.(2011)suggestedthatfibreshavebecomeincorporatedin,androutinelyextractablefrom,shorelinesedimentsthroughouttheworld,inquantitiesthatrangefromtenstohundredsoffibresperlitreofsediment(Fig.10)(Browneetal.,2011;IvardoSulandCosta,2014,Fig.1).Forexample,Dekiffetal.(2014)reported~5‐25microplasticparticles(mostlymicrofibres)perkilogramofsedimentforNorderney(NorthSea),whereasReis(2014)foundanaverageof66/kgontheBalticislandofFehmarn.Thispotentiallyprovidesanear‐ubiquitoussignatureoftheAnthropoceneincoastalsettings.

Fig. 10 Reports on the amounts and distribution of microplastics in marine sediment samples. Stars, squares and circles represent the average number of items per cubic metre of sediment available and/or estimated. (A) Khordagui and Abu-Hilal, 1994; (B) Kusui and Noda, 2003; (C) Thompson et al., 2004; (D) McDermid and McMullen, 2004; (E) Ng and Obbard, 2006; (F) Ivar do Sul et al., 2009; (G) Costa et al., 2010; (H) Turner and Holmes, 2011; (I) Browne et al., 2011; (J) Hidalgo-Ruz and Thiel, 2013; (K) Woodall et al., 2014. Dashed squares represent deep-sea sediment core samples. Red crosses represent works that registered microplastics in sediments

19

but did not allow estimation within the scale used here. Extracted and modified from Ivar do Sul and Costa (2014). OffshoremarineThisencompassesshelf,slopeandabyssalsediments,wheretheextentandstratigraphyofanthropogeniclitterhasbeenmadeclearerbyanarrayofrecentstudies.Mostattentionhasbeengainedbythevisibleplasticdebrisnowfloatinginthewater,followingthediscoverybyMooreetal.(2001)of‘theGreatPacificGarbagePatch’.PlasticsconcentrateintheslowlycirculatingwatersoftheNorthPacificgyre,withsimilarconcentrationsnowknowntobepresentintheothergreatgyresoftheworld(Lawetal.,2014;Fig.11).TheglobalassessmentbyEriksenetal.(2014)showed,intheirtitle,thescaleofthephenomenon:5trillionplasticpiecesweighingsome250000tonsarenowafloatatanyonetime.Theynotedoneunexpectedresult–macroplasticsmadeupthegreatmajorityofthisbyweight(ca85%).Theproportionofmicroplasticswasfarlessthanhadbeenexpected(seealsoCozaretal.,2014).Theoceangyresformthebasisofmodelledconcentrationsofsurfaceplasticdebriswithinthemid‐latitudesofalloceans(Fig.11).Thismimicsatmosphericcirculationpatterns,whichdeterminetheconcentrationofradiogenicfallout(e.g.Watersetal.,2015),thusprovidingapotentialdualsignatureinmarinesedimentsforrecognitionoftheAnthropocene.

Fig.11. ModelleddistributionofmicroplasticsinoceansurfacesshownbyEriksenetal.(2014,Fig.2)(1mm‐<4.75mm).Onshoreestimatedmassofmismanagedplasticwasteisinmillionsofmetrictons,generatedby2010within50kmofthecoast(Jambecketal.,2015).

20

Zettleretal.(2013)foundthatmostfragmentscollectedfromthemarinewaterwerepolyethylene(PE)andpolypropylene(PP),tworesinscommonlyusedinpackagingandothersingle‐useplasticapplications.Thisplasticmarinedebrisiscolonizedbyacomplexmicrobialcommunitylivingonitandreferredtoasthe“Plastisphere”.Plastispherecommunitiesaredistinctfromthoseofsurroundingsurfacewater,implyingthatplasticsserveasnovelecologicalhabitatsintheopenocean.Microbesmaybetakingpartinthedegradationofplasticsviaphysicalormetabolicmeans.Bacteriaandfungiarewellknowntodegradehighlyrefractorycompounds,includingplastic,butthishasnotbeendemonstratedintheopenocean.Thelikelysinkforthe‘missingsurfacemicroplastics’notedaboveseemsbethedeepsea.Fischeretal.(2015)discoveredmicroplastics,mainlyfibres,atdepthsof4869−5766mintheKuril‐KamchatkaTrenchandadjacentabyssalplain.Evenatthesegreatdepths,concentrationswereashighas2000/m2.Woodalletal.(2014;seealsoGoldberg,1997,andVanCauwenbergheetal.2013forearlierrecords)examineddeep‐seasedimentcoresamplesfromthesubpolarNorthAtlanticandNorth‐eastAtlantic;theMediterranean;andseamountsontheSWIndianOcean.Allcontainedmicroplastics,mainlyasfibres,inabundancesrangingfrom1.4to40fibres(average13.4)per50mlofsediment(Fig.10).Thatwassome4ordersofmagnitudemoreabundantthaninthecontaminatedsurfacewatersabove.EventheIndianOceanseamounts,whichshowedthelowestabundances,wereconservativelycalculatedtohave4billionfibrespersquarekilometre,or4000/m2(Woodalletal.,2014).Howdidtheplasticsgettotheseoceanfloors,fardistantfromland?Thefibresweremostlycomposedofacrylicandpolyester,whicharedenserthanseawater.These,itwassuggested,mayhavebehavedlikefineclayparticles,slowlydriftinginstorm‐orturbiditycurrent‐generatednepheloidplumes,orcarriedbythermohalinecurrents.Therewerelow‐densityfloatingmicroplastics,too,thathadsunk.Thesecouldhavebeeningestedbyzooplanktonandejectedasfaecalpellets,orsankwiththemwhentheydied,orwithinthefaecesorbodiesoffishthatatethezooplankton(Boergeretal.,2010;Coleetal.,2013;Setäläetal.,2014).Themicroplasticscouldalsohavebeencaughtupingelatinousmarinesnow.Inthisrespect,microplasticsbehaveinasimilarwaytoothermicroplanktonictaxapreservedinthegeologicalrecord(e.g.coccolithoozes),andrepresentaprimarytoolofbiostratigraphicalcorrelationinthegeologicalrecordbecauseofawidespreaddistributionwithinstratathatarelikelypreservablelongintothefuture.Othersurveyshaveshownthespreadoflargerplasticfragments,bydredgingorbyremotelyoperatedunderwatervehicle(ROV)cameras.Bottles,plasticbagsandabandonedfishingnetsareabundant(Wattersetal.,2010;RichardsandBeger,2011;Tubauetal.,2015;Corcoran,2015andreferencestherein),andareoftenconcentratedbytopographyorcurrentsintosubmarinelows,suchasthebottomsofsubmarinecanyons(Schliningetal.,2013;Tubauetal.,2015).ThestudybyTubauetal.(2015)oftheseabedat24of26ROVdivesitesinthesubmarinecanyonsoftheNWMediterraneanatdepthsof140−1731m,showed

