The Encyclopedia of Explosives and Related Items PATR 2700 VOLUME 9

download The Encyclopedia of Explosives and Related Items PATR 2700 VOLUME 9

If you can't read please download the document

description

Volume 9 out of a 10 volume set by BASIL T. FEDOROFF & OLIVER E. SHEFFIELD.

Transcript of The Encyclopedia of Explosives and Related Items PATR 2700 VOLUME 9

In honor of

The Explosives and Weapons ForumWe present:

The Encyclopedia of Explosives and Related ItemsPATR 2700, the Encyclopedia, Federoff, the Bible of Explosives, call it what you will as it has many names. There are few enough books in existence that cover a topic such as explosives, let alone do such a good job as to be a must have reference for anyone in the field. The Encyclopedia is the single greatest work on explosives period. Get it, copy it, distribute it far and wide. A special thanks goes to megalomania for creating The Forum, to NBK2000 for keeping out the kewls, and to nhamilto40 for ripping the original of this book.

http://www.roguesci.org All the knowledge they dont want you to have Visit The Forum at http://www.roguesci.org/theforum/index.php Visit the Chem Lab at http://www.roguesci.org/megalomania

ENCYCLOPEDIA OF EXPLOSIVES AND RELATED ITEMSPATR 2700 VOLUME 9BY

SEYMOUR M. KAYEASSISTED BY

HENRY L. HERMAN

U.S. ARMY RESEARCH AND DEVELOPMENT COMMAND TACOM, ARDEC WARHEADS, ENERGETICS AND COMBAT SUPPORT CENTER PICATINNY ARSENAL NEW JERSEY, USA 1980

Copies of the Encyclopedia of Explosives And Related Items can be obtained by requesting CD ROM from the:

National Technical Information Service (formerly Clearinghouse) US Department of Commerce Springfield, Virginia 22151 1-800-553-6847 USA only 703-605-6000 www.ntis.gov/FCPC

The contents of these volumes are UNCLASSIFIED The distribution of these volumes is UNLIMITED

Neither the US Government nor any person acting on behalf of the US Government assumes any liability resulting from the use or publication of the information contained in this document or warrants that such use or publication will be free from privately owned rights.

All rights reserved. This document, or parts thereof, may not be reproduced in any form without written permission of the Energetics and Warhead Division, WECAC, TACOM, ARDEC, Picatinny Arsenal

Library of Congress Catalogue Card Number: 61-61759

PREFACE

This volume representsa continuing effort to cover comprehensivelythe unclasstiledinformation on explosivesand related subjectsin the samemanner and format as in previous volumes. The reader is urged to obtain the previous volumes and to read both the PREFACE and INTRODUCTION in Volume I in order to understand the authors way of presenting the subject matter In preparation for and during the writing of this Encyclopedia, the authors have consulted freely with and have had the cooperation of many individuals who contributed their expert knowledge and advice. This fact is acknowledgedthroughout the text at the end of the subject item. A listing of many others who havehelped in various ways would be impractical Drs J. Roth, A. P. Hardt and S. Greenbergof the private sector, Dr D. H. Rosenblatt of the US Army Medical BioengineeringResearchand Development Laboratory, Fort Detrick, Md, aswell asDr E. E. Gilbert and MessrsS. Helf, L. Avrami and T. C. Castorina of the Energetic Materials Division, LCWSL, ARRADCOM, Dover, NJ, all contributed significantly in the literature searchingand writing of many of the articles in this volume, In addition, Ms R. Meredith, P. Altner, M. Richards, J. Blodgett, M. Ng, E. Ragolski and Mr A. Farnell of STINFO Division (Library), Messrs Anzalone and L. Silver of PLASTEC, ail of A. ARIUIDCOM, Dover, NJ, gaveunstintingly of their time and effort in such diversesupporting tasks as and computerized searches retrievals,Beilstein and Gmeiin manual searches, publication procurement, and translation and reproduction services Dr Raymond F. Walker, Energetic Materials Division Chief, provided financial support and encouragementto continue this work, asdid Mr Edward J. Kolb of Headquarters,US Army Materiel Development and Readiness Command(DARCOM). Further financial support was receivedfrom the saleof volumes to non-governmentagencies individuals by the National Technical Information Service,US Department and of Commerce,Springfield, Va 22161 Although considerableeffort hasbeen madeto present this information asaccurately aspossible, mistakesand errors in transcription and translation do occur. Therefore, the authors encouragereadersto consult original sources,when possible,and to feel free to point out errors and omissionsof important work so that corrections and additions can be listed in the next volume. The interpretations of data and opinions expressedare often those of the authors, and are not necessarilythose nor the responsibility of officials of ARRADCOM or the Department of the Army This volume hasbeen preparedfor information purposesonly and neither ARRADCOM nor the Department of the Army shall be responsiblefor any eventsor decisionsarising from the use of any information contained herein In conclusion, I wish to acknowledgewith gratitude the continual support and encouragementof SamuelHelf, without whose efforts in behalf of the Encyclopedia of Explosivesprogram, the publication of of this volume would not havebeen possible Seymour M. Kaye Dover, New Jersey October 1980

TABLE

OF CONTENTS Page

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I III

List of Figures and Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII Supplementto Abbreviations for Books and Periodicals . . . . . . . . . . . . . . . . . . . . . . . . Supplementto List of Books on Explosives,Propellants,Pyrotechnics and OrdnanceItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII

XIII

Descriptive

Text of Encyclopedic

Items

QDX (SEX) to Quinonemonoxime and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . Rabinet to Ruthenium Tetroxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sland S2to Sytamit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tl, T2and T3to Type Explosives.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qlto Rlto

Q6 R203

Slto S265 Tlto T416

IIILIST OF TABLES Page

Slow Neutron Irradiation of Primary Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fission-Fragmentof Explosive Azides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weight Lossby Reactor Irradiated Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effects of Reactor lrradiationon SomeExplosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weight-LossSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compositions Usedin Caliber .30 PercussionPrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PulsedReactor Irradiation of Lead Azide-Boron Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . Summaryof Data Obtained from ExplosivesAfter Exposureto ~-Radiation . . . . . . . . . . . . . . Effect of CoGoGammaRadiation on Explosivesby PicArsn Impact Sensitivity Test . . . . . . . . . Effect of GammaRadiation on the Ratesof Detonation for Explosives. . . . . . . . . . . . . . . . . . Effect of GammaIrradiation on Various Lead Azides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effects of 60-MeV Electron Irradiation on Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Dosesand Temperaturesto Initiate Explosivesby PulsedHigh-Energy Electrons . . . . . . Initiation of Lead Azideby PulsedElectrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rangesof Approx O25MeV Protons in Various Explosives . . . . . . . . . . . . . . . . . . . . . . . . . Minimum Ignition Energiesof Explosivesby Light Flashes . . . . . . . . . . . . . . . . . . . . . . . . . . Light-Flash Ignition Energiesfor Azidesand Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effects of Reactor Irradiation on SomeCompositePropellants . . . . . . . . . . . . . . . . . . . . . . . Estimatesof Radiation Effects on Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commercially Available Gamma-RaySources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gamma-RayAbsorption Coefficients for Elements, 0.015-O.125MeV . . . . . . . . . . . . . . . . . . Gamma-RayAbsorption Coefficients for Elements0.301 .25MeV . . . . . . . . . . . . . . . . . . . . Gamma-RayAbsorption Coefficients for Explosive Compoundsand Compositions 0.015-0.125MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gamma-RayAbsorption Coefficients for Explosive Compoundsand Compositions, 0.30l.25MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fastand Thermal Neutron Properties of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof Composition of Cellulosewith that of Bond Paperand SomeCommon Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fast Neutron Moderation and Them-id Neutron Transmissionfor ChargeWeight Measurement . . Propellant Level Gaugingwith Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adsorption of High M.W. Compoundson PowderedExplosives . . . . . . . . . . . . . . . . . . . . . . . Iwtope Dflution AndysisofkWX/~XMktures .......................... Maximum Detection Distancesfor Location of Scandium-46TaggedAmmunition Items . . . . . . Detonation Parameters RDX Mixed with Liquids of Different Densities . . . . . . . . . . . . . . . of PhysicalPropertiesof Solid Additives and 50%Heights of RDX Compositions . . . . . . . . . . . . . Kinetic Data forthe Decomposition of RDXat212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of Formaldehyde Hydroxymethyl Formamide, Methylene Diformamide and 1,3,5-Trinitrobenzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Explosive Reclamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propellant Reclamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pyrotechnic Reclamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calcium Resinate-Chemical and PhysicrdProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GermanRoburites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Toxicological Propertiesof SelectedExplosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof Safety ClassWlcations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . American Table of Distancesfor Storageof Class1.1 Explosives . . . . . . . . . . . . . . . . . . . . . .

