The CMOS Inverter · - No static power dissipation. ESD II A.A. 05/06 PMOS Load Lines V in = V DD...

42
ESD II A.A. 05/06 The CMOS Inverter The CMOS Inverter V in V out C L V DD

Transcript of The CMOS Inverter · - No static power dissipation. ESD II A.A. 05/06 PMOS Load Lines V in = V DD...

ESD II A.A. 05/06

The CMOS InverterThe CMOS Inverter

Vin Vout

CL

VDD

ESD II A.A. 05/06

Cross-Section of CMOS Technology

ESD II A.A. 05/06

CMOS InverterCMOS InverterFirstFirst--Order DC AnalysisOrder DC Analysis

VOL = 0VOH = VDD

VM = f(Rn, Rp)

VDD VDD

Vin = VDD Vin = 0

VoutVout

Rn

Rp

ESD II A.A. 05/06

CMOS inverters in the two possible binary states

ESD II A.A. 05/06

Threshold DropsThreshold DropsVDD

VDD → 0

0 → VDD

CL

CL

VDD

0 → VDD - VTn

CL

VDD

VDD

VDD → |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS

ESD II A.A. 05/06

CMOS Properties

-At every point in time (except during the switching transients) each gate output is connected to either VDD or GND via a low-resistive path

- Symmetrical VTC

- No direct path exists between the supply and ground rails under steady-state operating conditions

- The steady-state input current is nearly zero

- Full rail-to-rail swing

- No static power dissipation

ESD II A.A. 05/06

PMOS Load LinesPMOS Load Lines

V in = V DD +VGSp

IDn = - I Dp

V out = V DD +V DSp

V in = V DD +VGSp

IDn = - I Dp

V out = V DD +VDSpV in = V DD +VGSp

IDn = - I Dp

V in = V DD +VGSp

IDn = - I Dp

V out = V DD +VDSpV out = V DD +VDSp

ESD II A.A. 05/06

CMOS Inverter Load CharacteristicsCMOS Inverter Load Characteristics

Vout

ESD II A.A. 05/06

CMOS Inverter VTCCMOS Inverter VTC

ESD II A.A. 05/06

CMOS VTC may be broken down into five regions

ESD II A.A. 05/06

CMOS VTC for KR = 5, 1 and 0. 2 for VDD = 5 V

ESD II A.A. 05/06

100

1010.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

MV(V

)

Wp/Wn

VM vs PMOS-to-NMOS ratio (0.25 um CMOS, VDD= 2.5 V)

ESD II A.A. 05/06

Changing the inverter threshold can improve the circuit reliability

ESD II A.A. 05/06

Noise margins vs KR for the CMOS inverter with VDD= 5V and VTN= -VTP= 1V

ESD II A.A. 05/06

CMOS VTC for VDD = 5 V, 4 V, 3 V and 2 V

ESD II A.A. 05/06

but it deteriorates for very low VDD

0 0.05 0.1 0.15 0.20

0.05

0.1

0.15

0.2

Vin (V)

Vou

t (V)

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin (V)

Vou

t(V)

Reducing VDD improves the gain ….

(0.25 um CMOS, VDD= 2.5V)

ESD II A.A. 05/06

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin (V)

Vou

t(V)

Good PMOSBad NMOS

Good NMOSBad PMOS

Nominal

Impact of device variations on static CMOS inverter VTC

(0.25 um CMOS, VDD= 2.5V)

ESD II A.A. 05/06

CMOS Inverter: Transient ResponseCMOS Inverter: Transient Response

tpHL = f(Rn .CL)= 0.69 Rn CL

V out

R n

VDD

Vin = VDD

(b) High-to-low

CL

Vout

Rp

VDD

V in = 0

(a) Low-to-high

CL

tpLH = f(Rp .CL)= 0.69 Rp CL

ESD II A.A. 05/06

High-to-low output transition in a CMOS inverter

ESD II A.A. 05/06

Low-to-high output transition in a CMOS inverter

ESD II A.A. 05/06

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vou

t(V)

tp = 0.69 CL (Reqn+Reqp)/2tpLH

tpHL

Propagation Delay

ESD II A.A. 05/06

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7x 10

5

VDD

(V)

Req

(Ohm

)

ESD II A.A. 05/06

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(nor

mal

ized

)

ESD II A.A. 05/06

Parasitic CapacitancesParasitic Capacitances

ESD II A.A. 05/06

ESD II A.A. 05/06

2 4 6 8 10 12 142

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10

-11

S

t p(sec

)

Device SizingDevice Sizing

(for fixed load)

Self-loading effect:Intrinsic capacitancesdominate

ESD II A.A. 05/06

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

β

t p(sec

)NMOS/PMOS ratioNMOS/PMOS ratio

tpLH tpHL

tp β = Wp/Wn

ESD II A.A. 05/06

Input Signal RiseInput Signal Rise--Fall TimeFall Time

(for fixed load)

Propagation delay vs input signal slope

ESD II A.A. 05/06

Where Does Power Go in CMOS?Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

ESD II A.A. 05/06

Dynamic Power DissipationDynamic Power Dissipation

Vin Vout

C L

Vdd

Energy/transition = C L * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce C L, Vdd, and f to reduce power.Not a function of transistor sizes!

ESD II A.A. 05/06

ESD II A.A. 05/06

ESD II A.A. 05/06

Short Circuit CurrentsShort Circuit Currents

ESD II A.A. 05/06

Supply current versus input voltage for a symmetrical CMOS inverter

ESD II A.A. 05/06

PSPICE simulation of the transient current pulses between the power supplies during switching of a CMOS inverter.

VDD-VT

VT

ESD II A.A. 05/06

Impact of rise/fall times on short-circuit currents

ESD II A.A. 05/06

0 1 2 3 4 50

1

2

3

4

5

6

7

8

tsin/tsout

P norm

Vdd =1.5

Vdd =2.5

Vdd =3.3(W/L)P = 1.125μm/0.25μm(W/L)N = 0.375μm/0.25μm

Power dissipation vs the ratio between input and output rise/fall times

The power dissipation due to short circuit currents is minimized by matching therise/fall times of the input and output signals.

(for fixed load)

ESD II A.A. 05/06

Vout

Vdd

Sub-ThresholdCurrent

Drain JunctionLeakage

Sub-threshold current one of most compelling issuesin low-energy circuit design!

Static Power ConsumptionStatic Power Consumption

ESD II A.A. 05/06

ReverseReverse--Biased Diode LeakageBiased Diode Leakage

Np+ p+

Reverse Leakage Current

+

-Vdd

GATE

IDL = JS × A

JS = 10-100 pA/μm2 at 25 deg C for 0.25μm CMOSJS doubles for every 9 deg C!

ESD II A.A. 05/06

IIDD versus Vversus VGSGS

II

GST

ESD II A.A. 05/06

Subthreshold Leakage ComponentSubthreshold Leakage Component

ESD II A.A. 05/06

Principles for Power ReductionPrinciples for Power Reduction

Prime choice: Reduce voltage!

Reduce switching activity

Reduce physical capacitance