21

thatplasticswerethedominantcomponentoflitter(72%).Mostofthelitterwasobservedoncanyonfloorsatdepthsover1000m,andmayhavebeencarriedtherebydown‐slopeflowsoriginatingnearshore.Litterdensityrangedupto11.8itemsper100msurveyline,andaveragedbetween8,000‐15,000items/km2,reachingamaximumof167,540litteritems/km2atonesite(Tubauetal.,2015).Phametal.(2014)consideredthattherelativescarcityofmacroplasticobjectsonshelveswasbecausetheywerebeingcurrent‐sweptintodeepwater,particularlyviasubmarinecanyons.Suchdeeperwaterandsubmarinecanyonenvironments,beinglessdisturbedbybottomtrawlingthanareshelfsediments,mayprovideagoodrecordofthehistoryofplasticsinfluxassociatedwiththeAnthropocene.Thisnewplastic‐dominateddebrislayeroverliesthedebrisofpreviouscenturies.Overall,thisearliermaterialissparser,butanotablecomponentisclinkerfromtheoldcoal‐firedsteamships,thrownoverboardenrouteandhenceforming‘pavements’belowthesailingroutes(Ramirez‐Llodraetal.,2011).Thus,inbothshorelineandoffshoresediments,thereisanear‐ubiquitousdistributionofmicroplasticfibres,invisibletothenakedeye,butsufficientlyabundanttobeextractablefrommostsedimentsamples,togetherwithscatteredmacroplastics.Thenumberofitemsvary,but,forexample,Phametal.(2014)usedsubmersiblecamerastoanalysevisibledebris(mostlyplastic)inthenorth‐eastAtlanticoffEurope.Debriswasfoundeverywhere,asfarastheMid‐AtlanticRidge,withdensitiesrangingfrom~100‐300objects/km2(incontinentalshelfareas)to200‐600objects/km2(oncontinentalslopesandoceanridges)to400‐700objects/km2(onsubmarinebanksandmounds)to600‐1200objects/km2insubmarinecanyons.Inaddition,theArgoprofilingfloatprogrammewasdevelopedtosowtheoceanwith3000floatstorecordthetemperatureandsalinityoftheoceandowntodepthsof2000m.Theprogrammeisintendedtooperateindefinitely,andwillprovidefurther‘scientificlitter’comprisingthemetre‐longplastichousingsofthefloatswhentheysinktotheoceanbedaftertheirbatteriesdieattheendofanapproximately4‐yearlife‐time(www.argo.ucsd.edu/;http://en.wikipedia.org/wiki/Argo_(oceanography).PreservationpotentialofplasticsinthegeologicalrecordThegeologicallongevityofplasticpolymersispoorlyknown,mainlyasthesearenovelmaterialsthathavebeenintheenvironmentforonlydecades.Willsuchplasticsstillberecognizableovergeologicaltimescales?Thedegradationofplasticscantakeplacechemically,bymodificationofthemolecularstructure,orphysicallyorbiologically(KayandBlond,2005;Shahetal.,2008).Chemicaldegradationcanresultfromalterationofmolecularbondsthroughheat(thermal)orsolarradiation(photo),chemicalreactions,andhydrolysisatveryhighorverylowpH.Physicaldegradationincludespartialortotalextractionofadditives(e.g.pigments,plasticizersandfillers),theactionofsolvents,internalchainreorganizationduetoheat,environmentalstress‐crackingandthermalstress.Biologicaldegradationbybacteriaandfungioccursfollowingdepolymerizationofplasticbyotherphysicalorchemicalprocesses.

22

Plasticsareclearlylong‐livedonhumantime‐scales,especiallywhenburiedandbeyondthereachoftheultra‐violetlightpresentinsunlightthatcanbreakbondsintheirchemicalstructure,causingtheplasticstobecomebrittleandthenfragment(photodegradation)(Shahetal.,2008).Mostfragmentationoccursthroughphotodegradation,mainlyinbeachenvironments.Plasticsasawholeareresistanttomicrobialattack–whichunderliesagooddealoftheirpracticalutilityandoftheirlongevityintheenvironment.Nevertheless,someevidenceofdigestionbymicrobeshaslocallybeenobserved(HarshvardanandJha,2013;Yangetal.,2014;seealsoKasirajanandNgouajio, 2012), andplasticsmayhostmicrobialcommunitiesdifferenttothegenerallyambientones(McCormicketal.,2014).Thesuddenappearanceofplasticsasawidespreadnewadditiontothesurfaceenvironment,togetherwiththerapidevolutionaryratesobservedinmicrobessubjecttostrongselectivepressures,suggeststhatmicrobialdegradationmaybecomemorecommonovertime,notleastbecauseanymicrobesthatcanuseplasticsasafoodsourcewillbeselectivelyadvantaged.Nevertheless,thisiscurrentlyaminorfactor–anditmustbenotedthatmanyeminentlydigestibleanddecomposableorganictissues(shellbecauseofitsorganicmatrix;bone;wood)maybecommonlyfossilizedonceburied.However,incommonwithshells,plasticitemsmaybefossilizedin‘cast’and‘imprint’formevenifalltheoriginalmaterialislostthroughbiodegradation.Thustheformsofbiros,plasticbottlesorcompactdisks(CDs)maybefoundasfossilsinsedimentaryrockinthefutureeveniftheplasticitselfhasdegradedorbeenreplacedbyothermaterials.Coldertemperatureswithinthedeepocean,associatedwithalackofUVlight,makeplasticsonthesea‐bedmorelikelytobepreserved(GregoryandAndrady,2003).Intheseconditions,theyaresaidtolastfor‘centuriestomillennia’(GregoryandAndrady,2003),mostlyviainferencefromshort‐periodlaboratorystudies.Overlongertimescales,buriedwithinstrata,theirdiagenesisandfossilizationpotentialisatopicofconsiderableacademicinterest(althoughofnoanalyticalstudyasofyet,asfarasweareaware).Thenearestcomparisoniswiththelong‐chainpolymersinrecalcitrantorganicfossilssuchaswood,sporesandgraptolites.Thesefossilizebythelossofpartofthematerial,expelledashydrocarbonliquidorgas,toleaveacarbonizedhuskand,dependingonthesizeandrigidityofthefossilandthenatureoftheenclosingfossil,alsoanimpression(anexternalmould).Onpreliminaryconsideration,itseemsthatmanyplasticswillbehavesimilarlyovergeologicaltimescales.Thehydrocarbonsreleasedduringdiagenesismightcontributetofutureoilandgasdeposits.DiscussionPlasticdebrisofdifferentsizesarewidelydistributedonlandandinthesea.Onthelandsurface,thelocallyabundantbuthighlyheterogeneousdistributionofplasticsseemstoberatherpoorlydefinedbyscientificstudy.Thereisconsiderablepotentialforitsrecordinginarchaeologicalexcavations,byaminoradjustmentofexistingstandardmethodologies.Indevelopedcountrieswherelandfillsiteshavebeencategorized,mappedanddated,asintheUK,metresto

23

tensofmetresthickconcentrationsofplastic‐rich(i.e.~10%)anthropogenicdeposits,,mayberecognized.Inthecoastalrealm,theaccessibilityandrelativeeaseofstudyofsomeenvironments(e.g.beaches),thelimitedvariabilityoftopographyandprocess,andtheenvironmentalsignificanceofthephenomenon,hasencouragedmoresystematicstudy.Itisclearthatplasticsarewidelydistributed,bothasmacroplasticsandasmicroplastics,totheextentthattheycanberetrievedfrommostseafloorsedimentsamplesinmostpartsoftheworld(Browneetal.,2011;Woodalletal.,2014;Corcoran,2015).Overall,therefore,plastics,andparticularlymicroplastics,maybeaneffectivemeanstorecognizeterrestrialandmarinesedimentsdepositedsincethemid‐twentiethcentury.Furtheranatomizationintimeandspaceisclearlysignificanttotheuseofplasticsasstratigraphicindicators.Withrespecttotime,anumberofissuesmayberaised.Theglobalsignalofartificialradionuclidesiseffectivelysharp‐based,startingin~1952(Hancocketal.,2014;Zalasiewiczetal.,2015;Watersetal.,2015),reachingpeaksinthemid‐1960s,thentailingoff.Incontrast,theplasticssignalhasamoregradualandcomplexpattern.Theremaybesporadicappearancesinthestratigraphicrecordofsomeearlyformsofplastic,notablybakeliteandrayon,fromtheearly20thcentury,mostlyconfinedtothevicinityofurbanareasinEuropeandNorthAmerica.Thisputative,localizedfore‐runnerplasticssignal(stilltobeconstrainedbystratigraphicstudies)thengiveswayinthemid‐20thcenturytoamorewidespreadsignalfromplasticsdispersal,increasingfromscarcelyperceptibletomarkedoverlittlemorethanhalfacentury(cf.Fig.2).Thesignificantpresenceofplasticsonland,withinlandfillsites,wasnotapparentuntiltheearly1970sindevelopedcountriesanddisplayedsomedegreeofdiachroneityoverthesubsequentdecadeorsoasplasticsbecameaglobalcommodity.Inthemarineenvironment,recognitionofplasticsasanenvironmentalproblemdidnotsurfaceuntilthelate1960s.Oversubsequentdecades,theevidencebasehasgrownwhilethevolumeofplasticsenteringthemarineenvironmenthasalsoincreasedexponentially.Littleresearchhasbeencarriedouttorecognizetheextentoftheplasticsignatureinthe1940sand1950sduringtheearlyyearsofitsusageandbeforeitsenvironmentalimpactwasrealized.Thatgradationalbeginningmakesdefining(orpreciselylocating)thebaseoftheAnthropoceneonthebasisofplasticmaterialssensulatoimpractical,althoughplasticsareclearlyaneffectiveidentifierofAnthropocenestrata.Therearemanyformsofplastic,whichhavebeendevelopedatdifferenttimes,andthesecouldbeusedastime‐specificspeciesindicators(Albusetal.,2006)(Fig.2).Forexample,acrylicfibreswerefirstcreatedbyDuPontin1941,butnotproducedinlargequantitiesuntilthe1950s.Thisissimilartothestratigraphicuseofartificialradionuclides,theonsetofsignaturesfordifferentisotopesbeingatdifferenttimes(Watersetal.,2015).However,theartificialradiogenicsignatureislargelyrestrictedtoEarth,butplasticscannowbefoundelsewhereinthesolarsystem,includingonthesurfaceoftheMoonandMarsandinorbitaroundtheEarth.

