The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES:...

52

Transcript of The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES:...

Page 1: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 2: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/coalfuturecapita163rieb

Page 3: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

NOTICE: Return or renew all Library Materialsl The Minimum Fee tor

each Lost Book is $50.00. JIIN 9 7 1Q0QThe person charging this material (s rfe^ffisible for

its return to the library from which it was withdrawn

on or before the Latest Date stamped below.

Theft, mu|mfo^rifcr«i.md of books are reasons for discipli-

nary actio^rgjWaHplulTo renew can Telepnone Center,

sj*l from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

L161—O-1096

Page 4: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 5: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

INFERENCE ROOM

Page 6: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 7: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Appendix B

CAC Document No. 163

Final Report

The Coal Future: Economic and TechnologicalAnalysis of Initiatives and Innovations to

Secure Fuel Supply Independence

by

Michael RieberCenter for Advanced Computation

University of Illinois at Urbana-Champaign

and

Shao Lee SooJames Stukel

College of EngineeringUniversity of Illinois at Urbana-Champaign

AdvisorJack Simon, Chief

Illinois State Geological Survey

Center for Advanced ComputationUniversity of Illinois at Urbana-Champaign

Urbana, Illinois 61801

May 1975

This work was supported by the National Science Foundation(RANN) , NSF Grant No. GI-35821 (A) 1

.

Page 8: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 9: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Any opinions, findings, conclusions or recommendations

expressed in this publication are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

Page 10: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 11: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

THE COAL FUTURE

APPENDIX B

Capital and Fuel Cycle Energy Costs

of a 1,000 MWe Nuclear Reactor

Contents

CAC Technical Memorandum No. 50

and

CAC Technical Memorandum No. 51

Page 12: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 13: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 14: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 15: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

CAC Technical Memorandum No. 50

INPUT-OUTPUT

CALCULATION OF FUEL CYCLE ENERGY

COSTS FOR THE AVERAGE

NUCLEAR POWER PLANT

by

Peter PennerResearch Assistant

Center for Advanced ComputationUniversity of Illinois at Urbana-Champaign

Urbana, Illinois 61801

April 1975

This work was supported by the National Science Foundation (RANN)

,

NSF Grant GI 35821(A)!.

Page 16: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 17: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

CAC Technical Memorandum No. 50

INPUT-OUTPUTCALCULATION OF FUEL CYCLE ENERGY

COSTS FOR THE AVERAGENUCLEAR POWER PLANT

I . INTRODUCTION

This memo calculates the energy costs of mining, pre-

paring, reprocessing, and disposing of fuel for an average

1000 MWe nuclear power plant. This model plant is assumed to

average one boiling water reactor (BWR) and two pressurized

water reactors (PWR) . It is assumed that the reactor operates

with the following characteristics:

Average load factor: 65%

Burnup rate (fuel efficiency): 30,000 MW(t)D/MTU

Efficiency (elec. gen.): 33.5%

II. METHODOLOGY - COST COMPONENTS

Fuel cycle costs are calculated in detail in Reference 1

These costs represent annual average expenses per kilowatt-hour

over the thirty-year lifespan of the plant. Certain costs, such

as perpetual storage and diffusion plant tails disposal, are not

included in this accounting. Certain other costs are included in

the economic calculation but are not considered for their energy

costs.

Page 18: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Ill, METHODOLOGY - ENERGY ACCOUNTING

We use Input-Output analysis as an energy accounting

method to find the energy costs associated with economic costs.

The basic document concerning energy Input-Output analysis is

Reference 4. The main result of the analysis is the 1-0 coeffi-

cient, which is the energy cost per dollar spent on any given

good or service. For example, the energy cost of ten dollars'

worth of uranium mining can be calculated as follows:

1. Uranium mining is in 1-0 product category 6.02.

21

. The 1-0 coefficient for category 6.02 is

128,209 British Thermal Units of energy (Btu)

per dollar spent on mining. (1967 basis)

3. The energy cost of this mining is:

($10) x (128,209) (Btu/$) = 1,282,090 Btu

Dollar costs must be expressed at 1967 price levels. In our

calculations we use economic deflators to calculate the proper

dollar amounts.

IV. CALCULATIONS AND CONCLUSIONS

Table A shows the Input-Output calculations based on

the fuel cycle costs found in Reference 1. The table shows that,

on the average, every kilowatt-hour of electricity produced by

this nuclear plant requires a minimum of about 0.14 kilowatt-hours

of processing energy in order to make power generation possible.

It must be understood, however, that this estimate does not

include several cost components in fuel processing, reprocessing,

and the disposal cycle; does not include allocated plant capital^

costs or energy produced but used in-plant. That our figure is

a lower bound is confirmed by calculations furnished in Reference !

where Paul R. Gast, Argonne National Laboratory, cites certain fuel

cycle energy requirements which are slightly higher than our own.

Page 19: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

PS «O fafa 5o

OT p4Eh

O 3< u w

h*0) >* uiH O DA fa 55<d faEh 55 0)

fa gfah^oCjo>hoCJrH

t-3 fafa Ofa §

M-l (D

Cn£M «

CD-P-~

<D vd

CU«W\

fa <D 4J

o «

oJh atOHfd\•-» r-

O

o+Jo0)

CO

oIM

x:

XJ «•p\la a0«HOH

cct

-MCQ>

OCU

OCJ

4>00

o

vorHinr^nTrinoiH^•^•CACMCOOOrHCMrHOr-CMOrHOOOooooooooo

^ §<3\ N N N 3 N N H 3OVDV£»vx)4-»VOVOr->4-»

». w •> « « « ^OOrHrHi-HOrHrHCOO(NCOCOOOOCOCOOOrHCMCMCMVOCMCMrHVO

If) o\ <T» a» o cn cn CO o00 cn o> CD vo cn cn 00 voo *r •<* ^ Ok ** ^ CM cnM« in If) in CO m in ** CO

