The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and...

51
Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classification of Finite Simple Groups Groups of Characteristic 2 Type Michael Aschbacher Richard Lyons Stephen D. Smith Ronald Solomon

Transcript of The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and...

Page 1: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

Mathematical Surveys

and Monographs

Volume 172

American Mathematical Society

The Classifi cation of Finite Simple Groups

Groups of Characteristic 2 Type

Michael AschbacherRichard LyonsStephen D. SmithRonald Solomon

surv-172-smith3-cov.indd 1 2/4/11 1:15 PM

Page 2: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

The Classification of Finite Simple Groups

http://dx.doi.org/10.1090/surv/172

Page 3: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 4: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

Mathematical Surveys

and Monographs

Volume 172

The Classification of Finite Simple Groups

Groups of Characteristic 2 Type

Michael Aschbacher Richard Lyons Stephen D. Smith Ronald Solomon

American Mathematical SocietyProvidence, Rhode Island

Page 5: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

EDITORIAL COMMITTEE

Ralph L. Cohen, ChairEric M. Friedlander

Michael A. SingerBenjamin Sudakov

Michael I. Weinstein

2010 Mathematics Subject Classification. Primary 20D05; Secondary 20C20.

Abstract. We complete an outline, aimed at the non-expert reader, of the original proof of theClassification of the Finite Simple Groups.

The first half of such an outline, namely Volume 1 covering groups of noncharacteristic 2 type,had been published much earlier by Daniel Gorenstein in his very detailed 1983 work [Gor83].

Thus the present book, which we regard as “Volume 2” of that project, aims at presenting areasonably detailed outline of the second half of the Classification: namely the treatment of groupsof characteristic 2 type.

Aschbacher was supported in part by NSF DMS 0504852 and subsequent grants.

Lyons was supported in part by NSF DMS 0401132, NSA H98230-07-1-0003,and subsequent grants.

Smith was supported in part by NSA H98230-05-1-0075 and subsequent grants.

Solomon was supported in part by NSF DMS 0400533, NSA H98230-07-1-0014, andsubsequent grants.

For additional information and updates on this book, visitwww.ams.org/bookpages/surv-172

Library of Congress Cataloging-in-Publication Data

The classification of finite simple groups : groups of characteristic 2 type / Michael Aschbacher . . .[et al.].

p. cm. — (Mathematical surveys and monographs ; v. 172)Includes bibliographical references and index.ISBN 978-0-8218-5336-8 (alk. paper)1. Finite simple groups. 2. Representations of groups. I. Aschbacher, Michael, 1944–

QA177.C53 2011512′.2—dc22

2010048011

Copying and reprinting. Individual readers of this publication, and nonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy a chapter for usein teaching or research. Permission is granted to quote brief passages from this publication inreviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publicationis permitted only under license from the American Mathematical Society. Requests for suchpermission should be addressed to the Acquisitions Department, American Mathematical Society,201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made bye-mail to [email protected].

c© 2011 by the American Mathematical Society. All rights reserved.The American Mathematical Society retains all rightsexcept those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11

Page 6: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

To the memory of Danny Gorenstein

Page 7: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 8: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

Contents

Preface xi

Background and overview 1

Chapter 0. Introduction 30.1. The Classification Theorem 30.2. Principle I: Recognition via local subgroups 40.3. Principle II: Restricted structure of local subgroups 70.4. The finite simple groups 160.5. The Classification grid 19

Chapter 1. Overview: The classification of groups of Gorenstein-Walter type 25The Main Theorem for groups of Gorenstein-Walter type 251.1. A strategy based on components in centralizers 261.2. The Odd Order Theorem 281.3. (Level 1) The Strongly Embedded Theorem

and the Dichotomy Theorem 291.4. The 2-Rank 2 Theorem 331.5. (Level 1) The Sectional 2-Rank 4 Theorem

and the 2-Generated Core Theorem 351.6. The B-Conjecture and the Standard Component Theorem 411.7. The Unbalanced Group Theorem, the 2An-Theorem,

and the Classical Involution Theorem 441.8. Finishing the Unbalanced Group Theorem and the B-Theorem 481.9. The Odd Standard Component Theorem

and the Aschbacher-Seitz reduction 531.10. The Even Standard Component Theorem 55Summary: Statements of the major subtheorems 59

Chapter 2. Overview: The classification of groups of characteristic 2 type 63The Main Theorem for groups of characteristic 2 type 632.1. The Quasithin Theorem covering e(G) ≤ 2 652.2. The trichotomy approach to treating e(G) ≥ 3 662.3. The Trichotomy Theorem for e(G) ≥ 4 692.4. The e(G) = 3 Theorem (including trichotomy) 752.5. The Standard Type Theorem 772.6. The GF (2) Type Theorem 772.7. The Uniqueness Case Theorem 78Conclusion: The proof of the Characteristic 2 Type Theorem 80

vii

Page 9: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

viii CONTENTS

Outline of the classification of groups of characteristic 2 type 83

Chapter 3. e(G) ≤ 2: The classification of quasithin groups 853.1. Introduction: The Thompson Strategy 863.2. Preliminaries: Structure theory for quasithin 2-locals

(SQTK-groups) 883.3. More preliminaries: Some general techniques 903.4. The degenerate case: A Sylow T in a unique maximal 2-local 983.5. The Main Case Division

(Possibilities for a suitable group L and module V ) 1003.6. The Generic Case—where L = L2(2

n) with n > 1 1033.7. Reducing to V an FF-module for L 1063.8. Cases with L over F2n for n > 1 1093.9. Cases with L over F2 (but not L3(2)) 1113.10. Cases with L = L3(2), and analogues for L2(2) 1173.11. The final case where Lf (G, T ) is empty 1203.12. Bonus: The Even Type (Quasithin) Theorem

for use in the GLS program 123

Chapter 4. e(G) = 3: The classification of rank 3 groups 1274.1. The case where σ(G) contains a prime p ≥ 5 128

The Signalizer Analysis 128The Component Analysis 130

4.2. The case σ(G) = {3} 133The Signalizer Analysis 134The Component Analysis 142

Chapter 5. e(G) ≥ 4: The Pretrichotomy and Trichotomy Theorems 1495.1. Statements and Definitions 1495.2. The Signalizer Analysis 1525.3. The Component Analysis (leading to standard type) 159

Chapter 6. The classification of groups of standard type 1736.1. The Gilman-Griess Theorem on standard type for e(G) ≥ 4 173

Identifying a large Lie-type subgroup G0 174The final step: G = G0 177

6.2. Odd standard form problems for e(G) = 3 (Finkelstein-Frohardt) 180

Chapter 7. The classification of groups of GF (2) type 183Introduction 1847.1. Aschbacher’s reduction of GF (2) type to the large-extraspecial case 1857.2. The treatment of some fundamental extraspecial cases 1887.3. Timmesfeld’s reduction to a list of possibilities for M 1927.4. The final treatment of the various cases for M 1997.5. Chapter appendix: The classification of groups of GF (2n) type 204

Page 10: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

CONTENTS ix

Chapter 8. The final contradiction: Eliminating the Uniqueness Case 2138.1. Prelude: From the Preuniqueness Case to the Uniqueness Case 2158.2. Introduction: General strategy

using weak closure and uniqueness theorems 2238.3. Preliminary results and the weak closure setup 2268.4. The treatment of small n(H) 2308.5. The treatment of large n(H) 234

Appendices 249

Appendix A. Some background material related to simple groups 251A.1. Preliminaries: Some notation and results

from general group theory 251A.2. Notation for the simple groups 254A.3. Properties of simple groups and K-groups 256A.4. Properties of representations of simple groups 261A.5. Recognition theorems for identifying simple groups 262A.6. Transvection groups and transposition-group theory 264

Appendix B. Overview of some techniques used in the classification 267B.1. Coprime action 267B.2. Fusion and transfer 269B.3. Signalizer functor methods and balance 272B.4. Connectivity in commuting graphs and i-generated cores 280B.5. Application: A short elementary proof of the Dichotomy Theorem 287B.6. Failure of factorization 290B.7. Pushing-up, and the Local and Global C(G, T ) Theorems 292B.8. Weak closure 299B.9. Klinger-Mason analysis of bicharacteristic groups 302B.10. Some details of the proof of the Uniqueness Case Theorem 305

References and Index 313

References used for both GW type and characteristic 2 type 315

References mainly for GW type (see [Gor82][Gor83] for full list) 317

References used primarily for characteristic 2 type 321

Expository references mentioned 329

Index 333

Page 11: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 12: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

Preface

The present book, “The Classification of Finite Simple Groups: Groups ofCharacteristic 2 Type”, completes a project of giving an outline of the proof ofthe Classification of the Finite Simple Groups (CFSG). The project was begun byDaniel Gorenstein in 1983 with his book [Gor83]—which he subtitled “Volume 1:Groups of Noncharacteristic 2 Type”. Thus we regard our present discussion ofgroups of characteristic 2 type as “Volume 2” of that project.

The Classification of the Finite Simple Groups (CFSG) is one of the premierachievements of twentieth century mathematics. The result has a history which, insome sense, goes back to the beginnings of proto-group theory in the late eighteenthcentury. Many classic problems with a long history are important more for themathematics they inspire and generate, than because of interesting consequences.This is not true of the Classification, which is an extremely useful result, makingpossible many modern successes of finite group theory, which have in turn beenapplied to solve numerous problems in many areas of mathematics.

A theorem of this beauty and consequence deserves and demands a proof ac-cessible to any mathematician with enough background in finite group theory toread the proof. Unfortunately the proof of the Classification is very long andcomplicated, consisting of thousands of pages, written by hundreds of mathemati-cians in hundreds of articles published over a period of decades. The only wayto make such a proof truly accessible is, with hindsight, to reorganize and reworkthe mathematics, collect it all in one place, and make the treatment self-contained,except for some carefully written and selected basic references. Such an effort isin progress in the work of Gorenstein, Lyons, and Solomon (GLS) in their seriesbeginning with [GLS94], which seeks to produce a second-generation proof of theClassification.

However in the meantime, there should at least be a detailed outline of theexisting proof, that gives a global picture of the mathematics involved, and explicitlylists the papers which make up the proof. Even after a second-generation proof isin place, such an outline would have great historical value, and would also providethose group theorists who seek to further simplify the proof with the opportunityto understand the approach and ideas that appear in the proof. That is the goal ofthis volume: to provide an overview and reader’s guide to the huge literature whichmakes up the original proof of the Classification.

Soon after the apparent completion of the Classification in the early 1980s,Daniel Gorenstein began a project aimed at giving an outline of the original proof.He provided background in a substantial Introduction [Gor82], in particular dis-cussing the partition of simple groups into groups of odd characteristic and groupsof characteristic 2 type. Then in Volume 1 [Gor83] he described the treatment of

xi

Page 13: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

xii PREFACE

the groups of odd characteristic in detail. However he did not complete the rest ofhis project, in part because the proof for groups of characteristic 2 type remainedincomplete, specifically that part of the proof treating the quasithin groups un-dertaken by Mason [Mas]. This gap was recently filled by the Aschbacher-Smithclassification of the quasithin groups [AS04b]. Hence it is now possible to fin-ish Gorenstein’s project by outlining the proof for the groups of characteristic 2type. We accomplish that goal here, adopting his title, and regarding the work as“Volume 2” in the series.

While we recommend that the interested reader consult Gorenstein’s books,we also intend that our treatment should be sufficiently self-contained that thoseworks will not be a prerequisite. Therefore in Chapter 1, we supply an overviewof the treatment of the groups of odd characteristic, which is much briefer thanGorenstein’s detailed treatment.

In fact, throughout our exposition, we will be less detailed than Gorenstein,since we believe that a briefer outline of the main steps will be more accessible anduseful to most readers. On the other hand, we are careful to honor the importantfundamental goal of explicitly listing those works in the literature which make upthe proof that all simple groups of characteristic 2 type are known.

Mathematics, particularly the proof of a complex theorem, is hierarchical. Wewill list the results on groups of characteristic 2 type at the top of that hierarchy,which we refer to as “level 0” results. These are the papers containing subtheoremswhose union affords the classification of the groups of characteristic 2 type. Wealso discuss the papers at level 1: the principal subsidiary results used in the proofsof subtheorems at level 0. We will not usually attempt an analysis through levels 2and beyond; that is, as a rule we do not discuss those papers used to establish thesubsidiary results, and so on, down to first principles and the level of textbooks.But our outline could be used as a starting point for such a deeper analysis of theproof.

Finally we will typically assume that the reader has some familiarity with con-cepts, terminology, notation, and results from elementary group theory, such asmight be standard in a first year graduate algebra course. Beyond that, we will tryto give more advanced definitions when they arise in our discussion. In additionwe provide in Chapter A of the Appendix a review of some intermediate materialon simple groups and their properties. The Index should be helpful when encoun-tering new terminology and notation; normally the index entry given in boldfaceindicates either the definition, or the most fundamental page reference.

Acknowledgments. We would like to thank various colleagues for helpfulcomments on early stages of this work; especially Rebecca Waldecker. (And thanksas usual to the referee.)

Smith is grateful to All Souls College Oxford for a Visiting Fellowship duringHilary Term 2009.

Page 14: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 15: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

References and Index

Page 16: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 17: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

References used for both GW type andcharacteristic 2 type

[AS76a] Michael Aschbacher and Gary M. Seitz, Involutions in Chevalley groups over fields ofeven order, Nagoya Math. J. 63 (1976), 1–91. MR MR0422401 (54 #10391)

[AS76b] , On groups with a standard component of known type, Osaka J. Math. 13 (1976),no. 3, 439–482. MR MR0435200 (55 #8161)

[AS78] M. Aschbacher and G. Seitz, Correction to: “Involutions in Chevalley groups over fieldsof even order” (Nagoya Math. J. 63 (1976), 1–91), Nagoya Math. J. 72 (1978), 135–136.MR MR514895 (80b:20058)

[AS81] Michael Aschbacher and Gary M. Seitz, On groups with a standard component of knowntype. II, Osaka J. Math. 18 (1981), no. 3, 703–723. MR MR635729 (83a:20018)

[Asc74] Michael Aschbacher, Finite groups with a proper 2-generated core, Trans. Amer. Math.Soc. 197 (1974), 87–112. MR MR0364427 (51 #681)

[Asc93] , Simple connectivity of p-group complexes, Israel J. Math. 82 (1993), no. 1-3,1–43. MR MR1239044 (94j:20012)

[Ben71] Helmut Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genaueinen Punkt festlaßt, J. Algebra 17 (1971), 527–554. MR MR0288172 (44 #5370)

[Ben75] , Goldschmidt’s 2-signalizer functor theorem, Israel J. Math. 22 (1975), no. 3-4,208–213. MR MR0390056 (52 #10882)

[BS04] Curtis D. Bennett and Sergey Shpectorov, A new proof of a theorem of Phan, J. GroupTheory 7 (2004), no. 3, 287–310. MR MR2062999 (2005k:57004)

[Cur65] Charles W. Curtis, Central extensions of groups of Lie type, J. Reine Angew. Math. 220(1965), 174–185. MR MR0188299 (32 #5738)

[FT63] Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math.13 (1963), 775–1029. MR MR0166261 (29 #3538)

[GH69] Daniel Gorenstein and Koichiro Harada, A characterization of Janko’s two new simplegroups, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 331–406 (1970). MR MR0283075 (44#308)

[GH74] , Finite groups whose 2-subgroups are generated by at most 4 elements, AmericanMathematical Society, Providence, R.I., 1974, Memoirs of the American MathematicalSociety, No. 147. MR MR0367048 (51 #3290)

[Gil76] Robert Gilman, Components of finite groups, Comm. Algebra 4 (1976), no. 12, 1133–1198. MR MR0430053 (55 #3060)

