The Flow Field Upstream of a Horizontal Axis Wind Turbine

download The Flow Field Upstream of a Horizontal Axis Wind Turbine

of 97

Transcript of The Flow Field Upstream of a Horizontal Axis Wind Turbine

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    1/97

    University of Massachuses - Amherst

    ScholarWorks@UMass Amherst

     Wind Energy Center Reports UMass Wind Energy Center

    1979

    e Flow Field Upstream Of A Horizontal Axis Wind Turbine

    K. Modarresi

    R. H. Kirchho 

    Follow this and additional works at: hp://scholarworks.umass.edu/windenergy_report

    Part of the Mechanical Engineering Commons

    is Article is brought to you for free and open access by the UMass Wind Energy Center at ScholarWorks@UMass Amherst. It has been accepted for

    inclusion in Wind Energy Center Reports by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact

    [email protected].

    Modarresi, K. and Kirchho, R . H., "e Flow Field Upstream Of A Horizontal Axis Wind Turbine" (1979).Wind Energy Center Reports. Paper 10.hp://scholarworks.umass.edu/windenergy_report/10

    http://scholarworks.umass.edu/?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]://scholarworks.umass.edu/windenergy_report/10?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]://scholarworks.umass.edu/windenergy_report/10?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    2/97

    THE FLOW FIELD UPSTREAM OF

    A HORIZONTAL AXIS WIND TURBINE

    T echn i ca l Repor t

    by

    K

    Mod arresi and R.H. K i rc hh of f

    Energy A1 te rn a t i v e s Program

    Un i v e r s i t y o f Massachuset ts

    Amherst, Mas sach usetts 01003

    June 1979

    Prepared f o r t he Un i t ed S ta te s Departmen t o f Energy and Rockwe ll

    I n t e rn a t i o na l Rocky F l a t s P l a n t under Co n t rac t PF67025F.

    Th is re p o r t was prepared t o document work sponsored by t he Un i ted

    S t a t e s Government. N e i t h e r t h e U n i t e d S t a t e s n o r i t s a g e n t t h e

    Depar tment o f Energy , no r any Federa l employees, n or any o f t h e i r

    co nt r ac tor s , subco nt rac tors , o r t h e i r employees, make any war ran ty ,

    exp ress o r i mp l i ed ,

    or assume any legal 1 a b i l i t y o r r e s p o n s ib i l t y

    fo r the accuracy , completeness, o r use fu ln ess o f any in forma t ion,

    a p pa ra tu s, p r o d u ct o r p r oc e ss d is c l o se d , o r r e p r e s e n t t h a t i t s us e

    woul

    d

    n o t i n f r i n g e p r i v a t e l y owned r i g h t s .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    3/97

    ABSTRACT

    A m a t h e m at i c al m odel i s d ev e lo p ed f o r a s t e a d y - s t a t e a x i - s y m m e t r i c

    u pst re am f l o w o f a po ro us d is c i n a u n if o r m f l o w f i e l d . The s p ec i a l

    c as e o f t h e u ps tr ea m f l o w o f a w i n d m i l l w i t h a nd w i t h o u t a n a c e l l e i s

    t r e at e d . F i r s t t h e w i n d m i l l i s c o ns id e re d a s a u n i fo r m d i s t r i b u t i o n

    o f s ou rc es a nd th en a s a 1 n e a r d i s t r i b u t i o n o f s ou rc es . S o l u t i o n s f o r

    t h e b l a d e d i s c o f t h e w in d f i e l d u pstream a r e o b t ai ne d i n t h e f o r m o f

    s t r e a m1 n e s a n d v e lo c i t y v e c to r c o mp o n e n ts .

    Sample f l o w p a t t e r n s u p s t re a m o f t h e b l a d e d i s c o f t h e UMass

    25

    k

    w i n d t u r b i n e a r e p r e s e n t e d f o r s e v e r a l p owe r l e v e l s . Docum ented

    c o mpu ter p rog ra ms a p p l i c a b le t o a n y w in d t u r b i n e a re a pp en de d.

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    4/97

    TABLE OF COIVTEIVTS

    BSTRACT

    NTRODUCTION 1

    HEORETICAL ANALYSIS 2

    I n t r o d u c t i o n t o t h e M o d el in g I d ea

    2

    o t e n t i a l o f a S ource a t an A r b i t r a r y P o i n t 4

    od el f o r t h e Bod y o f a W in d m i l l

    o t e n t i a l o f t h e D i s t r i b u t e d Di sc o f S ou rc es

    I n t r o d u c t i o n

    5

    U n i f or m l y d i s t r i b u t e d d i s c o f s ou rc es

    7

    L i n e a r l y d i s t r i b u t e d d i s c o f so urc es

    8

    Sumnary 15

    S u p er p os i ti o n o f t h e P o t e n t i a l s 6

    V e l o c i t y F i e l d 7

    enera l Not e 17

    U n i fo r m d i s t r i b u t i o n o f s o ur ce s

    8

    L i n e a r l y d i s t r i b u t e d c as e 2

    U n i f o rm f l o w 3

    i n g l e s ou rc e a t t h e p o s i t i o n r

    23

    Remarks 3

    S t r e a m l in e c o n s t r u c t i o n 4

    App ly ing the one d imens iona l momentum theory

    t o t h e w i n d m i l l s 6

    RESULTS 9

    REFERENCES 2

    PPENDICES 33

    IGURES 76

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    5/97

    INTRODUCTION

    The p r ob l em of t h e e x a c t s o l u t i o n o f t h e f l o w t h r o u g h a p o ro u s d i s c

    has been o f i n t e r e s t s i n ce t h e o r i g i n a l w or ks o f G I T a y l o r [I].

    T h i s s o l u t i o n c a n have tw o m a j o r a p p l i c a t i o n s :

    a )

    F lo w th ro u g h s c re e n s p o w er a b s o rb in g d e v i c e s )

    b )

    F low th ro u g h p ow er d e v e lo p in g d e v i c e s .

    The f i r s t p o i n t o f v i e w h as t o d o w i t h p or ou s b o d ie s w hi ch h ave been

    o f p r a c t i c a l i m p o rt a n c e i n t h e p a s t . M os t o f t h es e b o di e s, w h i c h

    a r e l i k e pa ra ch ute s, f i s h ne t s, w in d b re ak s, s l o t t e d i n j e c t i o n d i s c s

    i n o i l c o m bu st io n cham bers, a n d f i r e d ev el op me nt s i n f o r e s t , c an b e

    model ed by a screen.

    The s econd p o i n t o f v i e w c o n s id e r ed i n t h i s wo rk d e a l s w i t h

    the w ind power deve lop ing mach ines .

    These dev ices can be modeled

    b y a v e r y p o ro us d i s c i n t h e wi n d f i e 1 d.

    The f i r s t c om pr eh en si ve a n a l y s i s o f f l o w t h r o u g h s c re e ns was

    c a r r i e d o u t b y T a y l o r a n d B a t c h e l o r 1 94 9) ,

    [I] 2 j .

    T h e y w e r e i n t e r -

    e s t e d i n t h e e f f e c t of t h e s c re en on t h e t ur b u le n c e , a nd t h e r e f o r e

    t h e i r s t u d y was o r i e n t e d to w ar d s t h e n o n - u n i fo r m ch a nn e l f l o w , p a s s i n g

    t h r o u g h a f l a t s cr ee n. I n 1 959 , E l d e r c o n s i d e r e d t h e m or e g e n e ra l

    c as e o f a n i r r e g u l a r - s h a p e d a n d n o n - un i f or m s c re e n

    i n a t w o d i m e n s io n a l

    c h a n n e l f l o w [ 3 ] .

    The p ro b le m of a f i n i t e p l a n e sc re en i n a n

    i n f i n i t e f l o w f i e l d

    was f i r s t c o n s i d e r e d b y ~ l c h e m a n n n d Weber 1 95 3 ) [ 4 ].

    L a te r , i n

    1 96 3, T a y l o r c o n s id e re d t h e p ro b le m i n a tw o -dime n s io n a l c a s e [5 ].

    T h i s was done b y r e p l a c i n g t h e s c re en w i t h u n i f o r m l y - d i s t r i b u t e d s ou rc es .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    6/97

    2

    F i n a l l y

    Koo and James co ns id e re d th e more gen era l case o f the two-

    d imens iona l f l o w a round a submerged sc reen [ 2 ] .

    F o l l o w i n g t h e i d e a o f m o d e l i n g a ny w in d m a ch in e by t h e c o m b i n a t i o n o f

    s ou rc es s i n k s o r v o r t i c l e s t was p ro po s e d t h a t a w i n d m i l 1

    can be

    modeled by a porous screen.

    T h i s wo rk was o r i e n t e d t o w a rd s s o l v i n g

    t h e p r o b le m o f a th r e e - d i m e n s i o n a l p o ro u s d i s c i n a s t e a d y - s t a t e

    a x i -

    s ym m e tr ic u n i f o r m f l o w . The s c re e n was m od ele d b y a d i s t r i b u t i o n o f

    s o u rc e s an d t h e p ro b l e m was d i v i d e d i n t o two c a s e s.

    F i r s t t h e s im p le

    c as e o f m o d e li ng t h e w i n d m i l l b y a u n i f o r m l y - d i s t r i b u t e d d i s c o f s ou rc e s.

    Second a m ore r e a l i s t i c m odel was c o n s id e r e d . T a k i ng i n t o c o n s i d e r a t i o n

    t h e f a c t t h a t t h e d eve lo pm en t o f p ower i s h i g h e r i n t h e o u t e r r e g i o n

    o f t h e w i n d m i l l b l a d es t h e b la d e d i s c was m od ele d by a l i n e a r l y - d i s t r i b u t e d

    d i s c o f so urc es . The e f f e c t o f a n a c e l l e and i t s r e l a t i v e o r i e n t a t i o n

    t o t h e b l a de d i s c was s t u d i e d i n b o t h c as es .

    The v e l o c i t y f i e l d a nd t h e s t r e a m l i n e s we re c o n s t r u c t e d f o r some

    n u m e ri ca l exam ples i n a s s o c i a t i o n w i t h t h e

    25

    kW w i n d m i l l a t t h e U n i v e r s i t y

    o f M a s sa c hu s et ts S o l a r H a b i t a t

    I

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    7/97

    THEORETICAL ANALYSIS

    I n t r o d u c t i o n t o h e M od el in g Id ea

    The w e ll -k n ow n i d e a o f m o d e l in g f l o w f i e l d s t h r o u gh a c o m b i n a ti o n

    o f i n d i v i d u a l f a c t o r s i s u sed i n o rd e r t o model a p o ro us d i s c a s a

    d i s t r i b u t i o n o f s ou rc es i n space w i t h i n a u n i f o rm f l o w f i e l d .

    J.K. Koo an d D.F. James

    [ 2 ]

    deve loped G

    I

    T a y l o r s [ 5 j i d ea o f

    m o d e l i n g a t w o -d i m e ns io n a l s c re e n b y a d i s t r i b u t i o n o f s o u rc e s, b y

    m odel i n g t h e s cre e n i n a d u c t . T h i s w ork i s o r i e n t e d t o f i n d a g e n er al

    s o l u t i o n f o r a t hr e e- d im e n s io n a l s cr ee n, u s i n g a d i s t r i b u t i o n o f s ou rc es

    on a d i s c , i n an a x i -s y m m e t r ic u n i f o r m f lo w .

    The d ev elo pm en t o f t h e b a s i c e q u a t i o n s i s b a se d on t h e f o l l o w i n g

    p ro ce du re : f i r s t , t h e p o t e n t i a l o f a s ou rc e l o c a te d a t an a r b i t r a r y

    p o i n t i n spa ce i s d e te rm in e d , s ec on d, b a se d on t h i s p o t e n t i a l , t h e

    c as es of a d i s c w i t h a u ni fo rm o r l i n e a r d i s t r i b u t i o n o f s o urc es a r e

    c o n s i d e re d an d t h e p o t e n t i a l on t h e a x i s o f t h e d i s c fo un de d, a nd t h i r d ,

    b a se d on t h e h a rm o ni c a nd m ore p a r t i c u l a r l y t h e s y ~ r ~ m e t r i cr o p e r t i e s

    of t h e p o t e n t i a l f u n c t i o n a nd t h e s o l u t i o n on t h e d i s c s a x i s by t h e

    use o f z on al h arm on ie s, t h e g e n er al s o l u t i o n o f t h e f u n c t i o n i s c o n s t ru c t e d .

    The model i s co m p l et e d b y t h e s u p e r p o s i t i o n o f a u n i f o r m f l o w

    on t h e p o t e n t i a l o f t h e d i s c .