Ol H iH H£ iH iH CO J^oooojoooj• •••H»«»Hvor-r>r*»reCr*r>-co

CM CM CM fa CM CM V0

in cn in o m coo^ o h m o N

rH t"^ CMo o oCMm < rtj

• 55 55

tntn

Cn C oC vo •H cn•H fa c Cu MiH D o Cu cn fdrH •H •H en rH >ix:•H P x: c «d u u2 +» «J CO Cn c •r4 4J Cn

n C Cn O 4J cn CTJ C 4J <d •H •H •H fd Eh c c •HC c a Q) (0 (0 C cu -H TJ cu

<d •H <D cu 3 (0 5-1 «d cn > >i U oCO § M fa a) CU a c C M (d c

Cn U x: fa o > •H M >H 3 <d

c: <D o P cu C cu ft fd Cn >H

•H > •H rH C u p CU H U cu Pc C H Q) a> cu o 10 -H cu *w to

•H o c 3 a Q) cu <d x: 3 fd c:

a CJ fa fa w fa fa £ w fa w H

<u

Cncd

UOPw

rd

-Mcu

arl

CU

CM00CO

cn

OEh

Page 20: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

TABLE A Continued

FOOTNOTES

:

a) Assumptions: Load factor .65Burnup = 30,000 MW(T)D/MTUEfficiency = 33,5%

Costs are from [1], Table III-2, p. 54.

b) In 1980 dollars, based on seven percent annual inflationrate, compounded annually.

c) As classified in [2] according to definitions in [3]

.

d) 1-0 category 27.01 is deflated according to the followingformulae

:

1) $1980 = $1971(1. 07)9 = $1971(1.84)

->\ $ 1967 , eopfnr a * - Xa(1967) .' Xa(1971)*> $1971 < secx:or a

' Xa(1958) * Xa(1958)

Where: Xa(19yy) = dollar output of SIC sector a,valued in 19yy dollars [6]

.

Other sectors use equation 1) but use standard Departmentof Commerce deflators in lieu of equation 2) (see [7]).All deflators rounded to four digits at each step ofcalculation.

e) Source: [4] and [5]

.

f) Energy is found by forming the product of dollars (1971)and energy coefficient (Btu/$1971) . Btu converted to Kwheat 3413 Btu/Kwhe. Rounded after calculation.

g) Shipping total includes all shipping except spent fuelshipping

.

h) Energy calculations for shipping costs are treated as follows:

1) Total annual shipping costs ($1971) are dividedby average rail shipping cost in 1971 ($1971/TM)

,

$.016/TM. See [8] p. 9.

Page 21: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

2) The resulting total annual ton-miles shipped ismultiplied by the rail energy coefficient,1600 Btu/TM, resulting in total annual shippingenergy (Btu). See [8] p. 9.

3) Total annual shipping energy (Btu) is convertedto Kwhe (see note f) and divided by total annualoutput of plant (Kwhe)

.

Page 22: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

REFERENCES

2.

3.

Rieber, M. .-d Halcrow^R.. "Nuclear Power to 1985= possibleJSE^S^S^'ESSI* o^Illinois, Urbana. November

1974.

the Budget, ±yo7.

••a« rr^rcrv Incut-Output Matrix for the United4 -

Ilatef^e!:' U^r'sGuIdeT Center for Advanced Conation

Document""

69, University of Illinois, Urbana, March 1973.

5. Additional tables from Energy Research Group Input-Output 1energy data base.

6. Ibid.

7. National Income and Product Accounts ."Survey of Current

Business," U.S. Department of Commerce, July issue, various

years.

.. Sebald A. ^fr^ae^, 7lllll^ %™Z?*£&-ra?ion^

aCcL°ter

Afor Advanced Confutation Document

university of Illinois, Urbana, September 1974.

r.,„i d rash Director. LMFBR Program Office,'• JSS.^SiSSS LbSSrfTS Bruce « Hannon Center or

Advanced Computation, University of Illinois, June 16, a*

Page 23: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 24: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 25: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

CAC Technical Memorandum No. 51

SUMMARY OF TECHNIQUES USED FOR CALCULATING

THE ENERGY COSTS OF CONSTRUCTING A

COMMERICAL NUCLEAR REACTOR

by

Peter »PennerResearch Assistant

Center for Advanced ComputationUniversity of Illinois at Urbana-Champaign

Urbana, Illinois 61801

April 1975

This work was supported by the National Science Foundation (RANN)NSF Grant GI 35821(A)!.

Page 26: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 27: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

CAC Technical Memorandum No. 51

SUMMARY OF TECHNIQUES USED FOR CALCULATINGTHE ENERGY COSTS OF CONSTRUCTING A

COMMERCIAL NUCLEAR REACTOR

I . OBJECTIVE

The purpose of this report is to compute the energy cost

of materials needed to construct a boiling water reactor plant,

based on AEC data. Energy cost, measured in British Thermal Unitso

(Btu) , is the sum of all energy which is needed to manufacture the

goods used to construct a nuclear plant.

II. GENERAL METHODOLOGY

The computations employ Input-Output analysis or (1-0)

.

Designed to compute dollar costs, the methodology has been adapted3to measure the energy content of any given dollar amount. This

is accomplished by first dividing the economy into 360 product and

service sectors. For each sector an "energy coefficient" is found

which yields the energy cost-per-dollar for all goods in the sector.

The total energy cost (in Btu's) for any particular item can be

found by multiplying the item's dollar cost by the correct energy

coefficient.