R8 R9 R 14 R 15 R21 R 26 R 28 R 30 R 34 R 36 R 40 R 44 R 45 R 46 R 48 R 49 R51 R 56 R 63 R 78 R 80 R 80 R81 R81 R 83 R 99 R 101 R 103 R 108 R11O R112 R 125 R 128 R 137 R138 R 147 R 148 R 149 R 158 R 176 s 10 s 12 s 13

Iv

List of Tables

(Continued)

Page

Molecular Structure asa Guide to Hazard Assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Illustrative Kinetic Thermal and Geometric Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . Department of DefenseExplosivesSafety Board (DDESB) Proceedings the of Annual Explosives Safety Seminars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Salicylic Acid Specification Requirements . . . . . . . . . . . . . . . . . . . ....... ........... Confined Detonation Velocity and Borehole Loading Density of AN-FO . . . . . . . . . . . . . . . . . Values of Acceleration in Ammunition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TemperaturesReachedby Air When Compressed Adiabatically . . . . . . . . . . . . . . . . . . . . . . . Critical SetbackPressures Explosivesof Various BaseSeparations . . . . . . . . . . . . . . . . . . . of Shock Sensitivity of TNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of Shock Geometry on Shock Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Literature Shock Sensitivity Data.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shock Sensitivity of HomogeneousExplosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shock Initiation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof Pressureat Which Burning is Just Detectable in the Underwater and ModZled Gap Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silica Gel Specification Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calcium Silicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calcium SilicatesSpecification Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sodium Silicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calcium Silicide, Chemical and Physical Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calcium Silicide Granulation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silicon, ChemicalRequirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Silicon, Granulation Requirements.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ferrosilicon Powder Explosion Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Heat and Products of Detonation of Heavily Confined Chargesof XTX-8003 . . . . . . . . . . . Propertiesof Plastic Bonded HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.0-Inch Diameter Star Cavity Cast Flare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propertiesof Siloxanes ..,..... ......................................... GermanSynoxyd Formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard. LLL-Pantex Skid Test with Hemispheresof Explosive . . . . . . . . . . . . . . . . . . . . . . . Nonstandard Skid Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation of Plant Floorings by LLL-Pantex Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Water Gelsand Slurries Consumption by Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trade Namesof US Commercial Slurries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qualitative Comparisonbetween Slurry Explosivesand Dynamites. . . . . . . . . . . . . . . . . . . . . Classes Well-CharacterizedSlurry Explosivesand Slurry Blasting Agents . . . . . . . . . . . . . . . of Slurry Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detonation Characteristicsof SelectedCommercial Slurry Explosives . . . . . . . . . . . . . . . . . . . Influence of Detonating Cord Downlines-on Energy Release SBA and ANFO . . . . . . . . . . . . of Fumesfrom DBA-2 and DBA-3 Taken linrnediately after Blast in Unventilated Mine . . . . . . . . . Data from Bureau of Mines Reports on IREMITE Fume Studies . . . . . . . . . . . . . . . . . . . . . . Patent List Slurry Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qualitative Solubilities of Pure Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qualitative Solubilities of Additives a.ndBinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volubility of REX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volubility of HEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volubility of HNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volubility of DATB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S15 S 24 S29 S31 S 44 S53 S 54 S 54 S68 S72 S73 S75 S76 S 82 S89 S91 S91 S92 S 94 S95S98 s99

S1OO S 102 S104 S106 S107s112

S 114 S116 S118 S122 S123 S 124 S 126 S126 S 129 S 135 S 137 S 138s139

s154s1s.5

S156 S156 S156 S156

~

, -

.

. . ...

--.-. ---.

..

List of Tables

(Continued)

Page S156 S156 s 159 $162 S 176 s 179 S 185 s 188 S231 S 236 S 242 S 244 S 245 S 249 S 261 S 265 T1 T1 T4 T5 T6 T6 T 14 T 15 T 16 T 19 T 22 T 23 T 23 T 24 T 25 T 25 T 26 T 26 T 30 T 36 T 38 T 46 T 49 T 52 T 62 T 64 T 66 T 74 T 76 T 76 T 77 T 82

Solubilities of Explosivesin Dimethylformamide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof Solubilities After 5 and 10 Minutes of Stirring at 25C . . . . . . . . . . . . . . . . . . Propertiesof Hexanitrosorbitol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sound Velocities Through Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SpanishInfantry Weaponsin Current Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electromagnetic Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristicsof Simple Chromophoric Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristic Infrared Absorption of Functional Groups , . . . . . . . . . . . . . . . . . . . . . . . . . USA Military Specification Requirementsfor Sugar, Refined and Brown: Beet or Cane . . . . . Antimony Sulfide Chemicaland Granulation Requirements. . . . . . . . . . . . . . . . . . . . . ., . Properties of Molecular Sulfur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Composition and Parameters an Optimum GasGeneratingComposition for of GasDynamic Laser Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical Requirementsfor Sulfur... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical and Chemical Requirementsof Sulfuric Acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SwedishWeaponsin Current Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SwissWeaponsin Current Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Obtained Using an Acceptor Wall Thicknessof 0.46 Inch . . . . . . . . . . . . . . . . . . . . . . . Shock PressureSensitivity for TACOT-Z Acceptor Charge . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum Bombing Incidents Statistics Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof predicted and ObservedBombing Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . Bombingsby Specific Targetsfor 1977-78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Explosive Fillers Usedin Criminal Bombings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CandidateVapor TaggantProperties.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical Properties and Toxicology Data for Potential Vapor Taggants . . . . . . . . . . . . . . . . . . Percent of Bomber TargetsThat Would Be Protected by a Detection Sensor . . . . . . . . . . . . . . Vapor TaggantDetector SystemCost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TaggantProgramSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TaWant ProgramSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SummaryPro#am Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof the Estimatesfor ID Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identification TaggantMaterial Annual Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detection TaggantMaterial Annual Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manufacturing Cost Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribution SystemCost Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tantalum Gasless Delay Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Amination Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Properties of TATB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressed Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cartable Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TKA AHigh TemperaturePropellant Containing TATB . . . . . . . . . . . . . . . . . . . . . . . . . . Detonator Delay Compositions Containing Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tensile Strengthsof Typical Explosives . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic and Static Tensile Strengths.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard Ammonium Perchlorate Double-Base Propellant . . . . i . . . . . . . . . . . . . . . . . . . . . Melting Points of Various Mixtures of TeMeANwith AN . . . . . . . . . . . . . . . . . . . . ., . . . . . Explosive Parameters Mixtures of TeMeAN with AN and RDX . . . . . . . . . . . . . . . . . . . . . of Explosive Compositions Containing TeMeAN, AN and Na Nitrate . . . . . . . . . . . . . . . . . . . . . Thermal Stabilities, Melting Points, and Impact Sensitivitiesof Six Isomeric Tetranitrobiphenyls

VIList of Tables

(Continued)

Page T 87 T 88 T 90 T 90 T 91 T 91 T 92 T 94 T 97 T 98 T 105 T116 T117 T 117 T119 T 120 T 120 T 122 T 127 T 128 T 137 T 154 T 154 T 157 T 158 T 159 T 161 T 165 T 169 T 171 T 176 T 182 T 185 T 186 T 191 T 202 T213 T215 T 221 T221 T221 T 226 T 228 T 228 T 229 T 244 T 256 T 262

PhysicalPropertiesand Configuration of BaselineSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . ParameterValues for Variation of DDT Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vapor Pressure of(3-HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . @MXActivationEne rgies .. . . . . . . . . . ................................... The Confidence Level (K) that CoarseHMX is Sensitizedby Air-Borne Grit . . . . . . . . . . . . . . . Underwater Detonation Data for HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermodynamic Values for HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Composition and Propertiesof Flexible SheetExplosive Containing HMX . . . . . . . . . . . . . . . . Time to First Flame Ignition of Oxamide-ContainingHMX Propellants . . . . . . . . . . . . . . . . . . Compositions and Properties of Two Temperature-Resistant Propellants . . . . . . . . . . . . . . . . . TNT Equivrdencyof Tetrazene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unit Cell Dimensionsand SpaceGroups of SomeAmino-Tetrazole Compounds . . . . . . . . . . . . Impact Sensitivity, Hot Bar Ignition Temperatureand Vacuum Stability . . . . . . . . . . . . . . . . . 5-Amino Tetrazole Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat Stability Testson Double-Base Propellants Containing Tetrazoles . . . . . . . . . . . . . . . . . . Preparation of5-ATZ Salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ignition Propertiesof Some5-ATZMetal Salts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energetic Propertiesof GNAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impact Sensitivity of Various Metal Bis-5-Azo-TetrazoleSalts . . . . . . . . . . . . . . . . . . . . . . . . Sensitiveness Products and Evaporation Residuesof Bis-5,5-Azotetrazole . . . . . . . . . . . . . . of Safety Data of Mercuric-5-Nitrotetrazole and Its Intermediates . . . . . . . . . . . . . . . . . . . . . . . Composition of Gaseous Products of Tetryl Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . Composition of CondensedPhase(160~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Observedand Computed Detonation Product Compositions . . . . . . . . . . . . . . . . . . . . . . . . . Plane-Wave Shock Initiation Threshold for Tetryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gap-TestInitiation Thresholdsfor Tetryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical EnergiesCalculated from Projectile Impact Data on Tetryl. . . . . . . . . . . . . . . . . . . . . GeneralCharacteristicsof Tetrytols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propertiesof the Thallium Picrate Enantiotropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Explosivesand Binders: Coefficients of Thermal Expansion, GlassTransition Temperatures,and Pressed Densities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Values for Thermal Explosion Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Radius for Thermal Explosion of Tetryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Diameter and Adiabatic Explosion Time for RDX . . . . . . . . . . . . . . . . . . . . . . . . . . Kinetic Parameters CelluloseNitrate and Polyvinyl Nitrate Thermal Decomposition . . . . . . . of Thermal Propertiesof SelectedExplosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ThermochemicalData Sourcesfor Pyrotechnic Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . Ideal GasFree Energy Functions for Detonation Products . . . . . . . . . . . . . . . . . . . . . . . . . . PossibleRationale for the Near-Equivalenceof Calorimetric and Computed Heatsof Detonation Fuel Symps Supplied by Resti Reseach bboratories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cure Dataon Fuel Syrup Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burning-Rate Testsof Pyrotechnic Mixtures Containing in Situ Polymerized Fuel Syrup . . . . . . GeneralCharacteristicsof Timers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameters Igniter-Propellant Compositions Incorporating Titanium . . . . . . . . . . . . . . . . . . of Titanium Containing Pyrotechnic Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . US Military Requirementsfor PowderedTitanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impurities Presentin TNT Preparedby Continuous Nitration and Purification . . . . . . . . . . . . . TNT Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Heat, Heat Content and Entropy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VIIList of Tables