    I n th e ca se o f m od e li ng a w in d m i l l , t h e e f f e c t o f t h e n a c e l l e

    on t h e d i s c s a x i s c an be m od ele d b y a s i n g l e s o u rc e, w h ic h ca n r e s u l t

    i n d i f f e r e n t bo dy shap es.

    The s o l u t i o n i s i n t he fo rm o f an i n f i n i t e s e r i es o f t he

    Legendre

    a nd A s s o c i a t e d L eg en d re p o l y n o m ia l s . The v e l o c i t y f i e l d a n d s t re a l il l i n e s

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    8/97

    a re con s t ruc ted by a computer p rogram, and w l l be de sc r ib ed l a t e r i n

    t h i s r e po r t.

    P o t e n t i a l o f a S ource a t an A r b i t r a r y P o i n t

    The p o t e n t i a l of a p o i n t so ur ce a t t h e o r i g i n c an be w r i t t e n a s

    [ ]:

    w here k i s t h e s ou rc e s t r e n g t h .

    The p o t e n t i a l a t a p o i n t o f a p o i n t s ource a t S i s : F i g . 1 )

    knowing

    t h e p o t e n t i a l i s :

    By u s i n g a c o o r d i n a t e t r a n s f o r m a t i o n a s shown i n F i g .

    2, t h e p o t e n t i a l

    c an be t ra n s f o r me d t o s p h e r i c a l

    c o o r d i n a t e a s :

    then,

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    9/97

     f h e so urc e i s

    i n y - z plane, where 8= 1112, then

    Model f o r th e Body o f a Windmi l l

    The n a c e l l e o f a w i n d m i l l ca n be ap p ro x im a te d a s a p a r a b o l i d o f

    r e v o l u t i o n . T h i s i s m od ele d b y a p o i n t s ou rc e i n a u n i f o r m f lo w

    [7].

    (See Fig.

    3).

    Tak ing rl and from t he geomet ry o f t he na ce l le , and assuming a

    t h e s ou rc e s t re n g t h k and i t s p o s i t i o n r an be found by:

    0

    T he re fo re , t h e p o t e n t i a l f o r t h e n a c e l l e i n a u n if o r m f l o w can be w r i t t e n

    as :

    P o t e n t i a l o f t h e D i s t r i b u t e d D is c of S ou rce s

    I n t r o d u c t i o n . The t o t a l p o t e n t i a l

    a

    o f d i s c s s ou rce s i s t h e s o l u t i o n

    2

    t o t h e L a p la c e E q ua t io n

    V

    = o ) , w i t h t h e a p p r o p r i a t e bo un da ry c o n d i t i o n s .

    S in ce t h e f l o w i s a x i- sy m m et ri c,

    t h a t i s , i nd ep en de nt o f a (See

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    10/97

    F i g . 2) t h e s o l u t i o n o f

    @ =

    0 ca n be w r i t t e n a s [ 8 ] :

    ~ o

    where: Pn(x) = L eg en dre P o ly no mia l o f t h e f i r s t k i n d an d n t h o rd e r.

    Knowing tha t on the x -ax is e i s z e ro a nd t h a t Pn ( 0 ) = 1

    [8];

    t h e

    s o l u t i o n o n t h e x - a x i s can b e w r i t t e n a s :

    Hence , t o de te rm ine An and Bn,

    t h e s o l u t i o n on t h e x - a x i s s h ou ld

    be found , expanded i n a power se r ie s o f

    r

    a n d t h e n e q u a t ed t o e q u a t i o n

    5).

    C on se qu en tly, t h e f i r s t s t e p i s t o f i n d t h e d i s c s s ou rc e p o t e n t i a l

    on t h e x - a x i s .

    C o ns id er a d i s c o f d i s t r i b u t e d s ou rc es w i t h t h e r a d i u s A and source

    s t r e n g t h p e r u n i t a re a k a s shown i n F i g . 4.

    The e lement o f a rea d

    i s equal t o

    p

    d v d p f o r :

    o <

    p

    A and

    <

    2 ~

    s in g e q ua t i on ( 2 ) t h e d i f f e r e n t i a l

    p o t e n t i a l a t any f i e l d

    p o i n t ( r ,0 ) can be w r i t t e n i n term s o f t h e d i f f e r e n t i a l so urce d i s t r i -

    b u t i o n . a s :

    T o g e t t h e s o l u t i o n o n t h e x - a x i s ,e q u a t i o n

    ( 6 )

    can be r e s t r i c t e d

    t o th e x -a xis , t h a t i s

    e =

    o. The d i f f e r e n t i a l p o t e n t i a l on t h e x - a x i s

    i s :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    11/97

    and,

    I n t e g r a t i o n o f e q u a t i o n 7 ) dep end s o n k . The prob lem can be d i v ided

    i n t o tw o c as es : a ) k i s c o n s ta n t o r a u n i f o r m l y - d i s t r ib u t e d s ou rc e d is c

    and b ) k i s l i n e a r i n o r a l i n e a r l y - d i s t r i b u t e d sou rce d i s c .

    U n i f or m l y d i s t r i b u t e d d l s c o f s o urc es .

    k c o n s t )

    1f k i s c o n s t a n t, e q u a t io n 7 ) ca n be i n t e g r a t e d a s:

    U s i ng a b i onom i a l

    expans i on

    t

    can be shown t h a t , f o r R s m a l l e r

    t h a n

    A

    a n d f o r R g r e a t e r t han A:

    n o

    T h e r e f o r e x i n e qu at io n 8 ) can be expanded as

    [9 ] :

    and

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    12/97

    The equating of equations

    1 1 )

    and 12 ) to equation 5 ) allows n

    and n to be determined for the general solution

    m

    This leads to :

    and

    Therefore, the general solution becomes:

    and for > A

    Linear ly d i s t r ibu ted d i s c o f sou rces .

    F o r a l i n e a r l y d i s t r i b u t e d d i s c

    of sources ,

    m where m i s a c o n st a nt .

    Hence equation 7 ) can be

    w r i t t e n a s

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    13/97

    and i n t e g r a t i o n o f t h i s e qu at io n w i l l

    h a v e t h e f o l l o w i n g f o r m

    I n o r d e r t o e x pa nd Qx i n a power s e r i e s o f R, t h e s pace i s d i v i d e d

    i n t o tw o r e g i o n s : S ee F i g .

    5 )

    a ) R < A

    b) R > A

    I n r e g i o n a ) , eac h p o i n t

    Q

    w h ic h i s i n s i d e a s ph er e o f r a d i u s

    A

    i s a f f e c t e d b y tw o k in d s o f so ur ce s : F i r s t , t h o s e whose d i s t a n c e f r o m

    t he o r i g i n p ) i s le s s th an R R adius o f P o i n t Q ) , t h a t i s p < R, and

    second, t hose w i t h

    p >

    R.

    T h e r e f o r e , f o r R

    < A,

    t h e p o t e n t i a l on t h e x - a x i s c an be w r i t t e n a s :

    where Q 1 i s t h e p o t e n t i a l o f t h e sourc es w i t h p <

    R

    pchanges f rom zero

    t o

    R

    and

    m p

    i s t h e p o t e n t i a l o f t h e so urc es w i t h

    r

    >

    R

    p

    changes f rom

    R

    t o A ).

    From equ at ion 15 ) , Q may be wr i t t e n as:

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    14/97

    where = p /R

    b i o n o m i a l e x p r e s s i o n c a n b e w r i t t e n a s :

    oe

    n

    =

    \ E

    n t

    o

    n

    I

    6

    where:

    U s i n g e q u a t i o n

    1 6 )

    i t

    i s o bv io us t h a t :

    U s in g t h i s ex pa ns io n i n e q u a ti o n 1 5A ) r e s u l t s i n :

    t h e r e f o r e ,

    Now s o l v i n g f o r

    m2

    e q u a t i o n 1 5 ) ca n be w r i t t e n a s:

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    15/97

    where, t =

    R P

    1 .

    U s i n g t h e b i n o m i a l

    ex pans ion s hown i n equa t i on 1 6 ) ,

    t

    can be

    shown tha t :

    C o n si de r i ng t h i s r e s u l t , e q u a t i o n 1 5 6) ca n be w r i t t e n a s :

    t he r e f o r e ;

    t

    was shown t h a t

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    16/97

    0 = a 1 @

    X 2

    or

    R A

    So th e comb ina t ion o f equa t ions 17 ) and 18 )

    w i l l

    r e s u l t i n

    mx

    f o r

    R < A t h a t i s :

    where, tl = R / A ) < 1

    R e ar ra ng in g t h i s f o rm ula r e s u l t s i n

    The f i r s t t h r e e te rm s o f t h e ex pa ns io n o f I n tl f o r t h e case o f

    tl 1 a r e

    S u b s t i t u t i o n o f t h i s i n m w i l l g i v e th e f i n a l r e s u l t o f

    m x

    f o r < A .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    17/97

    E q u at io n 1 9 ) shows th e p o t e n t i a l o f t h e x - a x i s f o r t h e l i n e a r l y -

    d i s t r i b u t e d d i s c o f s ou rc es when R

    A.

    F o r t h e o t h e r r e g i o n R

    >

    A),

    e q u a t i o n 1 5 ) c an b e w r i t t e n a s

    A

    f

    t = - 51 and t2= e q u a t i o n 1 5C ) c an be r e w r i t t e n a s :

    R R

    It

    was p r e v i o us l y shown t h a t

    Hence,

    A

    s i m p l e i n t e g r a t i o n r e s u l t s i n :

    E qu at io ns 1 9) and 2 0) a r e t h e p o t e n t i a l o f a l i n e a r l y - d i s t r i b u t e d

    d i s c o f s ou rc es o f r a d i u s

    A

    o n t h e x - a x is , f o r R s m a l l e r t h a n

    A

    and R

    g r e a t e r t h a n A, r e s p e c t i v e l y .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    18/97

    To f i n d t h e g e n er a l s o l u t i o n , a s was p o i n t e d o u t p r e v i o u s l y , t h e se

    e q u a t i o n s s h o u l d b e e q ua t ed t o e q u a t i o n 5 ) . The r e s u l t o f t h e co m p ar is o n

    d e te rm in e s

    n

    and Bn fo r bo th cases o f

    R

    >

    A, and

    R

    <

    A.

    C om pa ris on o f t h e e q u a t i o n 1 9 ) w i t h t h e e q u a t i o n 5 ) shows t h a t :

    C omp ar is on of t h e e q u a t i o n 20) w i t h t h e e q u a t io n 5 )

    shows the

    f o l 1o w i n g r e s u l t s

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    19/97

    where

    The gene ra l so lu t i on can be de te rmined by s u b s t i t u t i o n o f e qu at io ns

    2 1 ) and 2 2 ) i n e q u a t i o n 4 ) .

    The f o l l o w i n g r e s u l t s c an t h u s be d e r i v e d :

    For R < A

    And, f o r R

    > A

    where:

    =

    binomi l

    coefficients

    n

    Summary.

    As a c o n c l u s i o n t o p a r t f o u r , i t

    i s i m p o r ta n t t o make t h e

    f o l l o w i n g summary. The g e ne ra l s o l u t i o n t o t h e p o t e n t i a l o f a d i s c o f

    d i s t r i b u t e d s ou rc es of r a d i u s A and s o u rc e d e n s i t y p e r u n i t a r e a k has

    been found.

    The s o lu t i on has been de te rmined f o r two cases .

    The

    s o l u t i o n t o t h e u n if o rm d i s t r i b u t i o n o f s ourc es k

    =

    c o n s t . ) i s shown

    i n t h e e q u a t io n s 1 3 ) a nd 1 4 ) .

    F or t he l i n e a r d i s t r i b u t i o n o f s ou rc es

    k

    = m ~ ,

    h e p o t e n t i a l i s e s t a b l i s h e d i n e q ua t io n s 2 1 and 2 2 ).

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    20/97

    S u ~ e r ~ o s ii o n o f t h e P o t e n t ia l s

    To c o mp le t e t h e f l o w mod el f o r a p o ro u s d i s c and w i n d m i l 1 i n

    u n i f o r m f l o w , t h e n e c e s s a ry p o t e n t i a l s s h o u l d be su pe ri mp os ed .

    F o r t h e o p e r a t i n g e as e o f t h e p or ou s d i s c o r a w i n d m i l l

    w i t h o u t a

    n a c e l le , t h e p o t e n t i a l i s :

    @ = @ + @

    1 2

    where:

    = p o t e n t i a l o f t h e d i s c

    1

    @ =

    p o t e n t i a l o f t h e u n i fo r m f l o w

    2

    I n t h e case o f a w ndm i 11, t h e p o t e n t i a l

    c a n be w r i t t e n a s:

    where :

    @

    = p o t e n t i a l o f t h e d i s c

    1

    @

    = p o t e n t i a l o f t h e s i n g l e s ou rc e a t t h e p o s i t i o n r o n t h e

    2

    x - a x i s a s shown i n F i g . 3

    @ = p o t e n t i a l o f t h e u n i f o rm f l o w

    3

    @

    was e s t a b l i s h e d i n e q u a t io n s , 1 3 ), 1 4 ) , 2 1 a nd 2 2 ) .