24

Overgeologicaltimescales,theplasticsburiedinlandfillsitesmaybeinpartatime‐bombofplasticrelease.Somelandfills,inlowgroundintectonicallysubsidingareas,willsimplybeburiedbymorestrata,tobefossilizedaspalaeontologicalmiddens.Wherelandfillsareeroded,theywillbeginreleasingtheirdebris,includingplastic,intothesedimentarycycle(seebelow).Virtuallyallplasticsaremouldedintoartefactsofmanydifferentkinds,eachofwhichinthiscontextmayberegardedasatechnofossil(Zalasiewiczetal.,2014),whichisatracefossilproducedbyhumans.Technofossilsshowextremelyrapidevolution,entirelydetachedfromtheevolutionofthetrace‐makingorganism(i.e.ofhumans),andhencetheappearanceofthedifferentartefactscanmarkafinechronology.–eventotheday,asseeninthedate‐stampingofplasticfoodwrapping.ThischaracteroflitterhasbeenusedtodateextremefloodeventsaffectingtheOmancoast(HoffmannandReicherter,2014).Althoughitisimportanttorecognizethedistinctionbetweenproductiondateandthetimingofaccumulation,whichmaybemonthsoryearslater,thisisstillaresolutionofdatingrarelyavailabletogeologists.Spatially,plasticsneedtobeconsideredassedimentaryparticlescontainedwithin3‐dimensionalsedimentarybodies(sometimestermed‘lithosomes’)thathavebeenshapedbyavarietyofphysicalandchemicalprocesses.IntheAnthropocene,ofcourse,thesesedimentarybodiesarestillaccumulating.Suchfactorsassedimentationrate,transportpaths,sedimentarysortingandbiologicalinfluencebecomeimportant.Fociofanthropogenically‐influencedsedimentinput,suchaslarge‐riverdelta‐frontestuaries,alreadyidentifiedassensitiverecordersofotherkindsofhuman‐drivenperturbation(BianchiandAllison,2009)maymeritparticularstudy.Thetransportofplasticsbyorganisms(andviceversa,inconsideringfloatingplasticasvectorsforencrustingspecies)hashadconsiderablestudy,withingestion/entanglement(oftenfatal)byfishandlargervertebratesbeingmuchstudied(e.g.Gregory,2009).Inrecentyears,widerrelationsbetweenfilter‐feedingplankton,benthosandmicroplastics(Browneetal.,2008;Coleetal.,2013)havebeenconsidered(IvardoSulandCosta,2014).Indrawingupsomepreliminarypatternsofplasticdistributionvis‐à‐vissedimentology,onemightsuggestthefollowingascomponentsofapredictivemodeltobetestedandfurtherdeveloped(Fig.12):Thedynamiccoastalzonewilloftenhavearelativelythick(metres‐scale)plastic‐bearingsedimentbody.Plasticlevelscanbeveryhighinpopulatedareasandlower,butoftenstillmeasurable,inuninhabitedareasbecauseoflong‐distancetransport.Inzonesofwave/currentreworking,suchasbeaches,theplastics‐bearingsedimentbodymaybelocallysharp‐basedandshowinternalvariationsreflectingselectivetransportandsedimentarysorting,withattritionandenhancedphotodegradationofplasticparticlespriortoburial.Indepositionalareas,suchasdeltasandestuaries,wheresedimentbuildupdominates,plasticshavepreservationpotentialandmayshowastratigraphicpatternofupward

25

increaseinrelativeabundance,reflectinghistoricincreaseinplasticproductionandrelease.Individualhighenergy‐events,suchasstorms(HoffmanandReicherter,2014)andtsunamis,maysweepdebrisfarinland.Incarbonate‐producingenvironments,plasticshavebeenobservedinbeachrock(CaraLauria,pers.comm.;Irabienetal.,2015)andmayprovidenucleationpointsformicrobialcarbonateprecipitation.

Fig.12.Conceptualmodelofplasticstransportthroughandaccumulationinthemarinerealm.Onshelves,theremaybecontinuouslycurrent‐sweptareassuchaspartsofthetidalNorthSea,wheresedimentissweptalongasshellysanddunes.Onlythedenserplasticfragmentsmightbeincorporatedhere,whilelighterorsmaller,butstillnegativelybuoyantparticles,suchasfibresmightbewinnowedouttotravelfurther.Onquieterormoredistalshelves,plasticsmaytravelwithdebrisinstormebbsurges(ortheebbcurrentsfromtsunamis)tobedepositedastempestitelayers.Alongcontinentalslopes,plasticswillbefunneledtogetherwithsedimentthroughsubmarinecanyons,asalreadyobserved(e.g.Phametal.,2014).Withinthese,thereislikelytobesize/shape/densitysortingoftheplasticdebris,asthereisoftheaccompanyingsediment.Muchoftheplastic,especiallythemicroplastic,willbetransportedthroughthecanyonstobedepositedontheturbiditefansthatextendfromthem,andwithinturbiditelayersthatcoverthefansurfaces.Theseturbiditelayerswillshowsize/shapedensitysortingofplasticfragments,comparabletothatseenindifferentfossilsinancientturbidites.Forexample,robustshellfragmentstypicallyendupinthebottom,BoumaA‐Bdivisionsofturbiditelayerswhilethelessdensegraptolitesaretypicallyconcentratedalittlehigher,intheripple‐laminatedBoumaCdivision(Daviesetal.,1997).Weexpectplasticfragmentstobehavesimilarly,andtobeconcentratedintheupper,C‐Edivisions,dependingontheirsize,shapeanddensity.OverthecourseoftheAnthropocene,theseturbidites,andthetempestitelayersnotedabove,arelikelytobeofminimalthickness(centimetrestodecimetres)butofwideextent.Plasticscontentwillreflectthedensityand