(Continued)

Page

Concentration and Destruction Methods for TNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accidents Involving TNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Principal CompositeExplosivesContaining TNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TNT Isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rate Constantsof Reactionsof Nucleophiles with Trinitroaromatic Compounds . . . . . . . . . . . Effects of Toluene Vapor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SelectedPropertiesof Ortho- and Para-Mononitrotoluenes . . . . . . . . . . . . . . . . . . . . . . . . . . SelectedThermochemicaland Energetic Propertiesof Ortho- and Para-Mononitrotoluene . . . . . SelectedRopertiesofthe Dinitrotoluene Isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Volubility in SelectedSolventsof2,4-Dinitrotoluene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitration of Nitrotoluene Isomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . US Military Specification for Dinitrotoluene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examplesof EuropeanMining Explosive Compositions Containing Dinitrotoluene . . . . . . . . . . Control of the Detonation Velocity of SprengelType Explosives . . . . . . . . . . . . . . . . . . . . . . Synthesisand Propertiesof the Dinitrotoluidines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Torpedoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DuPont WaterGels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reported TNT Metabolizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SyntheticCondenaateW astewaterMixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acute Toxicity of DNTIsomers to Two Aquatic Species . . . . . . . . . . . . . . . . . . . . . . . . . . , Specific Properties of Various Explosive 1,2,3-Benzotriazinium Betaine-1,4-Oxides . . . . . . . . . . Spec~lcPropertiesof Various Explosive 5H-Imidazo [4,5d] 1,2 3-Triazine4 (3H)-Ones . . . . . . Specit3c Propertiesof Vsrious Explosive 7H-Imidazo [4,5d] 1,2,3-Triazine4 (3H)-Ones . . . . . . Properties of TNB/TNT and Tetryl/TNBMixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Explosive Properties of Selected2,4,6-Trinitrobenzene Derivatives. . . . . . . . . . . . . . . . . . Impact Sensitivities and Oxidant Balancesof Polynitroaromatic Explosives . . . . . . . . . . . . . . . Effect of PbO on the Rate and Composition of the Products in the Decomposition of NG . . . . . PhysicalProperties of Tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MechanicalProperties of Tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gasless Delay Compositions in Current Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heatsof Reaction of Tungsten in Inorganic Mixtures Consideredfor Delays . . . . . . . . . . . . . . Burning Ratesof Various Tungsten Delay Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . Variations of Burning Rate due to Changein Particle Size of Tungsten Delay Composition . . . . . Effect of Varying Both the Zinc Stearateand Barium Chromate Content on the Burning Rate and TemperatureCoefficient of a Tungsten Delay Composition . . . . . . . . . . . Environment Surveillanceof a Tungs-ten-VitonComposition . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation of Mk 279 Mod Igniters Containing Tungsten-Viton Delay Composition Overa Four Year Timespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof Sensitivity and Physico-chemical Characteristicsof First Fire Compositions . . . . Maximum Allowable Metallic Impurities in Tungsten Powder . . . . . . . . . . . . . . . . . . . . . . . . Distribution, Weight Percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T277 T281 T282 T284 T 286 T300 T 303 T 304 T305 T307 T308 T311 T 312 T 312 T321 T325 T330 T333 T335 T340 T 354 T 355 T 356 T376 T 376 T 379 T 387 T402 T403 T406 T 406 T 406 T 406 T 410 T 411 T411 T411 T 412 T413

VIIILIST OF FIGURES AND ILLUSTRATIONS Page

ClosedBomb Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q4 Apparatus for Continuous Dosageof Acidand Glycerin . . . . . . . . . . . . . . . . . . . . . . . . . . . . RI Flow-Sheetof Continuous Method of Manufacture of Nitroglycerin . . . . . . . . . . . . . . . . . . . . R 2 Range-Energy Relation for Protons and a!-Particles SeveralExplosives . . . . . . . . . . . . . . . . . R 7 in Effect of Slow Neutron Irradiation on the SubsequentThermal Decomposition of Lead Azide . . R 9 Thermal Decomposition Curvesof Reactor-Irradiated Pb Styphnate Monohydrate . . . . . . . . . . R 11 Effect of Reactor Irradiation on Impact Sensitivity, Colloidal Pb Azide . . . . . . . . . . . . . . . . . R 12 Effect of Reactor Irradiation on the Thermal Decomposition of Colloidal ~-pb Azide . . . . . . . . R 13 Weight Loss of primary and Booster Explosivesasa Function of Reactor Irradiation . . . . . . . . . R 23 Weight Loss of Main-ChargeExplosivesas a Function of Reactor Irradiation . . . . . . . . . . . . . . R 24 Effects of Reactor Irradiation on Explosion Temperatureof TATB . . . . . . . . . . . . . . . . . . . . R 25 GasEvolution by Gamma-IrradiatedExplosives at Ambient Temperature . . . . . . . . . . . . . . . . R 31 GasEvolution by Irradiated Dextrinated Lead Azide at Different Temperatures . . . . . . . . . . . . R 32 Apparent Radiation Damageto StandardComponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R32 Weight Loss of Co Irradiated Pellets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 35 Effect of GammaRadiation on the Detonation Velocity of Explosives . . . . . . . . . . . . . . . . . . R 37 DTAThermograms for BaN6asa Function of GammaDose . . . . . . . . . . . . . . . . . . . . . . . . . R39 Formation of Ammonium Nitrate on Top of Irradiation Explosion Proof CapsuleContaining Lead Abide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R41 Variation of Time to Explosion with Preirradiation X-Ray Dosagefor Decomposition at 298C . R 43 Effect of Ultraviolet hradiation on Induction Time, 50%Point, and Activation Energy of Colloidal Lead Abide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 49 Sensitization of Silver Azide to Light due to the Effect of Gold Particles. . . . . . . . . . . . . . . . . R 50 Relationship BetweenLight Energy for Ignition and Temperature for Lead Azide . . . . . . . . . . . R 51 Variation of the Minimum Light Energy for Ignition of Lead Styphnate with Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R52 DTA of Ammonium Perchlorate Showing Effect of Reactor Irradiation . . . . . . . . . . . . . . . . . R 54 Relative Radiation Stability of Propellants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R58 Weight Lossof Propellants as a Function of Reactor Irradiation . . . . . . . . . . . . . . . . . . . . . . R 59 Induction Period vs Total DoseData for Irradiated and Unirradiated Ammonium Perchlorate SingleCrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R64 Effects of Garnrna-Ray235 Fission SpectrumNeutron, and Combined Gamma-Ray U and Neutron Irradiation on Whole Crystals of Ammonium Perchlorate . . . . . . . . . . . . . . . . R 65 GeneralizedConcept of Gamma-RayGauging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R77 Simplified Blustration of Neutron Gauging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R82 Gamma-RayFeedbackTransducerSystemfor Propellant Burning Rate Measurement . . . . . . . . R 85 Gamma-RayTransmissionGaugefor Burning Rate Measurementin Rocket Motors . . . . . . . . . . R 86 Relative Propellant Thicknessvs Burning Time Using Gamma-RayTransmissionGauge . . . . . . . R 88 Sketch of Gamma-RayDensity Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R89 Typical Gamma-RayDensitometer Scanof an M-55 Detonator . . . . . . . . . . . . . . . . . . . . . . . R 90 Improved Gamma-RayScanningGaugefor Detonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . R91 Electrical Ignition Element .,..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R92 Block Diagramof Gamma-RayMeasuringEquipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R93 Sketch of Gamma-RayTransmissionGaugefor BaseSeparationDetector . . . . . . . . . . . . . . . . R 94 Conceptual Sketch ofa CT ExplosivesDetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R96 Drawing of Projected AIDECS Systemin Operation at a Loading Plant . . . . . . . . . . . . . . . . . . R 97 Top Cross-Section Sketch of Fast Neutron Gauging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R99

IxList of Figures and Illustrations

(Continued)