III. EXPLANATION OF CALCULATIONS

The calculations necessary to find energy costs are as

follows. First, it is necessary to express all 1971 dollar costs

of the nuclear plant in 1967 dollars. This is achieved by including

Page 28: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

a "deflator" in the cost equation. The usual computation, calle<

Itemized 1-0 , is the product:

Energy Cost (Btu) = Dollar Cost ($1971) x

Deflator $%$ x

Energy Coefficient -rFTgi-i \

Example : Budget account 218C in the reactor Bill of

Materials is an administration building costing $910,500 in 1971

dollars. This belongs in 1-0 category 11.03, public utility con

struction. The corresponding SIC category is 1511, and the propel

deflator is 0.71. The energy coefficient for sector 11.03 is

79,610 Btu/dollar. Therefore, the energy cost of this building is

$910,500 x 0.71 x 79,610 = 51.5 billion Btu

In some cases, the 1-0 sectors did not accurately descri

a particular item. For example, if the administration building

described above was not a normal public utility structure, but

rather had a larger amount of steel in it than the average buildir

described by 11.03, the usual 1-0 product would not yield correct

results. In this cases it is possible to use corrected I-O .

Example : Consider the administration building in the

previous example. Assume that it has $10,500 more steel in it the

the average public utility. Steel is in 1-0 sector, 40.04, SIC

sector 3441, and has deflator 0.835. The energy coefficient for

sector 40.04 is 124,602 Btu/dollar. The corrected 1-0 calculatior

is then:

$900,000 x 0.71 x 79,610 = 50.9 billion Bi

cost of usual deflator energycontents of coefficientbuilding

i

Page 29: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

$10,500 x 0.835 x 124,602 = 1.1 billion Btu

cost of steel steel energyexcess steel deflator coefficient

Total Energy Cost = 50.9 + 1.1 = 52 billion Btu

In performing this calculation, only costs for actual contruction

and construction materials were considered. Other costs, such as

services used in construction or interest during construction were

not considered.

V. DATA SOURCES

A. Division of the Economy into Sectors - The U.S.

Bureau of the Budget regularly issues a Standard Industrial Classi-4

fication (SIC) Manual. This divides the economy into 99 major

sections and many subsections. The subsection classifications are

called SIC sectors. The Bureau of Economic Analysis, U.S. Depart-

ment of Commerce, has divided the economy into 368 sectors expressly5for the purpose of Input-Output analysis. Each 1-0 sector commonly

contains one or more SIC sectors.

B. Economic Deflators - The U.S. Bureau of Labor

Statistics issues price deflators classified according to SIC

sector.

C. Input-Output Data - Economic information is published7by the U.S. Department of Commerce. This information is converted

oto energy coefficients.

D. Economic Budget for Nuclear Plant - For the BWR, this

comes entirely from reference 1, which itemizes all material, labor

and installation costs for AEC prototype reactors. For the PWR,9another report had already classified reactor costs and converted

them to 1967 prices, and we used these sums.

Page 30: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

VI. RESULTS

The energy cost of constructing a 1,000 MWe boiling

water nuclear plant is:

9.36 trillion Btu, or about

2.74 billion Kwh

The energy cost of constructing a 1,000 MWe pressurized

water reactor is:

9.65 trillion Btu, or about

2.82 billion Kwh

VII. ACCURACY OF RESULTS

Several studies have examined the accuracy of energy

costs computed with I-O.11 ' 12 These results show that most results

are accurate to within approximately 25 percent.

VIII. ADDITIONAL INFORMATION (see following list of references)

A^ For additional information on the theoretical basis

of Input-Output analysis see references 3, 4 and 10, Appendix A.

B. For additional information on the raw data inputs

to this calculation see references 4, 5, 6 and 7. Also see

Appendix A (following) which lists for the BWR all budget account

entires, dollars amounts and the 1-0 sector this amount was placed

in. Corresponding tables for the PWR can be found in reference 9,

page 24.

C^ For additional information on the accuracy of result!

see references 11 and 12.

D^ For a complete list of all 1-0 sectors and accompany-

ing SIC sectors see reference 6.

Page 31: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

FOOTNOTES

1. United Engineers and Constructors, Inc., 1000 MWe CentralStation Power Plants Investment Cost Study , Volume II,Boiling Water Reactor Plant. Philadelphia, Pennsylvania,June 1972. Prepared for the U.S. Atomic Energy Commission,Contract No. AT (30-1) -3032.

2. One kilowatt-hour is approximately equal to 3400 Btu.

3. Herendeen, Robert and Bullard, Clark W. , "Energy Cost ofConsumer Goods, 1963-1967," Center for Advanced ComputationDocument No. 140, University of Illinois at Urbana-Champaign,Urbana, November 1974.

4. Office of Statistical Standards, Standard Industrial Classi-fication Manual , Executive Office of the President, Bureauof the Budget, Washington, D.C., 1967.

5. Bureau of Economic Analysis, Input-Output Structure of theU.S. Economy, 1967 , Department of Commerce, Social andEconomic Statistics Administration, Washington, D.C. >',-,•'•

-

:

6. Issued regularly in National Income and Product Accounts,"Survey of Current Business," a periodical issued by theU.S. Department of Commerce.

7. Bureau of Economic Analysis, above.

8. Herendeen and Bullard, above.

9. Just, Parker, Borko, and Ashmore, "Energy Technology Coeffi-cients and Dynamic Energy Models," Vol. II, Appendix D Nuclear,The Mitre Corporation, Virginia, January 1975.

10. Reference 9 also includes, in addition to construction andconstruction materials, installation materials. This is asmall difference, amounting to less than one-half of one per-cent change in costs.

11. Sebald, Anthony V., "An Analysis of the Sensitivity of LargeScale Input-Output Models to Parametric Uncertainties,"Center for Advanced Computation Document No. 122, Universityof Illinois at Urbana-Champaign, Urbana, November 1974.

12. Kirkpatrick, Ken, "Independent Verification of Input-OutputResults," Center for Advanced Computation Technical MemorandumNo. 26, University of Illinois at Urbana-Champaign, Urbana,August 1974.