[GL82] Daniel Gorenstein and Richard Lyons, Signalizer functors, proper 2-generated cores, andnonconnected groups, J. Algebra 75 (1982), no. 1, 10–22. MR MR650406 (83i:20017)

[Gla66] George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420.MR MR0202822 (34 #2681)

[Gla76] , On solvable signalizer functors in finite groups, Proc. London Math. Soc. (3)33 (1976), no. 1, 1–27. MR MR0417284 (54 #5341)

[Gol72a] David M. Goldschmidt, 2-signalizer functors on finite groups, J. Algebra 21 (1972),321–340. MR MR0323904 (48 #2257)

[Gol72b] , Solvable signalizer functors on finite groups, J. Algebra 21 (1972), 137–148.MR MR0297861 (45 #6913)

[Gor69a] Daniel Gorenstein, On finite simple groups of characteristic 2 type, Inst. Hautes EtudesSci. Publ. Math. (1969), no. 36, 5–13. MR MR0260864 (41 #5484)

[Gri72] Robert L. Griess, Jr., Schur multipliers of the known finite simple groups, Bull. Amer.Math. Soc. 78 (1972), 68–71. MR MR0289635 (44 #6823)

315

Page 18: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

316 REFERENCES USED FOR BOTH GW TYPE AND CHARACTERISTIC 2 TYPE

[Gri73] , Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc.183 (1973), 355–421. MR MR0338148 (49 #2914)

[Gri74] , Schur multipliers of some sporadic simple groups, J. Algebra 32 (1974), no. 3,445–466. MR MR0382426 (52 #3310)

[Gri80] , Schur multipliers of the known finite simple groups. II, The Santa Cruz Confer-ence on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. PureMath., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 279–282. MR MR604594

(82g:20025)[Gri85] R. L. Griess, Jr., Schur multipliers of the known finite simple groups. III, Proceed-

ings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984)(Cambridge), Cambridge Univ. Press, 1985, pp. 69–80. MR MR817238 (87g:20027)

[GW75] Daniel Gorenstein and John H. Walter, Balance and generation in finite groups, J.Algebra 33 (1975), 224–287. MR MR0357583 (50 #10051)

[Har76] Koichiro Harada, On the simple group F of order 214 · 36 · 56 · 7 · 11 · 19, Proceedingsof the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) (New York),Academic Press, 1976, pp. 119–276. MR MR0401904 (53 #5730)

[Jan69] Zvonimir Janko, Some new simple groups of finite order. I, Symposia Mathemat-ica (INDAM, Rome, 1967/68), Vol. 1, Academic Press, London, 1969, pp. 25–64.MR MR0244371 (39 #5686)

[Suz62] Michio Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962),105–145. MR MR0136646 (25 #112)

[Suz64] , On a class of doubly transitive groups. II, Ann. of Math. (2) 79 (1964), 514–589.MR MR0162840 (29 #144)

[Tho68] John G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable,Bull. Amer. Math. Soc. 74 (1968), 383–437. MR MR0230809 (37 #6367)

[Tho70] , Nonsolvable finite groups all of whose local subgroups are solvable. II, PacificJ. Math. 33 (1970), 451–536. MR MR0276325 (43 #2072)

[Tho71] , Nonsolvable finite groups all of whose local subgroups are solvable. III, PacificJ. Math. 39 (1971), 483–534. MR MR0313378 (47 #1933)

[Tho73] , Nonsolvable finite groups all of whose local subgroups are solvable. IV, V, VI,

Pacific J. Math. 48 (1973), 511–592, ibid. 50 (1974), 215–297; ibid. 51(1974), 573–630.MR MR0369512 (51 #5745)

[Tit62] J. Tits, Groupes semi-simples isotropes, Colloq. Theorie des Groupes Algebriques (Brux-elles, 1962), Librairie Universitaire, Louvain, 1962, pp. 137–147. MR MR0148667 (26#6174)

Page 19: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

References mainly for GW type (see[Gor82][Gor83] for full list)

[ABG70] J. L. Alperin, Richard Brauer, and Daniel Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups., Trans. Amer. Math. Soc. 151 (1970), 1–261.MR MR0284499 (44 #1724)

[ABG73a] , The extended ZJ-theorem, Finite groups ’72 (Proc. Gainesville Conf., Univ.Florida, Gainesville, Fla., 1972), North-Holland, Amsterdam, 1973, pp. 6–7. North–Holland Math. Studies, Vol. 7. MR MR0354855 (50 #7332)

[ABG73b] , Finite simple groups of 2-rank two, Scripta Math. 29 (1973), no. 3-4, 191–214, Collection of articles dedicated to the memory of Abraham Adrian Albert.MR MR0401902 (53 #5728)

[Alw79] L. Alward, Standard components of type O−(8, 2), Ph.D. thesis, U. Oregon, 1979.[Asc75a] Michael Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975),

87–115. MR MR0376843 (51 #13018)[Asc77a] , A characterization of Chevalley groups over fields of odd order, Ann. of Math.

(2) 106 (1977), no. 2, 353–398. MR MR0498828 (58 #16865a)[Asc77b] , A characterization of Chevalley groups over fields of odd order. II, Ann. of

Math. (2) 106 (1977), no. 3, 399–468. MR MR0498829 (58 #16865b)[Asc80a] , Correction to: “A characterization of Chevalley groups over fields of odd

order. I, II” [Ann. of Math. (2) 106 (1977), no. 2, 353–398; MR 58 #16865a; ibid.(2) 106 (1977), no. 3, 399–468; MR 58 #16865b], Ann. of Math. (2) 111 (1980),no. 2, 411–414. MR MR569077 (81j:20026)

[Asc82a] , A characterization of some finite groups of characteristic 3, J. Algebra 76(1982), no. 2, 400–441. MR MR661863 (83h:20022)

[Asc82b] , The Tits group as a standard subgroup, Math. Z. 181 (1982), no. 2, 229–252.MR MR674275 (84a:20025)

[Asc97] , 3-transposition groups, Cambridge Tracts in Mathematics, vol. 124, Cam-bridge University Press, Cambridge, 1997. MR MR1423599 (98h:20024)

[Asc08] , Standard components of alternating type centralized by a 4-group, J. Algebra319 (2008), 595–615.

[Ben70] Helmut Bender, On the uniqueness theorem, Illinois J. Math. 14 (1970), 376–384.MR MR0262351 (41 #6959)

[BS59] Richard Brauer and Michio Suzuki, On finite groups of even order whose 2-Sylowgroup is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757–1759.MR MR0109846 (22 #731)

[BSW58] R. Brauer, Michio Suzuki, and G. E. Wall, A characterization of the one-dimensionalunimodular projective groups over finite fields, Illinois J. Math. 2 (1958), 718–745.MR MR0104734 (21 #3487)

[Bur77] N. Burgoyne, Finite groups with Chevalley-type components, Pacific J. Math. 72(1977), no. 2, 341–350. MR MR0457550 (56 #15755)

[CH81] Kai Nah Cheng and Dieter Held, Finite groups with a standard component of typeL3(4). I, Rend. Sem. Mat. Univ. Padova 65 (1981), 59–75 (1982). MR MR653283

(83h:20020)[CH85] , Finite groups with a standard-component of type L3(4). II, Rend. Sem. Mat.

Univ. Padova 73 (1985), 147–167. MR MR799904 (87c:20037)[DS81] Stephen L. Davis and Ronald Solomon, Some sporadic characterizations, Comm. Al-

gebra 9 (1981), no. 17, 1725–1742. MR MR631885 (83a:20024)

317

Page 20: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

318 REFERENCES MAINLY FOR GW TYPE (SEE [GOR82][GOR83] FOR FULL LIST)

[Ega80] Y. Egawa, Standard components of type M24 and Ω+(8, 2), Ph.D. thesis, Ohio StateU., 1980, New MS to be submitted soon for publication.

[Ega81] Yoshimi Egawa, Standard components of type M24, Comm. Algebra 9 (1981), no. 5,451–476. MR MR606647 (82c:20028)

[EY82] Yoshimi Egawa and Tomoyuki Yoshida, Standard subgroups of type 2Ω+(8, 2),Hokkaido Math. J. 11 (1982), no. 3, 279–285. MR MR680816 (84b:20014)

[Fin75] Larry Finkelstein, Finite groups with a standard component of type Janko-Ree, J.

Algebra 36 (1975), no. 3, 416–426. MR MR0379653 (52 #558)[Fin76a] , Finite groups with a standard component isomorphic to M23, J. Algebra 40

(1976), no. 2, 541–555. MR MR0414700 (54 #2795)[Fin76b] , Finite groups with a standard component isomorphic to HJ or HJM, J. Alge-

bra 43 (1976), no. 1, 61–114. MR MR0427450 (55 #482)[Fin77a] , Finite groups with a standard component isomorphic to M22, J. Algebra 44

(1977), no. 2, 558–572. MR MR0427451 (55 #483)[Fin77b] , Finite groups with a standard component of type J4, Pacific J. Math. 71

(1977), no. 1, 41–56. MR MR0444764 (56 #3112)[Fin77c] , Finite groups with a standard component whose centralizer has cyclic Sylow

2-subgroups, Proc. Amer. Math. Soc. 62 (1977), no. 2, 237–241. MR MR0439928 (55#12809)

[Foo78] Richard Foote, Finite groups with maximal 2-components of type L2(q), q odd, Proc.London Math. Soc. (3) 37 (1978), no. 3, 422–458. MR MR512020 (82k:20023)

[Fri77a] Franz J. Fritz, On centralizers of involutions with components of 2-rank two. I, J.Algebra 47 (1977), no. 2, 323–374. MR MR0450391 (56 #8686a)

[Fri77b] , On centralizers of involutions with components of 2-rank two. II, J. Algebra47 (1977), no. 2, 375–399. MR MR0450392 (56 #8686b)

[FS79a] Larry Finkelstein and Ronald M. Solomon, Standard components of type M12 and ·3,Osaka J. Math. 16 (1979), no. 3, 759–774. MR MR551587 (81g:20033)

[GHNS05] R. Gramlich, C. Hoffman, W. Nickel, and S. Shpectorov, Even-dimensional orthog-onal groups as amalgams of unitary groups, J. Algebra 284 (2005), no. 1, 141–173.MR MR2115009 (2006f:20058)

[Gla68] George Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math.20 (1968), 1101–1135. MR MR0230807 (37 #6365)

[Gla74] , On groups with a quaternion Sylow 2-subgroup, Illinois J. Math. 18 (1974),60–65. MR MR0332969 (48 #11294)

[GMS78] Robert L. Griess, Jr., David R. Mason, and Gary M. Seitz, Bender groups as standardsubgroups, Trans. Amer. Math. Soc. 238 (1978), 179–211. MR MR0466300 (57 #6180)

[Gol74] David M. Goldschmidt, 2-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70–117.MR MR0335627 (49 #407)

[Gol75] , Strongly closed 2-subgroups of finite groups, Ann. of Math. (2) 102 (1975),no. 3, 475–489. MR MR0393223 (52 #14033)

[Gom78a] Kensaku Gomi, Finite groups with a standard subgroup isomorphic to PSU(4, 2), Pa-cific J. Math. 79 (1978), no. 2, 399–462. MR MR531327 (82k:20024)

[Gom78b] , Finite groups with a standard subgroup isomorphic to Sp(4, 2n), Japan. J.Math. (N.S.) 4 (1978), no. 1, 1–76. MR MR528868 (80h:20024)

[Gom80] , Standard subgroups of type Sp6(2). I, II, J. Fac. Sci. Univ. Tokyo Sect. IAMath. 27 (1980), no. 1, 87–107, 109–156. MR MR573334 (81j:20024)

[Gri] Robert L. Griess, Jr., Finite groups with standard component a 4-fold cover of M22,unpublished U Michigan preprint; now covered by [HS08].

[GS79a] Robert Gilman and Ronald Solomon, Finite groups with small unbalancing 2-components, Pacific J. Math. 83 (1979), no. 1, 55–106. MR MR555039 (81g:20028)

[GS79b] Robert L. Griess, Jr. and Ronald Solomon, Finite groups with unbalancing 2-

components of {L3(4), He}-type, J. Algebra 60 (1979), no. 1, 96–125. MR MR549100(80k:20013)

[GW65a] Daniel Gorenstein and John H. Walter, The characterization of finite groups with dihe-dral Sylow 2-subgroups. I, J. Algebra 2 (1965), 85–151. MR MR0177032 (31 #1297a)

[GW65b] , The characterization of finite groups with dihedral Sylow 2-subgroups. II, J.Algebra 2 (1965), 218–270. MR MR0177033 (31 #1297b)

Page 21: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

REFERENCES MAINLY FOR GW TYPE (SEE [GOR82][GOR83] FOR FULL LIST) 319

[GW65c] , The characterization of finite groups with dihedral Sylow 2-subgroups. III, J.Algebra 2 (1965), 354–393. MR MR0190220 (32 #7634)

[Har] Koichiro Harada, Finite groups with standard component of type M22, unpublishedOhio State U preprint circa 1979.

[Har75] , On finite groups having self-centralizing 2-subgroups of small order, J. Algebra33 (1975), 144–160. MR MR0354857 (50 #7334)

[Har77] Morton E. Harris, Finite groups having an involution centralizer with a 2-component

of dihedral type. II, Illinois J. Math. 21 (1977), no. 3, 621–647. MR MR0480720 (58#873b)

[Har80a] , Finite groups having an involution centralizer with a 2-component of typePSL(3, 3), Pacific J. Math. 87 (1980), no. 1, 69–74. MR MR590868 (81k:20024)

[Har81a] , Finite groups having an involution centralizer with a PSU(3, 3) component,J. Algebra 72 (1981), no. 2, 426–455. MR MR641335 (84d:20018)

[Har81b] , PSL(2, q) type 2-components and the unbalanced group conjecture, J. Algebra68 (1981), no. 1, 190–235. MR MR604303 (83a:20021)

[HS77] Morton E. Harris and Ronald Solomon, Finite groups having an involution centralizerwith a 2-component of dihedral type. I, Illinois J. Math. 21 (1977), no. 3, 575–620.MR MR0480719 (58 #873a)

[HS08] Koichiro Harada and Ronald Solomon, Finite groups having a standard component L

of type M12 or M22, J. Algebra 319 (2008), 621–628.[Hun72] David C. Hunt, A characterization of the finite simple group M(22), J. Algebra 21

(1972), 103–112. MR MR0299673 (45 #8721)[Hun73] , A characterization of the finite simple group M(23), J. Algebra 26 (1973),

431–439. MR MR0322046 (48 #410)[Lyo72] Richard Lyons, A characterization of the group U3 (4), Trans. Amer. Math. Soc. 164

(1972), 371–387. MR MR0286881 (44 #4088)[Mac70] Anne R. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, and

their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc.150 (1970), 345–408. MR MR0276324 (43 #2071)

[Man79] J. Manferdelli, Standard components of type ·2, Ph.D. thesis, U. Calif. Berkeley, 1979.[Miy79] Izumi Miyamoto, Finite groups with a standard subgroup isomorphic to U4(2n), Japan.