    Q 2

    can be

    d e t er m i ne d f r o m e q u a t i o n s 1 a nd 3 ) a s f o l l o w s :

    I n t h i s case, r =

    E

    = 0. = r 2

    so

    Q

    c an b e w r i t t e n a s

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    21/97

    U sin g r e l a t i o n s I A ) ,

    P

    c an be t r a n s f o r m e d t o a s p h e r i c a l c o o r d i n a t e .

    z

    ca s e

    =

    S h e s ~

    and

    t L s @ ~

    Hence

    Ql

    i s t h e p o t e n t i a l o f a u n i f o rm f lo w , and

    i t

    c a n b e re p re s e n te d b y :

    V e l o c i t y F i e l d

    G en era l N ot e. The v e l o c i t y f i e l d c a n be d e t e rm i n e d b y s u p e r p o s i t i o n

    o f t h e v e l o c i t i e s . The t a s k o f t h i s s e c t i o n i s t o f i n d t h e components

    o f t h e v e l o c i t y v e c t o r f o r e ach p o t e n t i a l .

    The r e l a t i o n between t h e p o t e n t i a l f u n c t i o n and t h e v e l o c i t y v e c t o r

    i s known t o b e:

    The g r a d i e n t i n s p h e r i c a l c o o r d i n a t e s c a n be shown a s :

    I n t h e c as e o f a x i- sy m m et ry t h e g r a d i e n t r e d uc es t o :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    22/97

    Hence, t h e components o f t h e v e lo c i t y v ec to r can be shown as

    i

    IJRP . nd U T P .

    -

    a

    b r f

    be

    where:

    uR

    = R a d ia l Component o f t h e v e l o c i t y v e c t o r

    uT = Tan gen t i a l Com ponent o f t h e v e l o c i t y vec t o r

    Now one can supp l y t h i s gene r a t e no t e t o any sp ec i a l case .

    U n if or m d i s t r i b u t i o n o f S ou rc es . F o r t h i s c as e t h e p o t e n t i a l was f ou n d

    and shown i n equa t i ons 13 ) and 14 ) as f o l l ow s :

    a )

    i n t h e case o f

    R

    < A t h e c om pon en ts o f t h e v e l o c i t y v e c t o r c a n

    b e d e r i v e d a s f o l l o w s :

    T h er efo re , t h e d i f f e r e n t i a t i o n o f e q ua t i on 1 3) y i e l d s :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    23/97

    Hence:

    The tangen t ia l componen t can be wr i t t en as :

    a e

    U s i n g m f r o m e q u a t i o n 1 3 ) ,

    t

    c a n b e w r i t t e n t h a t

    \ p k ~

    r (coso)

    b e

    U s in g t h e c h a in r u l e , t h e d i f f e r e n t i a l s can b e changed t o

    From t h e d e f i n i t i o n o f t h e A s s o c i at e d L eg en dr e p o ly n o m ia l s:

    w

    irti y rear rangement

    where:

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    24/97

    m

    Pn x )

    =

    A s s o c i a te d L eg en dre p ol yn o m i al o f t h e f i r s t k in d , t h e

    n

    t h

    o r de r , and t he

    m

    degree.

    U s i n g e x p r e s s io n 3 1 ) i n t h e e q u a t i o n 3 0 ) i t can eas i l y be shown

    t h a t

    and

    .a n ( G s e )

    -

    p

    b s t 3 )

    at

    Usin g the n o ta t i o n ASn Co s l ) f o r pnl Cose) , t he above eq uat i on can be

    w r i t t e n a s:

    aP ( S O )

    = A s , 6 s e )

    g

    .

    S u b s t i t u t io n o f t h 2

    ec ita

    l ? c.:; I. ;?)n t o t h e e q ua t i on 2 9) y i e l d s :

    b ) I n t h e c as e o f R > A f o l l o w i n g t h e same p ro c ed u re f o r o f r om

    t h e e q u a t i o n 1 4 )

    i t

    can be w r i t t e n t h a t

    and

    A c c o r d i n g l y ,

    t h e v e l o c i t y co mpo nents o f t h e u n i f o r m l y - d i s t r i b u t e d

    d i s c o f s o ur ce s c an b e w r i t t e n a s e q u a t i o n s 2 9 ) an d 3 3 ) f o r th e c as e

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    25/97

    o f R

    <

    A, a nd a s e q u a t i o n s 3 4 ) a nd 3 5 ) f o r t h e c a s e o f R A.

    L i n e a r l y d i s t r i b u t e d c ase.

    F o r t h e c as e o f t h e l i n e a r l y - d i s t r i b u t e d d i s c

    of sources,

    t c a n b e shown t h a t t h e co mpo nen ts o f t h e v e l o c i t y f i e 1d a r e

    a s f o l l o w s : See A pp en dix 1 f o r t h e d e t a i l s ) .

    F o r R

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    26/97

    And fo r t h e c a se o f R .> A, t c a n b e w r i t t e n :

    nd

    U n i f o r m f l o w .

    t i s q u i t e s i m p le t o show t h a t t h e c omponents of t h e v e l o c i t y

    f i e l d f o r t h e u n i f or m f lo w a r e a s f o l lo w s :

    and

    UT =

    U

    S c n

    S i n g l e s ou rc e a t t h e p o s i t i o n

    r

    r e p r e s e n t i n g t h e n a c e l l e ).

    D i f f e r e n t i a -

    t i o n of t h e e q ua t io n 23 ) a c c o r d i n g t o e q u a t io n

    2 7 )

    y i e l d s t h e v e l o c i t y

    c omp on en ts d ue t o t h e b o dy s ha pe o f t h e n a c e l l e a s :

    and

    Remarks.

    I n o rd e r t o u t i l i z e t h e p r e v io u s l y d e r i ve d fo rm ulas f o r t h e

    v e l o c i t y f i e l d , t wo c o mp u te r p ro gr am s w er e w r i t t e n .

    B o t h of t h e s e p ro -

    gram s w ere w r i t t e n f o r t h e g e n er a l

    c as e o f t h e p re se nc e of a l l t h r e e

    p o t e n t i a l s .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    27/97

    2

    The f i r s t p ro gra m,

    P ro gr am P r o j e c t 1 i n Ap pe nd ix 2A was designed

    f o r t h e u n i fo r m l y d i s t r i b u t e d d is c o f s ou rc e i n g e ne ra l, and i t s a p p l ic a -

    t i o n t o t h e U n i v e r s i t y o f M as sa ch us etts w i n d m i l l i n p a r t i c u l a r .

    The second program, Program P r o je c t 2 i n Appendix 2B,

    d e a l s w i t h t h e

    l i n e a r l y d i s t r i b u t e d d is c o f s ol l rc es i n ge ne ra l, and i t s a p p l i c a t i o n t o

    t h e U n i v e r s i t y o f M as sa ch us etts w i n d m il 1 i n p a r t i c u l a r .

    The o u t pu t o f b o t h th e p rogram s i s t h e v e l o c i t y f i e l d i n c a r te s i a n

    c o o r d i n a t e s a t e ac h p o i n t . The o u t p u t ha s € he f o r m o f : (x , y ) , t h e

    c o o r d i n a t e o f t h e p o i n t , (ux , u y ) x , a nd y c om po ne nts o f t h e v e l o c i t y

    v e c t o r a t t h e p o i n t ( x ,y ) a nd ( ETA), t h e a n g l e b etwee n u x a nd

    uy

    Stre am1 n e c o n s t r u c t i o n . The c o n s t r u c t i o n o f s tr ea m1 n e s i s b as ed o n

    t h e f a c t t h a t n o f l o w c r o s s es a s p e c i f i c s tr ea m tu be . Once a s l e c t i o n o f

    t h e s t r e a m l i n e s s t a r t i n g p o i n t h as been made, o t h e r p o i n t s o f t h e same

    s t r e a m l i n e c a n b e f ou n d b y an a p p l i c a t i o n o f t h e c o n s e r v a t i o n o f mass.

    I n P efe re nc e t o F i g .

    6, t h e v e l o c i t y t h ro u g h t he s t re am t ub e s i s a s

    f o l l o w s :

    A

    i s

    u

    ( o ) , A1 i s u ( l ) ,

    A

    i s u

    Z),

    and so on , where u(o) i s

    t h e x -c ompo ne nt of t h e v e l o c i t y an a n x - s t a t i o n a nd

    yzo

    and the same app l ies

    f o r

    I ) ,

    ( 2 ) .

    .

    u ( a ) .

    F i g .

    7

    shows the c ros s s ec t i o n o f t he s t ream tubes .

    A c c o r d i n g l y ,

    t h e area c or re sp on di ng t o any v e l o c i t y ~ ( n ) an be

    f o u n d a s f o l l o w s :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    28/97

      nd

    L

    in

    =

    9 4 no y )

    -

    An-

    H a vi ng t h e p o i n t a ) , t h e s t a r t i n g p o i n t o f t h e s tre am 1 n e , t h e mass

    f l o w r a t e o r t h e v o l u m e t r i c f l o w r a t e c an b e fo u n d by summing up t h e f l o w

    r a t e t h ro u g h tubes A t o a as shown i n F ig .

    8.

    When t h e f l o w r a t e t h r o u g h t h e s t re a m tu b e a ) i s d e te rm i ne d a t one

    x s t a t i o n , o t h e r p o i n t s o f t h e same s tr e am t u b e c an s u b s e q ~ ~ e n t l y

    b e c a l c u l a t e d .

    A t ea ch s t a t i o n

    x

    t h e f lo w r a t e t hr ou g h t h e t u be s w i t h c r o s s - s e c t i o n

    A Al Ap . and A shown i n F ig . 7) s h o u l d b e e a s i l y fo un d.

    The

    de s i r e d s t r eam t ube can be de t e rm i ned by sum il ing up t hese ca l c u l a t ed

    f l o w r a t e s , F1, Fp

    .

    up t o Fn where n i n d i c a t e s t h e p o i n t w here t h i s

    s um na tio n i s e qu al t o t h e r e f e r e n c e f l o w r a t e .

    I f n i s known, t he y - co -

    o r d i na t e can be de t e r m i ned .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    29/97

    The t a s k o f t h e s t r e am l i n e c o n s t r u c t i o n i s p e rf or m ed b y t wo c o mp ut er

    programs.

    The f i r s t one c o n s tr u c ts t h e s t r ea m l in e f o r a u n if o r m ly d i s t r i -

    b u t e d d i s c o f s o ur ce s i n g e ne r al , a nd f o r t h e U n i v e r s i t y o f M a ss ac hu se tt s

    w i n d m i l l , i n p a r t i c u l a r ( se e P r o j e c t S1, A ppe nd ix

    2C).

    The second program

    d e al s w i t h c o n s t r u c t i o n of t h e s t re am l i n e s f o r a 1 n e a r l y d i s t r i b u t e d d i s c

    o f s o ur ce s i n g e ne r a l , and f o r t h e U n i v e r s i t y o f M a ss ac hu se tt s w i n d m i l l

    i n p a r t i c u l a r , (se e P r o j e c t

    S 2

    Appendix 20) .

    The i n p u t o f t h e s e pr og ra ms c an b e t h e s t a r t i n g p o i n t o f t h e s tre am -

    l i n e o r t h e f l o w r a t e t h r o ug h t h e s t re am tu be .

    T h e o u t p u t i n d i c a t e s t h e form o f f l o w r a t e , and c o o r d i n a t e i n d i c a t e s

    t h e s tr ea m l i n e a t each x s t a t i o n .

    Ap p ly in g th e one-d imens iona l momentum theo ry t o t he w i nd mi l l s .

    The

    s o ur ce s t r e n g t h d e n s i t y p e r u n i t ar ea k c a n be f ou n d i n t h e c as e o f t h e

    u n if o rm l y d i s t n i b u t e d s ou rc e d i s c and t h e s lo p e o f k , ( t h a t i s m) f o r t h e

    l i n e a r l y d i s t r i b u t e d s o u rc e d i s c , b y t h e one d im e n s io n a l m omentum t h e o r y a nd

    L g a l y s theorem.

    A c c o r d in g t o t h e L a ga l l y s th eo re m [ 1, t h e f o r c e e x e r t e d u p o n a

    p o i n t s ou rc e i n a un if or m fl o w i s 6Xu where i s t h e d e n s i t y o f t h e f l u i d ,

    i s t h e s ou rc e s t r e ng t h , and i s t h e f r e e s t re am v e l o c i t y o f t h e u n i fo r m

    f l o w .

    a ) L i n e a r l y d i s t r i b u t e d d i sc .

