The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation...

47
The The Color Color G G lass lass Condensa Condensa te: te: An effective theory of QCD An effective theory of QCD at high energies at high energies Raju Venugopalan Raju Venugopalan Brookhaven National Laboratory Brookhaven National Laboratory

Transcript of The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation...

Page 1: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The The Color Color GGlass lass CondensaCondensate:te:

An effective theory of QCD An effective theory of QCD at high energiesat high energies

Raju VenugopalanRaju Venugopalan

Brookhaven National LaboratoryBrookhaven National Laboratory

Page 2: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Recent Reviews on the CGC:

L. McLerran, hep-ph/0311028

E. Iancu & R. Venugopalan, hep-ph/0303204

A. H. Mueller, hep-ph/9911289

Page 3: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Momentum Resolution

Page 4: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

QCD evolution equations at small x

a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)If x_Bj << 1, gluon bremsstrahlung is dominant in QCD evolution:P_gg > P_qg > P_qq

Large Logs from Bremsstrahlung

For and x~1, resumAt small x, sum double logs

# of gluons grows rapidly…

Page 5: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

increasing

But… the phase space density decreases-the proton becomes more dilute

Page 6: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Thus far, our discussion has focused on the Bjorken limit in QCD:

Other interesting limit-is the Regge limit of QCD:

Asymptotic freedom, Factorization Theorems, machinery of precision physics in QCD…

Physics of strong fields in QCD, multi-particle production- possibly discover novel universal properties of theory in this limit

Page 7: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

QCD evolution equations at small xb) The BFKL equation (Balitsky-Fadin-Kuraev-Lipatov)

Evolution in x, notRe-sums

# of gluons grows even more rapidly

Page 8: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

-Large x

-Small x

Phase space density grows rapidly-BFKL evolution breaks down when phase space density f~ 1

Gluon density saturates at f=

Page 9: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Gluon recombination-higher twist effects

Gribov, Levin, RyskinMueller, QiuBlaizot, Mueller

Recombination effects compete with DGLAP Bremsstrahlung effects when

Saturation of the gluon density for

Page 10: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

A hadron at high energies

Each wee parton carries only a small fraction

of the momentum of the hadron

What is the behavior of wee partons in a high energy hadron?

Page 11: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Unlike QED, the QCD light cone vacuum is very complicated:--various topological objects, Instantons, Monopoles, Skyrmions, …Hadrons may be bags or flux tubes or solitons:Complex phenomena - Chiral symmetry breaking, Confinement,…

Given this, how does one describe the structure of hadrons in high energy scattering?

How does one construct a Lorentz invariant wave fn for a hadron?

Partial answer: formulate the theory on the light cone

Page 12: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Initial value surface t+z=0

Life on the light cone

Quantize theory on light like surface:

Quantum field theories quantized on light like surfaces have remarkable properties

RV, nucl-th/9808023

Page 13: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Q.F.T on the light cone

Two dimensional quantum mechanics

isomorphism

Light cone dispersion relation:

Energy

Momenta

Mass

Susskind, 1968Weinberg, 1966

Light cone pert. theory = Rayleigh-Schrodinger pert. theory

Page 14: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate: An effective field theory of QCD at high energies

Life on the Light Cone

The MV-model

Quantum evolution: a Wilsonian RG

The JIMWLK equations

Analytical approximations and numerical solutions

Page 15: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The MV modelMcLerran, RV; KovchegovJalilian-Marian,Kovner,McLerran,Weigert

Consider large nucleus in the IMF frame:

One large component of the current-others suppressed by Wee partons see a large density of valence color charges at

small transverse resolutions.

Page 16: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Born-Oppenheimer: separation of large x and small x modes

Valence partons are static over wee parton life times

Page 17: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Limiting fragmentation

Suggestive that valence partons are recoil-less sources-unaffected by Bremsstrahlung of wee partons

Page 18: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Random sources

Gaussian random sources

Page 19: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The effective action

Generating functional:

Gauge invariant weight functional describing distribution of the sources

Scale separating sources and fields

where

To lowest order,

Page 20: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

For a large nucleus,

where, for valence quark sources, one has

For A >>1, and

Effective action describes a weakly coupled albeit non-perturbative system

Page 21: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The classical field of the nucleus at high energies

Saddle point of effective action-> Yang-Mills equations

Solutions are non-Abelian Weizsäcker-Williams fields

Careful solution requires smearing in

Page 22: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

z

Random Electric & Magnetic fields in the plane of the fast moving nucleus

Page 23: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Average over to compute gluon distribution

Gaussian in MV

= gluon phase space density =

for A >> 1

Page 24: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate

Typical momentum of gluons is

Bosons with large occupation # ~ - form a condensate

Gluons are colored

Random sources evolving on time scales much larger than natural time scales-very similar to spin glasses