26

behavior(vis‐à‐vislitter)ofpopulationalongtheterrestrialriversandcoastupstreamofthecanyon.Itislikelytoshowgoodpreservationpotentialinthesesettings.Beyondtheturbiditefanstherearethepelagicrealmsoftheoceanfloor,inpartanalysedbyWoodalletal.(2014).Here,sedimentationratesarelowandtheAnthropocenewillberepresentedbymillimetresinstratigraphicthickness,ifthat,andsotheplasticsmayrepresentasignificantpartoftheinput.Mostoftheseafloorisoxygenatedandburrowed(bioturbated)bybenthicorganisms,andtherefore,theplastic,overdepthsof(normally)afewcentimetreswill,liketherestofthesediment,bemixedinwitholderdeposits,andseparatedfromthembyadiffusegradationalboundary.Thisisoneofthepracticalproblemsofapplyingchronostratigraphyoververyshorttimeintervals(Zalasiewiczetal.,2007),butforpracticality’ssake,thisplastic‐bearingbioturbatedunitmightberegardedasAnthropocene.Thepreservationpotentialfortheplasticmaterial,likeforanyotherorganiccompound,willprobablyincreasestronglyunderdysaerobicoranaerobicconditions.These“deadzones”ofcoastalandopenmarinebottomwatersalsowillbecomemorefequentandmorewidespreadintheAnthropocene,owingtoland‐derivedanthropogenicnutrientrunoff,aswellasmorefrequentsurfacewaterstratificationcausedbywarmingseas(cf.Gruber,2011;Keelingetal.,2010).Theplasticmaterialitselfmightremainpreservedinthesesedimentsovergeologicallyrelevanttimeepisodes.Ontheotherhand,inthemoreaerated,carbonatesupersaturatedmarinesettingsoftropicallagoons,theplasticlasticfractionislikelytobecomeinitiallyincorporatedwithinearlycementedsedimentlayers.Iftheplasticfragmentsthendegradeorbecomefragmentedafterafewhundredyears,theplasticsshouldgiverisetoanewtypeofhighlyporous,vuggylimestonewithvoidsorpseudomorphsmirroringtheshapeofleachedplastictechnofossils.Somecontemporarysedimentaryunitsmaystillremaineffectivelyplastic‐free.WhereasbeachesinAntarcticahavebecomepollutedwithplastic,thefringingdeeper‐watersedimentsderivedfromthemeltingofrockdebris‐ladenglaciersshouldbepristine,asshouldremoteland‐basedice‐masses.Perhapssimilarly,thecontouritedriftsthatmantlethebaseoftheeasternNorthAmericancontinentalslope,derivedfromdeepsouth‐flowingcurrentsfromtheArcticCirclewillalsobeplastic‐free.Involcanicsettings,primarypyroclasticflowdepositsareunlikelytoincludeplastics,butthelow‐temperaturelahardepositsderivedfromthem,iftheyflowthroughpopulatedareas,willpickupplasticsontheway.Tsunamidepositsmayalsobeworthconsideringinthisrespect.Theywillgenerateanunsortedmassofmaterialsthat,ifsourcedfromurbanareas,willincludeasignificantproportionofplastics.Largeamountsofplasticsuddenlyentrainedinthiswaymayaccumulateincoastalzonesandsomewayinlandasraiseddeposits.Alternatively,thesematerialsmaybecarriedbackouttotheoceanasachaoticbackflowofdifferentmaterialsthatislesssortedthanforthoseintroducedthroughrivers.Onceidentified,tsunamidepositscouldalsobe

27

usedastime‐specificstratigraphicsignals.InthecaseoftheBoxingDay2004tsunami,existingwastesinlandfillsiteswerealsotransportedouttosea,(e.g.inBandaAcehhttp://www.gdrc.org/uem/disasters/disenvi/tsunami.html).ConclusionsThereisagrowingabundanceofplasticsinthesurfaceenvironment,andthisphenomenonmaybeconsiderednotonlywithrespecttoenvironmentalpollution,butintermsofthemodificationandcharacterizationofrecent(generallypostmid‐20thcentury)andcontemporarystrata.Plasticsarenowwidelyenoughdistributedtocharacterizesuchstrataoverlargepartsoftheworld,eveninremoteenvironmentssuchasthatofthedeepseafloorandthepolarregions.Amongsuchenvironments,microplasticsareasuperficiallyinvisible,butpotentiallywidespreadmarker,directlyakintomicrofossilsinmoreconventionalpalaeontology.Thefewstudiescarriedouttodateindicatethatthepatternsofdistributionofplasticsasbothlargeandsmallparticles(‘clasts’)withinglobalsedimentarysystemsmaybehypothesized.Onceaccumulatedwithinsedimentarystrata,plasticparticlesarelikelytohaveavariable,butgenerallygoodpreservationpotential,comparabletothatofrecalcitrantorganicfossils.Theyarealreadypresentinsufficientnumberstobeconsideredasoneofthemostimportanttypesof‘technofossil’thatwillformapermanentrecordofhumanpresenceonEarth.Stratigraphically,plasticswithinsedimentscompriseagoodpracticalindicatorofAnthropocenestrata,usingamid‐20thcenturybeginningforthispostulatedepoch.However,theonsetofthismarkerislikelytohavebeengradualandnotperfectlyisochronousinstratigraphicsuccessions,withsignificantpresenceofplasticsinthemarineandterrestrialenvironmentsnotbeingrecordeduntilthelate1960stoearly1970s.Therefore,despitetheirutilityforpracticalstratigraphy,theyarenotacharacterthatmightbeexpectedtoactasprimarymarkersinanyfuturedefinitionofaformalreferencesectionfortheAnthropocene.ReferencesAdam,D.2009.Britishbeachlitterlevelshighestonrecord.TheGuardian,8April2009.http://www.theguardian.com/environment/2009/apr/08/beach‐litter‐record‐levels‐mcsAlbus,S.,Bonten,C.,Kebler,K.,RossiG.,WesselT.,2006.PlasticArt–APrecariousSuccessStory.Germany:TheAXAArtConservationProject.

28

Andrady,A.L.,Neal,M.A.,2009.Applicationsandsocietalbenefitsofplastics.Philos.Trans.R.Soc.B364,1977–1984.(doi:10.1098/rstb.2008.0304)Barnes,D.K.A.,2005.RemoteislandsrevealrapidriseofSouthernHemisphereseadebris.DirectionsinScience5,915–921.(doi:10.1098/rstb.2008.0205)Barnes,D.K.A.,Galgani,F.,Thompson,R.C.,Barlaz,M.,2009.Accumulationandfragmentationofplasticdebrisinglobalenvironments.Philos.Trans.R.Soc.B364,1985–1998.(doi:10.1098/rstb.2008.0205)Barnosky,A.D.,2014.PalaeontologicalevidencefordefiningtheAnthropocene.In:Waters,C.N.,Zalasiewicz,J.,Williams,M.Ellis,M.A.,Snelling,A.(Eds.)AStratigraphicalBasisfortheAnthropocene.Geol.Soc.,Lond.,Spec.Publ.,395,149–165.(doi:10.1144/SP395.6)Besseling,E.,Wang,B.,Lürling,M.,Koelmans,A.A.,2014.NanoplasticaffectsgrowthofS.obliquusandreproductionofD.magna.Environ.Sci.Technol.48,12336–12343.(doi:10.1021/es503001d)Bianchi,T.S.,Allison,M.A.,2009.Large‐riverdelta‐frontestuariesasnatural“recorders”ofglobalenvironmentalchange.PNAS106,8085–8092.(10.1073/pnas.0812878106)Boerger,C.M.,Lattin,G.L.,Moore,S.L.,Moore,C.J.2010.PlasticingestionbyplanktivorousfishesintheNorthPacificCentralGyre.Mar.Pollut.Bull.60,2275–2278.(doi:10.1016/j.marpolbul.2010.08.007)Bridgewater,A.V.,1986.Refusecompositionprojectionsandrecyclingtechnology.Resour.Conserv.12,159–174.(doi:10.1016/0166‐3097(86)90008‐8)Browne,M.A.,Crump,P.,Niven,S.J.,Teuten,E.L.,Tonkin,A.,Galloway,T.,Thompson,R.C.,2011.Accumulationofmicroplasticonshorelinesworldwide:sourcesandsinks.Environ.Sci.Technol.45,9175–9179.(doi:10.1021/es201811s)Browne,M.A.,Dissanayake,A.,Galloway,T.S.,Lowe,D.M.Thompson,R.C.2008.Ingestedmicroscopicplastictranslocatestothecirculatorysystemofthemussel,Mytilusedulis(L.).Environ.Sci.Technol.42(13),5026–5031.(doi:10.1021/es800249a)Browne,M.A.,Galloway,T.S.,Thompson,R.C.,2010.Spatialpatternsofplasticdebrisalongestuarineshorelines.Environ.Sci.Technol.44,3404–3409.(doi:10.1021/es903784e).Carlozo,L.R.,(2008)Kickingbutts.ChicagoTribune,June18,2008.http://articles.chicagotribune.com/2008‐06‐18/features/0806170174_1_cigarette‐butts‐secondhand‐beach‐house/2