    I n t h i s case,

    t h e s o u r ce - s t re n g t h d e n s i t y i s e qu al t o m r where m

    i s th e sl o pe of k a s d e s c r ib e d i n s e c t io n fo u r. A c co rd in g t o L a g a l l y s

    th eo re m, t h e f o r c e on t h e d i s c i s :

    F

    = k (45 )

    w he re k i s t h e t o t a l s t r e n g t h of t h e d i s c . How ever, k c an b e d e t e r m in e d

    a s f o l l o w s :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    30/97

     

    S u b s t i t u t i n g e q u a ti o n ( 4 6) i n t o e q u a ti o n ( 4 5) ;

    From one dimensional momentum theory

    t

    can be shown [11 ] t h a t the

    t o t a l f o r c e on t h e d i s c i s ( See F ig .

    9

    2

    F

    vA

    U U U1)

    where u i s t h e v e l o c i t y t h r ou g h

    t h e l i s c i l i i d

    Sl i s t h e v e l o c i t y down s t r ea m

    of t h e d i s c .

    2

    U sin g t h e B e r n o u l l i s e q ua t i on and t h e f a c t t h a t F

    =

    T

    AP,

    t

    can be

    shown that

    [8]:,

    and

    where S i s t h e a r ea o f t h e d i s c .

    F r o m t h e d e f i n i t i o n o f t h e a x i a l i n t e r f e r e n c e c o e f f i c i e n t a,

    t

    can

    be w r i t t e n t h a t

    =

    1-a)

    51

    U s i n g e q u a t i o n ( 5 0 )

    and

    w h i c h c a n b e w r i t t e n a s

    M u l t i p l i c a t i o n o f e q ua t io n (52) by (53)

    w l l

    r e s u l t i n

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    31/97

    s u b s t i t u t i o n i n t o e q u at io n ( 4 9 ) l e a ds t o;

    2

    =

    2 8 ~ A ( l+ a) u 2

    The slope m c a n b e d e t e r m i n e d b y e q u a t i n g e q u a t i o n s ( 47 ) a nd ( 5 4 ) , t h a t

    b ) U n i fo r m l y d i s t r i b u t e d d i sc .

    F o l l o w i n g t h e same pr oc ed ur e, t h e t o t a l d i s c s t re r r g th i n t h i s c as e i s

    an d t h e t o t a l f o r ce on t h e d i s c f r o m t h e L a g a l l y s the ore m i s :

    E q u at in g t h i s f o r m u la w i t h t h e e q u a ti on ( 54 ) w l l p r o v i d e k hence

    ; = 2a (l+a ) L I 5 8 )

    t c an be shown [ 12 ] t h a t t h e r e l a t i o n be tw een t h e a x i a l i n t e r f e r e n c e

    f a c t o r ( a ) a nd t he pow er c o e f f i c i e n t Cp i s a s f o l l o w s :

    The niaxi~iiumpower i s developed when a = 1/3 [8 ] .

    Thus

    i t

    has been shown thro ugh L a g a l l y s theorem and th e s im ple one-

    d i m e n s io n a l momentuni t h e o r y t h a t t h e r e i s a u n i q u e r e l a t i o n b etw ee n t h e

    s t r e n g t h o f t h e d i s t r i b u t e d s ou rc e d is c

    k

    an d t h e p ow er c o e f f i c i e n t Cp

    o f t h e w i n dm i l l .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    32/97

    RESULTS

    The vel oci ty f i e l d and some ch ar ac te ri st ic streaml ine s have been

    calculated for the numerical

    values appropriate to the 25 kW windmill a t

    the University of Massachusetts Sol ar Habitat I See Fig. 10) .

    A

    ch ar ac te ri st ic fr ee stream veloc ity of 38 ft /s ec 1 1.58 m/sec)

    have been considered.

    The body of t h i s windmill can be modeled by a

    single source of K=647.741bm/sec

    294 kg/sec) i n a free stream of

    U 8

    f t / sec .

    A

    sample result of the velocity field upstream the windmill

    s

    shown

    a t th e end of P ro ject 1 and Proj ec t 2 [see Appendix A and 2B].

    The veloc ity p ro fi le of the uniformly-distributed disc and the lin ear ly-

    distributed disc model

    s shown

    in fi gs . 11) and 12).

    The streaml ine s const ructed f o r di ff er en t ca ses a r e shown i n Fig.

    13

    through 20.

    I t

    s

    obvious from Figs. 13 through 20 t h a t t he ef fe ct iv e change

    i n

    the f r e e stream veloc ity i s almost negl ig ib le f o r more than two ra di i

    upstream of the blade disc.

    Fig. 13 repr esen ts t he unifornily di st ri bu te d d isc model without

    the body for the case of Cp

    Cpma

    0.5.

    I t s shown that the disc

    samples almost 57 percent of the volume of th e f a r upstream wind.

    For the

    same case,

    i f the body i s 1ocated a t the cen ter of the blade disc Fig.

    15 ) , 51 percen t of the flow i s sampled.

    By moving the si ng le source,

    which forms the body to the position

    R 2

    5.02 f t ) t o model th e University

    of Massachusetts windmil 1 , the percentage of th e flow sampled reduces to 35.

    The same an al ys is f o r the line ar ly -d is tr ib ut ed disc model Figs. 14,

    16, and 18) indicates similar results.

    The percentage of the wind sampled

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    33/97

    changes f rom 39 t o 38 and then t o 30.

    C om pa ris on o f t h e u n i f o r m m odel a n d l i n e a r mo de l s hows t h a t f o r t h e

    same c o n d i t i o n s , t h e l i n e a r m odel s am ple s l e s s f l o w t h a n t h e u n if o rm d i s c .

    To see th i s , F i gs . 17 and 18 must be compared.

    The u n i f o r m l y - d i s t r i b u t e d d i s c sam ples 35 p e r c e n t o f t h e f lo w , w h i l e

    t h e 1 n e a r l y d i s t r i b u t e d d i s c sam ples 3 0 p e rc e nt .

    The e f f e c t o f t h e b ody i s n o t r e s t r i c t e d t o t h e s a m pl in g p ro blem .

    A lt ho ug h t h i s i s t h e case f o r t h e u n i f o r m l y - d i s t r i b u t e d m odel, i n t h e

    c as e o f th e more r e a l i s t i c l i n e a r l y - d i s t r i b u t e d m odel, a s i g n i f i c a n t

    d i f f e r e n c e i s o bs erve d

    -

    t h e p r o b l e m o f l e a k i n g .

    F i g s . 16 a nd 1 8 show t h a t due t o t h e h i g h e r r e s i s t a n c e a t t h e o u t e r

    reg ion of th e b lades , some o f th e samp led f l o w appears to le ak th rou gh

    t h e c e n t r a l r e g i o n n e ar t h e body. T h i s i s q u i t e o b v io u s i n F ig . 12B,

    where a t t he s t a t i o n x = l f t ( 0 . 3 ~ ) ~h e y component o f t h e v e l o c i t y i s

    down towards t h e c en te r between y=4ft (1.2 ' ) and y - l O f t (3m) .

    U sin g th e v e l o c i t y f i e l d t h e p re ss ur e i nc re a se i n f r o n t o f t h e d is c

    can q u i t e e a s i l y b e c a l c u la t e d .

    I n t h e c ase o f t h e 1 n e a r l y - d i s t r i b u t e d s ou rce d i s c

    t h e B e r n o ul

    1

    equa t ion on th e s tream1 in e

    o

    s e e F i g .

    18)

    c an b e w r i t t e n a s

    u2 + P

    cons t .

    1s

    A t x

    = -

    h e v e l o c i t y i s 38 f t / s e c and t h e p re ss ur e i s P w i t h

    d e n s i t y & .

    A t

    x =

    1 , a nd y 1 6, t h e v e l o c i t y i s :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    34/97

    then, i t i s ea sy t o show t h a t

    o r

    ?= P

    t i49 .3

    6

    p = \q. o ps

    \ o \ s r

    \ e d n L

    F o l l o w i n g t h e same p r oc e du re f o r t h e u n i f o r m l y - d i s t r i b u t e d d i s c o f s ou rc es ,

    t h e p r essu r e wou l d be :

    P p l 6 g s

    6 4

    Comparing eq ua t io n 60) and 62) ,

    i t

    i s q u i t e o b vio us t h a t t h e p re s-

    s u r e o n t h e s t r e a m l i n e

    Q 0

    i nc re a se s more i n f r o n t o f t h e l i n e a r d i s t r i b u t e d

    sou r ce d i sc.

    F i g . 20 shows t h e e f f e c t o f a c ha ng e i n t h e p ow er c o e f f i c i e n t , Cp.

    The percen tage of th e f lo w sampled changes f ro m

    57

    t o 80 p e r c e n t w h i l e

    t h e Cp i s cha nged from Cpmax t o Cpmax,2

    A ls o, i n t h e 1

    m i t

    as CP-o, a l l

    t h e f l o w w o u ld p as s t h ro u g h t h e b l a d e d i s c u n e f f e c t e d .

    The v a r i a t i o n o f t h e v e l o c i t y o n t h e s t a g n a t i o n s tr ea m1 i n e h as be en

    r e p r e s e n te d i n F i g . 21.

    The d ia gr am shows t h e v e l o c i t y v a r i a t i o n f o r

    t h e b ody an d t h e 1 n e a r l y - d i s t r i b u t e d d i s c w i t h t h e bo dy .

    t also shows

    t h a t t h e s t a g n a t i o n p o i n t has s h i f t e d fo rw ard s, an d t h a t t h e v e l o c i t y

    d e cr ea se s mo re r a p i d l y w i t h t h e b l a d e d i s c t h a n f o r t h e b od y a lo n e.

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    35/97

    REFERENCES

    T a y l o r ,

    G.

    I. nd G.K. M at ch el or , Q u a rt . J. ech. Ap pl . Match., 2

    1949, pp. 1-28.

    Koo, K.J. and F.D. James, J. F l u i d Mech., Vo l. 60, P a r t 3, 1973,

    pp. 513-538.

    E ld e r, J.W., . F l u i d Mech., Vol. 5, 1959, pp. 355-368.

    Kllchemann, D. and J. Weber, Aero dy na mi cs

    o

    Pr op ul sio n, McGraw-Hi 11,

    1953, Chap. 3.

    T a y l o r ,

    G . I .

    I n t h e S c i e n t i f i c Papers o f

    G . I .

    Tay lo r , Vo l . 3 ,

    Cambridge U n iv e rs i t y Press, pp. 383-386.

    Es k in az i , S. Vec tor Mechan ics f F lu id s and Magneto f l u id s , Academic

    Press, 1967, p. 287.

    Ib id . , pp. 308-31 1.

    Pi pe s, L.A., an d L.R.

    H a r v i l l , A p p l i e d M a th em atic s f o r E n g i ne e rs a nd

    P h y s ic is ts , McG raw-Hi l l 1970, pp. 345-348.

    Budak, B.M., A.A. Samarski , and A.N. T ikha nov , C o l l e c t i o n f Problems

    on Ma them at ica l Ph ys ics , Pergamon Press , 1964, p. 495.

    Rober tson, J.M., Hydrodynamics n Theory nd App l i c a t i o n , Pr en t i c e-

    H a l l , Inc. , 1965, p. 202.

    Wi ls on, R.E. and P.B. Lissaman, A p p l i e d Aerodynam ics o f Wind Power

    Machines, NTIS r e p o r t PB-238-595, Chap. 3.

    Ibid. , p. 18.

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    36/97

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    37/97

    APPENDIX 1

    1

    R

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    38/97

     

    ~ n - I

    _L

    L

    Q

    i n r h-1 P , , c s d J

    which can be reduced to :

    w hi ch i s t h e e q u a t io n

    36) .

    Equa t ion

    3 7 ) c a n b e d e r i v e d a s f o l l o w s , u s i n g t h e same p o t e n t i a l

    e q u a t i o n 2 1 ) a n d k n o w i n g t h a t

    i t i s e as y t o show t h a t :

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    39/97

    By a 1

    i

    t l e a l g e b r i c mu1 t i p 1 c a t i o n e q u at io n

    37)

    c a n e a s i l y b e

    de r i ved .

    2 )

    R

    I n t h i s c as e t h e e q u a ti on 22 s h ou ld be d i f f e r e n t i a t e d t o p ro du ce

    UR, and UT.

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    40/97

    APPEND IX

    : A

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    41/97

    A PPEN D I X

    2A

    '..,,;I j, J ,

    I

      s-.,,.;-, ,.. ;-'

    ';jj

    l ? R OJi

    1 ;;::

    1;

    i:' Ll"i.l:im[j.r

    ~ ~ : # * ~ * $ $ t t : k ; 1 ( ~ $ $

    " fi

    .,

    7

    .