Page

Relative Counts asa Function of Moisture Content for PowderedMaterials by Fast Neutron Gauging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 100 Sketch of Thermal Neutron TransmissionGaugefor Measurementof ChargeWeight . . . . . . . . . R 101 Measurementof ChargeWeight of RDX in a BrassCylinder by Thermal Neutron Gauging . . . . . R 101 ``Neutron Weighing'' of Propellant in30mm Cartridge Case . . . . . . . . . . . . . . . . . . . . . . . . . R 102 Neutron Weighing for ChargeWeight in .50 Cal PercussionPrimers . . . . . . . . . . . . . . . . . . . R 102 Typical Curve for Normalized Krypton Concentration vs Amount of Propellant in Tank . . . . . . R 106 Adsorption Isotherm of Carbon-14 STAB on HMX in 90/10 Water-Ethanolat 30C . . . . . . . . . R 109 Specitlc Heat Cpof RDXasa Function of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 122 Linear Coefficients of REX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 122 Steady-StateDetonation Velocity of RDX vs ChargeDiameter . . . . . . . . . . . . . . . . . . . . . . . R 124 Output of RDXParticle Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 131 Sensitivity of Granular REX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 132 Effect of ChargeDensity on the Stability of the Normal Burning of RDX . . . . . . . . . . . . . . . . R 134 Distribution of Temperatureand Relative Intensities of OH, Cz, CN, CH, Hz, 02 and Nz with Height Along an RDX Flame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 134 ProposedDDT Mechanismfor 91/9 RDX/Wax Granular Charge . . . . . . . . . . . . . . . . . . . . . . R135 Concentration-Time Profdesof N20, C02 and N02 for Three Reactor Volumes . . . . . . . . . . . R 136 Concentration-Time Profdesof N02 for Various Initial Weightsof RDX and Reactor Volumes . . R 136 The SystemsRDX-Rosin and RDX-Urea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 140 Principles of RecoillessRifles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R151 Typical Explosive Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R156 Early Hand Weapons-Colt Cal.45 and .38 Revolvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . R163 Sectional Viewof Pistol M1911A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R164 Mechanismofa WheelLockand Key for Winding It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 169 Bullet Spun by Rifling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 170 Expanding Bullet asLaadedin Gun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R171 Rifling Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R 173 External Chargeof the ZKP Type with a Spherical ShapedRecess SecondaryBlasting . . . . . R 196 for Sabotin Gun Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1 SchematicPressure,Time Curvesfor Deflagration, High Order Detonation . . . . . . . . . . . . . . . . s 14 Biomedical Criteria for Primary Blast Effects on Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . s 20 Ignition of Composite Solid Propellants by Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 25 Typicrd Time-Acceleration Curve for Projectile While in Gun . . . . . . . . . . . . . . . . . . . . . . . . s 53 ApparatusWhich SimulatesSetbackPressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s 54 Transmissionof a Plane Shock WaveInto a Material of Lower Impedance . . . . . . . . . . . . . . . . S 60 Transmissionof a PlaneShock WaveInto a Material of Higher Impedance . . . . . . . . . . . . . . . . S 60 ChargeAssembly and Dimensionsfor NOL StandardizedGap Test . . . . . . . . . . . . . . . . . . . . . S 62 Complete SSGTSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 62 SchematicCrossSection of the Gap Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 63 SchematicDiagram of the LASLWedge Slant System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 63 SchematicRepresentationof a Streak CameraRecord of a WedgeShot . . . . . . . . . . . . . . . . . . S 64 StreakCameraRecord from WedgeShot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 64 Two Stages Set-Up for the Study of Granular Explosive . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 64 Principle of Generation of RectangularPressure Pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 65 SchematicDiagramofa GasGun-Flyer Plate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 65 Explosive WedgeExperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s 66 Sensitivity of Composition B-3..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 69 Shock Sensitivity of Five Explosives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S 69

.

List of Figures and Illustrations

(Continued) S 69 s 70 S71 S 76 s 77 S 78 s 79 S 80 S81 S119 S 128 s 130 s 131 s 131 s 133 s 134 S 136 S 161 S 180 S 181 S 182 S 183 S 184 S 187 s 199 s 201 S 206 S219 S251 S 252 S 253 S 254 S 254 S 255 S 255 T7 T7 T 10 T 16 T 18 T 19 T 19 T21 T 22 T 37 T 49 T 49 T51.

Effect of Initial Density and Initial Temperatureon the 50% Threshold of HNS . . . . . . . . . . . . Shock Sensitivity Curvesfor Waxedand Unwaxed Ammonium Perchlorate and for TNT . . . . . . Effect of Interstitial GasPressure the Small-Scale on Gap-TestSensitivity of Law Specific SurfacePETN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Blackbody Temperature-TimePlots for Two Bare ChargeShots . . . . . . . . . . . . . . . . . . . . . . . Typical Impact-FacePressure Histories Measuredwith Quartz Gauges. . . . . . . . . . . . . . . . . . . Relationship BetweenDistance to Detonation and Initial Shock Pressure Various Explosives for Interface Deceleration Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensitivity of Granular REX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensitivity of Liquid and Solid TNTand Nitromethane . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sliding-Block Friction Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detonation Velocity of a TNT Slurry asFunction of Distance from the Primer . . . . . . . . . . . . Effect of Spec~lcGravity on Volume Energy of NCN or Explosive-SensitizedSlurries at 40F . . Effect of Pressure Volume Energy on one Type of NCN Slurry . . . . . . . . . . . . . . . . . . . . . on Effect of Borehole Temperatureon Energy-Density Relationship of a Typical Nonmetallized NCNSlurry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparisonof Density-Sensitiveness Curvesfor SE and SBA . . . . . . . . . . . . . . . . . . . . . . . . Reciprocal Critical Diameter (or Sensitiveness) Percent TNT Curvesfor SETNT . . . . . . . . . vs Effect of Detonating Cordon NCN Slurries Potential Energy Loss . . . . . . . . . . . . . . . . . . . . . Sound Suppressors (Schematics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Electromagnetic Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spectral Distribution of Black Body Radiation as a Function of Temperature . . . . . . . . . . . . . Percentage Black Body Radiation asa Function of Wavelengthand Temperature . . . . . . . . . of Effect of Emissivity on Radiant Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultraviolet Absorption Spectrum of Benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normrd Vibrational Modes of C02and H20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Piston Prhned Single Flechette Cartridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPJSV/Flechette Ammunition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross-Section Through aSquib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagram ofa Typical Strand Burner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The HDPSupergun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arrow Projectiles Fired bythe HDPSupergun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The SusanProjectile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SusanTest: TNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SusanTest: Cycloto175/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SusanTest: Comp B-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SusanTest: 0cto175/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ExplosivesUsedin Criminal Bombings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bombing Casualtiesasa Function of ExplosivesUsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The3MCompany Color-CodedTaggant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detection TaggantsSensorSystemBlock Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ion Mobility SpectrometerSystem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GeneralFunctional Network for Vapor TaggantDetector . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimated Annual Vapor TaggantDetector Cost vs Quantity Deployed . . . . . . . . . . . . . . . . . . SchematicIllustration of Identii3cation TaggantUtility in Criminal Investigation , . . . . . . . . . . SchematicIllustration of GeneralCost Element Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration of the TATBMolecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PhaseVelocity Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attenuation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infrared Scanof TATB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

XIList of Figures and Illustrations

(Continued)

Page T60 T61 T 84 T85 T86 T 89 T89 T95 T95 T96 T97 T136 T137 T 153 T153 T155 T 156 T 156 T161 T162 T 162 T173 T 174 T174 T 178 T179 T180 T 181 T184 T21O T 210 T216 T225 T 237 T238 T239 T240 T245 T245 T245 T254 T 310 T311 T346 T 378 T404 T 408 T408 T 409

Typical VHF High-g Telemetry System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sequence Events . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . of Drawing of 13-HMX Molecule Showing Interatomic Distancesand Angles . . . . . . . . . . . . . . . . . Stereoscopic Views ofo!-HMXand8-HMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timeto Explosion for HEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variation of Runup Distancewith Particle Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variation of Runup Length with Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of HMXParticle Sizein HTPBPropeIlant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75% HMXin Polyurethane Propellant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85% HMXin CTPBPropelkmt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arc-ImageIgnition Data for HMXComposite Propellants . . . . . . . . . . . . . . . . . . . . . . . . . . . Equipment for PreparingCuen2@T)2and Hg(NT)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydraulic Transfer of Hg(NT)z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinetic Gas-Evolution Curvesin the Decomposition of Tetryl . . . . . . . . . . . . . . . . . . . . . . . . Kinetic Gas-EvolutionCurvesin the Decomposition of Tetryl with the Addition of Picric Acid at150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTACurve and Pyrolysis Curve for Tetryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detonation vsChargeDiameter Curvesfor CoarseTetryl . . . . . . . . . . . . . . . . . . . . . . . . . . . Steady-StateDetonation Velocity of Tetryl asa Function of ChargeDiameter . . . . . . . . . . . . . Impact Velocity Required for Detonation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CrossSection of DDTTube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of Compaction on Predetonation Column Length of Tetryl . . . . . . . . . . . . . . . . . . . . . Heat Production and Heat LossRates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experiment to Illustrate the Critical Nature of a Thermal Explosion . . . . . . . . . . . . . . . . . . . . Heating Curves(TemperaturesvsTime) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TemperatureProfdesfor Times Near the End of the Induction Period . . . . . . . . . . . . . . . . . . Explosion Times for RDXin Various Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphsfor Spheres,Cylinders, and Slabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TemperatureDistribution During Cooling of a Spherical Element of Inert Material . . . . . . . . . . The Relative Error of Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hugoniot Curve, Rayleigh Lineand Isentropes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nomenclature on the Hugoniot Curve for Detonation and Deflagrations . . . . . . . . . . . . . . . . . Family of Hugoniot Curvesfor SteadyDetonation Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . Initial TBIConfiguration for Saturn VLaunch Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . TNT Nitration and Purification Equipment Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . TNT Nitrator System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitrator with Dynamic Separator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TNT Purification Flow Scheme... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect ofpHon Heat less . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect ofpHon By-Product Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Thermal Analysis-TNT. ................. ...................... TemperatureChangeDuring the Nitration of p-Nitrotoluene . . . . . . . . . . . . . . . . . . . . . . . . . Pattern of Detonation vsDensity Curvesfor2,4-DNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elementsof the Artillery Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impact Sensitivity of Polynitroaromatics as Function of OB100. . . . . . . . . . . . . . . . . . . . . . . Thermogramof Tungsten Ignition in Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TemperatureProfiie for Tungsten-Potassium Bichromate . . . . . . . . . . . . . . . . . . . . . . . . . . . DTACurve for Tungsten-Potasaium Bichromate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exothermicity of the Ignition Reaction of the Tungsten-Potassium Bichromate System . . . . . . .

