The Finite-Difference Time-Domain Method in...

25
The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio Nano-Optics Group, Laboratory of Physical Chemistry, ETH Zurich ti th h i i@h h th h www.nano-optics.ethz.ch - mario.agio@phys.chem.ethz.ch NMON 07.09.2007 © ETH Zürich | Taskforce Kommunikation

Transcript of The Finite-Difference Time-Domain Method in...

Page 1: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

The Finite-Difference Time-Domain Methodin Nano-Optics

Mario Agio

Nano-Optics Group, Laboratory of Physical Chemistry, ETH Zurich

ti th h i i @ h h th hwww.nano-optics.ethz.ch - [email protected]

NMON 07.09.2007© ETH Zürich | Taskforce Kommunikation

Page 2: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Outline

Introduction to FDTD Applications

Typical situations in Nano-Optics

Sources

Single molecule and SNOM tip

Lifetime engineering with

Boundary conditions

Near-to-far-field transformation

nanoantennae

Metals

NMON 07.09.2007 2

Page 3: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

The Yee algorithm

∂∂t

D ⋅ n ds∫ = H ⋅ dl∫∂

−∂∂t

B ⋅ n ds∫ = E ⋅ dl∫

f (x,y,z,t) → f (i, j,k,n)Δx,... Δt

∂∂t

f (...,t) =f (...,n +1/2) − f (...,n −1/2)

Δt= ′ f (...,n)

NMON 07.09.2007 3

K. S. Yee, IEEE Trans. Antennas Propag. AP-4, 302 (1966)A. Bossavit, Progress in Electromagnetic Research 32, 45 (2001)

Page 4: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

The Yee algorithm - code example

SUBROUTINE march_h! Use Yee algorithm without a Source!! Magnetic Field Components!

m=1_i1b ! For non-magnetic media: u=1.0 everywere!

DO k=1,n3-1 ; DO j=1,n2-1 ; DO i=1,n1! i l(i j k)! m=material(i,j,k)

h1(i,j,k)= h1 (i,j ,k )+ &coeff_h1(2,m)*(e_2(i,j ,k+1)-e_2(i,j,k))- &coeff_h1(3,m)*(e_3(i,j+1,k )-e_3(i,j,k))

ENDDO ENDDO ENDDOENDDO ; ENDDO ; ENDDO…RETURNEND SUBROUTINE march_h

NMON 07.09.2007 4

A. Taflove, and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method 3rd ed. (Artech House, Norwood, MA 2005)

Page 5: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Typical situations in Nano-Optics

Sources

Boundary conditions

Near-to-far-field transformationNear to far field transformation

Staircasing and Metals

NMON 07.09.2007 5

Page 6: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

SourcesDipole: use J in Maxwell’s equationsDipole: use J in Maxwell s equations

Plane wave: total-scattered field technique

Tightly focused beam W. A. Challener, et al.,Opt Express 23 3160 (2003) Seagate Research

Gaussian beam

Opt. Express 23, 3160 (2003) - Seagate Research

J. B. Judkins, and R. W. Ziolkowski,J. Opt. Soc. Am. A 12, 1974 (1995) - Univ. Arizona

With substrate - film

NMON 07.09.2007 6

P. B. Wong et al., IEEE Trans. Antennas Prop. 44, 504 (1996) - Stanford (radar astronomy)K. Demarest et al., IEEE Trans. Antennas Prop. 43, 1164 (1995) - Kansas (radar, remote sensing)

Page 7: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Boundary conditions

λ

Convolutional Perfectly Matched Layer (CPML)

J. A. Roden, and S. D. Gedney

NMON 07.09.2007 7

Microwave Opt. Technol. Lett. 27, 334 (2000)J.-P. Bérenger, IEEE Trans. Antennas Propag. 50, 258 (2002)

Page 8: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Near-to-far-field transformation

observation point

free-space Green’s function(θ,φ)

free-space Green s function

NMON 07.09.2007 8

P. B. Wong et al., IEEE Trans. Antennas Prop. 44, 504 (1996) - Stanford (radar astronomy)K. Demarest et al., IEEE Trans. Antennas Prop. 44, 1150 (1996) - Kansas (radar, remote sensing)

Page 9: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Staircasing and metals

Dx (i + 12 , j,k, t) = εx (i + 1

2 , j,k)Ex (i + 12 , j,k,t)

Dy (i, j + 12 ,k, t) = εy (i, j + 1

2 ,k)Ey (i, j + 12 ,k,t)

D (i j k + 1 t) ε (i j k + 1 )E (i j k + 1 t)