J. Math. (N.S.) 5 (1979), no. 1, 209–244. MR MR614698 (82i:20027)[Miy80] , Finite groups with a standard subgroup of type U5(2n), n > 1, J. Algebra 64

(1980), no. 2, 430–459. MR MR579070 (81g:20031)[Miy82] , Standard subgroups isomorphic to 2F4(2n), J. Algebra 77 (1982), no. 1, 261–

273. MR MR665177 (83k:20019)[Sei77] Gary M. Seitz, Standard subgroups of type Ln(2a), J. Algebra 48 (1977), no. 2, 417–

438. MR MR0450412 (56 #8706)[Sei79a] , Chevalley groups as standard subgroups. I, Illinois J. Math. 23 (1979), no. 1,

36–57. MR MR516569 (82j:20038a)[Sei79b] , Chevalley groups as standard subgroups. II, III, Illinois J. Math. 23 (1979),

no. 4, 516–553, 554–578. MR MR540399 (82j:20038b)[Sei81] , Some standard groups, J. Algebra 70 (1981), no. 1, 299–302. MR MR618396

(82g:20037)[Sol74] Ronald Solomon, Finite groups with Sylow 2-subgroups of type 3, J. Algebra 28 (1974),

182–198. MR MR0344338 (49 #9077)

[Sol75] , Finite groups with intrinsic 2-components of type An, J. Algebra 33 (1975),498–522. MR MR0372034 (51 #8251)

[Sol76a] , Maximal 2-components in finite groups, Comm. Algebra 4 (1976), no. 6, 561–594. MR MR0422415 (54 #10404)

[Sol76b] , Standard components of alternating type. I, J. Algebra 41 (1976), no. 2, 496–514. MR MR0422405 (54 #10394)

[Sol77] , Standard components of alternating type. II, J. Algebra 47 (1977), no. 1,162–179. MR MR0444767 (56 #3115)

[Sol78a] , 2-signalizers in finite groups of alternating type, Comm. Algebra 6 (1978),no. 6, 529–549. MR MR0466303 (57 #6183)

[Sol78b] , Some standard components of sporadic type, J. Algebra 53 (1978), no. 1,93–124. MR MR498549 (81h:20018)

Page 22: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

320 REFERENCES MAINLY FOR GW TYPE (SEE [GOR82][GOR83] FOR FULL LIST)

[Str81] G. Stroth, On standard subgroups of type 2E6(2), Proc. Amer. Math. Soc. 81 (1981),no. 3, 365–368. MR MR597641 (82j:20039)

[Sys81] S. A. Syskin, Standard components of type F3, Algebra i Logika 20 (1981), no. 4,465–482, 485, English translation: Algebra and Logic 20 (1981), no. 4, 308–318 (1982).MR MR663062 (84a:20026)

[Yam79a] Hiromichi Yamada, Finite groups with a standard subgroup isomorphic to G2(2n),J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), no. 1, 1–52. MR MR539772

(80g:20028)[Yam79b] , Finite groups with a standard subgroup isomorphic to 3D4(23n), J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 26 (1979), no. 2, 255–278. MR MR550686 (80k:20016)[Yam79c] , Standard subgroups isomorphic to PSU(5, 2), J. Algebra 58 (1979), no. 2,

527–562. MR MR540657 (82k:20030)[Yam79d] , Standard subgroups isomorphic to PSU(6, 2) or SU(6, 2), J. Algebra 61

(1979), no. 1, 82–111. MR MR554853 (81f:20025)[Yam85] , A remark on the standard form problem for 2F4(22n+1), n ≥ 1, Hitotsubashi

J. Arts Sci. 26 (1985), no. 1, 47–60. MR MR839725 (87f:20024)[Yos74] Tomoyuki Yoshida, A characterization of Conway’s group C3, Hokkaido Math. J. 3

(1974), 232–242. MR MR0369513 (51 #5746)

Page 23: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

References used primarily for characteristic 2 type

[AGL81] Michael Aschbacher, Daniel Gorenstein, and Richard Lyons, The embedding of 2-localsin finite groups of characteristic 2-type., Ann. of Math. (2) 114 (1981), no. 2, 335–456.MR MR632843 (83i:20016a)

[And80] S. Andrilli, On the uniqueness of O’Nan’s simple group, Ph.D. thesis, Rutgers U., 1980.[AS91] Michael Aschbacher and Yoav Segev, The uniqueness of groups of type J4, Invent.

Math. 105 (1991), no. 3, 589–607. MR MR1117152 (92g:20026)[AS04a] Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups.

I, Mathematical Surveys and Monographs, vol. 111, American Mathematical Soci-ety, Providence, RI, 2004, Structure of strongly quasithin K-groups. MR MR2097623(2005m:20038a)

[AS04b] , The classification of quasithin groups. II, Mathematical Surveys and Mono-graphs, vol. 112, American Mathematical Society, Providence, RI, 2004, Main theorems:the classification of simple QTKE-groups. MR MR2097624 (2005m:20038b)

[Asc72] Michael Aschbacher, On finite groups generated by odd transpositions. I, Math. Z. 127

(1972), 45–56. MR MR0310058 (46 #9161)[Asc73] , A condition for the existence of a strongly embedded subgroup, Proc. Amer.

Math. Soc. 38 (1973), 509–511. MR MR0318308 (47 #6855)[Asc75b] , 2-components in finite groups, Comm. Algebra 3 (1975), no. 10, 901–911.

MR MR0414686 (54 #2781)[Asc76a] , Finite groups in which the generalized Fitting group of the centralizer of some

involution is symplectic but not extraspecial, Comm. Algebra 4 (1976), no. 7, 595–616.MR MR0407144 (53 #10927)

[Asc76b] , Tightly embedded subgroups of finite groups, J. Algebra 42 (1976), no. 1, 85–101. MR MR0422400 (54 #10390)

[Asc77] , On finite groups in which the generalized Fitting group of the central-izer of some involution is extraspecial, Illinois J. Math. 21 (1977), no. 2, 347–364.MR MR0442089 (56 #477)

[Asc78a] , A pushing up theorem for characteristic 2 type groups, Illinois J. Math. 22(1978), no. 1, 108–125. MR MR0470063 (57 #9830)

[Asc78b] , Thin finite simple groups, J. Algebra 54 (1978), no. 1, 50–152. MR MR511458(82j:20032)

[Asc80b] , On finite groups of Lie type and odd characteristic, J. Algebra 66 (1980),no. 2, 400–424. MR MR593602 (81k:20023)

[Asc81a] , A factorization theorem for 2-constrained groups, Proc. London Math. Soc.(3) 43 (1981), no. 3, 450–477. MR MR635565 (83a:20019b)

[Asc81b] , Finite groups of rank 3. I, Invent. Math. 63 (1981), no. 3, 357–402.MR MR620676 (82j:20033)

[Asc81c] , On the failure of the Thompson factorization in 2-constrained groups, Proc.London Math. Soc. (3) 43 (1981), no. 3, 425–449. MR MR635564 (83a:20019a)

[Asc81d] , Some results on pushing up in finite groups, Math. Z. 177 (1981), no. 1, 61–80.MR MR611470 (82e:20016)

[Asc81e] , Weak closure in finite groups of even characteristic, J. Algebra 70 (1981),no. 2, 561–627. MR MR623826 (82j:20034)

[Asc82] , GF(2)-representations of finite groups, Amer. J. Math. 104 (1982), no. 4,683–771. MR MR667532 (83j:20025)

[Asc83a] , Finite groups of rank 3. II, Invent. Math. 71 (1983), no. 1, 51–163.MR MR688262 (84h:20008)

321

Page 24: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

322 REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE

[Asc83b] , The uniqueness case for finite groups. I, Ann. of Math. (2) 117 (1983), no. 2,383–454. MR MR690850 (84g:20021a)

[Asc83c] , The uniqueness case for finite groups. II, Ann. of Math. (2) 117 (1983), no. 3,455–551. MR MR701255 (84g:20021b)

[Asc94] , Sporadic groups, Cambridge Tracts in Mathematics, vol. 104, Cambridge Uni-versity Press, Cambridge, 1994. MR MR1269103 (96e:20020)

[Asc02a] , Characterizing U3(3) by counting involutions, J. Ramanujan Math. Soc. 17

(2002), no. 1, 35–49. MR MR1906419 (2003b:20021)[Asc02b] , Finite groups of G2(3)-type, J. Algebra 257 (2002), no. 2, 197–214.

MR MR1947319 (2004b:20025)[Asc03a] , A 2-local characterization of M12, Illinois J. Math. 47 (2003), no. 1-2, 31–47,

Special issue in honor of Reinhold Baer (1902–1979). MR MR2031304 (2004i:20024)[Asc03b] , A 2-local characterization of the Higman-Sims group, J. Algebra 260 (2003),

no. 1, 16–31, Special issue celebrating the 80th birthday of Robert Steinberg.MR MR1973574 (2004e:20022)

[Asc09] , Generation of fusion systems of characteristic 2 type, ?? ?? (2009?), ??–??,submitted for publication.

[Bau79] Bernd Baumann, Uber endliche Gruppen mit einer zu L2(2n) isomorphen Faktor-gruppe, Proc. Amer. Math. Soc. 74 (1979), no. 2, 215–222. MR MR524288 (80g:20024)

[Bei77] Bert Beisiegel, Semi-extraspezielle p-Gruppen, Math. Z. 156 (1977), no. 3, 247–254.MR MR0473004 (57 #12683)

[Ben67] Helmut Bender, Uber den grossten p′-Normalteiler in p-auflosbaren Gruppen, Arch.Math. (Basel) 18 (1967), 15–16. MR MR0213439 (35 #4303)

[BGL77] N. Burgoyne, R. Griess, and R. Lyons, Maximal subgroups and automorphisms ofChevalley groups, Pacific J. Math. 71 (1977), no. 2, 365–403. MR MR0444795 (56#3142)

[Blo67] David M. Bloom, The subgroups of PSL(3, q) for odd q, Trans. Amer. Math. Soc. 127(1967), 150–178. MR MR0214671 (35 #5520)

[Bou68] N. Bourbaki, Elements de mathematique. Fasc. XXXIV. Groupes et algebres de Lie.

Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendrespar des reflexions. Chapitre VI: systemes de racines, Actualites Scientifiques et Indus-trielles, No. 1337, Hermann, Paris, 1968. MR MR0240238 (39 #1590)

[BT71] A. Borel and J. Tits, Elements unipotents et sous-groupes paraboliques de groupesreductifs. I, Invent. Math. 12 (1971), 95–104. MR MR0294349 (45 #3419)

[Bur83] N. Burgoyne, Elements of order 3 in Chevalley groups of characteristic 2, Appendix(Sec. 34) to Gorenstein-Lyons: The local structure of finite groups of characteristic2 type, vol. 42, Mem. Amer. Math. Soc., no. 276, American Mathematical Society,Providence, R.I., 1983, pp. 425–431.

[BW77] N. Burgoyne and C. Williamson, Semi-simple classes in Chevalley type groups, PacificJ. Math. 70 (1977), no. 1, 83–100. MR MR0507018 (58 #22322)

[Cam79] N. Campbell, Pushing up in finite groups, Ph.D. thesis, Caltech, 1979.[Car89] Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons

Inc., New York, 1989, Reprint of the 1972 original, A Wiley-Interscience Publication.MR MR1013112 (90g:20001)

[CKS76] Charles W. Curtis, William M. Kantor, and Gary M. Seitz, The 2-transitive permu-tation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218(1976), 1–59. MR MR0422440 (54 #10429)

[Col73] Michael J. Collins, The characterization of finite groups whose Sylow 2-subgroups areof type L3(q), q even, J. Algebra 25 (1973), 490–512; erratum, ibid. 27 (1973), 199–203.MR MR0320139 (47 #8680)

[Con69] J. H. Conway, A group of order 8, 315, 553, 613, 086, 720, 000, Bull. London Math. Soc.1 (1969), 79–88. MR MR0248216 (40 #1470)

[Con71] , Three lectures on exceptional groups, Finite simple groups (Proc. InstructionalConf., Oxford, 1969), Academic Press, London, 1971, pp. 215–247. MR MR0338152(49 #2918)

[CW73] J. H. Conway and D. B. Wales, Construction of the Rudvalis group of order145, 926, 144, 000, J. Algebra 27 (1973), 538–548. MR MR0335620 (49 #400)

Page 25: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE 323

[Dem73a] U. Dempwolff, On the second cohomology of GL(n, 2), J. Austral. Math. Soc. 16(1973), 207–209, Collection of articles dedicated to the memory of Hanna Neumann,II. MR MR0357639 (50 #10107)

[Dem73b] Ulrich Dempwolff, Zentralisatoren zentraler Involutionen in Ln(2), Illinois J. Math. 17(1973), 465–497. MR MR0320135 (47 #8676)

[Dem74] , A characterization of the Rudvalis simple group of order 214 ·33 ·53 ·7·13·29 bythe centralizers of noncentral involutions, J. Algebra 32 (1974), 53–88. MR MR0352242

(50 #4729)[DGS85] A. Delgado, D. Goldschmidt, and B. Stellmacher, Groups and graphs: new results and

methods, DMV Seminar, vol. 6, Birkhauser Verlag, Basel, 1985, With a preface by theauthors and Bernd Fischer. MR MR862622 (88a:05076)

[Die55] Jean Dieudonne, La geometrie des groupes classiques, Ergebnisse der Mathematik undihrer Grenzgebiete (N.F.), Heft 5, Springer-Verlag, Berlin, 1955. MR MR0072144(17,236a)

[DW77a] Ulrich Dempwolff and S. K. Wong, Another characterization of Ln(2), Arch. Math.(Basel) 28 (1977), no. 1, 41–44. MR MR0430092 (55 #3099)

[DW77b] , On finite groups whose centralizer of an involution has normal extra specialand abelian subgroups. I, J. Algebra 45 (1977), no. 1, 247–253. MR MR0427447 (55#479)

[DW78] , On finite groups whose centralizer of an involution has normal extraspecialand abelian subgroups. II, J. Algebra 52 (1978), no. 1, 210–217. MR MR0486106 (58#5894)

[Fen73] Daniel Fendel, A characterization of Conway’s group. 3, J. Algebra 24 (1973), 159–196.MR MR0314962 (47 #3511)

[FF79] Larry Finkelstein and Daniel Frohardt, A 3-local characterization of L7(2), Trans.Amer. Math. Soc. 250 (1979), 181–194. MR MR530049 (80f:20015)

[FF81a] , Simple groups with a standard 3-component of type An(2), with n ≥ 5, Proc.London Math. Soc. (3) 43 (1981), no. 3, 385–424. MR MR635563 (83f:20012)

[FF81b] , Standard 3-components of type Sp(6, 2), Trans. Amer. Math. Soc. 266 (1981),no. 1, 71–92. MR MR613786 (82f:20033)

[FF84] , Standard 3-components of type SL(4, 2), J. Algebra 86 (1984), no. 2, 407–421.MR MR732257 (85k:20046)

[Fin73] Larry Finkelstein, The maximal subgroups of Conway’s group C3 and McLaughlin’sgroup, J. Algebra 25 (1973), 58–89. MR MR0346046 (49 #10772)

[Foo82] Richard Foote, Component type theorems for finite groups in characteristic 2, IllinoisJ. Math. 26 (1982), no. 1, 62–111. MR MR638555 (83a:20020)

[FR73] L. Finkelstein and A. Rudvalis, Maximal subgroups of the Hall-Janko-Wales group, J.Algebra 24 (1973), 486–493. MR MR0323889 (48 #2242)

[FR74] , The maximal subgroups of Janko’s simple group of order 50, 232, 960, J. Al-gebra 30 (1974), 122–143. MR MR0354846 (50 #7323)

[Fra51] J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents,Ann. Mat. Pura Appl. (4) 32 (1951), 83–119. MR MR0047038 (13,817i)

[Fro83] Daniel Frohardt, A trilinear form for the third Janko group, J. Algebra 83 (1983),no. 2, 349–379. MR MR714249 (84m:20023)

[FS79b] Larry Finkelstein and Ronald Solomon, Finite simple groups with a standard 3-component of type Sp(2n, 2), n ≥ 4, J. Algebra 59 (1979), no. 2, 466–480.MR MR543264 (81a:20021)

[FSS77] L. R. Fletcher, B. Stellmacher, and W. B. Stewart, Endliche Gruppen, die kein Elementder Ordnung 6 enthalten, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 110, 143–154.MR MR0447394 (56 #5706)

[FT62] Walter Feit and John G. Thompson, Finite groups which contain a self-centralizingsubgroup of order 3., Nagoya Math. J. 21 (1962), 185–197. MR MR0142623 (26 #192)