,

-.. _

XII

GIVEN

SUPPLEMENT TO THE LIST OF ABBREVIATIONS FOR BOOKS AND PERIODICALS IN VOL 1, pp Abbr 66 to Abbr 76; VOL 2, pp Xi to XII; VOL 3, PP X11 to VOL4, pp XLVll to L; VOL 5, p Xlll; VOL7, p X; and VOL 8, PXIV

X111;

Bretherick (1979)

L. Bretherick, Handbook of Reactive ChemicalHazards, 2nd Ed, Butterworths, London (1979) R. Meyer, Explosives, Engl Ed, Verlag Chemie,NY (1977) N. Irving Sax, DangerousPropertiesof Industrial Materials, 5th Ed, Van Nostrand Reinhold, NY (1979) Anon, Blasters Handbook, Technical ServiceSection, Explosives Products Division, E.I. duPont de Nemours& Co, Wilmington, Delaware(1977) Journal of HazardousMaterials, Elsevier Scientific Publishing Co, Amsterdam(VOI 1, No 1 published 1977)

Meyer (1977) Sax(1979)

BlastersHndbk (1977)

JHa.zardouaMat (VOl, No, Year& Page)

XIIISUPPLEMENT TO THE LIST OF BOOKS ON EXPLOSIVES, PROPELLANTS, PYROTECHNICS AND ORDNANCE ITEMS GIVEN IN VOL 1, p A676; VOL 2, pp C215to C216; VOL 3, pp XIV to XV; VOL 4, pp LI to LV; VOL 5, pp XIV to XV; VOL 6, p X; VOL 7, pp Xl to Xii; and VOL8, p XV

H.E. Malone, The Analysis of Rocket propellants, AcademicPress, (1976) NY C.F. Foss,Artillery of the World, RevisedEd, CharlesScribners Sons,NY (1976) E.R. Pkmkett, Handbook of Industrial Toxicology, ChemicalPublishing Co, NY (1976) M.J.H. Taylor& J.W.R. Taylor, Missiles of the World, CharlesScribners Sons,NY (1976) Anon, Recoilless Rifle WeaponSystems, AMCP 706-238, Engineering Design Handbook, US Army Materiel Command,5001 EisenhowerAve, Alexandria, Va 22333 (1976) Anon, Reliable Military Electronics, AMCP 706-124, Ibid (1 976) Anon, Environmental Series,Part Three, Induced Environmental Factors, AMCP 706-117, Ibid (1976) C.E. Gregory, Explosives for AustralasianEngineers, 3rd Ed, University of QueenslandPress,Australia (1977) E.C. Ezell, Small Arms of the World, 1lth Ed, Stackpole Books, Harrisburg, Pa (1977) C. Saint-Arroman, Practique DesExplosifs, Editions Eyrolles, Paris(1977) Anon, Blasters Handbook, E.I. dupont de Nemours and Co, Wilmington, Delaware(1977) R. Meyer, Explosives, Engl Ed, Verlag Chemie,NY (1977) I.V. Hogg& J. Weeks,Military Small Arms of the 20th Century, Hippocrene Books, NY (1977) R. Germerhausen et al, WaffentechnischesTaschenbuch, Rheinmetall GmbH, Dusseldorf (1977) S.L. Herman, Explosives Data Guide, Explosives ResearchInstitute, Inc, PO Box 2103, Scottsdale, Arizona (1977) H. Neunhoeffer & P.F. Wiley, Chemistry of 1,2,3-Triazinesand 1,2,4-Triazines,Tetrazines,and Pentazines,John Wiley& Sons,NY (1978) E.E. Hackman III, Toxic Organic ChemicalsDestruction and WasteTreatment, Noyes Data Corp, Park Ridge, NJ (1978) Anon, Fire Protection Guide on HazardousMaterials, 7th Ed, National Fire Protection Association, Boston, Mass(1978) I.V. Hogg, British and herican Artillery of World War 2, Hippocrene Books, NY (1978)

M. Lumsden, Anti-personnel Weapons,Stockholm Internatioml PeaceResearchInstitute, Crane, Russak & Co, NY(1978)

1

B. Earl, Cornisb Explosives, The Trevithick Society, Trevinson House,Cornwall, England (1978) C.E. Gregory, Explosives for North American Engineers, 2nd Ed, Trans Tech Publications, Rockport, Mass(1979) M. Summerfield & H. Krier, Eds, Interior Ballistics of Guns, American Institute of Aeronautics & Astronautics, NY (1979) R.A. Scott, Jr, Ed, Toxic Chemical and ExplosivesFacilities Safety and EngineeringDesign, American Chemical Society, Washington,DC (1979) M. Sittig, Hazardous and Toxic Effects of Industrial Chemicals, Noyes Data Corp, Park Ridge, NJ (1979) C.L. Mader, Numerical Modeling of Detonations, Univ of California Press,Berkeley, Calif (1979) W. Fickett & W.C.Davis, Detonation, Univ of California Press,Berkeley, Calif (1979) N. Irving Sax, Dangerous Properties of Industrial Materials, 5th Ed, Van Nostrand Reinhold Co, NY (1979) K. Gugan, Unconfined Vapor Cloud Explosions, Gulf Publishing Co, Houston, Texas(1979) J. Weeks,Ed, Janes Infantry Weapons,197980, 5th Ed, Franklin Watts, NY (1979) R.T. Pretty, Ed, Janes WeaponSystems,1979-80, 10th Ed, Franklin Watts,NY (1979) C.F. Foss,Ed, Janes Armour and Artillery, 197980, 1st Ed, Franklin Watts,NY (1979) L. Bretherick, Handbook of ReactiveChemicalHazards, 2nd Ed, Butterworths, Boston (1979) J. Owens,Ed, BrasseysInfantry Weaponsof the World1979, 2nd Ed, Crane,Russak& Co, NY (1979) J.M. Shevitz, The Weaponsmakers, SchenkmanPublishing Co, Cambridge,Mass(1979) R.C. Quertermous& S.C. Quertermous, Modern Guns, IdentKlcation and Values, Crown Publishers, NY (1979) V. Lindner, Explosives and Propellants, in Kirk-Othmer, Encyclopedia of Chemical Technology, Vol 9, 3rd Ed, 561671, John Wiley& Sons,NY (1980) T. Gander&P. Chamberlain,Weaponsof the Third Reich, Doubleday& Co, GardenCity, NY (1980) J.H. McLain, Pyrotechnics and Applications of Solid State Chemistry, Franklin Institute Press,Franklin ResearchCenter, Philadelphia, Pa (1980) Anon, Unconventional WarfareDevicesand Techniques, Pyro PressPublications, Box 12010, Lexington, Ky (1980) B. Fitzsimons, Ed, Illustrated Encyclopedia of 20th Century Weaponsand Warfare, 24 VOIS,Purnell ReferenceBooks, Milwaukee, Wis (1980) Anon, International WeaponDevelopments, 3rd Ed, PresidioPress,SanRafael, Calif (1980) L.H. Yaverbaum, Technology of Metal Powders, Noyes Data Corporation, Park Ridge, NJ (1980)

.

.

.

.--...

. _ ... ..._.

QIEncyclopedia OF EXPLOSIVES Volume 9 and RELATED ITEMS

QDX (SEX). Code letters for Octahydro-lacetyl-3,5,7-trinitro-s-tetrazine. See under 1Aceto-3,5,7-trinitro-l,3 ,5,7-tetrazacyclooctanein Vol 1, A49-R

piecesof ordn made to resemblereal artillery and used to deceivean enemy Ret J. Quick, Dictionary of Weaponsand Military Terms, McGraw-Hill, NY (1973), 361Quaker Guns. Dummy Qualified Product. A product which has been examined and tested and which has passedall qualification requirements of the applicable specification Qualified Products List (QPL). A list of products, qualified under the requirements stated in the applicable specification, including appropriate identification and referencedata with the name and plant addressof the manufacturer Refi Anon, OrdnTechTerm (1962), 241

Quadrant, Fire Control. A mechanical device having scalesgraduated in roils, with a fme micrometer adjustment(s) and a leveling and/or a cross-levelingdial(s). It may be physically attached to the gun, gun mount, or gun carriage and is usedfor setting and/or measuringthe elevation angles of a weapon for obtaining the horizontal range of a target. When attached to the elevating mechanismas a part thereof, it is called elevation quadnw if graduated in nils or degrees,or range quadrant if graduated in range units. When it consists of a separateunattached instrument for hand placement on a referencesurface,it is called a gunners quudrant Ref. Anon, OrdnTechTerm (1962), 241

Qualitative Development Requirements information (QDRI ). Information concerning items of