Page 32: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

APPENDIX A

I. Itemized Input-Output

II. Corrected Input-Output

Footnotes to Appendix A

Page 33: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

I. ITEMIZED INPUT-OUTPUT

Classification in Budget

INTAKE & PIS. STRUCTURE

214.131 Formwork

214.132 Reinforcing Steel

214.133 Concrete

214.141 Misc. Iron

214.15 Cofferdam

214.16 Rip-rap

214.1602 Steel Piling

214.1611 Formwork

214.1612 Reinforcing Steel

214.1613 Concrete

214.162 Block Walls

214.1631,214.164 Coping & Sprinklers

214.165 Lighting

ADMINISTRATION BUILDING

218C Administration Building 910,500 11.02

YARD WORK

Amount 3I/O Sector

42,000 40.07

40,500 40.09

142,000 36.12

51,000 40.08

972,500 11.03

125,000 36.15

60,000 33.12

3,000 40.07

1,500 40.09

3,000 36.12

5,000 36.10

3,000 42.08

6,000 55.03

211.14 Fence 16,000 34.81

Gate House (labor & mat) 15,000 11.05

211.15 Sewage Facilities (lab & mat) 85,000 11.03

211.16 Drainage Pipes, etc. 38,000 36.05

211.17 Yard Lighting 26,000 55.02

211.34 Bridge Steel 12,000 40.04

Forms 3,000 40.07

Steel 4,500 40.09

Concrete 5,500 36.12

211.43 Railroad Siding 1,165,000 11.05

211.11 General Cut and Fill 280,000 11.05

Page 34: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Classification in Budget

211.12 Roads, Walks, Parking

211.13 Wall Forms

Wall Steel

Wall Concrete

Cribbing

910.

911.

912.

913.

251.11

251.12

251.132

252.1

252.211

252.293

252.221

252.242

252.292

252.31

253.21

Amount I/O Sector

242,000 11.04

10,000 40.07

12,000 40.09

28,000 36.12

25,000 36.11

UNDISTRIBUTED COSTS

Professional Services 23,750,000 73.03

Temporary Facilities 1,260,000 11.02

Construction Equipment 6,435,000 45.01

Construction Services 2,065,000 11.05

Spare Parts 1,000,000 37.01

MISCELLANEOUS PLANT EQUIPMENT

Traveling Crane 170,000 46.03

Reactor Crane 250,000 46.03

Misc. Hoists 25,000 46.03

Air Systems 107,000 40.03

Service Water Pumps 26,000 49.01

Water Strainers 50,000 42.05

252.29 Piping (backfill neglected) 520,000 42.08

City Water Piping 14,000 42.08

Fire Pumps 60,000 49.01

Water Tank 50,000 40.06

Pipes, Valves, etc. 50,500 42.08

Auxiliary Boilers 400,000 40.06

253.1 Communication System 35,000 56.03

Fire Protection System 10,000 56.03

253.25 Noise Monitoring System 5,000

254.23 Chemical Lab. Furn & Fix. 44,500 23.03

254.31 Office Furniture 50,000 23.

254,6 Cafeteria Equipment 125,000 2.

254.41 Locker Room Material 8,000

Page 35: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Classification in Budget

STACKS AND RADWASTE BUILDING

Amount I/O Sector

216.131 Forms 50,000 40.07

216.132 Reinforcing 75,000 40.09

216.133 Concrete 130,000 36.12

216.134 Iron 9,000 42.05

216.1411 Forms 75,000 40.07

216.1412 Reinforcing 90,000 40.09

216.1413 Concrete, Incl. Block 140,000 36.10

216.1414 Embedded Iron 21,000 42.05

216.142 Steel and Iron 33,500 40.08

216.145 Roofing, etc. 14,400 40.07

216.147 Doors 1,800

Steel Doors 2,10040.05

216.149 Paint 10,000 30.00

216.211,216.212 Drains and Pipes 60,000 42.08

216.22 Heating 135,000 40.03

216.23 Fire Protection 15,000 56.03

216.24 Lighting and Wiring 25,000 55.03

219A.2 Foundation 100,000 36.12

219A.3 Stacks, Bricks 125,000 36.10

219A.4 Paint 5,000 30,00

219A.5 Warning Lights

SERVICE BUILDING ANDDIESEL GENERATOR BUILDING

10,000 56.03

218B.131 Forms 2,600 40.07

218B.132 Reinforcing Steel 3,750 40.09

218B.133,218B.135 Concrete 10,500 36.12

218B.134 Anchor Bolts 1,500 41.01

Page 36: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Classification in Budget'

218B.141,218B.142

218B.1411

218B.1412

218B.1413

218B.1415

218B.147

218B.21

218B.22

218B.24

218B.141

Platforms, Stairs, etc.

Forms

Reinforcing Steel

Concrete

Roofing

Doors, Louvers, etc.

Drainage

Heating & Ventilating

Lighting and Wires

Fire Wall

Amount I/O Sector

35,400 40.09

15,000 40.07

27,000 40.09

24,000 36.12

2,250 40.07

12,000 40.05

10,000 42.08

25,000 40.03

6,000 55.03

21,000 36.12/40.09

15,000 36.12

80,000 40.04

24,750 36.11

9,000 40.07

45,000 36.11

37,500 36.14

35,000 30.00

40,000 40.01

10,000 42.08

14,000 42.08

90,000 40.03

5,000 56.03

75,000 55.03

218D.13

218D.142

218D.141

218D.144

218D.143

218D.146

218D.148,218D.146

218D.21

218D.22

218D.23

218D.24

Concrete

Structural Steel & Iron

Floor Slabs

Roof and Roofing

Exterior Walls

Interior Walls

Paint

Fixtures, etc.