Dx (i + 12 , j,k, t) = εx (i + 1

2 , j,k,t − ′ t )Ex (i + 12 , j,k, ′ t )dt∫

Dz(i, j,k + 12 ,t) = εz (i, j,k + 1

2)Ez (i, j,k + 12 ,t)

x ( 2 j ) x ( 2 j ) x ( 2 j )∫

-10

0

2.5

3.0

Gold:Drude+Lorentz

-40

-30

-20

1.0

1.5

2.0 Drude+Lorentz

NMON 07.09.2007 9

500 600 700 800 900 1000 1100Wavelength [nm]

-50500 600 700 800 900 1000 1100

Wavelength [nm]

0.5

Page 10: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Staircasing and metals100

101 7

10-4

10-3

10-2

10-1

100

r=15nm

r=20nmr=25nm

r=30nm

3

4

5

6Δ=1nmΔ=0.5nm

500 600 700 800 900 1000Wavelength [nm]

10-7

10-6

10-5

10

r=5nm

r=10nm

500 600 700 800 900 1000Wavelength [nm]

0

1

2

F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007)

Ey

d1.0

1.2

Hz

ExΔ

0.2

0.4

0.6

0.8

analyticalCP f=0.75Δstaircase f=0.75 Δstaircase f=0.25 Δ

NMON 07.09.2007 10

Δf 0.0 1.0 2.0 3.0 4.0

Wavevector [k/ks]

0.0

A. Mohammadi, and M. Agio, Opt. Express 14, 11330 (2006)

Page 11: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Applications

Single molecule and SNOM tip

Lifetime engineering with nanoantennae

NMON 07.09.2007 11

Page 12: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Single molecule and SNOM tip

TipxFar-field Detector

Source

Molecule

(θ,φ)

z

Near-field Detector

Molecule

Far-field detection

Tip parameters: core (SiO2), cladding (Al)cladding thickness 200nm, aperture radius 50nm.Molecule parameters: oriented along x resonant

600nm

NMON 07.09.2007 12

Molecule parameters: oriented along x, resonantat λ=615nm, distance tip-molecule d=40-600nm

Page 13: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

The tip near field

200

300

100

6.0

4.0

200

300

100

0.3200

300

100

3.0

2.0

0

-200

300

-1002.0

0

-200

300

-100

0.2

0.1

0

-200

300

-100 1.0x

|Ex| |Ey| |Ez|

-300

0-200-300 100 300nm

200-1000.0

-300

0-200-300 100 300nm

200-1000.0

-300

0-200-300 100 300nm

200-1000.0y

NMON 07.09.2007 13

Page 14: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

The moleculeε (ω) = ε +

Δεωo2

εx (ω) = ε∞ +ωo

2 −ω 2 − 2iγω

α x ≈εx (ω) −ε∞

ε (ω) + 2ε=

Δεωo2

Δε⎛ ⎞ ⎡ ⎤ =Δε

3ε + Δε′ ω o2

′ ω 2 −ω 2 − 2iγωεx (ω) + 2ε∞ 3ε∞ ωo2 1+

Δε3ε∞

⎝ ⎜

⎠ ⎟ −ω 2 − 2iγω

⎣ ⎢

⎦ ⎥

3ε∞ + Δε ω o ω 2iγω

γ << ′ ω ⇒ α ≈ − π Δε ′ ω o⎛ ⎜

⎞ ⎟ (Δ − iγ)L(ω) L(ω) = 1 γ Δ = ω − ′ ω γ << ω o ⇒ α x ≈ −

2γ 3ε∞ + Δε⎝ ⎜

⎠ ⎟ (Δ − iγ)L(ω), L(ω) =

π Δ2 + γ 2 , Δ = ω − ω o

Etip(r → ∞) = Etip(rm ) ⋅ um( )gud = Bgud, Esc(r → ∞) = −A2

(Δ − iγ)L(ω)Bfud2

Etot = Etip + Esc = B g − f A2

(Δ − iγ)L(ω)⎡ ⎣ ⎢

⎤ ⎦ ⎥ ud

E 2 f

NMON 07.09.2007 14

S =Etot

2

Etip

2 =1+γ

4πV 2L(ω) −VL(ω)(Δ cosψ + γ sinψ), V (θ,φ) = A

fg

, ψ =ψ f −ψg

Page 15: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Fitting the FDTD results with theory

0 161 0 162 0 163 0 1640 161 0 162 0 163 0 164

(without film)

1.1

1.2

0.161 0.162 0.163 0.164

1.1

1.20.98

1.00

0.161 0.162 0.163 0.164

0.98

1.00

0.8

0.9

1.0

0.8

0.9

1.0

0.92

0.94

0.96

0.92

0.94

0.96

d=40nm - θ=0 - φ=0

0.161 0.162 0.163 0.164Frequency [a/λ]

d=280nm - θ=40 - φ=90

0.161 0.162 0.163 0.164Frequency �[a/λ]