    .

    a,..:c

    ,..

    .

    :4

    .,,:;,,) ,;:j;; ;C

    .\ .\ .. ;:

    ,,

    ,,-.

    i2

    F

    (J

    f> ,y

    [ i, 7: r-- : :   :,- ,'

    111

    2 <

    z

    {:i

    '

    -,

    r,.

    "

    ,,

    ';1[=

    S (J URCES *

    ~ 0 i 6 3 ~ L

    1

    r11 ;.,i

    I{ il

    f

    t

    ,2

    0

    i.

    71)C

    :#

    I /

    4.

    ,

    2

    i

    3 u

    *

    r;;:;yoc

    T

    H IS

    , 7

    * ;-

    ; :-,:-.c, I

    7

    .

    .,:

    . i

    T

    ....

    - I

    ~ t'- . . . l . .~t . . . : ' rY'- FIEl.i3 i l X r

    UY

    7 E T A )

    t

    *

    0 '_

    -:)

    F 8 A tiN :

    f: :

    ;-

    ...

    >'

    r

    :i3 r ;::

    1

    3

    i,,

    ;'

    :.:: :i

    5

    0

    R

    CE

    i>NJJ *

    ;?. ,a .7 1 s -

    '

    A

    STEJ;',;S

    " ' : - ' , b 7 " . - ' I -

    %'r ;" - - v'

    . .:'.:,?

    s ,?

    ~ ~ 1 ; -

    a . J ,?

    .-, .-;

    ;..

    L

    ..I

    1 ~j> .

    I .

    4 1%

    L

    i h r X - A X I S

    $

    .%.

    ,

    .-.-,,-.

    s

    2

    w - ,L

    L

    .J~

    X .

    G$izy3(jz

    #

    1 3 r ~ 2 4 C [ ; T H I S i R ~ i ~ ~ ; . . A I M

    rJ$E " i " " \ " - ' , " '

    ""'

    *

    , G 5 ,Jc

    .

    . ~ i . i . - \ ~ ,~n i : 7 0 L i O W I N r J S *

    :[

    {

    ;-

    ,:-

    :.

    q

    .

    '".

    -

    .?.

    -

    ,322hC)c

    .

    ,

    :

    2 : . . : i S;< F Sr :

    D A T A :

    $

    O r J 2 7 0 C

    t dX y

    t s l ' i

    y .i z'-TX

    IIEL-.'['~i

      lq

    9

    A 1 9

    132

    ;.... \ .r

    -

    *

    13028i;C I$ C ; j 2 D: [NS 'rs Ti.. ;: I

    -

    ..

    L , . J , L O F d

    00290 C

    -.

    p ,...

    -'

    .-

    '"' -.

    I

    dl, iZ'Altl..r~c I 1z.1-.S lj V Z N bELOW

    :

    :.$

    (3034CC Z

    ()?ZZ()C *

    , {

    3

    0 Y-(3x1s X

    ;5337 Qc

    d

    ;]333i)C + -----------.---.--------------

    .-..

    ( c.4) - 1

    ) :+I;; .rs

    x - n ~ ~ ~ c

    -

    ,,

    .-.

    t

    g 8 ) :31.9 ~ ~ : ~ l : i . j 3 ; x f i 'r;. ~:'i : ~ ~ ~ : . ; p i f ; ? . i " i ~

    [N

    Y,-~I,;;'Ec+ 0

    ;., '

    .

    ;

    .L

      3

    C

    iii;i- ; 1 ;

    -,

    -,\jiz ' '

    i l : .

    I<

    T' I N X . . - i l i ' i ? E C T I G N %

    %

    .,

    :.:.-.

    ]CilZ'L'r'(

    : INCKEMiE,< 'T .Il\; Y-.D Ir(;7c

    I O N

    i.

    j I,.:,J i 1

    ;2354{ji: fit i;hiil[)"S

    'ii-li, I l I S C

    G0550C x;< :

    I J A ~ , I J ~ - 8;: T;..;E_:

    .

    .*

    YY: t.,:,..,L,tjjI G i r Ti.. F

    _

    )'-I+ h

    t.

    &

    ~ , : j 3 7 0 ( ~ I(;?.

    :

    E+;izNlj'Tt-i OF Tf . . ; , ; : EC)x;'(

    S 3 U K C F

    t

    (

    3 3

    u C

    F:?

    : - [~SI'~IQN

    TJF

    TI.; ;: z.:;j~ y FCIJ ; ; ; ; ~ 8

    Ct>S

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    42/97

    00640C UT1: TANGANTInL VELOSITY AT PUIN (RrT) t

    00650C DUE TO TWE DISC*

    00660C UR1: RfiDIAL VELOSITY AT POINT (RY T)

    00670C

    DUE

    TO TWE DISC

    00680C UT2: TANGANTIAL VELOSITY AT POIN (R YT)

    * ,

    00690C

    DUE

    TO THE FODY

    00700C

    UR2: RADIAL VELOSITY AT POIN (RrT) t

    00710C DLlE 'TO THE E{OIIY

    00720C

    UT3: TANGANTIRL VELOSITY AT POINT (RY T) 5

    00730C

    DUE TO THE FREE STREAM+

    00740C UR3: RADIAL- VELOSITY AT POINT (RY T) O

    00750C

    DUE

    THE FREE STREAM,

    00760C P(NrX): LEGENDRE FOLYNOMIAL OF THE

    t

    00770C FIRST KIND AND NTH OKIIER UEFINED-

    00780C BY THE FUNCTION P(NrX)*

    00790C AS(NYX)

    :

    ASSOC:IATEII LEGENRRE OF TH E

    00800C FIR ST KIN11 FIRST IlEGREE.

    00810C AND? TH ORDER IrEFINED

    'BY

    THE

    X

    00820C AS(NrX) FUNCTION

    t

    00830C UX: X COMPONENT OF THE VELOSITY AT X

    00840C ANY POINT (RrTIOR ITS EClIVALENT(XX?YY) X

    00850C UY: Y COMPONENT OF THE VELOSITY AT

    t

    OOSbOC ANY POINT(RYT) OR ITS EOlJIVALENT(XXrYY)

    00870C ETA: ANGL BETWEEN UX ANDY UY IN

    D E G *

    t

    00880C

    00890C

    jc

    oo900c d HE PROGRAM WAS RUN FOR THE FOl-LOWING

    t

    00910C VALUES :NX=20 NY=2? I:IELTX=l? :IEl-TY=l U=38

    00920C ~A= lb~ Al= 1/3 (F0 R AX* FOWER)rR2-0* X

    00930C rK1=647*78

    jc -

    005'40C

    00950C ALSO SEE THE PROJECT REPORT d

    00960~*t*lt**~ttt11t*tt*****5**0t*~***** ~* *************** ******

    00970 R E A D I N X P N Y Y D E L T X ~ D E L ' ~ Y Y U Y C ; I I A ~ ~ R ~ Y K ~

    00980 IN=50

    00981 PRINT ~ ~ O ~ N X Y N Y ~ D E L T X Y I ~ E L T Y ~ U Y A ~ A ~ Y R ~ ~ K ~

    00982

    210 F O R M ~ T ( / / / ~ ~ N X = * Y I ~ Y / ~ ~ N Y = * I I ~ Y / I I ~ I E L T X = * ~ F ~ ~ ~

    0 0 9 8 3 + / r ~ U = ~ ~ F l 0 ~ 4 r / ~ t A ~ ~ r F 6 ~ 2 r / ~ ~ A l ~ ~ F ~ O ~ 6

    00990

    PRIN'T 21

    01000 21 F OR HA T( //Y~ ~X Y* VELO SI TY IELIl FOR UNIFORM DISC AND THE BODY

    01010.t Y/Y25~Y -----------------------------------------

    *

    01020 PRINT 10

    01030 10 FORMAT(5XrtX IN F T * Y ~ X ~ * YN F T ~ Y ~ X V X U XN F T / S E C * ~ ~ X Y U YN F

    010 40 t5X ~tE TA N DEG*tr/r5X?t------- *r9X~t------- *Y6~rt------------ tr5X

    01041+~*------------- tr5x7*----------- t

    01050 DO 6 III=lrNX

    01060 DO 500 II=lrNY

    01 070 YY=(II-1)tDELTY

    01080 XX=FLUAT(III)*DELTX

    01 090 K=2*Al*(l*+Al)*U

    01100 R= XX**2)+ YY**2))**0*5)

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    43/97

    01110

    NO=O

    01120 N l = l

    01130

    T = - A T A N Y Y / X X )

    01140 Tl=COS T)

    01150 T2=SLN T)

    01160

    TO=O*

    01170 IF R*GEeA)

    O TO S

    01180C

    01190C

    01200C DISC FOR

    THE

    CASE R A

    01210C

    01220 :

    01230 AK=K/2*

    01240 X = R / A

    01250 SUM-0,

    01260

    DO

    1 I = l ? I N

    01270

    N = I - 1

    01280 M=N-2

    01270 S U M = S U M ~ N ~ X S ~ N - ~ ) ) ~ P N P T O ) + F M P T O ) ) * F N P T ~ ) )

    01300 1

    CONTINUE

    01310

    U F < l = A K t P N l

    ?Tl)-SLJM)

    01320 SUM=O*

    01330

    DO

    2

    I = l r I N

    01340 N-1-1

    01350 M=N-2

    01360

    S U M = S U M + ( ( X ~ ~ ( N - ~ ) ) ~ ( F ( N ~ T O ) + P ( M P T O ) ) : X A S ( N ? T ~ ) )

    01370 2

    CONTINUE

    01380 UTl=AKt SUM-AS NlrT1))

    01390

    G O

    TO 200

    01400 5

    CONTINUE

    01410C

    01420C

    01430C DISC FOR

    THE

    CASE

    R > A

    01440C

    01450C

    01460

    X = A / R

    01470 SUM=O+

    01480

    DO

    3

    I = l t I N

    01490

    N = I - 1

    01500 M=N+2

    01510

    S U M = S U M + ( ( N + ~ ) ~ ( X ~ * M ) ~ ( F ( N P T O ) ~ F ( M P T O ) ) * F ( N ~ T ~ ) )

    01520

    3

    CONTINUE

    01530 UR?= K/2)tSUM

    01540 SUM=O*

    01550 DO 4 I = l ? I N

    01560

    N = I - 1

    01570 M=N+2

    01580

    S U M = S U M ~ X ~ ~ M ) ~ F N I T O ) ~ F M P T O ) ) ~ A S N P T ~ ) )

    01590 4

    CONTINUE

    01600 UTl= K/2) SUM

    01610 200 CONTINUE

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    44/97

    01620C

    01630C

    01640C DODY CALCULATIONS

    oibsoc

    01660C

    01670 D15=(R-(R2$T1))

    01680 D16=(((R$Tl)-R2)%*2)

    01690 D17=(R1: 2)t(T2%*2)

    01700 D18=( (Dlb.tT117)t%(3/2)

    01710 AKl=(Kl/(9t3e14))

    01720 UR2=AKl$Dl5/D18

    01730 Dl9-H2f T2

    01740 DllO= RbT1)-H2)tt2)+i Rtt2)t T2tt2)))t~ 3e/2b)

    01750 AKJ=K1/(4**3*14)

    01760 UT2=AK3tDlY/D110

    01770C

    01780C

    01790C

    U N I F O R M FLOW

    01800C

    01810C

    01820 UR3=-UfT1

    01830 UT3=UtT2

    01840C

    01850C

    01850C SUFEHFOSITION

    01870C

    01880C

    01890 UR=URl+UR2+UR3

    01900 UT=LITl+UT2+UT3

    01910C

    01920C

    01930C

    EVALUnTION OF U X

    U Y AND

    ETA

    01940C

    01950C

    01960 UX=(URtTl)-(UTZT2)

    01970 UY=(URtT2)+(UTtTl)

    01980 X Y = U Y U X

    01990

    ET=ATAN XY)t360e/ 2et3e14)

    02000

    PRINT

    ~ O O ~ X X F Y Y ~ U X F U Y F E T

    02010 300 FORMAT(5(5XrFlOe4))

    02020 500 CONTINUE

    02030

    PRINT

    700

    02040 700

    FORMAT /)

    02050 600 CONTINUE

    02060 END

    02070C

    02080C

    02090C

    02100C

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    45/97

    02130C

    02140C

    \

    02150C

    02160C

    02170C

    02180C

    02190~

    02200 FUNCTION F (NPX)

    02210C

    02220C

    02230C THIS IS A FUNCTION

    TO

    CALCULATE LEGENDER POLYNOMIALS

    OF

    THE

    02240C FIRST

    K I N D

    02250C

    02260C

    02270 QO=O+

    02280 P=QO

    02290 IF(N*LT*O) GO TO

    1

    02300

    QO-1.