29

Carpenter,E.J.,Smith,K.L.,1972.PlasticsontheSargassoSeasurface.Science175,1240–1241.(doi:10.1126/science.175.4027.1240)Claessens,M.,Meester,S.D.,Landuyt,L.V.Clerck,K.D.,Janssen,C.R.,2011.OccurrenceanddistributionofmicroplasticsinmarinesedimentsalongtheBelgiancoast.Mar.Pollut.Bull.62,2199–2204.(doi:10.1016/j.marpolbul.2011.06.030)Cole,M.,Lindeque,P.,Fileman,E.,Halsband,C.,Goodhead,R.,Moger,J.,Galloway,T.S.,2013.Microplasticingestionbyzooplankton.Environ.Sci.Technol.47,6646–6655.(doi:10.1021/es400663f)Corcoran,P.L.,2015.Benthicplasticdebrisinmarineandfreshwaterenvironments.Envir.Sci.Proc.Impacts(doi:10.1039/C5EM00188A)Corcoran,P.L.,Moore,C.J.,Jazvac,K.,2014.Ananthropogenicmarkerhorizonintherockrecord.Geol.Soc.Am.Today24(6),4–8.(doi:10.1130/GSAT‐G198A.1)Corcoran,P.L.,Norris,T.,Ceccanese,T.,Walzak,M.J.,Helm,P.A.,Marvin,C.H.,2015.HiddenplasticsofLakeOntario,Canadaandtheirpotentialpreservationinthesedimentrecord.Envir.Poll.204,17–25.Costa,M,F,,IvardoSul,J.A.,Silva‐Cavalcanti,J.S.,Araújo,M.C.B.,Spengler,Â.,Tourinho,P.S.2010.Ontheimportanceofsizeofplasticfragmentsandpelletsonthestrandline:asnapshotofaBrazilianbeach.Environ.Monit.Assess.168(1‐4),299–304.(doi:10.1007/s10661‐009‐1113‐4)Cozar,A.,Echevarria,F.,González‐Gordillo,J.I.,Irigoien,X.,Úbeda,B,Hernández‐León,S.,Palma,Á.T.,Navarro,S.,García‐de‐Lomas,J.,Ruiz,A.,Fernández‐de‐Puelles,M.L.,Duarte,C.M.,2014.Plasticdebrisintheopenocean.P.Natl.Acad.Sci.USA111,10239–10244.(doi:10.1073/pnas.1314705111)Crutzen,P.J.,2002.GeologyofMankind.Nature415,23.(doi:10.1038/415023a)Crutzen,P.J.,Stoermer,E.F.,2000.The"Anthropocene".GlobalChangeNewsl.41,17–18.Davies,J.R.,Fletcher,C.J.N.,Waters,R.A.,Wilson,D.,1997.GeologyofthecountryaroundLlanilarandRhayader.MemoiroftheBritishGeologicalSurvey,Sheets178&179(EnglandandWales),xii+267pp.Debrot,A.O.,Vinke,E.,vanderWende,G.,Hylkema,A.,Reed,J.K.,2014.Deepwatermarinelitterdensitiesandcompositionfromsubmersiblevideo‐transectsaroundtheABC‐islands,DutchCaribbean.Mar.Pollut.Bull.88:361–365.(doi:10.1016/j.marpolbul.2014.08.016)Dekiff,J.H.,Remy,D.,Kasmeier,J.,Fries,E.2014.OccurrenceandspatialdistrubitonofmicroplasticsinsedimentsfromNorderney.Environ.Pollut.186,248–256.(doi:10.1016/j.envpol.2013.11.019)

30

DellaTorre,C.,Bergami,E.,Salvati,A.Faleri,C.,Cirino,P.,Dawson,K.A.,Corsi,I2014.AccumulationandembryotoxicityofpolystyrenenanoparticlesatearlystageofdevelopmentofseaurchinembryosParacentrotuslividus.Environ.Sci.Technol.48,12302–12311.(doi:10.1021/es502569w)Driedger,A.G.J.,Dürr,H.H.,Mitchell,K.,VanCappellen,P.,2015.PlasticdebrisintheLaurentianGreatLakes:Areview.J.GreatLakesRes.41,9–19.(doi:10.1016/j.jglr.2014.12.020)Ebbesmeyer,C.,Scigliano,E.2009.FlotsametricsandtheFloatingWorld:HowOneMan'sObsessionwithRunawaySneakersandRubberDucksRevolutionizedOceanScience.London:Collins.pp.304ISBN9780061558412.Edgeworth,M.,Richter,D.DeB.,Waters,C.N.,Haff,P,Neal,C.,Price,S.J.2015.DiachronousbeginningsoftheAnthropocene:Thelowerboundingsurfaceofanthropogenicdeposits.AnthropoceneRev.2(1),1–26.(doi:10.1177/2053019614565394)Eerkes‐Medrano,D.,Thompson,R.C.,Aldridge,D.C.(2015online)Microplasticsinfreshwatersystems:areviewoftheemergingthreats,identificationofknowledgegapsandprioritisationofresearchneeds.WaterRes..(doi:10.1016/j.watres.2015.02.012).Eriksen,M.,Masin,S.,Wilson,S.,Box,C.,Zellers,A.,Edwards,W.,Farley,H.,Amato,S.,2013.MicroplasticpollutioninsurfacewatersoftheLaurentianGreatLakes.Mar.Pollut.Bull.77,177–182.(doi:10.1016/j.marpolbul.2013.10.007)EriksenM.,Lebreton,L.C.M.,Carson,H.S.Thiel,M.,Moore,C.J.,Borerro,J.C.Galgani,F.,Ryan,P.G.,Reisser,J.,2014.Plasticpollutionintheworld’soceans:Morethan5trillionpiecesweighingover250000tonsafloatatsea.PlosONE9(12):e111913.(doi:10.1371/journal.pone.0111913).Fischer,V.,Elsner,N.O.,Brenke,N.,Schwabe,E.,Brandt,A.,2015.PlasticpollutionoftheKuril–KamchatkaTrencharea(NWpacific).DeepSeaRes.,PartII,111,399–405.Ford, J.R., Price, S.J., Cooper, A.H., Waters, C.N., 2014. An assessment oflithostratigraphy for anthropogenic deposits. In: Waters, C.N., Zalasiewicz, J.,Williams, M., Ellis, M.A., Snelling, A. (Eds.), A Stratigraphical Basis for theAnthropocene.Geol.Soc.,Lond.,Spec.Publ.395,55–89.(doi:10.1144/SP395.12)Free,C.M.,Jensen,O.P.,Mason,S.A.,Eriksen,M.,Williamson,N.J.,Boldgiv,B.,2014.Highlevelsofmicroplasticpollutioninalarge,remote,mountainlake.Mar.Pollut.Bull.85,156–163.Goldberg,E.D.,1997.Plasticizingtheseafloor:Anoverview:Environ.Technol.18,195–201.(doi:10.1080/09593331808616527).