[FW69] Paul Fong and W. J. Wong, A characterization of the finite simple groups PSp(4, q),G2(q), D4

2(q). I, Nagoya Math. J. 36 (1969), 143–184. MR MR0255666 (41 #326)[GG75] Robert Gilman and Daniel Gorenstein, Finite groups with Sylow 2-subgroups of class

two. I, II, Trans. Amer. Math. Soc. 207 (1975), 1–101; ibid. 207 (1975), 103–126.MR MR0379662 (52 #567)

Page 26: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

324 REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE

[GG83] Robert H. Gilman and Robert L. Griess, Jr., Finite groups with standard componentsof Lie type over fields of characteristic two, J. Algebra 80 (1983), no. 2, 383–516.MR MR691810 (84g:20024)

[GH71a] Daniel Gorenstein and Koichiro Harada, Finite simple groups of low 2-rank andthe families G2(q), D2

4(q), q odd, Bull. Amer. Math. Soc. 77 (1971), 829–862.MR MR0306301 (46 #5427)

[GH71b] , On finite groups with Sylow 2-subgroups of type A n, n = 8, 9, 10, and 11, J.Algebra 19 (1971), 185–227. MR MR0285599 (44 #2817)

[GL75] Robert L. Griess, Jr. and Richard Lyons, The automorphism group of the Tits simplegroup 2F4(2)′, Proc. Amer. Math. Soc. 52 (1975), 75–78. MR MR0390054 (52 #10880)

[GL77] Daniel Gorenstein and Richard Lyons, Non-solvable signalizer functors on finite groups,Proc. London Math. Soc. (3) 35 (1977), no. 1, 1–33. MR MR0450396 (56 #8690)

[GL83] , The local structure of finite groups of characteristic 2 type, Mem. Amer. Math.Soc. 42 (1983), no. 276, vii+731. MR MR690900 (84g:20025)

[GL93] , On Aschbacher’s local C(G;T ) theorem, Israel J. Math. 82 (1993), no. 1-3,227–279. MR MR1239050 (94k:20023)

[Gla70] George Glauberman, Prime-power factor groups of finite groups. II, Math. Z. 117(1970), 46–56. MR MR0294483 (45 #3553)

[Gla71] G. Glauberman, Global and local properties of finite groups, Finite simple groups(Proc. Instructional Conf., Oxford, 1969), Academic Press, London, 1971, pp. 1–64.MR MR0352241 (50 #4728)

[Gla73] George Glauberman, Failure of factorization in p-solvable groups, Quart. J. Math.Oxford Ser. (2) 24 (1973), 71–77. MR MR0318301 (47 #6848)

[Gla77] G. Glauberman, Factorizations in local subgroups of finite groups, American Mathe-matical Society, Providence, R.I., 1977, Regional Conference Series in Mathematics,No. 33. MR MR0470072 (57 #9839)

[GM02] Robert M. Guralnick and Gunter Malle, Classification of 2F -modules. I, J. Algebra257 (2002), no. 2, 348–372. MR MR1947326 (2003m:20008)

[GM04] , Classification of 2F -modules. II, Finite groups 2003, Walter de Gruyter GmbH& Co. KG, Berlin, 2004, pp. 117–183. MR MR2125071 (2006b:20062)

[GMS89] Robert L. Griess, Jr., Ulrich Meierfrankenfeld, and Yoav Segev, A uniqueness prooffor the Monster, Ann. of Math. (2) 130 (1989), no. 3, 567–602. MR MR1025167(90j:20030)

[GN83] George Glauberman and Richard Niles, A pair of characteristic subgroups for pushing-up in finite groups, Proc. London Math. Soc. (3) 46 (1983), no. 3, 411–453.MR MR699096 (84g:20042)

[Gol72] David M. Goldschmidt, Weakly embedded 2-local subgroups of finite groups, J. Algebra21 (1972), 341–351. MR MR0323896 (48 #2249)

[Gol80] , Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377–

406. MR MR569075 (82a:05052)[Gom75] Kensaku Gomi, Finite groups all of whose non-2-closed 2-local subgroups have Sylow

2-subgroups of class 2, J. Algebra 35 (1975), 214–223. MR MR0374265 (51 #10465)[Gor71] D. Gorenstein, Centralizers of involutions in finite simple groups, Finite simple groups

(Proc. Instructional Conf., Oxford, 1969), Academic Press, London, 1971, pp. 65–133.MR MR0335622 (49 #402)

[Gri76] Robert L. Griess, Jr., The structure of the “monster” simple group, Proceedings ofthe Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) (New York),Academic Press, 1976, pp. 113–118. MR MR0399248 (53 #3099)

[Gri82] , The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR MR671653(84m:20024)

[Gut79] Martin M. Guterman, A characterization of F4(4n) as a group with standard 3-component B3(4n), Comm. Algebra 7 (1979), no. 10, 1079–1102. MR MR533205(82k:20025)

[GW71] Daniel Gorenstein and John H. Walter, The π-layer of a finite group, Illinois J. Math.15 (1971), 555–564. MR MR0289624 (44 #6812)

[Hal82] J. I. Hall, Certain 2-local blocks with alternating sections, Comm. Algebra 10 (1982),no. 16, 1721–1747. MR MR673821 (84b:20015)

Page 27: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE 325

[Har68] Koichiro Harada, Finite simple groups with short chains of subgroups, J. Math. Soc.Japan 20 (1968), 655–672. MR MR0230811 (37 #6369)

[Har78] , On Yoshida’s transfer, Osaka J. Math. 15 (1978), no. 3, 637–646.MR MR510501 (80c:20017)

[Har80b] , On finite simple groups possessing 2-local blocks of orthogonal type, Comm.Algebra 8 (1980), no. 5, 441–449. MR MR561539 (81b:20016)

[Hel69] Dieter Held, The simple groups related to M24, J. Algebra 13 (1969), 253–296.

MR MR0249500 (40 #2745)[HH56] P. Hall and Graham Higman, On the p-length of p-soluble groups and reduction

theorems for Burnside’s problem, Proc. London Math. Soc. (3) 6 (1956), 1–42.MR MR0072872 (17,344b)

[Hig57] Graham Higman, Groups and rings having automorphisms without non-trivial fixedelements, J. London Math. Soc. 32 (1957), 321–334. MR MR0089204 (19,633c)

[HM69] Graham Higman and J. McKay, On Janko’s simple group of order 50, 232, 960, Theoryof Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin,New York, 1969, pp. 65–77. MR MR0245668 (39 #6974)

[Hol78] D. F. Holt, Transitive permutation groups in which an involution central in a Sylow2-subgroup fixes a unique point, Proc. London Math. Soc. (3) 37 (1978), no. 1, 165–192.MR MR0575516 (58 #28153)

[HS68] Donald G. Higman and Charles C. Sims, A simple group of order 44, 352, 000, Math.Z. 105 (1968), 110–113. MR MR0227269 (37 #2854)

[HW68] Marshall Hall, Jr. and David Wales, The simple group of order 604, 800, J. Algebra 9(1968), 417–450. MR MR0240192 (39 #1544)

[Jam73] G. D. James, The modular characters of the Mathieu groups, J. Algebra 27 (1973),57–111. MR MR0330277 (48 #8614)

[Jan66] Zvonimir Janko, A new finite simple group with abelian Sylow 2-subgroups and itscharacterization, J. Algebra 3 (1966), 147–186. MR MR0193138 (33 #1359)

[Jan76] , A new finite simple group of order 86 · 775 · 571 · 046 · 077 · 562 · 880 whichpossesses M24 and the full covering group of M22 as subgroups, J. Algebra 42 (1976),no. 2, 564–596. MR MR0432751 (55 #5734)

[JP76] Wayne Jones and Brian Parshall, On the 1-cohomology of finite groups of Lie type,Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975)(New York), Academic Press, 1976, pp. 313–328. MR MR0404470 (53 #8272)

[JW69] Zvonimir Janko and S. K. Wong, A characterization of the Higman-Sims simple group,J. Algebra 13 (1969), 517–534. MR MR0260866 (41 #5486)

[KL06] Inna Korchagina and Richard Lyons, A {2, 3}-local characterization of the groupsA12,Sp8(2), F4(2) and F5, J. Algebra 300 (2006), no. 2, 590–646. MR MR2228213(2007c:20032)

[Kon71] Marc W. Konvisser, Embedding of abelian subgroups in p-groups, Trans. Amer. Math.Soc. 153 (1971), 469–481. MR MR0271228 (42 #6111)

[Ku97] Chao Ku, A characterization of M22, J. Algebra 187 (1997), no. 1, 295–303.MR MR1425573 (97m:20025)

[LS77] Jeffrey S. Leon and Charles C. Sims, The existence and uniqueness of a simple groupgenerated by {3, 4}-transpositions, Bull. Amer. Math. Soc. 83 (1977), no. 5, 1039–1040.MR MR0444765 (56 #3113)

[LW76] J. Richard Lundgren and S. K. Wong, On finite simple groups in which the centralizerM of an involution is solvable and O2(M) is extraspecial, J. Algebra 41 (1976), no. 1,1–15. MR MR0442077 (56 #465)

[Lyo72] Richard Lyons, Evidence for a new finite simple group, J. Algebra 20 (1972), 540–569.MR MR0299674 (45 #8722)

[Mag71] Spyros S. Magliveras, The subgroup structure of the Higman-Sims simple group, Bull.Amer. Math. Soc. 77 (1971), 535–539. MR MR0283077 (44 #310)

[Mar72] R. P. Martineau, On 2-modular representations of the Suzuki groups, Amer. J. Math.94 (1972), 55–72. MR MR0360777 (50 #13224)

[McB82a] Patrick P. McBride, Nonsolvable signalizer functors on finite groups, J. Algebra 78(1982), no. 1, 215–238. MR MR677718 (84g:20049b)

[McB82b] Patrick Paschal McBride, Near solvable signalizer functors on finite groups, J. Algebra78 (1982), no. 1, 181–214. MR MR677717 (84g:20049a)

Page 28: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

326 REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE

[McL69a] Jack McLaughlin, A simple group of order 898, 128, 000, Theory of Finite Groups (Sym-posium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 109–111. MR MR0242941 (39 #4268)

[McL69b] , Some subgroups of SLn (F2), Illinois J. Math. 13 (1969), 108–115.MR MR0237660 (38 #5941)

[Mit14] Howard H. Mitchell, The subgroups of the quaternary abelian linear group, Trans. Amer.Math. Soc. 15 (1914), no. 4, 379–396. MR MR1500986

[MS93] Ulrich Meierfrankenfeld and Bernd Stellmacher, Pushing up weak BN-pairs of ranktwo, Comm. Algebra 21 (1993), no. 3, 825–934. MR MR1204756 (94d:20025)

[Nor80] Simon Norton, The construction of J4, The Santa Cruz Conference on Finite Groups(Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer.Math. Soc., Providence, R.I., 1980, pp. 271–277. MR MR604593 (82a:20030)

[O’N76a] Michael E. O’Nan, Some characterizations by centralizers of elements of order three,Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975)(New York), Academic Press, 1976, pp. 79–84. MR MR0404428 (53 #8230)

[O’N76b] , Some evidence for the existence of a new simple group, Proc. London Math.Soc. (3) 32 (1976), no. 3, 421–479. MR MR0401905 (53 #5731)

[Pag69] D. Page, Some problems in the theory of finite groups, Ph.D. thesis, Oxford U., 1969.[Par76] David Parrott, A characterization of the Rudvalis simple group, Proc. London Math.

Soc. (3) 32 (1976), no. 1, 25–51. MR MR0390043 (52 #10869)[Par77] , On Thompson’s simple group, J. Algebra 46 (1977), no. 2, 389–404.

MR MR0447396 (56 #5708)[Par81] , Characterizations of the Fischer groups. I, II, III, Trans. Amer. Math. Soc.

265 (1981), no. 2, 303–347. MR MR610952 (82d:20018)[Pat72] N. Patterson, On Conway’s group .0 and some subgroups, Ph.D. thesis, U. Cambridge,

1972.[Pol71] Harriet Pollatsek, First cohomology groups of some linear groups over fields of char-

acteristic two, Illinois J. Math. 15 (1971), 393–417. MR MR0280596 (43 #6316)[Pri77] A. R. Prince, On 2-groups admitting A5 or A6 with an element of order 5 acting fixed

point freely, J. Algebra 49 (1977), no. 2, 374–386. MR MR0457565 (56 #15770)

[PW76] N. J. Patterson and S. K. Wong, A characterization of the Suzuki sporadic simple groupof order 448, 345, 497, 600, J. Algebra 39 (1976), no. 1, 277–286. MR MR0399253 (53#3104)

[Rei76] Arthur Reifart, A characterization of Thompson’s sporadic simple group, J. Algebra38 (1976), no. 1, 192–200. MR MR0393217 (52 #14027)

[Rei78a] , A general characterization of the Steinberg simple group D24(2

3), J. Algebra50 (1978), no. 1, 63–68. MR MR0463285 (57 #3238)

[Rei78b] , On finite simple groups with large extraspecial subgroups. I, J. Algebra 53(1978), no. 2, 452–470. MR MR502644 (80j:20019a)

[Rei78c] , On finite simple groups with large extraspecial subgroups. II, J. Algebra 54(1978), no. 1, 273–289. MR MR511465 (80j:20019b)

[Rob76] Derek J. S. Robinson, The vanishing of certain homology and cohomology groups, J.Pure Appl. Algebra 7 (1976), no. 2, 145–167. MR MR0404478 (53 #8280)

[Sch04] I. Schur, Uber die darstellung der endliche gruppen durch gebrochene lineare substitu-tionen, J. Reine angew. Math. 27 (1904), 20–50.

[Sei82] Gary M. Seitz, Generation of finite groups of Lie type, Trans. Amer. Math. Soc. 271(1982), no. 2, 351–407. MR MR654839 (83h:20021)

[Sim73] Charles C. Sims, The existence and uniqueness of Lyons’ group, Finite groups ’72 (Proc.Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland, Amsterdam,1973, pp. 138–141. North–Holland Math. Studies, Vol. 7. MR MR0354881 (50 #7358)

[Smi] Fredrick Smith, On blocks as uniqueness subgroups, unpublished U. Illinois-Chicagopreprint, 1978.