Hadron/nucleus at high energies is a Color Glass Condensate

Page 25: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate: An effective field theory of QCD at high energies

Life on the Light Cone

The MV-model

Quantum evolution: a Wilsonian RG

The JIMWLK equations

Analytical approximations and numerical solutions

Page 26: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Color charge grows due to inclusion of fields into hard source with decreasing x:

Because of strong fields All insertions are O(1)

obeys a non-linear Wilson renormalization groupequation-the JIMWLK equation

(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner)

Page 27: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

At each step in the evolution, compute 1-point and 2-point functions in the background field

The JIMWLK (functional RG) equation:

⇒ An infinite hierarchy of ordinary differential equations for the correlators

Page 28: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Correlation FunctionsChange of variables:

Consider the 2-point function:

Can solve JIMWLK in the weak field limit:

Brownian motion in functional space: Fokker-Planck equation!

“time”

“diffusion coefficient”

Iancu, McLerran;Weigert

Recover the BFKL equation in this low density limit

Page 29: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Can also solve JIMWLK in the strong field limit: Iancu,McLerran

Gluon phase space density

How does one compute Q_s(Y) ?

Page 30: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Novel regime of QCD evolution at high energies

The Color Glass Condensate

Page 31: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate: An effective field theory of QCD at high energies

Life on the Light Cone

The MV-model

Quantum evolution: a Wilsonian RG

The JIMWLK equations

Analytical approximations and numerical solutions

Page 32: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Balitsky-Kovchegov equation

I. Balitsky;Y. KovchegovDIS:

S-matrix amplitude

McLerran,RV

Path ordered exponential

Page 33: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Weak field limit:

violates unitarity bound if N > 1

For dipole probes strong fields

Iancu-McLerran RPA =>

=> N ~ 1 - dipole unitarizes

Choose as saturation conditionto determine Q_s

Page 34: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

BK: Evolution eqn. for the dipole cross-section

The 2-point correlator in JIMWLK has

a closed form expression for

BFKL Non-linear

For small dipole,

From saturation condition,

For large dipole,

Levin,Tuchin;Iancu,McLerran;Mueller

Page 35: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Numerical solutions of the BK-Eqn.

BFKL BK

No infrared diffusion a la BFKL in BK

Exact analogy to travelling waves => Munier,Peschanski

Page 36: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Numerical simulations of BK-eqn displayGeometrical Scaling(Armesto,Braun; Golec-Biernat,Stasto,Motyka)

Infrared diffusion pathology of BFKL is cured.

State of the art: numerical simulations of JIMWLK n-point correlators by Rummukainen & Weigert

Running coupling effects important & still to be understood…

Synopsis of CGC numerics

Page 37: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Geometrical Scaling

Can write the solution of BFKL as:

For (but close!), can write

soln. where argument vanishes

Plugging into N_Y, can show simply

Iancu,Itakura, McLerran;Mueller,Triantafyllopolous

is large than BFKL anomalous dimension ~0.5

Page 38: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Geometrical scaling at HERA

Scaling seen for all x < 0.01 and

(Golec-Biernat,Kwiecinski,Stasto)

Page 39: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

How does Q_s behave as function of Y?

Fixed coupling LO BFKL:

LO BFKL+ running coupling:

Re-summed NLO BFKL + CGC:

Triantafyllopolous

Very close toHERA result!

Page 40: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

A-dependence of saturation scale

Mueller

Such interesting systematics may be tested at LHC & eRHIC

Page 41: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Hadron & Nuclear Scattering at high energies

Page 42: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

I: Universality: collinear versus k_t factorization

Collinear factorization:

k_t factorization:

Are these objects universal? Very important for extraction of “gluon” distributions.

Page 43: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Solve Yang-Mills equations for two light cone sources:

For observables average over

Page 44: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Gluon production in high energy pA collisions:

is non-linear in the gluon density to all orders-recover unintegrated gluon dist at large k_t

Quark production:

Not k_t factorizable!

Page 45: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Breaks k_t factorization?Contribution is same orderin coupling

Wave-fn evolution effects (beyond MV) difficult to include-work of Rummukainen & Weigert is promising.

Classical evolution shows re-scattering-hence energy loss at eta=0 must be especially strong in AA!

Page 46: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Colliding Sheets of Colored Glass at High Energies

Classical Fields with occupation # f=

Initial energy and multiplicity of produced gluonsdepends on Q_s

Classical approach breaks down at late times when f <<1

Page 47: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Space-time evolution in heavy ion collisions

Initial conditions determined by saturation scale Q_s >> T_i

Do initial state (wave fn.) effects or final state (parton re-scattering) dominate in the space-time evolution?

Q_s=1.4--2 GeV from HERA dataextrapolations and numerical simulations