31

Gregory,M.R.2009.Environmentalimplicationsofplasticdebrisinmarinesettings:Entanglement,ingestion,smothering,hanger‐on,hitch‐hikingandalieninvasions:Philos.Trans.R.Soc.3642013‐2025.(doi:10.1098/rstb.2008.0265).Gregory,M.R.,Andrady,A.L.,2003.Plasticsinthemarineenvironment.In:Andrady,A.L.(Ed)PlasticsandtheEnvironment.NewJersey:Wiley&Sonsp.379–401.Gruber,N.,2011.Warmingup,turningsour,losingbreath:oceanbiogeochemistryunderglobalchange.Philos.Trans.R.Soc.A369,1980–1996.Hancock,G.J.,Tims,S.G.,Fifield,L.K.,Webster,I.T.,2014.TheReleaseandPersistenceofRadioactiveAnthropogenicNuclides.In:Waters,C.N.,Zalasiewicz,J.,andWilliams,M.,Ellis,M.A.,Snelling,A.(Eds.),AStratigraphicalBasisfortheAnthropocene.Geol.Soc.,Lond.,Spec.Publ.395,265–281.(doi:10.1144/SP395.15)Harshvardhan,K.,Jha,B.2013.Biodegradationoflow‐densitypolyethylenebymarinebacteriafrompelagicwaters,ArabianSea,India.Mar.Pollut.Bull.77,100–106.(doi:10.1016/j.marpolbul.2013.10.025)Harper,P.C.,Fowler,J.A.,1987.PlasticpelletsinNewZealandstorm‐killedprions(Pachyptilaspp.)1958−1998.Notornis34,65–70.Hidalgo‐RuzVandThielM(2013)DistributionandabundanceofsmallplasticdebrisonbeachesintheSEPacific(Chile):Astudysupportedbyacitizenscienceproject.Mar.Environ.Res.87,12–18.(doi:10.1016/j.marenvres.2013.02.015)Hoffmann,G.,Reicherter,K.2014.ReconstructingAnthropoceneextremefloodeventsbyusinglitterdeposits.GlobalPlanet.Change123,22–28.(doi:10.1016/j.gloplacha.2014.07.012).Hohn,D.,2011,MobyDuck.UnionBooks,AurumPress,London,402pp.Hong,S.,Lee,J.,Kang,D.,Choi,H‐K,Ko,S‐H.,2014.Quantities,compositionandsourcesofbeachdebrisinKoreafromtheresultsofnationwidemonitoring.Mar.Pollut.Bull.84,27–34.(doi:10.1016/j.marpolbul.2014.05.051)Hussain,I.Hamid,H.2003.Plasticsinagriculture.In:Andrady,A,L,(Ed.)Plasticsandtheenvironment.Wiley,Hoboken,pp185–209.Imhof,H.K.,Ivleva,N.P.,Schmid,J.,Niessner,R.,Laforsch,C.,2013.Contaminationofbeachsedimentsofasubalpinelakewithmicroplasticparticles. Curr.Biol.23,R867–R868.Irabien,M.J.,García‐Artola,A.,Cearreta,A.,Leorri,E.2015.ChemostratigraphicandlithostratigraphicsignaturesoftheAnthropoceneinestuarineareasfrom

32

theeasternCantabriancoast(N.Spain).Quatern.Int.364,196–205.(doi:10.1016/j.quaint.2014.08.056)Isobe,A.,Kubo,K.,Tamura,Y.,Kako,S.,Nakashima,E.,Fujii,N.,2014.Selectivetransportofmicroplasticsandmesoplasticsbydriftingincoastalwaters.Mar.Pollut.Bull.89,324–330.(doi:10.1016/j.marpolbul.2014.09.041)IvardoSul,J.A.,Costa,M.F.,2014.Thepresentandfutureofmicroplasticpollutioninthemarineenvironment.Environ.Pollut.185,352–364.(doi:10.1016/j.envpol.2013.10.036)IvardoSul,J.A.,Spengler,A.,Costa,M.,2009.Here,thereandeverywhere.SmallplasticfragmentsandpelletsonbeachesofFernandodeNoronha(EquatorialWesternAtlantic).Mar.Pollut.Bull.58,1229–1244.IvardoSul,J.A.,Costa,M.F.,Silva‐Cavalcanti,J.,Araújo,M.C.B.,2014.Plasticdebrisretentionandexportationbyamangroveforestpatch.Mar.Pollut.Bull.78,252–257.(doi:10.1016/j.marpolbul.2013.11.011)Jambeck,J.R.,Geyer,R.,Wilcox,C.,Siegler,T.R.,Perryman,M.,Andrady,A.,Narayan,R,Law,K.L.2015.Plasticwasteinputsfromlandintotheocean.Science347,768–771.(doi:10.1126/science.1260352)Jang.Y.C.,Lee,J.,Hong,S.,Lee,J.S.,Shim,W.J.,Song,Y.K.2014.SourcesofplasticmarinedebrisonbeachesofKorea:Morefromtheoceanthantheland.OceanSci.J.49(2),151–162.(doi:10.1007/s12601‐014‐0015‐8)Kasirajan,S.,Ngouajio,M.,2012.Polyethyleneandbiodegradablemulchesforagriculturalapplications:areview.Agron.Sustain.Dev.32(2):501–529.(doi:10.1007/s13593‐011‐0068‐3)Kay,D.,Blond,E.,2005.Aguidetoassessthedurabilityof‘plastic’materialsusedincivilengineering.6thTransportationSpecialityConference,Toronto,CanadaJune2‐4,2005:TR‐189‐1−12.Keeling,R.F.,Kortzinger,A.,Gruber,N.2010.Oceandeoxygenationinawarmingworld.AnnualReviewofMarineScience2,199–229.(doi:10.1146/annurev.marine.010908.163855)Kenyon,K.W.,Kridler,E.,1969.Laysonalbatrossswallowindigestiblematter.Auk86,339–343.Khordagui,H.K.,Abu‐Hilal,A.H.,1994.IndustrialplasticonthesouthernbeachesoftheArabianGulfandthewesternbeachesoftheGulfofOman.Environ.Pollut.84(3),325–327.(doi:10.1016/0269‐7491(94)90143‐0)Kusui,T.Noda,M.,2003.InternationalsurveyonthedistributionofstrandedandburiedlitteronbeachesalongtheSeaofJapan.Mar.Pollut.Bull.47,175–179.(doi:10.1016/S0025‐326X(02)00478‐2)