Quail. An air-launched decoy missile carried internally in the B-52 Stratofortress strategic bomber, and used to degradethe effectiveness of enemy radar, interceptor aircraft, air.defense missiles,etc. It is a miniature turbojet-powered aircraft which flies at the samespeedas the B-52 and is equipped with electronic ccmntermeasure(ECM) gear which simulatesthe B-52s radar signature. Designatedas ADlW20, it has a length of 12.9 ft, a diameter of 2.5 ft, a 5 ft 5 inch wing span (once it has been dropped from the bombers weapon bay and its wings have unfolded), a launching wt of 1230 lbs, and a range of 345 miles. Unlike the active ECM devicescarried by the B-52, Quail is intended to degradehostile radar by dilution, rather than by deception. Its range which determines how long the dilution can be maintained is not known Refs: 1) E. Luttwak, A Dictionary of Modern War, Harper & Row, NY (1971), 158 2) J. Quick, Dictionary of Weaponsand Military Terms, McGraw-Hill, NY (1973), 361

Ordnancewhich will require future development. This information is furnished by class11Ordnanceinstallations having a researchand development mission to civilian organizations properly qualified by OrdnanceDistrictsQualitative Material Development Objective

(QMDO). A Department of the Army approved statement of a military need for development of new materiel, the feasibility of which cannot be determined sufficiently to establish a qualitativematenel requirementQualitative Material Requirement (QMR). A

Department of the Army approved statement of a military need for a new item, system, or assemblage, developmentof which is believed the to be feasible. QMRs serveas a basis for the development of military characteristics, and provide guidance for researchand development programming actions Rej? Anon, OrdnTechTerm (1962), 241Quantity-Distance (Explosives Safety Distance). The prescribedminimum distancebetween vari-

ous classes quantities (net weight) of expls, and

Q2

and between such expls and specific exposures (inhabited bldgs, public highways, public railways, petroleum, aircraft, etc), affording an acceptabledegreeof protection Seealso under American Table of Distances for Storageof Explosives in Vol 1, A168-L, and Effects of Explosions and Table of Distances for Storage of Explosives in Vol 5, El 1-L For detailed in-depth information on this subject, consult the refs Refs: 1) Anon, Ammunition and Explosives Standards, TM 9-1300-206 (1973), Chapt 5, pp 5-1 to 5-31 (Quantity-Distance Regulations, Classes Tables) 2) C.E. Gregory, Exploand sives for North American Engineers, Trans Tech Publications, Cleveland (1973), 25256 3) Anon, Ammunition and Explosives Safety Standards, AR 365-64 (1975)Quarrycord. A commercial cord type burning igniter designedmainly for lighting safety fuses for firing a large number of expl chargesin secondaryblasting operations. In appearance it resembles colored twine, is soft and pliable a but somewhatfragile. It can be lighted readily with a match and burns with an open flame at a speedof about one ft per see,but is also subject to ignition by open flame, sparks,friction, or a sharp blow. The principal advantagesof Quariycord are increasedsafety and convenience in lighting a great many fuseswithin a limited time, however, it is not used for sequential or rotation firing. It will not withstand w, and should not be strung until time for the blast Refs: 1) Ellern (1968), 207 2) Blasters Hndbk (1969), 103& 133

Quaternary

Ammonium

Salts.

See

monium Salts, Quaternary in Vol

1,

under AmA381-L

Quebrachitol (Quebrachite, Methoxy pinite, l-f.nositol methyl ether, Bornesitol). C6H6(OH)5.0CH3, mw 194.18, mp 19094, bp 210 at 6 mm, crystallizes well from acct. Was first obtained by Tanret (Ref 2) from quebracheby a seriesof operations, also described in Beilstein (Ref 1, p 1193). A. DeJong

(Ref 3) obtained quebrachitol by treating the latex of Hevea brasiliensis with alc and evapg the alc soln. V S1 in w; somewhat sol in sol boiling ale; insol in eth; sol in coned sulfuric acid. On nitration, it yields an expl: Quebrachitol Pentanitrate (Nitroquebrachite). C6H6(ON02)5.0CH3, mw 419.18, N 16.71%, OB to C02 9.5%, bp (flashes on heating). Transparent, odorless,very viscous oil. Crater (Ref 5) prepd it by nitrating quebrachitol with mixed nitric-sulfuric acid, using the sametechnique asin the prepn of NG. After nitration was complete, the mixt was run into a separator, where Quebrachitol Pentanitrate sepalout in an oily layer which was skimmed off and drowned in cold w. The sticky syrup was dissolvedin eth and neutralized by emulsifying with Na carbonate soln. The two solns were sepalby meansof a separator funnel and the eth evapd off under vac Quebrachitol Pentanitrate is nearly insol in w, difficultly in coned sulfuric acid and v sol in eth, methanol, ethanol and gl acet ac. It flashes without exploding when dropped on a hotplate, and detonateswhen struck with a hammer on a steel plate, or with a No 6 blasting cap According to Crater, its impact sensitivity with a 2 kg falling wt is positive at 4 cm and negative at 3 cm, which is nearly the sameas for NG [see Naoi.im, NC (1928), 141]. Later tests by Burke and McGill (Ref 6), as well as those of the duPont Co, showedthat it is about 50%lesssensitiveto impact than NG, while its thermal stability is comparableto that of NG Quebrachitol Pentanitrate was proposed by Crater (Ref 5) and Burke and McGill (Ref 6) as an ingredient of expl and proplnt compns. Crater prepd an expl for use in low-freezing Dynamites by nitrating a mixt of glycerin (or glycol), 50 to 95%, and quebrachitol, 50 to 5%. Thesemixts havehigher viscositiesthan straight NG, but lower viscositiesthan NG plus nitrated sucrose. The mixt preferred by Crater of 80% glycerin and 20% quebrachitol, gave, on nitration by the samemethod asusedfor the nitration of glycerin, a product with pH 7 and a KI stability at 82.2 of 8 minutes. An example of a low-freezing Dynamite proposedby Crater is: a nitrated mixt of 80/20 NG and Quebrachitol Pentanitrate, 40; Na nitrate 46; pulp (woodmeal) 9; sawdust4; and chalk 1%

Q3 Burke and McGill (Ref 6) also prepd Quebrachitol Pentanitrate as well as its n-dxts with nitrated polyhydric ales,such as NG and nitroglycols. They proposed such mixts as proplnt ingredients Rejk 1) Beil 6,1193, (587) & [1157] 2) c. Tanret, CR 109, 90810 (1889)& JCS58 (I), 226 (1889) 3) A. deJong,Rec 25,48 (1906) & JCS90 (II), 248 (1906) 4) G.S.Whitby, J. Dolid & F.H. Yerston, JCS 1926, 14512 5) W. deC. Crater, USP 1850224 (1932) & CA 26,2867 (1932) 6) C.E. Burke &R. McGill, CanadP326147 (1932)&CA 26,6140 (1932) 7) Blatt, OSRD 2014 10KeV, slow thermal neutrons, and gamma(~) radiations Slow Neutron Bowden and Singh (Refs 8 & 35) utilized a radioactive antimony-beryllium source with a slow neutron flux of about 106 neutrons/ cm2/seeand the cyclotron at CavendishLaboratory for fluxes up to 3 x 108n/cm2/sec. The primary expls listed in Table 1 were irradiated for one hour so that the maximum total slow neutron dose was 1.08 x 1012 neutron/cm2. The results show that in most casesa large number of high-velocity recoil atomsare formed on the irradiation of these expls with slow neutrons. In no casedid any of the expls deto-

nate as a direct result of the slow neutron irradiation. This included nitrogen iodide The effects of slow neutron irradiation causedcolor changesand darkening in most of the expl crystals. indicating the formation of F centersend nuclei, and subsequentlyaffected the thermal decompnsof the expls. The rates of thermal decompn as measuredby pressuretime curvesfor irradiated 1%azide are shown in Fig 2. With Li azide the effect of pre-irradiation with slow neutrons is to cut down the induction period to about one-half and to increasethe rate of decompn considerably With Pb azide the irradiation increasedthe rate of thermal decompn,but the effect wasnot aspronounced asLi azide. Cd azide produced pressure-timecurves similar to Pb azide. Irradiated Ag azide did not show any acceleration, but this may be due to the

Slow Neutron

irradiation

Table 1 of Primary Explosives

(Ref 35)

Explosive

Metal Nitrogen Density Flux Total atoms nuclei reacting nuclei reacting (g/ml) (n/cm2/see) (per ml) (per see) (per see) Nuclear reaction3x

Cadmium azide 0.729

108

1.56x1022

3X108

6x 106

Lithium azide

0.570

7X107

4.01X1022

2X107

2x 106

14N(n,p)l 4C, 0.6MeV protons, 40KeV 14C recoil 113Cd(n, T), 114Cd, 5.1 MeV T cascade Nitrogen reaction: 6Li (n,o!)3H, 2.1 MeV ~ and 2.7 MeV3H 107 Ag(n,T)108Ag,4.5 MeV y cascade 19Ag(n,y)l 1Ag, 10 MeV ~ cascade Principal decay processes: 18Ag, 2.12 MeV (?,0.6 MeV r, llO*Ag, 2.8 MeV ~

Silver acetylide

0.381

3X107

3.8 X1021

l37Ag7xlo5 09Ag2xlo6

Silver azide Lead azide Nitrogen iodide

0.745 1.875 1.40

1X108 2X107 6X106

1.21X1022 2.71x1022 1.64x 1022

lo7Ag4xlo6 19Aglx107 17 12715x 105

1X1068X105

Silver and nitrogen reactions Lead reactions unimportant, nitrogen reaction 1271(n,~)1281, MeV ~ 8.5 Principal decay process: 12s1,2.1 MeV/.?