[Smi74] Fredrick L. Smith, A characterization of the .2 Conway simple group, J. Algebra 31(1974), 91–116. MR MR0349832 (50 #2325)

[Smi76a] Fredrick Smith, On the centralizers of involutions in finite fusion-simple groups, J.Algebra 38 (1976), no. 2, 268–273. MR MR0396738 (53 #599)

[Smi76b] P. E. Smith, A simple subgroup of M? and E8(3), Bull. London Math. Soc. 8 (1976),no. 2, 161–165. MR MR0409630 (53 #13382)

Page 29: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE 327

[Smi77a] Fredrick Smith, On a result of M. Aschbacher, Comm. Algebra 5 (1977), no. 3, 279–288.MR MR0430057 (55 #3064)

[Smi77b] , On finite groups with large extra-special 2-subgroups, J. Algebra 44 (1977),no. 2, 477–487. MR MR0427448 (55 #480)

[Smi77c] , On groups with an involution z such that the generalized Fitting subgroup Eof C(z) is extra-special and C(z)/E ⊇ (Out(E))′, Comm. Algebra 5 (1977), no. 3,267–277. MR MR0437639 (55 #10563)

[Smi79a] , On transitive permutation groups in which a 2-central involution fixes a uniquepoint, Comm. Algebra 7 (1979), no. 2, 203–218. MR MR515456 (80d:20004)

[Smi79b] Stephen D. Smith, Large extraspecial subgroups of widths 4 and 6, J. Algebra 58 (1979),no. 2, 251–281. MR MR540638 (80g:20030)

[Smi80a] , A characterization of finite Chevalley and twisted groups of type E over GF(2),J. Algebra 62 (1980), no. 1, 101–117. MR MR561119 (81b:20018)

[Smi80b] , A characterization of orthogonal groups over GF(2), J. Algebra 62 (1980),no. 1, 39–60. MR MR561116 (81b:20017)

[Smi81] , A characterization of some Chevalley groups in characteristic two, J. Algebra68 (1981), no. 2, 390–425. MR MR608542 (82d:20021)

[Sol81] Ronald Solomon, On certain 2-local blocks, Proc. London Math. Soc. (3) 43 (1981),no. 3, 478–498. MR MR635566 (83g:20018)

[SS70] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groupsand Related Finite Groups (The Institute for Advanced Study, Princeton, N.J.,1968/69), Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR MR0268192 (42 #3091)

[ST79] Ronald Solomon and F. G. Timmesfeld, A note on tightly embedded subgroups, Arch.Math. (Basel) 31 (1978/79), no. 3, 217–223. MR MR521473 (80b:20017)

[Ste62] Robert Steinberg, Generateurs, relations et revetements de groupes algebriques, Colloq.Theorie des Groupes Algebriques (Bruxelles, 1962), Librairie Universitaire, Louvain,1962, pp. 113–127. MR MR0153677 (27 #3638)

[Ste63] , Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56.MR MR0155937 (27 #5870)

[Ste68a] , Endomorphisms of linear algebraic groups, Memoirs of the American Math-ematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968.MR MR0230728 (37 #6288)

[Ste68b] , Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968, Notesprepared by John Faulkner and Robert Wilson. MR MR0466335 (57 #6215)

[Str76] G. Stroth, A characterization of Fischer’s sporadic simple group of the order 241 ·313 ·56 ·72 ·11 ·13 ·17 ·19 ·23 ·31 ·47, J. Algebra 40 (1976), no. 2, 499–531. MR MR0417277(54 #5334)

[Str78] Gernot Stroth, Einige Gruppen vom Charakteristik 2-Typ, J. Algebra 51 (1978), no. 1,107–143. MR MR487469 (81g:20032)

[Str80] , Endliche Gruppen, die eine maximale 2-lokale Untergruppe besitzen, sodaß Z(F ∗(M)) eine TI-Menge in G ist, J. Algebra 64 (1980), no. 2, 460–528.MR MR579071 (81j:20025)

[Suz69a] Michio Suzuki, Characterizations of linear groups, Bull. Amer. Math. Soc. 75 (1969),1043–1091. MR MR0260889 (41 #5509)

[Suz69b] , A simple group of order 448, 345, 497, 600, Theory of Finite Groups (Sympo-sium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 113–119. MR MR0241527 (39 #2867)

[SW81] Ronald Solomon and S. K. Wong, On L2(2n)-blocks, Proc. London Math. Soc. (3) 43(1981), no. 3, 499–519. MR MR635567 (83g:20019)

[Thm70] Gomer Thomas, A characterization of the unitary groups PSU5(q2), q = 2n, J. Algebra14 (1970), 245–259. MR MR0252506 (40 #5726)

[Tim73] F. G. Timmesfeld, A characterization of the Chevalley- and Steinberg-groups over F2,Geometriae Dedicata 1 (1973), no. 3, 269–321. MR MR0330279 (48 #8616)

[Tim75a] , Groups generated by root-involutions. I, II, J. Algebra 33 (1975), 75–134; ibid.35 (1975), 367–441. MR MR0372019 (51 #8236)

[Tim75b] Franz Georg Timmesfeld, Groups with weakly closed TI-subgroups, Math. Z. 143(1975), no. 3, 243–278. MR MR0407143 (53 #10926)

Page 30: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

328 REFERENCES USED PRIMARILY FOR CHARACTERISTIC 2 TYPE

[Tim77] F. G. Timmesfeld, On elementary abelian TI-subgroups, J. Algebra 44 (1977), no. 2,457–476. MR MR0427455 (55 #487)

[Tim78a] Franz Timmesfeld, Finite simple groups in which the generalized Fitting group of thecentralizer of some involution is extraspecial, Ann. of Math. (2) 107 (1978), no. 2,297–369. MR MR486255 (81i:20016a)

[Tim78b] , On the structure of 2-local subgroups in finite groups, Math. Z. 161 (1978),no. 2, 119–136. MR MR504481 (80d:20020)

[Tim79a] F. G. Timmesfeld, A condition for the existence of a weakly closed TI-set, J. Algebra60 (1979), no. 2, 472–484. MR MR549941 (82j:20040)

[Tim79b] Franz Timmesfeld, Correction to: “Finite simple groups in which the generalized Fit-ting group of the centralizer of some involution is extraspecial”, Ann. of Math. (2) 109(1979), no. 2, 413–414. MR MR528971 (81i:20016b)

[Tim79c] , A note on 2-groups of GF(2n)-type, Arch. Math. (Basel) 32 (1979), no. 2,101–108. MR MR534918 (80f:20020)

[Tim81] , On finite groups in which a maximal abelian normal subgroup of some maximal2-local subgroup is a TI-set, Proc. London Math. Soc. (3) 43 (1981), no. 1, 1–45.MR MR623717 (82h:20020)

[Tit63] J. Tits, Groupes simples et geometries associees, Proc. Internat. Congr. Mathe-maticians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 197–221.MR MR0175903 (31 #179)

[TW02] Jacques Tits and Richard M. Weiss, Moufang polygons, Springer Monographs in Math-ematics, Springer-Verlag, Berlin, 2002. MR MR1938841 (2003m:51008)

[Wal69a] David B. Wales, Generators of the Hall-Janko group as a subgroup of G2 (4), J. Algebra13 (1969), 513–516. MR MR0251133 (40 #4364)

[Wal69b] John H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups.,Ann. of Math. (2) 89 (1969), 405–514. MR MR0249504 (40 #2749)

[Wei55] A. J. Weir, Sylow p-subgroups of the classical groups over finite fields with characteristicprime to p, Proc. Amer. Math. Soc. 6 (1955), 529–533. MR MR0072143 (17,235e)

[Yam69] Hiroyoshi Yamaki, A characterization of the simple group Sp(6, 2), J. Math. Soc. Japan21 (1969), 334–356. MR MR0255670 (41 #330)

[Yos78] Tomoyuki Yoshida, Character-theoretic transfer, J. Algebra 52 (1978), no. 1, 1–38.MR MR0491920 (58 #11095)

Page 31: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

Expository references mentioned

[AG67] J. L. Alperin and Daniel Gorenstein, Transfer and fusion in finite groups, J. Algebra6 (1967), 242–255. MR MR0215914 (35 #6749)

[Asc00] M. Aschbacher, Finite group theory, second ed., Cambridge Studies in Advanced Math-ematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR MR1777008(2001c:20001)

[Asc04] Michael Aschbacher, The status of the classification of the finite simple groups, NoticesAmer. Math. Soc. 51 (2004), no. 7, 736–740. MR MR2072045

[Bau76] Bernd Baumann, Endliche nichtauflosbare Gruppen mit einer nilpotenten maximalenUntergruppe, J. Algebra 38 (1976), no. 1, 119–135. MR MR0409639 (53 #13391)

[BCC+70] A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, and R. Steinberg,Seminar on Algebraic Groups and Related Finite Groups. (Held at The Institute forAdvanced Study, Princeton, N. J., 1968/69), Lecture Notes in Mathematics, Vol. 131,Springer-Verlag, Berlin, 1970. MR MR0258840 (41 #3486)

[Ben81] Helmut Bender, Finite groups with dihedral Sylow 2-subgroups, J. Algebra 70 (1981),

no. 1, 216–228. MR MR618389 (83c:20011b)[BF55] Richard Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62

(1955), 565–583. MR MR0074414 (17,580e)[BG81] Helmut Bender and George Glauberman, Characters of finite groups with dihedral

Sylow 2-subgroups, J. Algebra 70 (1981), no. 1, 200–215. MR MR618388 (83c:20011a)[BG94] , Local analysis for the odd order theorem, London Mathematical Society Lec-

ture Note Series, vol. 188, Cambridge University Press, Cambridge, 1994, With theassistance of Walter Carlip. MR MR1311244 (96h:20036)

[Bra57] Richard Brauer, On the structure of groups of finite order, Proceedings of the Inter-national Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. NoordhoffN.V., Groningen, 1957, pp. 209–217. MR MR0095203 (20 #1709)

[Bur55] W. Burnside, Theory of groups of finite order, Dover Publications Inc., New York,1955, 2d ed. MR MR0069818 (16,1086c)

[BW76] N. Burgoyne and C. Williamson, On a theorem of Borel and Tits for finite Chevalleygroups, Arch. Math. (Basel) 27 (1976), no. 5, 489–491. MR MR0430091 (55 #3098)

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finitegroups, Oxford University Press, Eynsham, 1985, Maximal subgroups and ordinarycharacters for simple groups, With computational assistance from J. G. Thackray.MR MR827219 (88g:20025)

[CM80] B. Cooperstein and G. Mason, Some questions concerning the representations ofChevalley groups in characteristic two, preprint, U. Calif. Santa Cruz, 93 pages, 1980.

[Cur71] C. W. Curtis, Chevalley groups and related topics, Finite simple groups (Proc.Instructional Conf., Oxford, 1969), Academic Press, London, 1971, pp. 135–189.

MR MR0340442 (49 #5197)[Dic58] Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field the-

ory, with an introduction by W. Magnus, Dover Publications Inc., New York, 1958.MR MR0104735 (21 #3488)

[Fis71] Bernd Fischer, Finite groups generated by 3-transpositions. I, Invent. Math. 13 (1971),232–246. MR MR0294487 (45 #3557)

[Foo80] Richard Foote, Aschbacher blocks, The Santa Cruz Conference on Finite Groups (Univ.California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math.Soc., Providence, R.I., 1980, pp. 37–42. MR MR604554 (84g:20023a)

329

Page 32: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

330 EXPOSITORY REFERENCES MENTIONED

[FS73] Paul Fong and Gary M. Seitz, Groups with a (B, N)-pair of rank 2. I, II, Invent.Math. 21 (1973), 1–57; ibid. 24 (1974), 191–239. MR MR0354858 (50 #7335)

[GLS94] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finitesimple groups, Mathematical Surveys and Monographs, vol. 40, American Mathemat-ical Society, Providence, RI, 1994. MR MR1303592 (95m:20014)

[GLS96] , The classification of the finite simple groups. Number 2. Part I. ChapterG, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society,

Providence, RI, 1996, General group theory. MR MR1358135 (96h:20032)[GLS98] , The classification of the finite simple groups. Number 3. Part I. Chapter

A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society,Providence, RI, 1998, Almost simple K-groups. MR MR1490581 (98j:20011)

[GLS99] , The classification of the finite simple groups. Number 4. Part II. Chapters 1–4, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society,Providence, RI, 1999, Uniqueness theorems, With errata: The classification of thefinite simple groups. Number 3. Part I. Chapter A [Amer. Math. Soc., Providence, RI,1998; MR1490581 (98j:20011)]. MR MR1675976 (2000c:20028)

[GLS02] , The classification of the finite simple groups. Number 5. Part III. Chapters1–6, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society,Providence, RI, 2002, The generic case, stages 1–3a. MR MR1923000 (2003h:20028)

[GLS05] , The classification of the finite simple groups. Number 6. Part IV, Mathemat-ical Surveys and Monographs, vol. 40, American Mathematical Society, Providence,RI, 2005, The special odd case. MR MR2104668 (2005m:20039)

[Gor69b] Daniel Gorenstein, On the centralizers of involutions in finite groups, J. Algebra 11(1969), 243–277. MR MR0240188 (39 #1540)

[Gor80a] , Finite groups, second ed., Chelsea Publishing Co., New York, 1980.MR MR569209 (81b:20002)

[Gor80b] , An outline of the classification of finite simple groups, The Santa Cruz Confer-ence on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. PureMath., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 3–28. MR MR604552(82c:20030)

[Gor82] , Finite simple groups, University Series in Mathematics, Plenum Publish-ing Corp., New York, 1982, An introduction to their classification. MR MR698782(84j:20002)

[Gor83] , The classification of finite simple groups. Vol. 1, The University Series inMathematics, Plenum Press, New York, 1983, Groups of noncharacteristic 2 type.MR MR746470 (86i:20024)

[Gra04] R. Gramlich, Phan theory, Habilitationsschrift, TU Darmstadt, 2004.[Hal76] Marshall Hall, Jr., The theory of groups, Chelsea Publishing Co., New York, 1976,

Reprinting of the 1968 edition. MR MR0414669 (54 #2765)[Har81] Koichiro Harada, Groups with nonconnected Sylow 2-subgroups revisited, J. Algebra

70 (1981), no. 2, 339–349. MR MR623812 (82i:20023)[Hig68] G. Higman, Odd characterizations of finite simple groups, U. Michigan lecture notes,

77 pages, 1968.[Hig72] , Some p-local conditions for odd p, Mimeographed lecture notes, Oxford U.,

1972.[Hup67] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wis-

senschaften, Band 134, Springer-Verlag, Berlin, 1967. MR MR0224703 (37 #302)[Isa06] I. Martin Isaacs, Character theory of finite groups, AMS Chelsea Publishing, Provi-

dence, RI, 2006, Corrected reprint of the 1976 original [Academic Press, New York;MR0460423]. MR MR2270898

[Jan72] Zvonimir Janko, Nonsolvable finite groups all of whose 2-local subgroups are solvable.I, J. Algebra 21 (1972), 458–517. MR MR0357584 (50 #10052)

[KM75] Kenneth Klinger and Geoffrey Mason, Centralizers of p-groups in groups of charac-teristic 2, p-type, J. Algebra 37 (1975), no. 2, 362–375. MR MR0390047 (52 #10873)

[LS74] Vicente Landazuri and Gary M. Seitz, On the minimal degrees of projective represen-tations of the finite Chevalley groups, J. Algebra 32 (1974), 418–443. MR MR0360852(50 #13299)

Page 33: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

EXPOSITORY REFERENCES MENTIONED 331

[Lun73] J. Richard Lundgren, On finite simple groups all of whose 2-local subgroups are solv-able, J. Algebra 27 (1973), 491–515. MR MR0332953 (48 #11278)

[Mas] G. Mason, The classification of finite quasithin groups, typescript, U. California SantaCruz, ca. 1981; about 800 pages,.

[McC82] P. McClurg, roughly, on FF -modules for almost-simple groups, Ph.D. thesis, U. Calif.Santa Cruz, about 1982.

[MSS03] Ulrich Meierfrankenfeld, Bernd Stellmacher, and Gernot Stroth, Finite groups of local

characteristic p: an overview, Groups, combinatorics & geometry (Durham, 2001),World Sci. Publ., River Edge, NJ, 2003, pp. 155–192. MR MR1994966 (2004i:20020)

[Pet84] Thomas Peterfalvi, Simplification du chapitre VI de l’article de Feit et Thompson surles groupes d’ordre impair, C. R. Acad. Sci. Paris Ser. I Math. 299 (1984), no. 12,531–534. MR MR770439 (86d:20020)

[Pet86] , Le theoreme de Bender-Suzuki. I, II, Asterisque (1986), no. 142-143, 141–233, 235–295, 296, Revision dans les groupes finis. Groupes du type de Lie de rang 1.MR MR873959 (88h:20018)

[Pet00] , Character theory for the odd order theorem, London Mathematical SocietyLecture Note Series, vol. 272, Cambridge University Press, Cambridge, 2000, Trans-lated from the 1986 French original by Robert Sandling and revised by the author.MR MR1747393 (2001a:20016)

[Pha77a] Kok Wee Phan, On groups generated by three-dimensional special unitary groups. I,J. Austral. Math. Soc. Ser. A 23 (1977), no. 1, 67–77. MR MR0435247 (55 #8207)

[Pha77b] Kok-wee Phan, On groups generated by three-dimensional special unitary groups. II,J. Austral. Math. Soc. Ser. A 23 (1977), no. 2, 129–146. MR MR0447427 (56 #5739)

[Smi75] Fredrick Smith, Finite simple groups all of whose 2-local subgroups are solvable, J.Algebra 34 (1975), 481–520. MR MR0376847 (51 #13022)

[Smi80] Stephen D. Smith, The classification of finite groups with large extraspecial 2-subgroups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz,Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I.,1980, pp. 111–120. MR MR604567 (82c:20034)

[Sol80] Ronald Solomon, Some results on standard blocks, The Santa Cruz Conference on

Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. PureMath., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 43–46. MR MR604555(82i:20028)

[Str96] G. Stroth, The uniqueness case, Groups, difference sets, and the Monster (Columbus,OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 4, de Gruyter, Berlin, 1996,pp. 117–126. MR MR1400413 (97k:20027)

[Tit81] J. Tits, A local approach to buildings, The geometric vein, Springer, New York, 1981,pp. 519–547. MR MR661801 (83k:51014)

[Wal86] John H. Walter, The B-conjecture; characterization of Chevalley groups, Mem. Amer.Math. Soc. 61 (1986), no. 345, iv+196. MR MR840833 (87h:20035)

Page 34: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 35: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

Index

Page locations for definitions, as well as for references which areparticularly fundamental, are indicated in boldface.