Floor and Roof Drains

Misc. Piping & Drainage

Heating, Ventilating, A/C

Fire Protection System

Lighting and Wiring

Page 37: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

II. CORRECTED INPUT-OUTPUT

1 '2 3Classification in Budget Amount I/O Sector

REACTOR STRUCTURES & IMPROVEMENTS

212.133,212.1413 Concrete

212.131,212.1411 Formwork

212.132,212.1412 Reinforcing

212.134,212.1414 Structural Iron

212.142 Building Steel & Iron

212.149 Paint

212.371,212.3755 Steel & Iron Cont.Strc.

212.22 Heating System Equipment

212.24 Lighting System Equipment

REACTOR PLANT EQUIPMENT

221. Reactor Equipment

222. Reactor RecirculationSystem Equipment

Reactor RecirculationSystem Piping

223.1 Residual Heat RemovalSystem Equipment

Residual Heat RemovalSystem Piping

223.2 Emergency ShutdownSystem (pipes incl)

223.3 Coolant Injection & coreSpray System Equipment

Coolant Injection & CoreSpray System Piping

895,000 36.12

225,000 40.07

750,000 40.09

129,000 37.01

618,000 40.08

50,000 30.00

1,940,000 40.06

1,250,000 40.03

100,000 55.02

23,435,000 40.06

1,600,000 49.01

900,000 42.08

1,076,000 49.01

1,390,000 42.08

172,000 49.01

580,000 49.01

1,420,000 42.08

Page 38: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

1 2Classification in Budget Amount I/O Sectoj

224.1 Liquid waste processingEquipment 808,000 49.01

Liquid waste ProcessingPiping

224.2 Gaseous Waste Processing EQ

Gaseous Waste Processing Pp

224.3 Solid Waste Processing EQ

225.3 Service Platforms

225. Nuclear Fuel Handling andStorage System Equipment

" Piping

226.5 Coolant Purification andTreatment System EQ

Coolant Purification andTreatment System Pp

226.7 Auxiliary Cooling Syst.EQ

" Piping

226.92 Paint

227.1 Nuclear Plant Instrum.

227.2 Computer Equipment

227.5 Instrum. & Control Pp

345,000 42.08

50,000 40.03

205,000 42.08

70,000 46.02

400,000 40.08

225,000 40.03

100,000 48.06

20,000 49.01

500,000 40.08

50,000 57.03

50,000 55.02

285,000 42.08

50,000 49.01

1,150,000 40.06

53,000 42.08

35,000 49.01

90,000 40.06

386,000 42.08

25,000 30.00

2,000,000 53.03

1,500,000 57.02

300,000 42.08

Page 39: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

oo

v.

or» G« •H CO

r» (N 4Jvr> CO OO 1 oooooooooooo (0 o o o o o o o 3to- 3 OO 1 oooooooooooo P o o o o o o m 04

rH OO 1 oooooooooooo G o o o o o o CN Gll a 3 ** *. «. .» v •. •• •H •

M OCN "rJ«rHOr-rH004rHCr>OinO O V£) rH CO rH CTv CT> CN •o._

*

3 cn ,-< mo^mo'ouj^ooriin e CD V£) o <tv r- r» vo rH CU

rH CO im cNrHovo HNO\coinH id rH CN vr a\ c\ r^ o rH 4J

03 » I * * * * * * •>. • «.«.«.|

» id -P•H </> rH CN CN <cj> n rH rH •p rH rH r-{ in H CN •HH CN G 1 1 1 1 1 ^r «M g0) id op "s. o(0 •H -P cu

e rHm •HG Hcu id

c3 o«

G o^ co

5-1 rH UIOOChrnWNUJfOHOOOOChO •H in vo r- ^ cm in CU 5-1

OXlid

rH COCTirHdCNlONrHOOCNOCNOfOO CO f* CO O 00 CTV rH 1

1

o. o4J

in rH «3< o cn o o o G rH rH CN CO CN rH1

1

rH •H • <N CU'

<*> PGo

CO

4J-P G •H 3 CO

CO s, p oCO id Xj -H

o rH•

CU

nrH3

id >r-l

-p Cn 04 o • cu cu

c -a rH G CO CO

0) rH M^o^H^cooinotNinHNr^ •P o o o o o o o id •H

1•H

PQ (n^HNH^OHHinoomfSNOG

o o o o o o o o •Hpid

u u04 CU

e x.m rHrH CN f^'«* co in cn cn o o o o o o o Gd n •P o •H rH O -P

& 3 rH 3 U0) dP Xl T3

cu

ug «a

•o N o> . CO id

•H 3c H 3 ofO +jooooooooooooooo M 1 1 1 1 1 1 o cu G O 0)

tr rH ooooooooooooooo 0) 1 1 1 1 1 1 o u •H CU TJC•H

(d

-Pooooooooooooooo >

o1 1 1 1 1 1 o

cu

j-i id

u uO -PU inmcncoinininoorHrHoooo CN

rH o b or^cNrHr^r^vor^ovo^rooinm co 10 XI CO o•H +J 00 <X> rH in rOr~ HhOOlOH o o 3 rH3 </> «. « « •. •» - -^ • ^ -p CO HXI 0) H in cn in o cn i-i rH CN G cu •H id

(A <N rH ** cu M X. -Pu • O o •P CU

O \ r4 rH IH «M u-p \ • 3rH cu <u Go H • 10 •p CJ CO CU X a, X) •H TJn3 04 • CD o tn cu COM • GCU >i G • -H >, id CO H CU G G H+IO Cn rH *! •a id

H X) O 04 a M 04 U 3 CO •H CO £ T3 o o cu•H G -H CTX! O. O -P > • r-\ a rH • rH M CO

rH M P H O CU 3 W .< -P * CO U 73 <D 10 • rH m CU rH03 O CU id H -P tf id O-HO p CU 0) cu co u id p p TJ id

-P -P •H P H flJWt^S • 3 fo -H CO U -P HDP4J Cn CO CO •H WO M 0) <D H C 'O'd fi CO CU a* W n o u cu G cu cu CO CU