33

Law,K.L.,Moret‐Ferguson,S.E.,Goodwin,D.S.,Zettler,E.R.,DeForce,E.,Kukulka,T.,Proskurowski,G.,2014.DistributionofsurfaceplasticdebrisintheEasternPacificOceanfroman11‐yeardataset.Environ.Sci.Technol.48,4732−4738.(doi:10.1021/es4053076)Lechner,A.,Keckeis,H.,Lumesberger‐Loisl,F.,Zens,B.,2014.TheDanubesocolourful:apotpourriofplasticlitteroutnumbersfishlarvaeinEurope'ssecondlargestriver.Environ.Pollut.188,177‐181.Leinfelder,R.inpress.Ozeane.In:Kersten,J.(Ed.)Inwastement.AbfallinUmweltundGesellschaft.Transcript‐Verlag,Bielefeld,ca.270pp.Lobelle,D.,Cunliffe,M.,2011.Earlymicrobialbiofilmformationonmarineplasticdebris.Mar.Poll.Bull.62,197–200.(doi:10.1016/j.marpolbul.2010.10.013)McCormick,A.,Hoellin,T.J.,Mason,S.A.,Schluep,J.,Kelly,J.J.2014.Microplasticisanabundantanddistinctmicrobialhabitatinanurbanriver.Environ..Sci..Technol.48,11863–11871.(doi:10.1021/es503610r)McDermid,K,J,,McMullen,T.L.,2004.Quantitativeanalysisofsmall‐plasticdebrisonbeachesintheHawaiianarchipelago.Mar.Pollut.Bull.48(7),790–794.(doi:10.1016/j.marpolbul.2003.10.017)Moore,C.J.,Moore,S.L.,Leecaster,M.K.,Weisberg,S.B.,2001.AComparisonofPlasticandPlanktonintheNorthPacificCentralGyre.Mar.Pollut.Bull.42(12),1297–300.(doi:10.1016/S0025‐326X(01)00114‐X)Morritt,D.,Stefanoudis,P.V.,Pearce,D.Crimmen,O.A.,Clark,P.F.2014.PlasticintheThames:ariverrunsthroughit.Mar.Pollut.Bull.78,196–200.(doi:10.1016/j.marpolbul.2013.10.035)Muir,D.G.G.,Rose,N.L.,2007.PersistentorganicpollutantsinthesedimentsofLochnagar.In:Rose,N.L.(Ed.)Lochnagar,theNaturalHistoryofamountainlake.DevelopmentsinPaleoenvironmentalResearch12,375–402.Springer,Dordecht,TheNetherlands.Ng,K.L.,Obbard,J.P.,2006.PrevalenceofmicroplasticsinSingapore’scoastalmarineenvironment.Mar.Pollut.Bull.52,761–767.(doi:10.1016/j.marpolbul.2005.11.017)Nuelle,M‐T.,Dekiff,J.H.,Remy,D.,Fries,E.,2014.Anewanalyticalapproachformonitoringmicroplasticsinmarinesediments.Environ.Pollut.184,161–169.(doi:10.1016/j.envpol.2013.07.027)Obbard,R.W.,Sadri,S.,Wong,Y.Q.,Khitun,A.A.,Baker,I.,Thompson,R.C.,2014.GlobalwarmingreleasesmicroplasticlegacyfrozeninArcticSeaice.Earth'sFuture2,315‐320.

34

Pham,C.K.,Ramirez‐Llodra.,E.Alt,C.H.S.,Amaro,T.,Bergmann,M.,Canals,M.,Company,J.B.,Davies,J.,Duineveld,G.,Galgani,F.,Howell,K.L.,Huvenne,V.A.I.,Isidro,E.,Jones,D.O.B.,Lastras,G.,Morato,T.,Gomes‐Pereira,J.N.,Purser,A.,Stewart,H.,Tojeira,I.,Tubau,X.,Rooij,D.V.,TylerP.A..2014.MarinelitterdensityanddistributioninEuropeanseas,fromshelvestodeepbasins.PLoSONE9(4):e95839.(doi:10.1371/journal.pone.0095839)PlasticsEurope(2013)Plastics—thefacts2013:AnanalysisofEuropeanlatestplasticsproduction,demandandwastedata.Available:www.plasticseurope.de/cust/documentrequest.aspx?DocID559179.PlasticsEurope(2015)Plastics—thefacts2014/2015:AnanalysisofEuropeanlatestplasticsproduction,demandandwastedata.Available:http://www.plasticseurope.de/cust/documentrequest.aspx?DocID=62506.

Ramirez‐Llodra,E.,Tyler,P.A.,Baker,M.C.,Bergstad,O.A.,Clark,M.R.,Escobar,E.,Levin,L.A.,Menot,L.,Rowden,A.A.,Smith,C.R.,VanDoverC.L.,2011.Manandthelastgreatwilderness:humanimpactonthedeepsea.PLoSONE6,e22588.(doi:10.1371/journal.pone.0022588)Rathje,W.Murphy,C.,1992.Rubbish!TheArchaeologyofGarbage.HarperCollins,NewYork,250pp.Reed,C.,2015.DawnofthePlasticeneage.NewScientist225(3006,31January2015),28–32.(doi:10.1016/S0262‐4079(15)60215‐9)Reis,L.,2014.Occurrenceofmacro‐andmicroplasticsinsedimentsfromFehmarm.BSc.Thesis,FreieUniversität,Berlin.Richards,Z.T.,Beger,M.2011.Aquantificationofthestandingstockofmacro‐debrisinMajurolagoonanditseffectonhardcoralcommunities.Mar.Pollut.Bull.62,1693–1701.(doi:10.1016/j.marpolbul.2011.06.003)Rillig,M.C.,2012.Microplasticinterrestrialecosystemsandthesoil?Environ.Sci.Technol.46,6453–6454.(doi:10.1021/es302011r)Rochman,C.,Browne,M.A.,Halpern,B.Hentschel,B.T..Hoh,E.,Karapanagioti,H.K..Rios‐Mendoza,L.M..Takada,H.,Teh,S.,Thompson,R.C..2013.Classifyplasticwasteashazardous.Nature494,169–171.Rose,N.L.2015.SpheroidalcarbonaceousflyashparticlesprovideagloballysynchronousstratigraphicmarkerfortheAnthropocene.Environ.Sci.Technol.49(7),4155–4162.(doi:10.1021/acs.est.5b00543).Ryan,P.G.,Moore,C.J.,vanFraneker,J.A.,Moloney,C.L.,2009.Monitoringtheabundanceofplasticdebrisinthemarineenvironment.Philos.Trans.R.Soc.B364:1999–2012.(doi:10.1098/rstb.2008.0207)

35

Sadri,S.S.,Thompson,R.C.,2014.OnthequantityandcompositionoffloatingplasticdebrisenteringandleavingtheTamarEstuary,SouthwestEngland.Mar.Pollut.Bull.81,55–60.(doi:10.1016/j.marpolbul.2014.02.020)Schlining,K.,vonThun,S.,Kuhnz,L.Schlining,B.,Lundsten,L.,Stout,N.J.,Chaney,L.,Connor,J.2013.Debrisinthedeep:Usinga22‐yearvideoannotationdatabasetosurveymarinelitterinMontereyCanyon,centralCalifornia,USA.Deep‐SeaResearchPartI:OceanResearchPaper79,96–105.(doi:10.1016/j.dsr.2013.05.006)Setälä,O.,Fleming‐Lehtinen,V.Lehtiniemi,M.2014.Ingestionandtransferofmicroplasticsintheplanktonicfoodweb.Environ.Pollut.185,77–83.(doi:10.1016/j.envpol.2013.10.013)Shah,A.A..,Hasan,F.,Hameed,A.,Ahmed,S.,2008.Biologicaldegradationofplastics:Acomprehensivereview.Biotechnol.Adv.26,246–265.(doi:10.1016/j.biotechadv.2007.12.005).Smith,S.D.A.,Markic,A.2013.EstimatesofMarineDebrisAccumulationonBeachesAreStronglyAffectedbytheTemporalScaleofSampling.PlosOne8,1–6.(doi:10.1371/journal.pone.0083694)Steffen,W.,Crutzen,P.J.,McNeill,J.R.2007.TheAnthropocene:AreHumansNowOverwhelming the Great Forces of Nature? Ambio, 36, 614–621. (doi:http://dx.doi.org/10.1579/0044‐7447(2007)36[614:TAAHNO]2.0.CO;2)Steffen,W.,Broadgate,W.,Deutsch,L.Gaffney,O.,Ludwig,C.,2015.Thetrajectoryof the Anthropocene: the Great Acceleration. AnthropoceneRev. 2 (1), 81–98.(doi:10.1177/2053019614564785)Swindles,G.T.,Watson,E.,Turner,T.E.,Galloway,J.M.,Hadlari,T.,Wheeler,J.,Bacon,K.L.,2015.SpheroidalcarbonaceousparticlesareadefiningstratigraphicmarkerfortheAnthropocene.NatureScientificReports.(doi:10.1038/srep10264)Tansel,B.Yildiz,B.S.2011.Goal‐basedwastemanagementstrategytoreducepersistenceofcontaminantsinleachateatmunicipalsolidwastelandfills.Environ.Dev.Sustain.13,821–831.(doi:10.1007/s10668‐011‐9290‐z)Thompson,R.C.,Olsen,Y.,Mitchell,R.P.,Davis,A.,Rowland,S.J.,John,A.W.G.,McGonigle,D.,Russell,A.E.2004.Lostatsea:whereisalltheplastic?Science304,838.(doi:10.1126/science.1094559)Thompson,R.C.,Moore,C.,vomSaal,F.S.,Swan,S.H.,2009.Plastics,theenvironmentandhumanhealth:currentconsensusandfuturetrends.Philos.Trans.R.Soc.B364,2153–2166.(doi:10.1098/rstb.2009.0053)Tubau,X.,Canals,M.,Lastras,G.andRayo,X.,2015.MarinelitteronthefloorofdeepsubmarinecanyonsoftheNorthwesternMediterraneanSea:Theroleof