    02310

    F=QO

    02320 IF(N+ECI+O) O TO

    1

    02330 Q1=X

    02340

    F'=Q1

    02350 IF(N+EQ+l)

    O TO

    1

    02360 Q2=((3 (Xtt2))-1+)/2.

    02370 P=Q2

    02380 IF(N+EQ+2) O TO

    1

    02390 Pl=((Zt(Xt 2))-1*)/2.

    02400 P2=X

    02410 1=3

    02420

    2

    CONTINUE

    02430 P=((((2,*1)-1+)/1)tX Pl)-((I-l,)/I)tP2

    02440

    IF(I+EO*N)

    GO

    TO

    1

    02450 I = I + 1

    02460 P2=Pl

    02470 P1=P

    02480 GO TO 2

    02490

    1

    CONTINUE

    02500 RETURN

    02510

    END

    02520C

    02530C

    02540C

    02550C

    02560C

    02570C

    02580C

    02590C

    02600C

    02610C

    02620C

    02630C

    .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    46/97

    02640C

    4

    0265OC

    02660 FUNCTION hS NvX)

    02670 DIMENSION R l000)

    02680C

    02 5YOC

    02700C THIS FUNCTION CALCULhTES ASSOCIATEn LEGENDER FOLYNOMIALS

    02710C OF

    THE

    FIRST K I N D A N D FIRST POWER

    02720C

    02730C

    02740

    R O = O +

    02750

    R A = R O

    02760 IF(N*LE*O) GO TO 3

    02770 Kl= l- Xlt2))tt0+5

    02780 R A z R i

    02770 IF N*EQ+.I)GO TO 3

    02800 R2=3**Xf((I-(Xtt2))**0*5)

    02810 RA=R2

    02820 IF N+EQ+2) O

    TO 3

    02830 Fi=X

    02840 F2= 3t XSt2))-1*)/2+

    02850 DO iO I=3rN

    02860 H(1)=(((2tI)-i)*((i-(Xtt2))ftOt5)*P2)tRl

    02070 P=((((2+*1)-1+)/1)tXtP2)-((I-it)/I)*Fl

    02880 Pl=P2

    02890 P2=P

    02900 Ri=R2

    02910 R2=R I)

    02920 R A = R I )

    02930 iO CONTINUE

    02940 3 CONTINUE

    02950 AS=RA

    02960 RETURN

    02970 END

    02980C

    R E A D Y

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    47/97

    RUN

    7 8/ 07 /0 4 . 2 2 * 1 5 * 4 8 r

    F I L E F ROJ1

    V E L O S IT Y F I E L D FOR UNIFORM D I S C AND THE BODY

    Y I N F T UX I N FT/SEC UY I N FT / S E C E TA

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    48/97

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    49/97

      T IME LIMIT

    SRU

    21.302 UNTS

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    50/97

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    51/97

    f l l i 3 O I n O h

    a 1 * r 9 r b ~ 0 ~ - l @ a - m @ d 9 a

    P I O @ U I h @ I n h S M d d 9 C O d O .

    b @ m N @ d

    D h 9 M D d C - J 0 3 b 7 C . l 0 9 d M O d 9 M d O b M

    P 0 3 O d @ V 9 M l J 7 d O d M 9 O C 4 P h h M P C . 4

    C T P 6 M M b h

    @

    r . J q 9 C . J b 9 M

    @ b f 4

    P O 9 ~ 0 P O Y M W Q 0 9 C ~ J ~ b 7 d 9 b D . d P

    I O d C . J M

    P

    9 9 9 h h a a + + O d C . l C 4 M P U J @ @ @ @ 0 0 0 d d N M M P P b 7 9 d d d d N N

    . . . . . . . . .

    . . .

    L n L l Q d 9 9 9 L7b7b7b7M b 7 L O b 7 b 7 9 9 Q 9 9 9 9

    m l J 7 b 7 b 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

    M M M M n M M

    M M E M M M M M M M M M M M M M

    M M M M M M M M M M M M M M M M M M M M M M

    I I l

    t

    o o o o c o o

    , , , . -

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    52/97

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    53/97

    E N D

    SRU 5 2 . 3 0 9 U N TS ,

    RUN COMPLETE

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    54/97

    APPENDIX B

    LNH

    00100 F'ROGt-ihM F'ROJ2 INPUT OlJTF'UT

    00110 IN-50

    0 0 1 2 0 ~ * b Z t * t * ~ t t * * * * t t X * * t f j l : * ~ * ~ * ~ ~ * ; j : t ; j : * * * % * ~ * * * * * * * * * * ~ * * * ~ ~ * * * * * * *

    OOl3Ot

    00140t

    OOlSO* PROGRAM FOR LINEAHLY D1STRIE;UTED IlISC 01- SOURCES.

    OOllO* WITti THE E{ODY

    00170t

    00180*

    001?0* THIS PROGRAM CAL-CULATES THE VELOSITY FIELD

    002002 ( U X ~ U Y P E T A ) OR A LINEAkLY DISTRIBUTED DISC

    00210* OF SOURCES AND A STRONG SOURCE AT THE FOSITIUN

    00220% R ON .THE X-AXIS*

    00230t

    00240

    002SOt

    00260t TO RUN THIS FROGRAM:

    00270;k ONE SHOULD INPUT THE FOLLOWINGS

    00280

    IN RESPONCE TO THE ASK FOR DATA

    00290 N X P N Y P D E L T X P K ~ E L T Y ~ U ~ A I A ~ I R ~ I K ~

    00300t (ACORDING TO THE DEI-INITION OF

    00310*

    THE

    PARAMETERS GIVEN BELOW:

    00320%

    00330t

    00340X

    00350;k PARAMETERS:

    00360X SEE PROJl PROGRAM DUCUMENTS*

    00370t

    ALSO

    SEE

    THE

    PROJECT

    REPORT

    -

    00380t

    00390t

    00400t

    00410*

    00420t

    00430***U*******t********tt************************* ***~****************

    00440 REAL MrK1rL

    00450

    R E A D ~ N X ~ N Y ~ D E L T X ~ D E L T Y ~ U ~ A ~ A ~ I R ~ ~ K ~

    00460 PRINT 210

    00470 210 FORMRT ////rlOXrIVELOSITY FIELD FOR LINEARLY DISTRIBUTED DISC+

    00480 FRINT 220rNXrNY

    IlEL TXTIIELTY

    Ur Ar A1 ~ R 2 r K 1

    00490 220 FORMAT ~OX,*-------------------------------------------------

    O O ~ O ~ + ~ N X = ~ ~ I C J ~ / P ~ N Y = ~ ~ I ~ P / ~ ~ I ~ E L T X = ~ ~

    0 0 5 1 0 + ~ A = ~ r F 1 0 ~ 4 r / r t A 1 ~ ~ r F 6 ~ 4 r / r ~ R 2 ~ t r F 1 0 ~ 4 ~ / r ~ ~ l ~ ~ ~

    00520 PRINT

    200

    00530

    200 FORMAT(5XrtX IN FT**rlOXrtY IN FT*tr7Xr*UX IN FT/SEC*X

    0053ltr7X~SUY N FT*/SEC.*rSXr*ETA IN DEG**r/vSXrX-------- *rlOX,

    00532+ --------,7~, -------------,7~, --------------rSX,

    00533+ -----------

    1

    00550

    DO 500 III=lrNX

    00560 DO

    600

    II=LrNY

    ..

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    55/97

    00570 YY-(11-l)*DELTY

    00580

    XX=FLC)AT 1 DKL-TX

    00590 R = ((XXIX2)+(YYS12) *O+S)

    00500 6

    CONTINUE

    00610C R A D I A L COMFONEiNT OF

    THE

    DISC VELOCITY FIELD

    00620

    NO=O

    00630 Nl=l

    00640 N2=2

    00650 N3-3

    00660 N4=4

    00670 N5-5

    00680 X==R A

    00690 PROD=-O+5

    00700

    M=3fAi* 1 + A 1 ) tU/A

    00710 T2=ATtlN( Y Y / X X ) .-

    00720 Tl=CCIS T 2

    00730 T3=SIN(T2)

    00740

    IF(R+GE+ A) GO

    TO 5

    00750 SUMl=O*

    00760

    DO 1

    I=2rIN

    00770 PROD=PKOt~*-0 5-- 1-1 1 I

    00780'SUM:L=Sllt~l+((((~1: 1)+1~)/(((2tI)+3~)t((2XI)-2~)))XFROD)

    00790 CONTINUE

    00800 S1=SUM1

    00810 YRODl=-O*S

    00820 SUM2=O.

    00830 DO 2 I=2r N

    00840 N-2II

    00850

    PRODl=PRODlX(-O+5-(1-1))/1

    00860 S U M ~ ~ S U I Y ~ ~ ( ( ( Z ~ ~ F R O I I ~ ) / ( I - ~ ) ) * ( X ~ ~ ( ( ~ X I ) - ~ ) ) X F ( N ~ T ~ ) )

    00870 2 CONTINUE

    00880 S2=SUM2

    00890 AK1=-MtA/2*

    00900 DO=2t(S1-(76+/60+))tXfP(N21Ti)

    00910

    Dl=(9*/2+)t(Xt 2)*F'(NJ~Tl)

    00920 D2=3~*(XXt3)tF(N4~Ti)

    00930 D3=(5*/6*)t(X8t4)*Y(N5~'rl)

    00940 D4=S2

    00950

    U R l = A K l Z D O + D l - I I 2 + D 3 - D 4 )

    00960C R A D I A L

    COMPONENT

    OF THE

    BODY

    VELOCITY FIELD

    00970 DS=(R-(R2fT1))

    00980 Db=(((RfTl)-R2) *2)

    00990 D7=(Kt*2)t(T3**2)

    01000 D8=((Db+D7)tt(3/2))

    01010 AK=(K1/(4*3+14))

    01020 UR2=AK*D5/D8

    01030 UR3=-UtT1

    01040C

    T A N G A N T I A L

    VELOCITY OF

    THE

    F R E E STREAH

    01050 UT3=U*T3

    OlObOC TANGANTIAL VELOCITY OF THE BODY

    .

    01070 D9=RZtT3

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    56/97

    G: 3D a n

    I CnLTjl; lXw

    nnnj

    r Z Z Z

    rl

    :

    3

    W

    5

    --I ?

    r r r 3

    t l w C )

    I

    n

    t

    z

    1 3

    O.

    u

    CL

    w

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    57/97

    01590 Sl=SUM1

    01600

    S 2 = 1 * / 3 * ) t X * t 2 ) t f N O 1 T l )

    01610 fiK1=MIfl/2*

    01620 URl=AKl (S2tS1)

    01630C

    TCINGAN

    T I A L

    COMPONEN TS

    01640 UT3=UIT3

    01650 D9=R2*T3

    01660 D10=((((R*T1)-R2)*%2)+((R**2)t(T3**~?)))**(3*/2~)

    01670 AK3=t

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    58/97

    02100 P1=((3*(X**2))-1*)/2.

    02110 P2=X

    02120

    1=3

    02130 2 CONTINUE

    02140 P~((((2+tI)-I~)/I)*XtF 1)-((1-1t)/I)~f2

    02150 I F ( I * E Q * N )

    GO

    TO 1

    02160

    I = I + l

    02170 P2=f1

    02180 F1=P

    02190

    GO

    TO 2

    02200

    1 CON r I N U E

    02210 R E T U R N

    02220

    END

    02230C S ~ ~Y: 5 ~

    02240

    FUNCTION

    AS(NrX)

    02250 DIMENSION R(l000)

    02260C

    THIS

    IS

    A

    FUNCTION

    TO

    CALCULATE

    ASSOCIATE

    LEGENDER FOLYNOMIAL

    02270C

    OF THE

    FIRST

    K I N D

    AN11

    F OWER(M)t

    02280

    RO=O+

    02290 RA=RO

    02300 IF(NeERt0) GO

    TO

    3

    02310 Rl=(l-(Xtt2))XfO*5

    02320

    R A = R 1

    02330 IF(N*ER+1)

    O TO

    3

    02340 KZ=3+tX*((l-(Xdt2))**0*5)

    02350 RA=R2

    02360 IF(N+EQ+2)O TO 3

    02370

    F 1=X

    02380 Y2=((3*( **2))-1*)/2,

    02390

    DO

    10 I=3rN

    02400 R(I)=(((2tI)-l)*((l-(X*t2))**0~5)*PZ)+Ri

    02410 P = ( ( ( ( 2 ~ ~ 1 ) - 1 ~ ) / I ) S X ~ P 2 ~ ~ ~ ~ 1 ~ 1 ~ ) / I ) t P I

    02420 Pl=P2

    02430 F 2=P

    02440 Rl=R2

    02450 R2=R(I)

    02460 R A = R ( I )

    02470 10 CONTINUE

    02480 3

    CONTINUE

    02490 AS=RA

    02500 RETURN

    02510

    END

    READY

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    59/97

    RU

    VELOSITY F IE LD FOR LINEARLY OSSTRIEUTEO DISCtBODY

    UY I N FT./SEC. ETA I N

    .