-P <d U PS «* 04 Cn-H rH .Q G CT» O p U tJ rt+)2 •H u u G rH'

0) 10 3 CM • >J» dvito G id id O Ort cu H -P rH-PrH-HCU-HGCOOO-H-P O4O u 3 CU •H cu cu ° XJu o OCUC0)CCU+J>O-HO4-P-H4JO G Cn T3 U G O *P • o <d G G gj

2 o Cdioo-HoidcojagHg cn cu •H G O G Cm CSX W g COM •p oxJih-phj-pcuo a-H 3 £ a) -h rH •H O O M o «d -h cu o o MQ UWrHtOfUWKCJWP^CUCOW^W rH Tj £ U M 2hS (X p 4J O •J CO \ Id rH 4J COM •p G-H T3 TJ o oD 3 H O 3 cu cu CU •

n 04 O •HXi TJ -d CO rHc -P CNjr>-rHcjoovonr>4M>corHnfMron +» CO rH CN) o *r crt CO G G rH

oEh

H o

to

rHOOOOOOOOOOOOOO •H CO

13 -HTJX!

O rH O rH o o o 3o o

01

rHrH O<:-pcu voor->oooovooof\jcr>mr*inr^ o vo r^ CO o o rH

D Cn nvm^n^T^TTrrininuim «: -P cm m ro m ^j. ^j> rH< M o2

id

3 r>• •

CN•

CO

Page 40: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

II. B.

classification in Budget_

Amount' I/O Sector

218A.131

218A.132

218A.133

218A.134

218A.142

218A.1411

218A.1412

288A.1413

218A.147

218A.1411

218A.1412

218A.1413

218A.143

218A.148

218A.145

218A.212

218A.211

218A.213,218A.214

218A.222

218A.228

218A.24

218A.224

218A.227

236.1

236.4

241.132

241.21

CONTROL ROOM, BUILDING AMD

ELECTRIC PLANT EQUIPMENT

Forms

Reinforcing Steel

Concrete

Misc. Iron

Misc. Iron

Wood Forms

Reinforcing Steel

Concrete

Doors

Forms

Reinforcing Steel

Concrete

Masonry Partitions

Suspended Ceiling

Roofing

Drains

Drains

Piping

Electric Heating

Piping

Wiring

A/C Equipment

Ductwork

Instruments

Pipes

Transformers

Switchgear

4,000 40.07

7,500 40.09

10,000 36.12

1,000 42.05

13,000 42.05

9,000 20.06

42,000 40.09

26,000 36.12

4,000 40.04

20,000 40.07

35,000 40.09

28,000 36.12

10,000

30,000 42.05

5,000 40.07

1,500 42.05

500 42.05

3,500 42.05

16,000 54.05

5,000 42.08

60,000 55.03

35,000 40.03

10,000 40.07

785,000 53.03

175,000 42.08

15,000 53.02

,250,000 53.03

Page 41: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Classification in Budget Amount I/O Sector

241.22 Controls 300,000 53.03

241.24 Controls 50,000 53.03

242.1 Transformers (less supports) 477,000 53.02

242.211 Substations 700,000 55.03

242.3211 Generators 1,000,000 49.05

242.3212 Oil Tank 50,000 40.06

242.332 Inverters 20,000 49.05

243. Switchboards 470,000 53.03

244.11 Wiring 45,000 38.10

244.113 Lighting Masts 15,000 40.04

245.3 Conduit 320,000 55.03

246.1 Generator Bus 435,000 55.03

Generator Bus 60,000 55.03

246.211 Bus Duct 100,000 55.03

246.212 Cable 285,000 38.10

246.221,246.222

Cable 210,000 38.10

246.223 Bus 50,000 55.03

246.224 Bus 70,000 55.03

246.3 Wiring 550,000 38.10

246.4 Wiring 400,000 38.10

246.5 Canisters (incl. Instal) 500,000 40.06

Page 42: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

CN014J

01 O O O O ooooooooo o o o o o 23 o o o o ooooooooo o o o o o 04iH

5m

o o o o ooooooooo o o o o o•H •

*dcm in co cn Mn^r^HinfOfN^ cn <j\ <y\ CN^

^3 i-i a\ cn ^r OCOrHrHO | ^OrHr- r- co in CN CN rH Q)

W rH 1 1

1

CN-^CNiHin rH 00 <7»

III * 1 -CN CN V£>

l 1 1

CO1

CT> rH 4Jfd -P

</> rH (N CN•H

•HM-l gO\+J 0)

rH CO c n«^» CO Cn fdo O C oo • ^r •H U 01

^ iH r^inoo t ^(NN^OMOHOOO 'O in VD TT r- a) n

inco

rH a\ rH o co r-cncnoocococNCNo rH r^ oo cn o4J

o u4-1 rH •H CN "SJ1 00 rH CN O 3 rH rH «5T CNin .Q • CO 0)

*i a 01

in c»P C o •prH •H •H pj CD</>- \

4J•pfd

o u

II rH• 3

fd >U

CD Cn O • ai a)

3 T) P iH f4 01 01

•H rH in^nvo rHCNrrCTvinCNVOOOr^ C o o o o O fd Hfd

>« MIOCNO ^rHinmmcoiHcoin d)

Oo o o o O

t

o •H

fd

cua)m CO 0\ rH HCOVD o o o o O drH o rH rH Q) o •H rH O 4Jtd 0, rH u oP <A° TJ O

0) 0) rH CT3&H \ cS 01 fd o c**"""

*

3 o •h fd4J

H o o o o ooooooooo u 1 1 1 1 (U G o <u

S rH o o o o ooooooooo <D 1 1 1 1 u •H (U TJ

H fd

-Po in o o ooooomooo > 1 1 1 1

fj) a)

r-l fd

u uO 4Jdi o» T in cr\ •^cTiooinc^oino

H H cn oo cn vDrHincr»cr\^ooincN CO XI 01 oP in rr r- rH oo o o 3 rHo </> •» ^ * «» • +J 01 -Hw rH rH CN rH rH

rH ai

0)

u•h fd

Xi -P^ u -P <1)