4x104

R9

15 1 ./ 10 s ~ . i u a L5 TEMPERATURE UNIRRADIATEO IRRADIATE

o

2

TIME(H)

4

Fig2 The Effect of Slow Neutron Irradiation on the SubSequent Thermal Decomposition of Lead Azide (Ref 28)

fact that the expt was conductedat315 which causedAg azide to be in a molten stateFission Products The detonation of nitrogen iodide by nuclear

fission was f~st reported by Feenberg(Ref 13). Small samplesof nitrogen iodide mixed with black uranium oxide were exposedto a 200mg Ra-Beneutron source surrounded by 6cm of paraffin. A typical samplecontd l/2g uranium

oxide while the average exposuretime required to produce detonation was 40 reins ranging from one min to severalhours. Similar results were obtd by Fabre et al (Ref 15) A more detailed set of expts were conducted by Bowden ind Singh (Refs 32& 57). Crystals of Pb azide, Cd azide and nitrogen iodide coated with uranium oxide were irradiated with alow neutrons. The approx number of fission fragments entering the expl crystals is given in Table 2. The only material that expld was nitrogen iodide. Pb azide and Cd azide were bombarded with fiaaion fragments at elevated tempswith the max at 290 for Pb azide which is about 40 below its expln temp. No expls were obtained with either Cd or Pb azide. In these expts the energy of the fission products was about 94 MeV while the range of these particles wasestimated at about 10-3cm. The elevatedtemp environment wasusedto have the effect of increasingthe sizeof the hot spot basedon the assumption that the initiation of expln by bombarding particles is primarily thermal The extent of the damagein an expl crystal causedby a fission fragment was investigated by Bowden and his co-workers,Montagu-Pollock and Chadderton (Refs 88, 89, 9597 & 106). Electron microscope studies showed that the damage,which is readily visible, dependsupon the nature of the crystal and on other factors (Ref 106). The disorder is produced in the

Fission-Fragment

Table 2 Irradiation of Explosive

Azides (Ref 57)

Samplea Nitrogen iodide Lead azide 150c 225C 280C 290C Cadmium azide 280C

Flux (m/cm2sec) 2 x 106 4 x 106 3x 4x 3x 2x 2x 2x 107 107 10 10 107 107

23SUatoms per ml coating 6 X 1016 6x 1016 7 x 1017 7 x 1017 7X1017 7 x 1017 3 x 1018 3X101S

Fissions per ml sample per hour 2x 105 4x 105 4x 5x 4x 4x 2x 1x 107 107 107 107 108 108

Result Explosion Explosion No explosion No explosion No explosion No explosion No explosion No explosion

~oated with 1w 235U

R 10

lattice and the holes and tunnels formed indicated that the track width may be approx 100 120~ Withthe damageinterpreted asatherrnal mechanism,these investigators concluded that even the intersection of two tracks would not produce initiation or expln in an azide crystrd, while the intersection of three or more tracks within 10-11secwas an unlikely event A detailed analysisof the hot spot model wasattempted by Cerny and Kaufman (Ref 128) who irradiated several expls with n-mesons (pions). High, local energy densitiesin roughly spherical shapecan be formed from slow pion bombardment of solids The formation and destruction of the mesonic atoms formed by the capture of rr-mesonscan result in the emission of _u1217 charged particles from a singlelattice site. The estimation wasmade that a temp of 1040 would be produced over a 10~ radius for a period of 10-11seconds. The CSICS indicated that the high temp would quickly decreasebut that the radius of the heat site would broaden and meet the criteria set forth by Bowden for a hot spot However, when Pb azide, Pb styphnate, MF, RDX, TNT, and PETN were subjectedto bombardment with a negativepion beam,no explns or decompnswere observedfor any of the expls. The analysis had predicted initiation only for RDX. Also it had indicated that nuclear fission events would produce higher energy densities and greater temp increasesthan were actually observed Subsequently an extreme test of the hot spot model as applied to microscale thermal effects of ionizing radiation was proposed by Mallay, Praskand Cerny (Ref 129). RDX, HMX, PETN and NG were irradiated with fission fragments from the spontaneousfission of californium-252 at elevatedtemps(1 60, 2150, 125 and 180, respectively). The californium-252 was mixed thruout the expl pellet or liq (for NG). No explns were obtained nor any signsof accelerated thermal decompn were evident at the elevated temps or when heated to ignition although the irradiated expls were exposed to 2002000 fission fragments Since a detailed quantitative analysis of the resulting cylindrical zones of radiation heating and subsequentbehavior with time predicted initiation with all of the expls irradiated, the

investigatorsconcluded that the hot spot model wasinadequatein describingthe effects of microscale events in expl materials. In rebutt~ Boddington, Bowden, Chadderton and Yoffe (Ref 129) indicated that the ca.lcs determine to the temp and behavior of a hot spot formed in an expl crystal by the passage a fission fragof ment may not have included all of the proper assumptions and parameters. Although agreement wasindicated regarding an inadequacy of the therrmd expl theory when applied to fissionfragment bombardment of expl solids, the belief was that proper talcs could not be made since the necessaryparametersunder those extreme conditions were still not knownReactor Irradiations Steady-State

A nuclear reactor is usually the sourceof fast and thermal neutrons. These reactor neutrons are always accompaniedby a gamma-rayfield so that a material exposedin a reactor is subjected to the accumulatedradiation effect A Muraour and Ertand (Ref 29) exposedseveral primary expls in the atomic pile Zoe at Chatellon, France. Pb azide, MF, diazo meta nitraniline perchlorate, Pb trinitroresorcinate, and tetracene were subjected to total steady-statethermal neutron fluxes up to 1013neutrons/cm2. The T component was not given. No explns were obtained with any of the materials during irradiation. The only effect noticed was a slight color changefrom white to light brown in tetracene. The Pb azide was exposed to a total thermal neutron doseof 3 x 1014n/cm2 Although Muraour and Ertand stated that they had substantiatedthe results of Bowden and Singh (Refs 28 & 35), a different environment was used. It should be noted that the former utilized reactor irradiation at higher dose rates and dosesas compared to the slow thermal neutron irradiation for the latter, For example the thermal neutron doserate for Pb azide was 4.2 x 109 compared to 2 x 107n/cm2/secand the total dosewas 3 x 1014 comparedto 7.2x 101n/cm2 S Thegamma radiationexposure used (~) units to express radutiondoses as follows: are 1 R (roentgen) dry air)= 87.7ergs (of (absorbed)/g (C) = 87.7X 107 J/g (C)1.14R = 100 ergs/g (C) =92 e~g/g (Si) = 10~ J/g (C) = 1 racl

Rll

In a study conducted by the Armour Research Foundation (Ref 41) o!- Pb azide crystals wrapped in a thin Al foil were subjectedto fast and thermal neutrons in the heavy water pile at Argonne National Laboratory. With a thermal flux rate of about 1014n/cm2/secthe crystals were irradiated for 8, 17 and 170 hours. The crystals decompd to a brown powder which was identified as Pb carbonate by X-ray techniques and infrared absorption spectra. From a mass spectrographicanalysis of the isotopesof carbon and oxygen in the decompn products, it was determined that the mechanism of carbonate formation is a reaction with the atmosphere by broken surface bands produced by the neutrons. Subsequently, Raney (Ref 60) reported

that the total dose required for conversion to Pb carbonateis approx 7.5 x 10 16n/cm2 The effect of reactor irradiation on the thermal decompn of Pb styphnate monohydrate was studied by Flanagan(Ref61). He observedthat a total neutron exposureof 2.2 x 1018n/cm2 in the Brookhaven National LaboratoV reactor enhancedthe decompn rate by a factor of three as shown in Fig 3 with the decompn rate increasing monotonically with the amount of exposure. Flanagan also noted that a sample decompd 8 days after irradiation produced a decompn curve almost identicrd with one stored 46 days after irradiation and then decompd. Subsequently Flanagan (Ref 105) showed that the activation energy was significantly decreased

100

I

t

*

1

I

t

1

1

I

I

I

I

1

I

1

*=22X,*18+ B= 1.6x tOf8nvt C= 1.1x 1018nvt D=5.3x 1017nvt E=6.7x 10 r nvt

80 360 $ 3 8 w 40 E n 20

p/

DECOMPOSITION OF UNIRRADIATED LEAD STYPHENATE MONOHYDRATEt1

0

I

I

I

I

1

1

I

r

I

I

1

r

I

20

40

100 60 80 TIME (MIN)of

120

140

160

Fig 3 The Thermal Decomposition Curves (222.5) (Ref 61)