∗, central product A ∗B, 251

I(A), p′-subgroups invariant underp-group A, 138, 220

abstract minimal parabolic, 87, 87, 94, 102,235, 294, 295

AG(X), automizer NG(X)/CG(X), 174

algebraic groups (as approach to Lie typegroups), 17, 257

almost

-special groups, 104, 106, 110, 112–114,116, 118, 122, 124

strongly p-embedded, see also embedded

Alperin, J.

-Brauer-Gorenstein, 2-rank 2[ABG70, ABG73b, ABG73a] , 34,35

-Gorenstein, transfer and fusion [AG67,p 243], 178

Alperin-Goldschmidt conjugation family,270, 270, 271, 288

Alperin-Goldschmidt Fusion Theorem, 98,270, 288

alternating simple groups, 254

Alternating Theorem, 49, 53

Alward, L.

standard Ω−8 (2) [Alw79] , 59

amalgam, 86, 96, 104, 105, 116, 118, 226,263, 296

Goldschmidt —, 97, 113, 115, 119, 122,219

method, 96, 97, 104, 106, 110, 111,113–118, 120, 121, 170, 223

leading to “small” modules, 97

parameter b for —, 97

Am-block, 293

Andrilli, S.

uniqueness of O′N [And80] , 260

Aschbacher, M., 42, 45, 54, 68, 115, 187,220, 279, 280, 307, 309

characterization of G2(3) [Asc02b] , 119

characterization of HS [Asc03b] , 119

characterization of M12 [Asc03a] , 112,118

characterization of U3(3) [Asc02a] , 118

classical involution theorem

[Asc77a, Asc77b] , 40, 46, 170, 247,259

minor correction [Asc80a], 46

condition for strongly embedded [Asc73], 180

e(G) = 3 classification

part I [Asc81b], 75, 128, 145, 180,216, 247

part II [Asc83a], 75, 133, 180, 216,219, 247

finite group theory (book) [Asc00] , 267,268, 276, 290, 292

GF (2)-representations [Asc82] , 93, 96,146, 170, 231, 242, 247, 291, 292, 301,302

-Gorenstein-Lyons, uniqueness theorems[AGL81], 79, 133, 141, 145, 149, 214,215, 215

large extraspecial (unitary) [Asc77], 77,185, 188, 189, 199, 207

large symplectic not extraspecial[Asc76a], 77, 185, 205

Lie type and odd characteristic [Asc80b], 247, 259

Local C(G, T ) theorem [Asc81a], 207,293

L2(2n) standard blocks [Asc81d], 298

odd transpositions [Asc72] , 175, 180,188, 207, 208, 265

pushing-up results [Asc81d] , 233, 247,299

pushing-up theorem [Asc78a] , 207, 298

-Segev, uniqueness of J4 [AS91] , 108,260

-Seitz, involutions in characteristic 2[AS76a] , 54, 133, 146, 170, 179, 180,187, 189, 199, 201, 258

minor correction , 54

333

Page 36: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

334 INDEX

-Seitz, standard known type[AS76b, AS81], 52, 54, 133, 146, 260

-Smith, preliminaries for quasithin[AS04a], 87, 294, 299

-Smith, quasithin classification [AS04b],xii, 65, 85, 198, 299

sporadic groups book [Asc94] , 105, 112,113, 116, 118, 190, 192, 259, 260

standard alternating [Asc08], 49, 54

standard component theorem [Asc75a],43, 54, 123, 188, 190, 299

standard F3 components [Asc82a] , 52

standard Tits 2F4(2)′ [Asc82b] , 56

thin groups [Asc78b], 65, 85, 86, 204,299

3-transpositions book [Asc97] , 133, 247,259, 260, 264

tight embedding [Asc76b] , 188, 205,297, 299

2-components [Asc75b] , 188

2-generated core [Asc74] , 40

Uniqueness Case

part I [Asc83b], 74, 76, 80, 94, 133,214, 214, 223, 299

part II [Asc83c], 74, 80, 94, 133, 214,214, 299

weak closure [Asc81e] , 94, 207, 227,299, 302, 307, 308

Aschbacher-Goldschmidt functor, 155, 170

Aschbacher-Seitz Reduction Theorem, 54

Aschbacher symplectic not extraspecialtheorem, 185, 188, 203, 208

Aschbacher unitary extraspecial theorem,189, 190–193, 202, 206

a2 (Suzuki type for involution), 189, 189,193–196, 199, 202, 209–211

B(−), product of non-quasisimple2-components, 41

balance, 12, 12, 13, 14, 21, 44, 124, 129,130, 136, 154, 155, 157, 169, 170,272–278, 278, 279, 280, 287

and Θ-signalizers, 275

and uniqueness subgroups, 278

k- —, 278, 279, 280

1- —, 155, 278

2- —, 154, 155, 278

weak —, 170, 280

with respect to A, 278

k + 12-balanced functor, 280

L- —, 21, 23, 154, 161

Lp′ - —, see also L-balance

local (1)- —, 129, 154, 278

in K-groups, 279

strong —, 154, 154, 155, 156, 164, 218

local 32- —, 129, 155

obstructions to —, 12, 14, 44, 136, 170,278

with respect to A, 278

Baumann, B.

pushing-up L2(2n) [Bau79] , 147, 170,294

Baumann’s Lemma, 219, 294, 294

B-Conjecture, 19, 42, 43, 48, 53

B-Theorem, 42, 53, 60

Bp-Property (odd analogue), 22, 162,

165

Beisiegel, B.

semi-extraspecial p-groups [Bei77] , 209,210

Bender, H., 7, 253

dihedral revision [Ben81] , 34

-Glauberman, dihedral revision [BG81] ,34

-Glauberman, odd order local revision[BG94] , 29

normal p′-group in p-solvable [Ben67] ,268

proof of odd order uniqueness theorem[Ben70] , 29

Signalizer Functor Theorem [Ben75],275

strongly embedded subgroups [Ben71] ,31

Bender groups, BN-rank 1 in characteristictwo, 6

Bender-Suzuki Theorem, see also StronglyEmbedded Theorem

Bender-Thompson Signalizer Lemma, 133,145, 160, 170, 220, 269, 303

Bennett, C.

-Shpectorov, revision of Phan [BS04] ,47, 263

block

Am- —, 293

Aschbacher- — in C(G, T ) Theorem, 293

χ- —, 293

χ0- —, 93

L2(2n)- —, 293

Bloom, D.

subgroups of PSL3(q) [Blo67] , 133,146, 258

Bmax(G; p), elementary groups exhibitingm2,p(G), 70

BN

-pair, 258

weak — of rank 2, 96

-rank, 257

bootstrapping

between p-uniqueness and 2-uniqueness,213, 215

Borel, A.

-Tits, Borel-Tits Theorem [BT71] , 18,164, 180

Borel subgroup in Lie type group, 257

Bourbaki, N.

Page 37: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 335

root systems [Bou68] , 169

Brauer, R., 5, 35

Alperin- — -Gorenstein, 2-rank 2[ABG70, ABG73b, ABG73a] , 35

-Fowler, finite possibilities given a fixedinvolution centralizer [BF55] , 5

involution centralizer approach [Bra57] ,

5

-Suzuki, quaternion Sylows [BS59] , 34

-Suzuki-Wall, characterization of L2(q)[BSW58] , 34, 264

Brauer-Suzuki Theorem, 6, 34, 34, 35

building, 4, 17, 258

Burgoyne, N.

-Griess-Lyons, Chevalley groups[BGL77] , 169, 170, 180, 190

Thompson reduction [Bur77] , 48

3-centralizers in Chev(2) [Bur83], 171

-Williamson, on Borel-Tits theorem[BW76] , 169

-Williamson, semisimple Chevalleyclasses [BW77] , 169, 180, 258

Burnside, W., 5, 34

finite groups book [Bur55] , 146

Burnside Fusion Theorem, 269

Burnside Transfer Theorem, 271, 311

Campbell, N., 294

pushing-up result in thesis [Cam79],170, 219, 222, 239, 294

Cartan subgroup in Lie type group, 257

Carter, R.

simple Lie type book [Car89] , 169, 180,201, 255, 256

C-component, 89

central product, 251

centric

p- —, 270

CFSG, xi, 3, 81, 223

original proof (completed 2004), xi

second effort ofGorenstein-Lyons-Solomon, xi

C(G,T ), 293

C(G,T )-Theorem

Global —, see also GlobalC(G,T )-Theorem

Local —, see also LocalC(G,T )-Theorem

C∗(G,T ), 132

characteristic

p (group of —), 9

local —, 9

p type, 9

subgroup, 73

2 type, 9, 63

classification of simple groups of —,64, 80

Cheng, Kai Nah, 52

-Held, standard L3(4) [CH81, CH85] ,52

Chermak, A., 220

Chev(p), Lie type groups in characteristicp, 254

Chevalley

construction of Lie type groups, 17, 257

group, see also Lie type group

χ-block, see also block

χ0-block, see also block

classical

involution, 46

matrix groups (Lie type), 255

Classical Involution Theorem, 40, 46, 48,50, 51, 53, 55, 187, 203, 280

Classification of the Finite Simple Groups,see also CFSG

Clifford’s theorem, 254, 308

Collins, M.

Sylow of type L3(q) [Col73] , 182

commuting graph, 32

disconnected —

and signalizer functors, 37, 280

and strong embedding, 32, 281

complement

Frobenius —, 251

complete

signalizer functor, 13, 275

completion

of a signalizer functor, 153, 275

of an amalgam, 96

component, 253

locally k-unbalanced —, 279

locally unbalanced —, 278

maximal —, 42

p- —, see also p-component

standard —, 43

odd —, 70

3- —, see also 3-component

2′- —, see also 2′-component

type, 10

connectedness, see also commuting graph

constrained

p—, 268

control

of fusion, 269

of transfer, 271

Conway, J.

construction of Co1 [Con69] , 260

lectures on sporadic groups [Con71] ,146, 169, 259

-Wales, construction of Ru [CW73] , 260

Cooperstein, B., 92

-Mason, unpublished FF-module analysis[CM80] , 146, 201, 209, 210, 291

coprime action, 11, 267

core

k-generated p- — (Γk,P (G)), 31

Page 38: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

336 INDEX

O2′ of involution centralizer, 44

cover

double —, 260

triple —, 260

critical subgroup, 267

c2 (Suzuki type for involution), 187, 187

Curtis, C.

-Kantor-Seitz, 2-transitive Chevalleygroups [CKS76] , 180

lectures on Chevalley groups [Cur71],262

Lie type presentations [Cur65] , 263

Curtis-Tits Theorem, 28, 47, 132, 133, 145,176, 181, 182, 263

Dade, E., 29

Davis, S.

-Solomon, some standard sporadics[DS81] , 58, 59

Delgado, A.

-Goldschmidt-Stellmacher, theory ofamalgams [DGS85] , 96, 105

ΔG(D), 278

Dempwolff, U.

characterization of Ln(2) [Dem73b] ,182, 192

characterization of Ru [Dem74] , 260

second cohomology of Ln(2) [Dem73a] ,192

-Wong, characterization of Ln(2)[DW77a] , 192

-Wong, large extraspecial reducible I[DW77b], 77, 191

-Wong, large extraspecial reducible II[DW78], 191, 191

Dempwolff-Wong Theorem, 191, 194, 195,202, 209, 211

diagonal automorphism of Lie type group,258

Dichotomy Theorem, 11, 25, 27, 32, 63, 67,81, 223, 287, 304

Dickson, L. E.

linear groups [Dic58] , 258

Dickson’s Theorem, 133, 170, 258

Dieudonne, J.

geometry of classical groups [Die55] ,

169

dihedral group, 252

Dihedral Sylow Theorem, 34

direct product, 251

disconnectedness, see also commutinggraph, disconnected

double cover, 260

doubly transitive, 30

Dynkin diagram for Lie type group, 257

E(−), product of components, 253

e(−), maximum odd p-rank in 2-locals, 20

e(G) = 3 Theorem, 67, 69, 70, 76, 80, 85,127, 213, 223, 298

Egawa, Y.

standard M24 [Ega81] , 58

standard Ω+8 (2) [Ega80] , 59

-Yoshida, standard 2Ω+8 (2) [EY82] , 59

embedded

strongly —, 31

strongly p- —

almost —, 78, 79, 79, 150, 213–215,217–219, 221, 223, 310

tightly —, 43

Epn , elementary p-subgroup of rank n, 50

equivariant

function, 36

signalizer functor, 13, 272

even

case (characteristic 2 type) for CFSG, 9

characteristic, 66, 85

type, 66, 85, 123, 168

Even Standard Component Theorem, 56,56, 57

Even Type (Quasithin) Theorem in[AS04b] for use in GLS, 66, 123

exceptional groups of Lie type, 255

existence problem for simple groups, 6

extraspecial p-group, 252

large —, 113, 164, 181, 185, 185, 186,188–193, 198–202

classification, see also GF (2) TypeTheorem

extremal conjugate, 269

F (−), Fitting subgroup, 253

F ∗(−), generalized Fitting subgroup, 253

failure of factorization, 291

determining groups and modules, 91, 92,146, 246, 291, 292

methods, 91, 92, 146, 218, 219, 229, 262,290, 290, 294

module (FF-module), 91, 92, 95, 102,103, 107–111, 115, 116, 201, 239, 261,291, 291, 292, 294

ratios q and q, 91

solvable groups exhibiting —, 221, 292

Feit, W., 5

-Thompson, odd order theorem [FT63] ,5, 28

-Thompson, self-centralizing order 3[FT62] , 182

Fendel, D.

characterization of Co3 [Fen73] , 260

FF-modules, see also failure of factorization

field automorphism of Lie type group, 258

Finkelstein, L.

centralizer with cyclic Sylows [Fin77c],55, 58

Page 39: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 337

-Frohardt, odd standard Ln(2) [FF81a] ,182

-Frohardt, standard 3-components[FF84, FF79, FF81b], 77, 180, 181

maximals of Co3 and McL [Fin73] , 260

-Rudvalis, maximals of J2 [FR73] , 146,260

-Rudvalis, maximals of J3 [FR74] , 146,260

-Solomon, odd standard Sp2n(2)[FS79b] , 182

-Solomon, standard M12, Co3 [FS79a],58

standard J1–J4, Ree

[Fin75, Fin76b, Fin77b] , 58

standard M22,M23 [Fin77a, Fin76a] ,58

Finkelstein-Frohardt Theorem, 70, 144, 181

Fischer, B., 187

3-transpositions [Fis71] , 133, 247, 260,264

Fischer’s Theorem, 47, 132, 133, 146, 187,190, 194, 203, 247, 264, 265

Fitting subgroup F (−), 253

generalized — F ∗(−), 253

Fletcher, L.