    0 0 0 oooo

    4 e9155 -10 8261

    4 .4470 -1 1 .2858

    8 . 8 7 1 9

    3 c

    J. 4 2 1 2

    10.7436

    19 .5553

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    60/97

    END

    SRU

    8 155

    LINTS

    RUN COMPLETE

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    61/97

    APPEND I X

    2C

    LNH

    00100 PROGRAM F ROJSI(INF1JTvOUTF UT)

    00110 DIMENSION U F ( 5 0 v 1 0 0 ) ~ ~ ~ ( 5 0 ) v Y O U T ( 1 0 0 )

    00120 REAL KvLvKl

    00130 IN=50

    00140C

    00150 R E A D T N S ~ N ~ ~ N E ~ D E L T X T D E L T Y P U ~ R I A ~ ~ R ~ ~ ~ ~

    0 0 1 6 0 t t t f t Z t t d t ~ % f t ~ ~ k t t t d t ~ t ~ ~ d t f ~ ~ t t a C t

    00170t

    00180%

    00190t

    00200% PROGRAM FOR UNIFORMLY DISTRIBUTED DISC OF

    00210t SOURCES AND THE BODY*

    -

    00220t

    00230t

    002408

    THIS

    PROGRAM

    CONSTRUCTS

    THE

    STREAM

    LINES

    OF THE

    00250t

    FLOW FIELD MENTIONED ABOVEr IN TE FORM OFTHE

    00260t

    COORDINATES OF THE F OINTS ON A

    SF CIFIC STREAM

    00270% LINE(SF ECIF1ED K{Y ITS STARTING POINT OR BY ITS

    002808 MASS FLOW RATE AS WILL BE I IESCRIBED LATEReIAS ITS

    00290;3: AND X COORLIINATES; THAT IS FOR EACH ?THE

    003008 CORESPONDING

    X

    VALUE

    OF

    THE STREAM LINE

    S

    DETERMINED

    00310%

    00320f

    00330%

    00340t

    Y

    00350

    00360t

    00370% (NS-1)

    LIY \

    STREAM LINE: SAI=X

    00380t ~ \ ~ ~ ~

    00390t

    00400t

    00410t

    00420t

    00430%

    00440f

    00450t

    004605

    00470%

    ORIGIN ---------------------------------------------

    00480t NA*DX

    NE tDX

    00490%

    00500*

    00510X

    00520t TO RUN THIS PROGRAM:

    00530t

    AIHAVING THE STARTING POINT OF THE

    00540t

    STREAM LINE; ONE SOULD INFUT THE

    005508 FOLLOWINGS IN RESPONCE TO THE ASK

    00560t FOR DATA:NSvNAvNEvDELTXvK~ELTYvUvA

    05705 - rAl?R2?KlrACORDING TO THE DEFINITION

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    62/97

    0 0 5 8 0 6 O F I H E FARAHETERS GIVEN BEL-OW*

    0 0 5 9 0 %

    (NOT E: ZN THE F Ktr SEfICE O F TI IE DO-DY

    OObOOt

    NAXLlX

    SOIJL-I

    E{E SKEATER THAN

    0 0 6 1 0 *

    THE STAGN ATION P O IN T OF THE

    0 0 6 2 0 t E O U Y

    0 0 5 3 0 t

    B ) H A V I N G THE MASS FLOW ROTE TtiROUGH

    0 0 6 4 0 *

    T H E S T R E A H T U E E i U N E S O U L D F I E S T

    0 0 6 5 O t

    CtiANOt< THE S TfYrEMENT REFH =SUM Z TO

    0 0 6 6 0 X

    KEFM=MASS FLOW INTER ESTE D I N , (NOTE:

    0 0 6 7 0 3

    S IN C E FLOW I S I N M IN US

    X

    D I R E C T I O N P .

    O O 6 8 O t T H E MASS FLOW WILL. HAVE A MI NU S

    0 0 6 9 0 X

    S 1 G N ) T t i E N

    THE

    F QL-O WIN G I S I N P U T

    0 0 7 0 0 t

    I N RESFOPICE

    T

    'THE ASK

    F O R

    DATA:

    G 0 7 1 0 *

    N S P N A T N E Y D E L T X ~ D E L T Y I U I A ~ A . ~ . ~ ~ < ~ I K ~ .

    0 0 7 2 0 t .

    (NOTE: I N T H I S

    CASE

    NS SuULD RE

    0 7 3 0 b S E L E C TE D ON AN E S T I M A T E H A S E v T t I A T

    0 0 7 4 0 t I S VALU E THAT ONE

    I S

    SUREIS GKEATER t

    0 0 7 5 0 t T H AN T HE R E A L V A L U E . A LS O . T H E SAM E

    0 0 7 6 0 t R E S T R IC ' TI O N I S V A L I EL I FOR HA AS

    0 0 7 7 0 * WAS P O I N T E D OUT I N P AR T A 1

    0 0 7 8 0 t

    0 0 7 9 0 2

    0 0 8 0 0 t

    0 0 3 1 0 t O U T P U T OF THE PROGRAM:

    0 0 3 2 0 t VOLUMETRIC FLOW RATE THROUGH THE

    0 0 8 3 0 t

    STREAIY

    TUEEPAND X-Y CO i IKDINAT E O F

    OO84Ot THE rKEAM L I N E *

    0 0 8 5 0 $

    0 0 8 6 0 $

    0 0 8 7 0 8 P A R A M E T E R S :

    0 0 8 8 0 f S EE PROJl FROGHAM DUCUMENTS

    008901( SEE THE PROJECT REPORT

    0 0 9 0 0 t S EE THE ABOVE DIAGRAM?

    OO910* NS S T A R T I N G P O I N T O F T H E ST RE AM L I N E ON

    0 0 9 2 0 % THE Y - A X I S *

    0 0 9 3 0 6 N A: S T A R T I N G P O I N T ON TH E X - A X I S *

    0 0 ? 4 0 * N E: E N D I N G P O I N T O F THE STKEAM L I N E ON THE

    0 0 9 5 0 t X - A X IS *

    O O J 6 O t

    0 0 9 7 0 6

    :0 09 80 *-- --- --- --- THE PROGRAM WAS

    RUN FOR:

    0 0 9 9 0 f

    NS=12rNA=3rNE=lbrDELTX=l.

    0 1 0 0 0 t

    D E L T Y = l r ~ U = 3 8 ~ r A = L 6 ~ v A 1 = 0 ~ 3 3

    O l O l O t R 2 = O * ~ K 1 = 6 4 7 * 7 8

    0 1 0 2 0 *

    0 1 0 3 0 *

    0 1 0 4 0 * # $ * t t t t * # t * t * * t * f f * 5 * f * * * * * t ** * f * * * * * ** * * $ * * * * * * * * ** * * * * * * t ** % * * * * $ * *

    0 1 0 5 0 t

    0 1 0 6 0 P R l N T

    ~ ~ ~ ~ N S I N A T N E I ~ I E L T X P D E L T Y I U T A I A ~ T R ~ I K ~

    0 1 0 7 0 2 0 1 F O R M A T ( / / / ~ ~ O X P * S T R E ~ MI N E C U N S r K U C T I O N F O R U N I F O R M L Y D I S T f i I E U

    0 1 0 8 0 + ~ / r 3 0 X 1 t D I S C OF SOURCES AND T HE

    E f l D Y r / ~ 2 0 X v - - - - - - - - - - - - - - - - - - - - -- - - - - -

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    63/97

    01090+, -------------------------

    * ~ / / / ~ ~ N S = ~ ~ I S ~ / ~ * N A = * V I ~ ~ / V * N E = ~ ~ I ~

    O l 1 0 0 + F 6 ~ 4 ~ / r * D E L T Y = * r F 6 ~ 4 r / ~ X U = * ~ F 1 O t 5 r / r ~ A = * F - 4 , 1 ~ / r * ~ ~ = ~ ~ ~ 6 ~ ~ ~

    0 1 1 1 O ~ t / r * R 2 = ~ r F 1 0 ~ 6 ~ / v * K l = * ~ F 1 0 ~ 4 )

    01 120C

    01 130C

    01 140C

    01

    isoc

    01 l60C

    01170 DO 600 III=lrNE

    01180 DO 500 II=lrNS

    01190 YY=(II-l)*lt

    01 200 XX=FLOAl ( I I

    01210 K = 2 . * A l * (

    1.

    tn1 * l J

    01220 K = ( ( ( X X : k X 2 ) t ( Y Y t t Z ) ) t J : O t 5 )

    01230 NO=O

    01240 N1=l \

    01250

    T=ATAN YY/XX))

    01260 Tl=COS(T)

    01270 T2=SIN(T)

    01280 TO=Oe

    01290 IF(R.GE.A) GO TO

    5

    01300CSttYIttttXttXXXt*XXtfXttt DISC FOR

    R < A t X t t t f t t f t d f t t f f t

    01310 AK=K/2t

    01320 X=R/A

    01330 SUH=Ot

    01340 DO

    1 I = l r I N

    01350 N=I-I

    01360 H=N-2

    01370

    SUM=SUM+(Nt(X**(N-i))t(F (NrTO)+F (MiTO))tP(NrTl))

    01380

    1

    CONTINUE

    01390 URi=AK*(P(NlrTl)-SUM)

    01 400 SUI.I=O,

    01410 no I=I,IN

    01420 N=I-1

    01430 H=N-2

    01440 S U M = S U M t ( ( X * f ( N - l ) ) * ( P ( N r T O ) ~ t P ( M I T O ) ) * A S ( N r T l ) )

    01450 CONTINUE

    01460 UTl=AKt(SUM-AS(NlrT1))

    01470 GO TO 200

    01480

    5

    CONTINUE

    0 1 4 9 0 C X t t Y Y Y Y t * * t t f X * f t * X t t * t Y * X t *

    DISC FOR

    R > A **tXt**.fSf tt~tfttt*

    01500

    X = A / R

    01510 SUH=Ot

    01520 110 3 I = l r I N

    01530

    N = I - 1

    01540 fl=N+2

    01550 S U H = S U M ~ (N + ~ ) * ( X ~ X H ) * ( P ( N ~ T O ) ~ P ( ~ ~ I T O )

    X F ( N ~ T ~ ) )

    01560 3 CONTINUE

    01570 URl=(K/2)*SUtl

    01580 sun=o.

    01590 DO I = l r I N

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    64/97

    0 1 6 0 0 N = I - 1

    0 1 6 1 0 M = N + 2

    0 1 6 2 0

    SUM=SUM+ X*tf4)t P NrTO)tP MrTO))tAS NrTl))

    0 1 6 3 0 4 C O N T IN U E

    0 1 6 4 0 U T l = (K / 2 )X S U M

    0 1 6 5 0

    200

    C O N T I N U E

    01660Cf tt t t tbttX ~tYtt

    THE BODY t t t~tt t t t t f t t t t t t

    0 1 6 7 0 D l S = ( R - ( R 2 X T l ) )

    0 1 6 8 0 D 1 6 = ( ( ( R t T l ) - R 2 ) * 1 2 )

    0 1 6 9 0 D 1 7 = ( R t t 2 ) t ( T 2 t t Z )

    0 1 7 0 0 n 1 8 = ( ( D 1 6 + D 1 7 ) t t ( 3 / 2 ) )

    0 1 7 1 0 A K l = ( K 1 / ( 4 t 3 * 1 4 ) )

    0 1 7 2 0 U R 2 = A K l t D l S / D 1 8

    0 1 7 3 0 D 1 9 =K 2 b T2

    0 1 7 4 0 DllO= RXTl.)-R2)*t2)t RtX2)t T2Xt2)))tt 3/2)

    0 1 7 5 0 A K J = K 1 / ( 4 * 3 * 1 4 )

    0 1 7 6 0 U T 2 = A K 3 t D 1 9 /D 1 1 0

    0 1 7 7 0 C t ~ X k ~ t l S ~ t ~ t X ~ i ~ t J c t t d X t t ~ d t

    N I FO R M

    F L O W .

    t t b X b t X t t X S b l :

    0 1 7 8 0 U R 3 = - U X T 1

    0 1 7 9 0 U T 3 = U t T 2

    0 1 8 0 O C * t t t t t ~ * t Y S S t I t * t t d t t t t X t X 1 : t S UP ER PO SI T IO N t X X t X t X S * ~ t X S t

    01810 U R = U i? l+ U R 2+ U R 3

    01820

    U T = U T l + U T 2 + U T 3

    01830 U X - ( IJ R t T 1 ) - ( U T t T 2 )

    0 1 8 4 0 U Y = ( I J R t T 2 ) + ( U T t T l )