36

hydrodynamicprocesses.ProgressinOceanography,134,379–403.Tully,J.2009.AVictorianEcologicalDisaster:Imperialism,theTelegraph,andGutta‐Percha,J.WorldHist.20(4),559–579.(doi:10.1353/jwh.0.0088)Turner,A.Holmes,L.2011.Occurrence,distributionandcharacteristicsofbeachedplasticproductionpelletsontheislandofMalta(centralMediterranean).Mar.Pollut.Bull.62(2),377–381.(doi:10.1016/j.marpolbul.2010.09.027)Turra,A.,Manzano,A.B.,Dias,R.J.S.,Mahiques,M.M.,Barbosa,L.,Balthazar‐Silva,D.,Moreira,F.T.,2014.Three‐dimensionaldistributionofplasticpelletsinsandybeaches:shiftingparadigms.ScientificReports4,4435.(doi:10.1038/srep044351)VanCauwenberghe,L.,Vanreusel,A.,Mees,J.,Janssen,C.R.,2013.Microplasticpollutionindeep‐seasediments.Environ.Pollut.182,495–499.Velzboer,I.,Kwadijk,C.J.A.F.,Koelmans,A.A.2014.StrongsorptionofPCBstonanoplastics,microplastics,carbontubules,andfullerenes.Environ.Sci.Technol.48:4869–4876.(doi:10.1021/es405721v)

Waters,C.N.,Zalasiewicz,J.,Williams,M.,Ellis,M.A.,Snelling,A.(Eds.),2014.AStratigraphicalBasisfortheAnthropocene.Geol.Soc.,Lond.,Spec.Publ.395,pp.321.

Waters,C.N.,Syvitski,J.P.M.,Gałuszka,A.Hancock,G.J.,Zalasiewicz,J.,Cearreta,A.,Grinevald,J.,Jeandel,C.,McNeill,J.R.,Summerhayes,C.,Barnosky,A.(2015)CannuclearweaponsfalloutmarkthebeginningoftheAnthropoceneEpoch?B.Atom.Sci.71,46–57.(doi:10.1177/0096340215581357)Watters,D.L.,Yoklavich,M.M.Love,M.S.,Schroeder,D.M.,2010.AssessingmarinedebrisindeepseafloorhabitatsoffCalifornia.Mar.Pollut.Bull.60:131–138.(doi:10.1016/j.marpolbul.2009.08.019)Wilkinson,I.P.,Poirier,C.,Head,M.J.,Sayer,C.D.,Tibby,J.,2014.MicropalaeontologicalsignaturesoftheAnthropocene.In:WatersCN,ZalasiewiczJ,WilliamsMEllis,M.A.,Snelling,A.(Eds.)AStratigraphicalBasisfortheAnthropocene.Geol.Soc.,Lond.,Spec.Publ.,395,185–219.(doi:10.1144/SP395.14)Williams,A.T.,Simmons,S.L.1996.Thedegradationofplasticlitterinrivers:implicationsforbeaches.J.CoastalConserv.2:63–72.(doi:10.1007/BF02743038)Williams,M.,Zalasiewicz,J.,Haywood,A.,Ellis,M.2011.TheAnthropocene:anewepochofgeologicaltime.Thematicsetof13papersinthePhilos.Trans.R.Soc.,Lond.,SeriesA369:833–1112.

37

Woodall,L.C.,Sanchez‐Vidal,A,Canals,M.GordonL.J.Paterson,RachelCoppock,VictoriaSleight,AntonioCalafat,AlexD.Rogers,BhavaniE.Narayanaswamy,RichardC.Thompson.(2014)Thedeepseaisamajorsinkformicroplasticdebris.RoyalSocietyOpenScience1:140317.(DOI:10.1098/rsos.140317)Yang,J.,Yang,Y.,Wu,W.M.,Zhao,J,Jiang,L.2014.Evidenceofpolyethylenebiodegradationbybacterialstrainsfromthegutsofplastic‐eatingwaxworms.Environ.Sci.Technol.48(23),13776–13784.Zalasiewicz,J.Smith,A.,Hounslow,M.,Williams,M.,Gale,A.,Powell,J.,Waters,C.,Barry,T.L.,Bown,P.R.,Brenchley,P.,Cantrill,D.,Gibbard,P.,Gregory,F.J.,Knox,R.,Marshall,J.,Oates,M.,Rawson,P.,Stone,P.,Trewin,N.,2007.Thescale‐dependenceofstrata‐timerelations:implicationsforstratigraphicclassification.Stratigraphy4,139–144.Zalasiewicz,J.,Williams,M.,Smith,A.,Barry,T.L.,Coe,A.L.,Bown,P.R.,Brenchley,P.,Cantrill,D.,Gale,A.,Gibbard,P.,Gregory,F.J.,Hounslow,M.,Kerr,A.C.,Pearson,P.,Knox,R.,Powell,J.,Waters,C.,Marshall,J.,Oates,M.,Rawson,P.,Stone,P.,2008.ArewenowlivingintheAnthropocene?Geol.Soc.Am.Today18,4–8.(doi:10.1130/GSAT01802A.1)Zalasiewicz,J.,Williams,M.,Waters,C.N.,Barnosky,A.D.,Haff,P.,2014.Thetechnofossilrecordofhumans.AnthropoceneRev.1,34–43.(doi:10.1177/2053019613514953)ZalasiewiczJ.,Waters,C.N.,Williams,M.,Barnosky,A.D.,Cearreta,A.,Crutzen,P.,Ellis,E.,Ellis,M.A.,Fairchild,I.J.,Grinevald,J.,Haff,P.K.,Hajdas,I.,Leinfelder,R.,McNeill,J.R.,Odada,E.O.,Poirier,C.,Richter,D.,Steffen,W.,Summerhayes,C.,Syvitski,J.P.M.,Vidas,D.,Wagreich,M.,Wing,S.L.,Wolfe,A.P.,ZhishengAn,Oreskes,N.(2015online)WhendidtheAnthropocenebegin?Amid‐twentiethcenturyboundaryisstratigraphicallyoptimal.Quatern.Int.. (doi:10.1016/j.quaint.2014.11.045).Zbyszewski,M.,Corcoran,P.L.,Hockin,A.,2014.ComparisonofthedistributionanddegradationofplasticdebrisalongtheshorelinesoftheGreatLakes,NorthAmerica.J.Gt.LakesRes.40,288‐299.Zettler,E.R.,Mincer,T.J.,Amaral‐Zettler,L.A.,2013.Lifeinthe“Plastisphere”:Microbialcommunitiesonplasticmarinedebris.Environ.Sci.Technol.47,7137−7146.(doi:10.1021/es401288x)Zhao,S.,Zhu,L.,Wang,T.,Li,D.2014.SuspendedmicroplasticsinthesurfacewateroftheYangtzeestuarysystem,China:firstobservationsonoccurrence,distribution.Mar.Pollut.Bull.86,562–568.(doi:10.1016/j.marpolbul.2014.06.032)