-Stellmacher-Stewart [FSS77] , 182

F1-modules, 292

Fong, P., 39

-Seitz, split BN-pairs of rank 2 [FS73] ,97

-Wong, characterization of rank 2 groups[FW69] , 170

Foote, R., 297

Aschbacher blocks [Foo82] , 207

expository paper on blocks [Foo80] ,292, 296

standard L2(q) [Foo78] , 50

form

standard —, see also standard form

odd —, see also standard form

4-group (elementary of rank 2), 15

Fowler, K.

Brauer- —, finite possibilities given afixed involution centralizer [BF55] , 5

Frame, J. S.

properties U4(2), Sp6(2) [Fra51] , 190

Frattini argument, 252

Fritz, F.

small components [Fri77a, Fri77b], 51,52

Frobenius

complement, 251

group, 251

kernel, 251

Frobenius, G., 5, 30, 34

Frohardt, D.

Finkelstein- —, odd standard Ln(2)[FF81a] , 182

Finkelstein- —, standard 3-components[FF84, FF79, FF81b], 77, 180, 181

trilinear form for J3 [Fro83] , 118

FSU, see also Fundamental Setup

functor

signalizer —, 12, 273

equivariant —, 13, 272

Fundamental Setup (FSU) for QuasithinTheorem, 101

Fundamental Weak Closure Inequality(FWCI) for Quasithin Theorem, seealso weak closure

fusion, 5

control of —, 269, 271

theorems, 269

FWCI, see also weak closure

Γk,P (G), k-generated p-core, 31

Γ02,P (G), weak 2-generated 2-core, 37

Gaschutz, W., 190

generalized

Fitting subgroup F ∗(−), 253

self-centralizing property of —, 7, 254

quaternion group, 252

generation properties for simple groups,132, 146, 150, 154, 156, 169, 170, 179,217, 218, 247, 258

generic, in sense of large-engough, 20

geometry from subgroups of simple group, 7

G-equivariant

function, 36

G-equivariant

signalizer functor, 13, 272

getting started functor, 128, 130, 135, 154,155

GF (2) type, 73

GF (2) Type Theorem, 73, 78, 80, 106, 124,143, 147, 150, 168, 181–183, 184, 206,223

GF (2n) type, 204

GF (2n) Type Theorem, 137, 147, 205, 223,226, 229, 247

Gilman, R.

constrained components [Gil76], 296

-Gorenstein, class 2 Sylow 2-subgroups[GG75], 298

— -Griess, standard type classification[GG83], 77, 130, 173

on standard component theorem [Gil76], 43

-Solomon, unbalancing reduction[GS79a] , 50

Gilman-Griess Presentation Theorem, 174,176, 177

Gilman-Griess Theorem (Standard Type),173

Page 40: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

338 INDEX

Glauberman, G., 13, 294

Bender- —, dihedral revision [BG81] ,34

Bender- —, odd order local revision[BG94] , 29

global and local [Gla71] , 180

lectures on factorizations [Gla77], 140,147, 170

rank 3 Solvable Signalizer FunctorTheorem [Gla76], 275

revisions to Brauer-Suzuki [Gla74] , 34

—’s Argument, 295

solvable failure of factorization[Gla73] ,170, 292

solvable signalizer functor theorem[Gla76] , 170

Sylow normalizers controlling transfer[Gla70], 171

-Thompson, normal p-complementtheorem [Gla68] , 180

Z∗-theorem[Gla66], 269

ZJ-Theorem [Gla68] , 29

Glauberman’s Argument, 295

Glauberman-Niles Theorem, 170, 219, 221,294

Glauberman Triple Factorization, 140

Glauberman Z∗-Theorem, see alsoZ∗-Theorem

Global C(G, T )-Theorem, 98, 99, 132, 133,145, 147, 158, 207, 224, 226, 236, 237,239, 245, 247, 292, 296

GLS

Gorenstein-Lyons-Solomon project, xi,66, 223

no. 1: overview, outline [GLS94], xi, 98,99, 253

no. 2: general group theory [GLS96], 12,

13, 110, 124, 190, 251, 267–272, 280,286, 288, 290–292, 295, 300, 309, 311

no. 3: properties of simple groups[GLS98], 89, 190, 201, 254, 256, 259,262

no. 4: uniqueness theorems [GLS99], 98,115, 123

no. 5: the generic case, balance[GLS02], 155

no. 6: the special odd case [GLS05], 35,39, 51

Goldschmidt, D., 12, 13, 45, 47, 279

Delgado- — -Stellmacher, theory of

amalgams [DGS85] , 96, 105

-O’Nan pairs, [GLS96, 14.2] , 110, 124

rank 3 Signalizer Functor Theorem[Gol72a], 275

rank 4 Solvable Signalizer FunctorTheorem [Gol72b], 170, 274, 275

strongly closed (2-fusion theorem)[Gol74] , 45, 98, 175, 180, 198, 207

strongly closed (product fusion) [Gol75], 170, 188, 198

trivalent graphs [Gol80], 97, 170, 219

weakly embedded 2-locals [Gol72] , 170

Goldschmidt amalgam, see also amalgam,Goldschmidt

Goldschmidt Fusion Theorem, see alsoGoldschmidt, strongly closed (2-fusiontheorem)

Gomi, K.

2-locals with class 2 Sylows [Gom75],298

standard Sp4(2n), U4(2)[Gom78a, Gom78b] , 56

standard Sp6(2) [Gom80] , 59

Gorenstein, D., xi, 7, 12, 13, 15, 42, 44, 64,67, 68, 253, 272

Alperin- —, transfer and fusion [AG67,p 243], 178

Alperin-Brauer- —, 2-rank 2[ABG70, ABG73b, ABG73a] , 35

Aschbacher- — -Lyons, uniquenesstheorems [AGL81], 79, 133, 141, 145,149, 214, 215, 215

finite groups textbeook [Gor80a] , 252,267, 271

Gilman- —, class 2 Sylow 2-subgroups[GG75], 298

-Harada, characterization of J2, J3[GH69] , 39

-Harada, low 2-rank and Lie families[GH71a] , 180

-Harada, sectional 2-rank 4 [GH74] , 38,298

-Harada, Sylow of type 2An [GH71b] ,45, 180

introduction to CFSG [Gor82] , xi, 25,254, 267, 271, 290, 292, 299

-Lyons, functors and nonconnectedness[GL82], 285

-Lyons, on Local C(G, T )-Theorem[GL93] , 295

-Lyons, nonsolvable signalizer functors[GL77] , 169

-Lyons, trichotomy for e(G) ≥ 4 [GL83],133, 145, 150, 180, 214, 216, 247, 256

-Lyons-Solomon, second effort CFSG, seealso GLS

outline of GW type classification[Gor83] , xi, 25, 63, 287

signalizer functors [Gor69b] , 272, 275

-Walter, balance [GW75], 21, 169

-Walter, dihedral Sylows [GW65a] , 34

-Walter, layer [GW71] , 169

Gorenstein-Walter Alternative, 27, 128,134, 135, 153, 161

Gorenstein-Walter type, see also GW type

Gramlich, R.

Page 41: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 339

Phan theory [Gra04] , 264

graph

commuting —, 32

graph automorphism of Lie type group, 258

grid (of major subdivisions in the CFSG),21

Griess, R.

Burgoyne- — -Lyons, Chevalley groups[BGL77] , 169, 170, 180, 190

friendly giant (construction of M)[Gri82] , 260

-Lyons, automorphisms of Tits group[GL75] , 169

-Mason-Seitz, standard Bender[GMS78] , 54

-Meierfrankenfeld-Segev, uniqueness of

M [GMS89] , 260

multipliers for known groups I [Gri72] ,198, 261

multipliers for known groups II [Gri80] ,169, 261

multipliers for known groups III [Gri85], 261

multipliers for Lie type [Gri73] , 146,169, 180

multipliers for sporadic groups [Gri74] ,169

properties of M [Gri76] , 201

-Solomon, unbalancing L3(4),He[GS79b] 52, 58

standard 4M22 [Gri] , 58

Griess-Mason-Seitz Theorem, 54, 56

Guralnick, R.

-Malle, FF–modules for simple groups[GM02, GM04] , 92, 146, 201, 209,210, 291, 292

GW type, 10

classification of simple groups of —, 25,63, 64

half-splitting prime, 151

Hall, J.

blocks with alternating sections [Hal82], 147

Hall, M.

-Wales, existence and uniqueness of J2[HW68] , 260

Hall, P., 252, 271

-Higman, p-length of p-soluble group[HH56] , 170

Sylow π-subgroups for solvable groups,253

-Wielandt Transfer Theorem, 175, 180

Hall π-subgroup of solvable group, 253

Harada, K.

blocks of orthogonal type[Har80b] , 147

Gorenstein- —, characterization of J2, J3[GH69] , 39

Gorenstein- —, low 2-rank and Liefamilies [GH71a] , 180

Gorenstein- —, sectional 2-rank 4[GH74] , 38, 298

Gorenstein- —, Sylow of type 2An

[GH71b] , 45, 180

nonconnected Sylow revision [Har81] ,40, 284

on Yoshida transfer [Har78] , 175

properties of HN [Har76], 203, 260

self-centralizing E8 [Har75], 50, 51, 180

short chains of subgroups [Har68] , 209

-Solomon, standard Mathieu [HS08] , 58

standard 2M22 [Har] , 58

Harris, M.

odd Lie type [Har81b], 51

-Solomon, 2-component dihedral type I[HS77] , 51

2-component dihedral type II [Har77] ,51

standard L3(3), U3(3)[Har80a, Har81a] , 52

Held, D.

Cheng- —, standard L3(4)[CH81, CH85] , 52

simple groups related to M24 [Hel69] ,146, 192, 260

Higman, D. G.

-Sims, construction of HS [HS68] , 260

Higman, G.

condition for splitting of SL2(2n) action,205

fixed-point-free action [Hig57] , 146

Hall- —, p-length of p-soluble group[HH56] , 170

-McKay, existence and uniqueness of J3[HM69] , 260

unpublished “Some p-local Conditions”

[Hig72] , 182

unpublished “Odd Characterizations”[Hig68] , 182, 205

Holt, D.

2-central involution fixing unique point[Hol78], 299

Holt’s Theorem, 145, 174, 177, 182, 200,201, 210, 299

independent proof of F. Smith [Smi79a], 299

H∗(T,M) in proof of Quasithin Theorem,87

involution, 5

centralizer approach to simple groups, 5

classical —, 46

isolated vertex in commuting graph, 36, 286

J(−), Thompson subgroup, 291

James, G.

Page 42: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

340 INDEX

modules for Mathieu groups [Jam73] ,247, 262

Janko, Z., 39, 77, 185all 2-locals solvable [Jan72] , 185discovery, properties of J1 [Jan66] , 124,

260discovery, properties of J2, J3 [Jan69] ,

39, 260discovery, properties of J4 [Jan76] , 146,

203, 247, 260-Wong, characterization of HS [JW69] ,

187, 188, 260Jones, W.

-Parshall, 1-cohomology for Lie type[JP76] , 133, 146, 262

Jordan, C., 30

Kantor, W.Curtis- — -Seitz, 2-transitive Chevalley

groups [CKS76] , 180kernel

Frobenius —, 251k-generated p-core Γk,P (G), 31K-group hypothesis, 21, 48, 63, 74, 77,

181–183

Klein 4-group (elementary of rank 2), 15Klinger, K.

-Mason, characteristic 2, p type [KM75],159, 160, 168, 268, 302

Klinger-Mason argument, 68, 143, 160, 168,302

Klinger-Mason Dichotomy, 27, 68, 168, 302Weak —, 303, 304, 305

Konvisser, M.3-groups, theorem on 3-groups, 170

Korchagina, I., 304K-proper, see also K-group hypothesisKu, C.

characterization of M22 [Ku97] , 106

L2(2n)-block, 293Λi(G), 4, 32

commuting graph on rank-i p-subgroups,32

Λi(G)◦, 4Λ1(G), 32Λ2(G), 36Landazuri, V.

-Seitz, minimal dimensions for modules[LS74] , 262

Lang’s Theorem, 180large

extraspecial subgroup, see alsoextraspecial

symplectic-type subgroup, 73, 185, 202classification, see also GF (2) Type

Theoremwidth-2 classification, 188, 189, 192,

193, 199

TI-subgroup, 204

classification, see also GF (2n) TypeTheorem

layer

p- —, 170, 253

2- —, 253

L-balance, see also balance, 278

L-Balance Theorem, 21

Leon, J.

-Sims, existence and uniqueness of B[LS77] , 260

levels 0, 1, . . . of dependency for resultsquoted, xii

Levi

complement in decomposition ofparabolic, 257

decomposition of parabolic subgroup, 257

Lie

rank, see also BN-rank

type groups, 16, 257

local

characteristic p, 9

group theory, 3

subgroup, 3, 251

Local C(G, T )-Theorem, 26, 93, 99, 113,158, 170, 206, 218, 219, 221, 222, 293,293, 295, 297, 301

locally unbalanced p-component, 278

locally k-unbalanced p-component, 279

Lp′ (G), p-layer, 253

L2(2n) standard block theorem, 298

L2′ (G), 2-layer, 253

Lundgren, J. Richard

all 2 locals solvable [Lun73] , 185

-Wong, large extraspecial solvable[LW76] , 202, 203

Lyons, R., 68

Aschbacher-Gorenstein- — , uniquenesstheorems [AGL81], 79, 133, 141, 145,149, 214, 215, 215

Burgoyne-Griess- —, Chevalley groups[BGL77] , 169, 170, 180, 190

discovery, properties of Ly [Lyo72] , 180,260

Gorenstein- —, functors andnonconnectedness [GL82], 285

Gorenstein- —, on LocalC(G, T )-Theorem [GL93] , 295

Gorenstein- —, nonsolvable signalizerfunctors [GL77] , 169

Gorenstein- —, trichotomy for e(G) ≥ 4[GL83], 133, 145, 150, 180, 214, 216,247, 256

Gorenstein- — -Solomon, second effortCFSG, see also GLS

Griess- —, automorphisms of Tits group[GL75] , 169

Sylow of U3(4) [Lyo72] , 35

Page 43: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 341

m(−), rank (of abelian group), 252

mp(−), p-rank, 252

m2,p(−), 2-local p-rank, 20

MacWilliams (Patterson), A.

no normal abelian of rank ≥ 3 [Mac70] ,38

Magliveras, S.

subgroups of HS [Mag71] , 146, 260

Main Theorem

CFSG, classifying all finite simplegroups, 3, 81, 223

for GW Type Groups, 25, 81, 223

for Characteristic 2 Type Groups, 64,81, 223

Malle, G.

Guralnick- —, FF–modules for simplegroups [GM02, GM04] , 92, 146,201, 209, 210, 291, 292

Manferdelli, J.

standard Co2 [Man79] , 58

Martineau, R. P.

representations of Sz(2n) [Mar72] , 205

Maschke’s Theorem, 303

Mason, D., 39

Griess- — -Seitz, standard Bender[GMS78] , 54

Mason, G., 92

Cooperstein- —, unpublished FF-module

analysis [CM80] , 146, 201, 209, 210,291

Klinger- —, characteristic 2, p type[KM75], 159, 160, 168, 268, 302

quasithin groups, incomplete manuscript[Mas] , xii, 65, 85

maximal

component, 42

2-component, 49

unbalancing triple, 50

McBride, P., 13

K∗-conditions, 276Nonsolvable Signalizer Functor Theorem

[McB82b, McB82a], 147, 170, 275

McClurg, P., 92

thesis on FF-modules for almost-simplegroups [McC82] , 246, 291

McKay, J.