5z \ • • U Cn n m U2 u O C <D a) ctH p -p •P •H 04 J3 •H'Od W d) c O CP T3 a

c • -P o 0) c rH •H CO »d cd

cj o a O 03 U to •H • •H O o CD

H •H •H rH 0) 3 (U > V •H 3 • rH U 0)

« •P HH JJ <U -P tP'd > 13 U 0) <D CO CD rH^ cu fd fd D1 o) fd c; o c rH tn •P 0) £ Q) P P fj fd

u •H -P -P W •PrH-HMOfdtJ^M 01 -p Cn 01 01 -H 01

w M <u <u (DWft Hd. n> c o 01 0) 0) w a Q) 0) Ul <Dt-H O a a cn •P -H H -H -P •P 5-1 -P •H M U CJrHw CO c <D • u is Cn *^ fd 3 CU 0) t3 c fd fd O

d) -P • -H M U 0) c • 0) O JH CL M rH •H 0) o O £Q Q 0) O -P TJ U2HCJ-HfJ(D4J(l) C 'O O 0) C! fd £ c: Is2 CD 01 fd C U -ri O U U) CVH a •H C 0) £ oi

<J J2 -H CD O -P O U'ri'ri-ri 5 d) O -P M 0) nW 2 ffi 5 C. lU rH 3: U w H « -P p o •

a \ <d •P COo c TJ t3 ooo ^ 0) a> o •

« •H T3 •d 01 H•P r-» cr> co vo cN^voocoinoocoin •P 00 rH iH CN CO G d •Hu<d

wo o o o iHOOrHOOOOO •H

•0

O rH O O o 3 •HrH< -po o o o vQoooo»ncNCNco<y» o v£> r^ r- rH

£-• ^r tt ^r <n cn*3, '*vmmT*riri*r < CN CO CO CO rH2 o 1

O \ • • •

CJ Hj 1 «H CN CO

Page 43: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

II. c.

Classification in Budget

TURBINE ROOM AND HEATER BAY

Amount I/O Sector

213.114 Concrete Fill 25,000 36.12

213.131,213.1411 Forms 215,000 40.07

213.132 Reinforcing 150,000 40.09

213.133 Concrete 240,000 36.12

213.134 Embedded Iron 35,000 42.05

213.1412 Reinforcing 200,000 40.09

213.1413 Concrete Block 320,000 36.10

213.1414 Embedded Iron ' 15,000 42.05

213.1421-213.1425 Steel & Iron 853,500 40.08

213.143 Metal Siding 80,000 40.07

213.144 Roof Deck 21,000 40.07

213.145 Roofing, etc. 45,000 40.07

213.146 Block Walls 10,000 36.10

213.211,213.212 Plumbing 105,000 42.08

213.22 Heating 450,000 40.03

213.24 Lighting

TURBINE PLANT EQUIPMENT

50,000 55.03

231.1 Turbines 29,700,000 43.01

231.2112 Concrete 25,000 36.12

231.2114 Formwork 3,300 40.07

231.2115 Reinforcing Steel 18,000 40.09

231.2116 Concrete 40,000 36.12

231.2119 Misc. Iron 6,000 40.08

231.2124 Formwork 35,000 40. 07

231.2125 Reinforcing Steel 57,000 40.09

Page 44: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

classification in Budget

231.2126

231.2129

231.221

231.421

231.422

231.45

231.511

231.512

232.11,232.133

232.161

232.211

232.212

232.213

232.221

232.222

232.223

Concrete

Misc. Iron

Steel Supports

Tank

Piping

Oil

Storage Racks

Pipe & Manifolds

Screens

Sluice Gates

Pumps

Motors

Pipe

Formwork

Reinforcing Steel

Concrete

Pipe

Formwork

Reinforcing Steel

Concrete

Misc. Iron

Sheet Pile

Pumps

Formwork

Reinforcing Steel

Concrete

Misc. Iron

Permanent Piling Frame

Formwork

Reinforcing Steel

Concrete

Misc. Iron, Gates, etc

Amount I/O Sector"

64,000 36.12

30,000 40.08

25,000 40.04

23,500 40.06

50,000 42.08

25,000 31.01

50,000 40.08

17,000 42.08

235,000 42.05

140,000 40.06

677,500 49.01

265,000 53.04

225,000 42.08

12,500 40.07

16,800 40.09

30,000 36.12

54,500 42.08

20,000 40.07

28,000 40.09

44,000 36.12

10,000 40.08

10,000 40.07

15,000 49.01

25,000 40.07

30,000 40.09

90,000 36.12

5,000 40.08

185,000 40.08

6,000 40.07

9,000 40.09

14,000 36.12

18,000 40.08

Page 45: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

Classification in Budget"

233.11

233.211

233.212

233.221

233.23

233.251,233.252

233.34

234.11

234.21

234.231

234.31

234.341

234.342

235.11

235.221

235.222

235.251

235.31 .