    0 1 8 5 0 X Y = U Y / U X

    0 1 8 6 0

    E T = A T A N X Y ) X 3 6 0 * / 2 . * 3 * 1 4 )

    0 1 8 7 0 C

    0 1 8 8 0 C V E L O C I T Y F I E L D A ND S T R E A H T U B E A RE A S TO R AG E

    0 1 8 9 0 C

    0 1 9 0 0 l I F ( I I I r I I ) = U X

    01910

    5 0 0 C O N T I N U E

    01920

    6 0 0 C O N T I N U E

    01930

    A T= O *

    0 1 9 4 0 DO 6 0 1 I = 2 r N S

    01950

    AR 1)=3,14t[ DELTY/2)**2)

    0 1 9 6 0 I O = I - 1

    01970

    A T= A T+ A K (

    10

    01980 AK I)= ~.~~Y ~I-~)XTIELTY)+ DELTY/~))XS~))-AT

    01990 6 0 1 C ON T IN U E

    02 0 00 C R E FER E N CE M A SS FLOW C O N S TR A U C TI O N

    0 2 0 1 0 C

    02020 SUMZ=O.

    02030 DO 6 I = l r N S

    0 2 0 4 0

    SUMZ=SUMZ+ AR I)tUF NAII))

    0 2 0 5 0 6 C ON T IN U E

    0 2 0 6 0 R E F M = S U H Z

    0 2 0 7 0 P R IN T S O l rK E F M

    0 2 0 8 0

    501 FORHAT //r20Xr*VOLUMETRIC

    FLO W R A TE THR OU GH TH E S TR E AM T U E E = X p F1 4 . 3 )

    0 2 0 9 0 P R I N T 5 0 4

    0 2 1 0 0 5 0 4 F O R H A T ( / / / / r Z O X rI X I N F T . t r l 2 X r t Y I N F T .* r/ r2 0X rX -- -- -- -- -- X r l O X r t - - - - -

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    65/97

    02110t------

    02120C

    02130C STREAM LINES CONS1 \ LJCTION

    02140C

    02150

    AL=Otl

    02160

    110 I = N A , N E

    02170

    FL-OW=O.

    02180

    J=l

    02190 10

    CONTINUE

    02200

    F L O W

    =FLOW

    02210 FLOW=FLC)W A R J)*lJF

    P J)

    02220 01-LOW= FLOW-REFM

    02230 IF AES AL1-OW).LE*AL)

    O TO 8

    02240

    ZF ALLOW.GT.O) GO

    r0 9

    02250

    DELTiY= FLOWl/ FL-0W.I.fFLOW))

    02260

    YOUT I)= J-2)tDELTY)t IIELTlY~JIELTY)

    02270

    GO

    TO

    1 1

    02280 9

    J=J+l

    02290

    GO TO

    10

    02300 8 YOUT I)= J-l)*DELTY

    02310

    11 CONTINUE

    ,-

    02320 X X X = I L D E L T X

    02330 YOUT I)=YOUT I)+ DELTY/2)

    02340

    PRINT

    ~OSPXXXFYOUT T)

    02350

    505 F O R M A T ~ ~ X ~ F ~ O ~ ~ T ~ O X ~ F ~ O ~ ~ )

    02360 7

    CONTINUE

    02370 END

    02380C

    02390C

    02400C

    024

    OC

    .

    02420C

    02430C

    02440C

    02450C

    02450C

    02470C

    02480C

    02490C

    02500C

    02510 t

    02520

    FUNCTION

    P N r X )

    025301:

    02540C

    02550C THIS IS A FUNCTION TO CALCULATE LEGENDER POLYNOMIALS OF TEE

    02550C FIRST

    KIND

    02570C

    02580C

    02590 00=0.

    02600 P=QO

    . . .

    02610

    IF N*LT.O)

    GO TO

    1

    .

    . .

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    66/97

    02620 170=1

    .

    02630

    P=QO

    02640

    IF(NeEQ*O) GO

    TO

    1

    02650 Q l = X

    ;

    02660

    F=Q1

    02670 IF(N*ER*1) GO

    TO 1

    02680 Q2=((3t(Xtt2))-1*)/2*

    02690 ~ = 2

    02700 IF(NeERe2) GO TO

    1

    02710 Fl=((J*(Xt*2))-1*)/2*

    -

    02720 F 2=X

    02730 1=3

    02740 2 CONTINUE

    02750

    P=((((2~tI)-l~)/I)tX*Fl)-((I-1~)/I)tP2

    02760 I F I . E Q * N ) GO TO

    1

    02770 I=ISl

    02780 P2=P1

    \.

    02790 F l=P

    02800 G TO 2

    02810

    I

    CONTINUE

    02820 RETURN

    02830 EN11

    02840 FUNCTION AS(N? )

    0 2 8 5 0 C t t l t ; t * * t t t ~ t d t : ~ ~ t t * t t * X f t t X t S * S ~ t * * * * * * * ~ * * * t * * * * * * * * * *

    02860 DIMENSION R(1000)

    02870C

    02880C

    02890C THIS FUNCTION CAL-CUL-ATES SSOCIATED

    LEGENDER

    POLYNOMIALS

    02900C

    OF

    THE FIRST KIND NLI FIRST F OWEH

    02910C

    02920C .

    02930

    RO=Oe

    02940 R A = R O

    02950 IF*-(N*LE*O) O TO 3

    02960 Rl=(l-(Xt*2))**0*5

    02970 R A = R l

    02980

    IF(N.EQ.1) GO TO

    3

    02990 R2=3.2Xt((l-(X**2))**0.5)

    03000 RA=R2

    03010 IF(NsEQ.2)

    GO TO 3

    03020 Pl=X

    03030 P2=((3t(Xtt2))-1,)/2,

    03040

    DO

    10

    I=J?N

    03050

    R(I)=(((2*1)-1)t((l-(X*t2))*~0~5)tP2)tR1

    03060

    P=((((2~*I)-I~)/I)*X~P2)-((1-1~)/I)*Pl

    03070 P1=F2

    03080 P2=P

    03090 Hl=R2

    03100 R2=R(I)

    03110 KA=R(I)

    . - - .

    .

    03120 10

    CONTINUE

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    67/97

     313 3 ONTINUE

    314

    AS=RA

    315

    RETUl N

    316 END

    R E A D Y

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    68/97

    RUN

    7 8 / 0 7 / 0 4 . 2 2 . 5 2 . 1 5 .

    F I L E

    F KOJS1

    S T R E A M

    LIN ONSTRU TION FOR

    UNIFORMLY

    ISTRIRUTE

    D I S C

    O F SOUR ES

    AND THE BODY

    T IM E L I M I T S

    S RU 25 .2 87 U N TS.

    VOLUM ETRIC FLOW RATE THfiOUGH THE STREAM TUBE= -1 5 6 7 5 .7 3 6

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    69/97

     

    END

    SRU 57 256 UNTS.

    RUN COMPLETE

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    70/97

    APPEND I X 2D

    LIST

    78/07/04. 22+56.16.

    FILE

    F ROJS2

    00100 PROGRAM PROJS2(INFUTrOUTPUT)

    00110 DIMENSION UF(50r100)rAfi(50)rYOUT(lOO)

    00120 IN=50

    0 0 1 3 0 C * * * * * t * * ~ * * * * * t t t * * * * * * t * * * * t * t t * t ~ * * * * * * * * * ~ : K * * * * * * * * * ~ * * * ~ * *

    00131C

    00132C

    00133C F R G R A M F O R

    L I N E A R L Y DISTRIBUTED

    DISC OF

    00134C SOURCES

    A N D

    THE

    BODY*

    00135C

    00136C

    001 7C

    .

    00138C THIS PROGRAM CONSTRUCTS THE STREAM LINES.

    00139C FOR TWE LINEARLY DISTRIBUTED DISC OF SOURCES t

    001 40C

    I N

    COMPLETE ACCORKlANCE TO F'ROGFZAM F RUJSl*

    00141C

    1

    00142C X

    00143C*****t**************S******************************************

    00200 REAL

    K1rMrKrL

    00220C

    00230

    H E A D ~ N S ~ N A ~ N E ~ D E L T X ~ I ~ E L T Y Y U I A ~ A ~ ~ R ~ ~ K ~

    00231 PRINT

    201rNS~NArNE~DELTX~I~ELTYrUrArR1rfi2tK1

    00232 201 FORMAT(///r20XttSTREnM L I N E CONSTRUCTION FOR

    L I N E A R L Y

    DISTRIBUTED

    00233tr/r30XrlDISC OF SOURCES

    A N D THE

    EODYJr/r20Xtd-------------------------

    00234.tr

    *r///r NS=trISr/rtNA~trI5r/rXb.IE=rkrI5t/t*DELT

    0 0 2 3 5 + F 6 t 4 r / r * D E L T Y = * r F 6 ~ 4 r / r * U ~ * r F 1 0 + 5 r / r ~ ~ = * ~ F 4 ~ l r / r ~ A l = * t F 6 ~ 4 r

    00236f/r*R2=trF10~6r/rtKl~*tF10.4)

    00240

    DO

    500 I I I = l r N E

    00250 DO 600 II=lrNS

    00260

    YY= II-l)*le

    00290

    XX=FLOAT(III)

    00340

    R = X X S Z 2 ) t Y Y * * 2 ) ) * * 0 . 5 )

    00360 6 CONTINUE

    00370C R A D I A L COMPONENT OF THE DISC

    VELOCITY

    FIELD

    00380 NO=O

    00390 N l = l

    00400 N2=2

    00410 N3=3

    00420 N4=4

    00430

    N5=5

    00440 X = R / A

    00450 PROD=-0.5

    00460 H=3tAlt(

    +.+A1 *U /A

    00470 T2=ATAN((YY/XX))

    00480 Tl=COS(T2)

    00490 T3=SIN(T2)

    . .

    -.

    - - . . -

  • 8/18/2019 The Flow Field Upstream of a Horizontal Axis Wind Turbine

    71/97

    00500 IF(R*GE*A)

    O TO

    00510

    SUMl=O.

    00520

    DO 1

    I=2rIN

    00530 PROD=PROfld(-0.5-(1-1))/I

    00540

    SUM1=SUEII+((((4tI),f1*)/(((2tI)t3~)~((2*1)-2*)))*PROD)

    00550 1 CONTINUE

    00560 Sl=SUMl

    00570 PRODI=-O*S

    00580 SUM2=O+

    00590 DO 2 I = ~ P I N

    00600

    N=2*I

    00610

    PROPl=PROD1S(-O~5-(1-1))/1

    00620

    S U M 2 = S l J ~ 2 + ( ( ( I Z P F i O D 1 ) / ( I - l ) ) t ~ X t t ~ ~ 2 ~ I ~ - 1 ~ ~ t P ~ N ~ T

    00630

    2

    CONTINUE

    00640 S2=SUM2

    00650 AKI== MfA/2

    00660

    DO=2 (S1-(76./60*))tX*P(t42~Tl)

    00670

    D1=(9+/2*>%(Xlt2)tF(E431Tl)

    00680 D2=3*t(Xif3)tP(N4rTi)

    00690 D ~ = ( ~ + / ~ * ) X ( X S * ~ ) ~ P ( N S T T ~ )

    00700 IS4=S2

    00710

    URl=AKlt(DOtDl-D2tD3-D4)

    00720C

    R A D I A L

    COMPONENT OF THE

    BODY

    VELOCITY FIELD

    00730 D5=(R-(R2tTl))

    00740 D6=(((RITl)-R2)**2)

    00750 D7=(Rt*2)*(T3tt2)

    00760 D8=((D6tD7) $(3/2))

    00770 AK=(

    K / ( 4 3 *

    14)

    00780 UR2=AKtD5/D8

    00790 UR3=-UtT1

    00800C T A N G A N T I A L VE~-OCITY F

    THE FREE

    STREAM

    00810 UT3=UtT3

    00820C TANGANTIAL VELOCITY OF

    THE

    B O D Y

    00830 D9=R2*T3

    00840 DlO=((((RtT1)-R2)**2)t((R**2)*(T3*t2)))t*(3~/2+)

    00850 AK3=K/(4*63*14)

    00860 UT2=AK3%D9/D10

    00870C TANGANTIAL VELOCITY OF THE

    DISC

    00800 PROD2=-O*S

    00890 SUM3=O*

    00900

    DO

    3 I=2rIN

    00910

    N=2 I

    00920

    PROD2=FROD2t(-0*5-(1-1))/1

    00930

    S U M ~ = S U M ~ + ( ( P F < O D ~ / ( ( ~ ~ I ) - ~ ) ) ~ ( X ~ ~ N ) ~