NMON 07.09.2007 15

a=100nm

Page 16: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Angle ScanDistance Scan 1.4

1.6

aperture=100nm

Changing the Tip

Changing the parameters - collective result

1.3

1.4

1.5

1.6

0.500.751.001.251.50

0.4

0.6

0.8

1.0

1.2aperture=100nmaperture=200nmaperture=100nm - small

0.15

0.02

1.2

1.3

0 20.3

0.40.5

0.000.25

0 3

0.4

0.50.0

0.2

0.4

0 10 20 30 40 50 60

0.05

0.10

0.000 100 200 300 400 500 600Distance [nm]

�0.2

�0.10.00.1

0.2

-0.1

0.0

0.1

0.2

0.3

d=40nm - φ=0

Angle θ [deg]

θ=0 - φ=0

Distance [nm]

0 100 200 300 400 500 600Distance [nm]

-0.2

I. Gerhardt, G. Wrigge, P. Bushev, G. Zumofen, M. Agio, R. Pfab, and V. Sandoghdar,Ph R L tt 98 033601 (2007)

NMON 07.09.2007 16

Phys. Rev. Lett. 98, 033601 (2007)I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar,Opt. Lett. 32, 1420 (2007).

Page 17: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Lifetime engineering with nanoantennae Fluorescence signalFluorescence signal

2 rt r nr, ,

oo o o

o o o o oS γη η γ γ γγ

∝ ⋅ = = +d Etγ

2 SS Kηη∝ ⋅ =d E

2d E

o o

S KS

ηη

∝ =d E

r2

t

,o

K γηγ

⋅= =

d Ed E

NMON 07.09.2007 17

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)

Page 18: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Metal nanoparticle as a nanoantenna

60 nm Au spheres

Vacuum Wavelength [nm]

NMON 07.09.2007 18

B. J. Messinger, et al., Phys. Rev. B 24, 649 (1981)C. Bohren, Am. J. Phys. 51, 323 (1982)

Page 19: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Calculation of decay rates

Quantum-classical analogyPPo

=γγ o

Poynting theorem

n

Pt = Pr + Pnr

1 { }∫S

JV

Pt = −12

Re J∗(r,ω) ⋅ E(r,ω){ }drV∫

Pr = S(r,ω) ⋅ ndaS∫

NMON 07.09.2007 19

L. Rogobete, and C. Henkel, Phys. Rev. A 70, 063815 (2004)F. Kaminski, V. Sandoghdar, and M. Agio, J. Comput. Theor. Nanosci. 4, 635 (2007)

Page 20: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

The issue of quenching

160

200

Cross section

80

120Cross sectionRadiativeNon-radiative

40x10

500 600 700 800 900Vacuum Wavelength [nm]

0

NMON 07.09.2007 20

R. Ruppin, J. Chem. Phys. 76, 1681 (1982)L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007)

Page 21: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Engineering the decay rates

200

250

long axis

100

150

50

100

x100

short axis

500 600 700 800 900Vacuum Wavelength [nm]

0

NMON 07.09.2007 21

J . Gersten, and A. Nitzan, J. Chem. Phys. 75, 1139 (1981)L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007)

Page 22: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

2D antenna models

1.0 3.0

0.8

2 0

2.5

0.4

0.6

1.5

2.0

X4

0.20.5

1.0

0.0500 600 700 800 900 1000 1100

Vacuum Wavelength [nm]

0.0

NMON 07.09.2007 22

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007)

Page 23: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

3D antenna models

104

103

1020304050

120x38

2

10

102

900 950 1000 1050 1100Vacuum Wavelength [nm]

101

nb=1.7

NMON 07.09.2007 23

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007)

Page 24: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Application:improving the quantum efficiencyp g q y

rr r t t nr nr r a, ,o o o γγ γ γ γ γ γ γ η→ → = + + =

1η=

r r t t nr nr r anr r

, ,γ γ γ γ γ γ γ ηγ γ+

( ) ( )r r a(1 ) / /oo o oη η γ γ η η

=− +

γ ηηo =1%, γ r

γ ro =103, ηa = 80% →

ηηo

= 74, η = 74%

NMON 07.09.2007 24

L. Rogobete, et al., in preparationJ.R. Lakowicz, Anal. Biochem. 337, 171 (2005)

Page 25: The Finite-Difference Time-Domain Method in Nano-Opticsalphard.ethz.ch/Hafner/Workshop/Agio2007full.pdf · The Finite-Difference Time-Domain Method in Nano-Optics Mario Agio ... NMON

Acknowledgments

Single molecule and SNOM tip

Nanoantennae

FDTD

NMON 07.09.2007 25