235.321

235.322

235.33

235.41,235.51

Condensers

Pumps

Motors

Pumps

Motors

Tank

Piping

Foundations

Piping

Heaters

Pumps

Motors

Pumps

Motors

Pipes

Pipes

Pipes & Drains

Pipes

Pipes

Tanks

Tanks

Pipes

Pumps

Tanks

Heat Exchanges

Pipes

Water Treating Plant

Amount I/O Sector

3,000,000 40.06

100,000 49.01

60,000 53.04

125,000 49.01

100,000 53.04

130,000 40.06

940,000 42.08

35,000 40.08

140,000 42.08

1,500,000 40.03

140,000 49.01

700,000 53.04

230,000 49.01

50,000 53.04

775,000 42.08

340,000 42.08

305,000 42.08

1,100,000 42.08

750,000 42.08

11,500 40.06

19,500 40.06

165,000 42.08

45,000 49.01

7,500 40.06

65,000 40.06

310,000 42.08

1,020,000 40.06

Page 46: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

oo

-3>

or-

<0

i-l

rd

>

O2:H9HDCQ

O52HH<

T3 WO w3c *•H sPG Qo «u W

55• H• sH DH Eh

(NCQ

rHCU>H

CO

co-

coo

uh

9CQ

Q

fd

PoEH

GO•HpHoco

a)

Q

opua>

co

000 1 00000 1 00000 1 00COOHin r» f-H

vx> rH roI I I

01 inrH inrH <Tv

o oo oo ot-» 00cn 00o <N

in0000 1 000000 1 000000 1 00* •. * •> » *»

^ r> r-» i* r^ or-IOWJO <T> —

I

r~ r-» cn o\ m <r>

I

cncn

mHOONN I o o

o o(N CM «* o o

rHTtfr-tVOinOO**!'-

in

\o vo a\ *f • ^o 00*& f» G> CN I CM CM

OOOOOOOOOOOOOOOOoooooomoo

r»(N H ID

00000000000000IT) O O O O O O

civo<y»mov£>ino vo o o r- m r- or- moHN 01Hcn c\ r» ** m a\

«. «. * * »

If) rH <T» <* rHCN

0)

a)

v<

ucoO CO

•H d)

id <U

p p(U CO

CO

>

0)

a)

pCO

lfl C7

C7»> GG -H

• •H »PO P CO P3 £ <U-HV) CT> Cit tMp -rt «HCO J 04

0*•H3

:1 -P

co cu P& o a)

G G H rH•H -H <D OP 43 rH HIS M-H-Pa; Q)

ffi H CQ (u

CO

10

a)

wo*eou

CO

CO ua. oE pd oP. 2

cNf-CAinooo^rrocorHOOOrHOOOO^DOO<N*-DOOin(NfO'^•^T^l•^|^•»l, ^, ln^^,

CO r-i U> <-4 r-i "STOOOOOO>jnf rr m "f in

cotr>

G•iH

-arH•H

43

10

•-H

G•H

§oUH

PoG

§oua>

04

a)

Go

>O

eno

O4J

CQ

-P

D4c•H

r3

el

•HP•H

000000000ooovoCO O rH(N o nHCIrl

I I I

in •># 10r- cn 00

rH >* r-\

OOo

HI

o(N

ooo

ooo

*3" r-i

in cm<N 00

ko cnI <N

CO

00

000000000

I I I

I I I

I I I

oo

oo

m c ac•-H • S-i •H

> O rH M pn 0) <U (0 nJ

<1) c <U <D to rHin P •rl 3 rH

fl) 0) CO U 3>-f

+J >0 u wcv 0) i^S c u a

-H u a HTl 0) C m

0) G O Cm c ca

p O U^ CO u M S2

EhOEh

COrlHMO O rH O

• • • •

o r~ id r~(N cn cn cn

00cn

CQ

P30Uc

^ H •

cn TJCN rH O<n rH P

fd PCO •rl

•*r MH gO O

P <D

a u •

O rd >iHW CQ P0) M OOi Q)

p Hr- •H

• cn <u T3

CJ CQ

p •T3 *

•Hrj

Q) a)

P t^

ni 45 -HrH fd > rH

d H• (l) a) G

rH C CO CO -rl

<d -HO •HUM a)

P 0. 0) MC fd e 45 rd

•rl rH -P300 CO

«d Pa> rH C T3 GCO fd c: 3p O -H fd

P Rc OJ f0

M •h <u «dm rd >1

««H T3 H U CT>

(U <D OP VI

43 CQ O d)

3 H GP CO -H 0)

c a) -h rd 1

a) n ^p 1

p <i> Gu MH )H

<D a> g •H

ex 43 "rl tJ P0) G3 rH m 'O fd a)

rH tr> O a) Mfd C • h n a vi

CD rH

P +J TJ n) ^-. u(Ji rH CO CO -rl CO dP

C -H <u w <u rH 41

•>H u M C rH ° "SC CQ fd id • P•Htd mh

a) ,GG S ^ 6

<D VIe0)

CO

O rl

rt -p P • rH <«

p ro ° -T3 rrj rj •rl <ti

0) <u <u • tJI (D

T) fC> CQ rH -rl Pn C G rH rH P

• 3 3 ,H ~ tT> 'rl

O rH q grH PS rt < +» ZrH

I rH CN CO

Page 47: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.

FOOTNOTES TO APPENDIX A

1. Investment Cost Study, 1000 MWe Central Station Power Plant,. United Engineers and Constructors Inc., 1401 Arch Street,Philadelphia, Pennsylvania, 19108, June 1972, Part V. Itemsincluded are all listing above $250,000 (except excavation)and other items both large costs relative to building sizeor type.

2. Expressed in budget to the nearest thousand dollars (1971)

.

In most cases, only primary materials cost is listed. Insome cases, installation materials (always very minute) areincluded. Labor costs are never included. Some budget

. accounts are omitted because they are neglible or toodifficult to classify.

3. See: Bureau of Economic Analysis, Social and Economic Statis-tics Administration, U.S. Department of Commerce: Input-OutputStructure of the U.S. Economy: 1967, Volume 2. Classificationwas done on the basis of 1967 SIC Sector definitions from 1967SIC Manual.

Page 48: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 49: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 50: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 51: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.
Page 52: The coal future capital and fuel cycle energy costs of a ... · TABLEAContinued FOOTNOTES: a)Assumptions:Loadfactor.65 Burnup =30,000MW(T)D/MTU Efficiency=33,5% Costsarefrom[1],TableIII-2,p.54.