Reactor-Irradiated Pb Styphnate Monohydrate

R 12

by reactor irradiation Groocock (Ref 59) irradiated ~ - Pb azide for 5 hrs in the Harwell BEPOpile. The doseswere not given, but the decompn curveswere similar to those for the same material subjected to X-rays for a total doseof 6.35x 106R. Assuming the thermal neutron rate to be 6 x 1011 n/ cm2/see, the approx total neutron dose was 1.08 x 1016n/cm2. The 5-hr exposurelowered the expln temp 1520. Groocock also made calcns indicating the amount of nuclear energy required in one secondto initiate certain expls, ie, 3 x 109ergs/g(3.42 x 107R) for HMX In ajoint program conducted between PicArsn and Brookhaven National Laboratory, Abel et al (Refs 49 & 63) studied the effect of reactor and gamma-rayirradiation on the impact sensitivity of colloidal Pb azide. With reactor irradiations ranging from 3.3 x 1017 to 1.57 x 10lsnvt (n/cm2 ) (fast plus slow neutrons) and the accompanyingreactor gammadose rate of 2 x 106R/hr the effects are shown in Fig 4. The results indicate that there is a definite increase in the impact sensitivity of colloidal Pb azide as a function of total neutron dose. The studies+ , ,

also revealed the incompatibility of colloidal Pb azide with Teflon and Al during long-term reactor exposures Mapeset al (Ref 75) irradiated Composition 9404, a NC-bonded HMX expl, in the Brookhaven reactor to a cumulative doseof 1.2 x 1015 nvt (fast plus thermal) with a 106R gamma component. This expl was irradiated in pellet form and showed only small changesin the dimensionsof the pellet Jach (Refs 110, 111, 166& 167) studied the effect of extensive reactor irradiation on the thermal decompn of colloidal a - Pb azide (averageparticle size 7U). It was irradiated for 35 hours in the Brookhaven reactor with a flux rate (fast plus slow neutrons) of approx 78 x lo2n/cm2/sec and a gamma component of 2 x 106R/hr Fig 5 shows that reactor irradiation significantly alters the decompn kinetics. The induction period is drastically reduced, the accelerator period is absentand the max rate and decay rate increased. The max rate of final decay normally occurred at about 40% decompn,but this shifted to about zero time upon irradiation.

100

b

:

1-

-zg 40

I :11 [ : 4

! [

8

A

EXPOSURE (HRS)

(NVT 106)

,

0

DROP HEIGHT (INCHES)Fig 4 The Effect of Reactor Irradiation on Impact Sensitivity, Colloidal Pb Azide (Ref 49); Impact Test, 2-kg Weight, 20 Trials for Height

R 13

The changein decay rate or irradiation is given by the two rate constants, K(unirradiated) = 1012-0 10exp (15.2 * 0. loMJ/RT) * or 10120 1-0exp (36.3* 2.3kcal/RT) * K (irradiated)= 1079* 10exp (1 .07 K).1OMJ/RT) or 1079* 10exp (25.7 ~2.4kcal/RT) Jach suggested the decrease activation that in energyis associated with a changein electronic excitation energies,while the decrease frein quency factor arosefrom grossstructural changes accompanyingthe reactor irradiation Sincethe effect of nuclear radiation on expls hasbeen a subject of considerableinterest from both the researchand engineeringpoints of view,

it was not surprising that the trends developed for more detailed analyseswith higher total neutron fluxes and rates as shown in the work of Urizar, Loughran and Smith (Ref 98) and later witi-the results reported by Avrami and Voreck (Ref 192) In one of the more extensive programs,Urizar et al (Ref 98) exposed a number of secondary expl compds and mixts to two fluence levels (101sn/cm2 with 5 x 106R and 3 x 1016n/cm2 with 2 x 10sR) in the Ground Test Reactor at Convair, Fort Worth, Texas. The expl materials involved were TNT, Tetryl, NC, RDX, HMX, PETN, Composition B, and three plastic-bonded1 .

100

1

1

.L.

_.l-_

=63(1 -e-K(t-to)) W= O.052 MINI

80 k=C)tO185MIIV1 t~184.3 MINL

60 0>0 u a 40

i

\

o IRRADIATED UN IRRADIATED(a-a~)=a(t-t*)2

20

/ /

CZ=O.0053 MIN-2

0

100

300 200 TIME(MIN)

400

5i30

Fig 5 The Effect of Reactor Irradiation on the Thermal Decomposition of Colloidal ct-pb Azide. (Ref 110). Fraction of total decomposition O! againsttime. Solid circles: experimental points for unirradiated material at 240.9C; open circles; experimental points for irradiated material at 238.5C; other points are the attempted fits indicated by arrows

R 14 Table 3 Weight Loss by Reactor Irradiated

Explosives

(Ref 98)

Percentweight loss for various exposures Explosive TNT Tetryl Comp B Nitrocellulose HMx 9404 9010 9407 PETN RDx 1015nvt (80F) 0.3 0.0 0.1 0.4 0.2 0.1 0.1

Percent change in particle or crystal density 1016nvt (80F) 0.6 1.7 12.6

101snvt (1 OOF) 0.2 0.0 0.1 0.9 0.2 0.1 0.1 0.2 0.2

1016nvt (80F) 0.3 1.3 7.8 9.0 9.1 9.2 11.8 13.4 13.8 14.3

0.2 0.1

18.2 8.3 14 9.8 17.9 17.6

explsmixts 9404, 9010 rmd 9407. A variety of physical and chemical tests were performed on the irradiated samples. Dosimetry, followed by energy deposition calcns, revealed that about 90% of the energy deposited was due to the gammafield (2x 108R at the higher doselevel). G-values(number of molecules destroyed per 100 ev of absorbedenergy) calcd on the basis of weight loss and gasevolution rangedfrom less than 0.1 for TNT, 1.4 for HMX, to about 3 for RDX. NC exposedat the higher level was badly decompd and continued to decomp at a significant rate following the irradiation. It was also observedthat severalof the materials, notably RDX and I-JMX, continued to evolve small amounts of gasfor days following the exposure. Trapped-gas measurements irradiated crystals on showed that a significant amount of radiolytic gases(% 9cm3/g) remained in the irradiated crystals. The weight, density and dimensional changes were small for the 1015n/cm2 exposure, but were significant for the 1016 exposure. A summaryof the changesin weight and crystal or particle density is given in Table 3. Although properties such asmelting points, phasetransition temps and densitieswere lowered, no significant evidenceof sensitization to impact initiation was observed Berberet(Ref 121) in 1963 analyzedthe

Urizar data and the state-of-the-artregardingthe ignition of expls by irradiation. Berberet rdso madecalcns(Ref 123) on the atomic displacements by heavy particles, including neutrons, in high expls composedof light elements. Problems associated with the reactor irradiation of a 6080 gram expl samplewere also included An extensive study on the effects of nuclear reactor irradiations on selectedexpls and proplnts wasundertaken asa joint Aerojet-General/General Electric/PicArsn effort (Refs 154, 155, 159, 165, 176 & 192) for NASA aspart of the NERVA (Nuclear Engine for Rocket Vehicle Applications) program. Avrami and Voreck (Ref 192) have summarized the data from all phasesof this program and have included results and analysesof their own expts in the report This latter work, together with that of Urizar et al (Ref 98) constitutes the most significant and complete exptl information in the field of steady-statenuclear radiation of energetic materials. Sincea wide variety of energeticsubstances were studied in these programs,sufficient data on the radiation stability of specific materials wasmade availableto engineersto allow selection of suitable candidatesfor applications in a nuclear environment Thirty-two substances, including three primary expls, eight booster expls, eight secondaryexpls,

Table 4 Effects of Reactor Irradiation on Some Explosives (Ref 192)

Irradiation time (rein)

Total neutron doses Fast Thermal (n/cm) (n/cm2)

Total -a (R)

Weight loss (%)

10%Loss on TGA fc)

200C avggas evolution (ml/g/hr)

DTA peak exotherm at 20C!/min (OC)

5-see explosion temperature (c)

A. Primary explosives KDNBF o 60 5.OX1O16 120 1.0X1017 180 1.5X1017 Silver tetracene o 38 ~ 3.lxlo~$ 126 1.OX1O Lead styphnate o %2 1.7XI015 Wrnsec 7.3x1013 Wmsec 3.5x1014 B. Boosterexplosives ABH o 180 356 HNAB o 120 180 323 1.4X1017 3.OX1O17 8.6X1016 1.5X1017 2.5x1017 9.0X1017 1.8x101S 5.7X1017 9.3X1017 1.6x1018 1.4X109 2.9x109 7.6x1(? 1.2X109 2.5x109 4.20 6.10 1.76 3.77 7.27 361 259 275 341 272 311 252 0.49 11.6 27.5 0.10 8.65 12.43 23.40 376 343 345 352 353 353 340 385 293 247 -373 363 329 306continued

3.1X1017 6.2x1017 9.3X1017 2.1X1017 6.3x1017 I.1X1016 2.2X1014 1.6x101S

4.oxl@ 8.Oxl@ 1.2X109 2.3x108 8.Oxld 1.4X107 3.6x106 1.5X107

0.46 1.52 4.84C 7.52 23.6 0.26

210 188 188 175

2.55a 10.95C 11.Oc 11.Oc 0.26C 4.02C 5.92C

212b 198b 188b 182b 380b 360 315

I 94 185 170 169375 247 214 299 268

285

287b 1.02 Sampledetonated 270 2.53 Sampledetonated

Table 4

(Centd) Total neutron doses Fast Thermal (n/cm) (n/cm2)

Irradiation time (rein) HNS o 120 180 240 %1 msec %1msec NONA o 120 198 240 360 DIPAM o 122 182 HNDS (DPS) o 120 187 Tetryl o 25 125

Total gamma (R)

Weight loss (%)

10%Loss on TGA (c) 317 276 323 255 336 316 265 248

200C avggas evolution (ml/g/hr) 0.02 16.0 21.6 22.8 0.19 0.18 0.58 11.02 6.47 11.7 40.05 0.21 3.60C 5.17C 0.14 19.10C 22.10C

DTA peak exotherm at 20C/min CC) 343 34