Higman- —, existence and uniqueness ofJ3 [HM69] , 260

McLaughlin, J.

construction of McL [McL69a] , 260

transvection groups [McL69b], 264

McLaughlin’s Theorem, 132, 146, 156, 170,180, 191, 196, 206, 264, 308

Meierfrankenfeld, U.

A2n+1-blocks, 297

Griess- — -Segev, uniqueness of M[GMS89] , 260

-Stellmacher, pushing-up rank 2 [MS93], 93, 222

-Stellmacher, qrc-lemma, 91-Stellmacher-Stroth, local characteristic p

project [MSS03] , 170minimal parabolic

abstract —, see also abstract minimal

parabolicMitchell, H.

on small-dimensional linear groups[Mit14] , 133

Miyamoto, I.standard U4(2n), U5(2n),2 F4(2n)

[Miy79, Miy80, Miy82] , 56Moufang polygons, 97moving around functor, 129, 130, 140, 142,

154, 156, 157

Nah, see also Cheng, Kai Nahneighbor (of a triple (B, x, L) in S∗(G; p)),

71, 150–152, 159, 162, 165–167, 174,176, 177

N-group (roughly, minimal simple group),20

Niles, R., 294

noncharacteristic 2 type, 25noncomponent type, 33nonconnectedness, see also commuting

graph, disconnectedNonconnectedness Theorem, 39, 40Nonsolvable Signalizer Functor Theorem,

147, 170normal p-complement, 253Norton, S

existence of J4 [Nor80] , 260

O(−), largest normal odd-order subgroupO2′ (−) (core), 252

Op(−), largest normal subgroup of p-powerindex, 252

Oπ(−), largest normal subgroup ofπ-index, 252

Op(−), largest normal p-subgroup, 252Oπ(−), largest normal π-subgroup, 252

Op,q(G), preimage of Oq(G/Op(G)

), 252

O’Nan, M., 35characterizations by centralizers of

3-elements [O’N76a] , 170discovery, properties of O′N [O’N76b] ,

146, 180, 260Goldschmidt- — pairs, [GLS96, 14.2] ,

110, 124unpublished tables on sporadic groups,

169odd

case (GW type) for CFSG, 10standard

component, see also standardcomponent

Page 44: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

342 INDEX

form, see also standard form

transposition, 265

Odd Lie Type Theorem, 52, 53

Odd Order Theorem, 5, 6, 29, 33, 35

Odd Standard Component Theorem, 54,54, 55

opposite

root groups in Lie type group, 257

original proof of CFSG, xi

Page, D.

Oxford Ph.D. thesis 1969 [Pag69] , 182

parabolic

abstract minimal —, see also abstractminimal parabolic

subgroup in Lie type group, 257

parameters

weak closure —, see also weak closureparameters

Parrott, D.

characterization of Ru [Par76] , 146

characterization of Th [Par77] , 202

characterizations of Fischer groups[Par81] , 203

Parshall, B.

Jones- —, 1-cohomology for Lie type[JP76] , 133, 146, 262

Patterson, A. MacWilliams —, see alsoMacWilliams (Patterson), A.

Patterson, N.

characterization of Co1 [Pat72] , 190,192, 198, 200, 260, 264

-Wong, characterization of Suz [PW76], 190, 192, 194, 200

p-centric, 270

p-complement

normal —, 253

p-component, 253

locally unbalanced —, 278

locally k-unbalanced —, 279

type, 67

p-Component Theorem, 68

p-constrained, 268

Peterfalvi, T.

odd order Chapter VI revision [Pet84] ,29

odd order character revision [Pet00] , 29

revision of Suzuki 2-transitive [Pet86] ,30, 281, 282

Phan, K. W.

unitary presentations[Pha77a, Pha77b] , 47, 263

Phan’s Theorem, 132, 133, 145, 181, 263

p-layer, 253

p-local subgroup, 3, 251

p-nilpotent, 34, 253

Pollatsek, H.

1-cohomology of linear groups [Pol71] ,180

p-radical, 270p-rank, 252

sectional —, 252Pretrichotomy Theorem, 149, 213Preuniqueness Case, 74, 127, 213

for GW type, 37Preuniqueness-implies-Uniqueness

Theorem, 74, 78, 127, 133, 149, 152,214, 223

for GW type, 37Prince, A.

5-element on 2-group [Pri77] , 182Principle I (Recognition via local

subgroups), 4, 4Principle II (Restricted structure of local

subgroups), 4, 7product

central —, 251direct —, 251semdirect —, 251wreath —, 251

Proper 2-Generated Core Theorem, 33, 39,40, 287

pumpup, 151, 170p-Uniqueness Theorem, 214pushing-up, 93, 96, 99, 102, 103, 105, 109,

110, 112, 113, 115, 121, 132, 135, 138,142, 147, 158, 170, 206, 215, 218–222,

228, 233, 239, 246, 247, 292, 292and strong p-embedding, 218rank-2 groups (Meierfrankenfeld and

Stellmacher), 93, 108, 110

q(G,V ), parameter for quadratic action, 91q(G,V ), parameter for cubic action, 91

qrc-Lemma (Meierfrankenfeld andStellmacher), 92, 102, 121

QTKE-group, 66classification, see also Quasithin

Theoremquasi-dihedral, see also semi-dihedralquasisimple, 253quasithin groups, 20

incomplete manuscript [Mas] of G.Mason, xii

list of simple —, 88

treatment by Aschbacher-Smith, xii, 85Quasithin Theorem, 66, 68, 69, 80, 85, 223quaternion group, 252

generalized —, 252

radicalp- —, 270

rankBN- —, 257p- —, 252k functor, 272

Page 45: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 343

Lie —, 257

sectional p- —, 252

-3 groups (e(G) = 3), 75

recognition theorems, 262

reductive Lie type group, 257

Reifart, A., 201, 202

characterization of Th [Rei76] , 260

large extraspecial—2E6(2), E6(2)[Rei78b, Rei78c] , 200

large extraspecial—3D4(2) [Rei78a] ,202

Robinson, D.

vanishing of homology [Rob76] , 180

root

involution, 265

groups generated by —s [Tim75a] ,265

subgroup in Lie type group, 257

Rudvalis, A.

Finkelstein- —, maximals of J2 [FR73] ,146, 260

Finkelstein- —, maximals of J3 [FR74] ,146, 260

Schur, I.

condition for unique covering [Sch04] ,180

Schur multiplier, 260

determined for simple groups, 261

Schur’s Lemma, 303

second effort, approach to CFSG by GLS,xi

Sectional 2-Rank 4 Theorem, 38, 39, 40,48, 50, 58, 175, 188, 203

sectional p-rank, 252

Segev, Y.

Aschbacher- —, uniqueness of J4 [AS91], 108, 260

Griess-Meierfrankenfeld- —, uniquenessof M [GMS89] , 260

Seitz, G.

Aschbacher- —, involutions incharacteristic 2 [AS76a] , 54, 133, 146,170, 179, 180, 187, 189, 199, 201, 258

minor correction , 54

Aschbacher- —, standard known type[AS76b, AS81], 52, 54, 133, 146, 260

balance in Lie type [Sei82], 170

Curtis-Kantor- —, 2-transitive Chevalleygroups [CKS76] , 180

Fong- —, split BN-pairs of rank 2[FS73] , 97

generation in Lie type [Sei82], 132, 146,169, 170, 179, 180, 217, 247, 258, 259

Griess-Mason- —, standard Bender[GMS78] , 54

Landazuri- —, minimal dimensions formodules [LS74] , 262

reduction for standard Chevalley[Sei79a, Sei79b] 52, 56

some small standard components [Sei81], 52, 59

standard linear [Sei77] , 56

Seitz Generation Theorem, 132, 146, 180,259

semi-dihedral, 252

semidirect product, 251

semisimple

element in Lie type group, 257

S∗(G; p), triples (B, x, L) with maximalcomponent L, 70

shadow, 99

Shpectorov, S.

Bennett- —, revision of Phan [BS04] ,47, 263

Shult, E.

fusion theorem, 98, 198

Sibley, D., 29

signalizer, 12, 169, 272

functor, 12, 274

A- —, 273

Aschbacher-Goldschmidt —, 155, 170

balanced —, 12

complete —, 13

completion of —, 275

equivariant —, 13

for Dichotomy Theorem, Op′(CG(−)

),

14

getting started —, 128, 130, 135, 154,155

k + 12-balanced, 280

method, 12, 27, 36, 36, 41, 44, 45, 47,49, 52, 74, 128, 129, 134, 135, 137,147, 153–155, 159, 161, 169, 272

moving around —, 129, 130, 140, 142,154, 156, 157

of rank k, 273

—s and balance, 278

vs. A-signalizer functor, 273

Signalizer Functor Theorem, 13, 14, 20, 32,129, 137, 138, 147, 155, 170, 274–276,276, 279, 288, 304

simplified standard type, 72

Simplified Trichotomy Theorem, 75

Sims, C.

existence, uniqueness of Ly [Sim73] , 260

Higman- —, construction of HS [HS68], 260

Leon- —, existence and uniqueness of B[LS77] , 260

Smith, F.

all 2-locals solvable [Smi75] , 185

blocks as uniqueness groups [Smi] , 207

characterization of Co2 [Smi74] , 190,198, 247, 260, 264

Page 46: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

344 INDEX

large extraspecial (unitary) [Smi77b],189, 190, 191

large extraspecial restrictions [Smi76a],190–192

large extraspecial with full orthogonal[Smi77c], 192, 194, 195, 202

large symplectic not extraspecial[Smi77a], 188

2-central involution fixing unique point[Smi79a], 299

Smith, P.

construction of Th [Smi76b] , 260

Smith, S.

Aschbacher- —, quasithin classification[AS04b], xii, 65, 85, 299

Aschbacher- —, quasithin preliminaries[AS04a], 87, 294, 299

groups of GF (2n) type [Smi81], 204,210

large extraspecial expository lecture[Smi80], 183

large extraspecial–orthogonal [Smi80b],77, 182, 199, 200, 202, 210

large extraspecial–type E [Smi80a], 77,200, 201, 210

large extraspecial–widths 4, 6 [Smi79b,3.2], 77, 196, 201

Smith orthogonal extraspecial theorem,197, 199, 200, 202, 203

Solomon, R., 45, 47, 287

2An components [Sol75] , 45, 58

alternating components [Sol76b] 49

part II [Sol77] , 49, 58

signalizers [Sol78a] , 49

An blocks [Sol81], 297

certain 2-local blocks [Sol81] , 207

characterization of Co3 [Sol74] , 48

Davis- —, some standard sporadics[DS81] , 58, 59

expository paper on blocks [Sol80] , 292

Finkelstein- —, standard M12, Co3[FS79a], 58

Finkelstein- —, odd standard Sp2n(2)[FS79b] , 182

Gilman- —, unbalancing reduction[GS79a] , 50

Gorenstein-Lyons- —, second effortCFSG, see also GLS

Griess- —, unbalancing L3(4),He[GS79b] 52, 58

Harada- —, standard Mathieu [HS08] ,58

Harris- —, 2-component dihedral type I[HS77] , 51

maximal 2-components [Sol76a] , 49

-Timmesfeld, tightly embedded [ST79] ,207, 297

-Wong, L2(2n) blocks [SW81], 297, 298

solvable failure of factorization, see alsofailure of factorization

special p-group, 206–208, 252

large —, 185, 204, 205, 208

splitting prime, 151

half- —, 151

sporadic simple groups, 16, 255

Springer, T.

-Steinberg, conjugacy classes [SS70] ,169

SQTK-group, 88

list of simple —s, 88

standard

component, 43

odd —, 70

form, 22, 28, 43, 173, 296

odd —, 70, 130, 144, 181

problem (for a given L), 43, 49

reduction of GW type to —, 53

subcomponent, 71

subgroup, see also standard component

type, 152, 173

simplified —, 72

Standard Component Theorem, 28, 42, 43,46, 53, 55, 173

Standard Type Theorem, 77, 80, 130, 166,168, 173, 183, 223

Standard Form Theorem for Blocks, 296

Steinberg, R.

endomorphisms of algebraic groups[Ste68a] , 169

generators, relations, coverings [Ste62] ,180

lectures on Chevalley groups [Ste68b] ,169, 180, 262

representations of algebraic groups[Ste63] , 180

Springer- —, conjugacy classes [SS70] ,169

Steinberg relations for Lie type group, 176,180, 182, 263

Stellmacher, B.

Delgado-Goldschmidt- —, theory of

amalgams [DGS85] , 96, 105

Fletcher- — -Stewart [FSS77] , 182

Meierfrankenfeld- —, pushing-up rank 2[MS93] , 93, 222

Meierfrankenfeld- —, qrc-lemma, 91

Meierfrankenfeld- — -Stroth, localcharacteristic p project [MSS03] , 170

Stewart, W. B.

Fletcher-Stellmacher- — [FSS77] , 182

strongly

closed, 98, 269

embedded, 31, 281

locally 1-balanced, see also balance

p-embedded, 79, 170, 221, 222, 224, 256,281

Page 47: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 345

almost —, see also embedded

Strongly Embedded Theorem, 6, 15, 26,31, 32, 67, 68, 74, 124, 171, 190, 207,285, 287, 289, 294

Stroth, G., 201, 202

characterization of BM [Str76] , 201

extraspecial × elementary [Str78] , 207

groups of GF (2n) type [Str80], 208, 210

Meierfrankenfeld-Stellmacher- —, localcharacteristic p project [MSS03] , 170

standard 2E6(2) [Str81] , 59

Uniqueness Case revision [Str96] , 223

subcomponent

standard —, 71

subgroup functor, 272

— of rank k, 272

— with K-property, 273

balanced —, 273

central —, 273

coprime —, 273

equivariant —, 272

locally constant —, 273

solvable —, 273

subnormal, 253

Suzuki, M., 35

Brauer- —, quaternion Sylows [BS59] ,

34

Brauer- — -Wall, characterization ofL2(q) [BSW58] , 34, 264

characterization of linear groups[Suz69a], 181, 192

discovery, properties of Suz [Suz69b] ,260

2-transitive groups [Suz62] , 30, 31

Suzuki type for involution, 187

Sylow 2-Uniqueness Theorem, 296

Sylp(G), set of Sylow p-subgroups of G, 3,251

symplectic type, 252

large — subgroup, see also large

Syskin, S.

standard Th [Sys81] , 58

Θ+, 274

Θ-signalizer, 274

Thomas, G.

characterization of U5(2n) [Thm70] ,190

Thompson, J., 5, 12, 15, 29, 41, 42, 45, 47,48, 185, 199, 294

Feit- —, odd order theorem [FT63] , 5,

28

Feit- —, self-centralizing order 3 [FT62], 182

Glauberman- —, normal p-complementtheorem [Gla68] , 180

N-groups [Tho68], 20, 65, 73, 86, 156,159, 170, 185, 268, 287, 290, 299

reduction for Unbalanced GroupTheorem, 48

Thompson amalgam strategy, see alsoThompson strategy

Thompson A×B Lemma, 267

Thompson Dihedral Lemma, 133, 145, 160,165, 268

Thompson factorization, 91, 220, 239, 246,291, 295, 300

Thompson order formula, 200

Thompson Replacement Lemma, 291

Thompson strategy, 86, 86, 87, 89, 90, 93,95–98, 100, 102, 103, 117, 120, 122,225, 235, 296, 299

Thompson subgroup J(−), 291

Thompson Transfer Lemma, 99, 117, 118,122, 211, 271, 271, 283

Thompson Transitivity Theorem, 137, 272

3-component, 253

3-transposition, 264

group, 264

theorem (Fischer), 265

{3, 4}+-transposition, 265

TI-subgroup, 251

tightly embedded, 43

Timmesfeld, F., 187

condition for weakly closed TI-set[Tim79a], 207

elementary abelian TI-subgroups[Tim77] , 205

groups of GF (2n) type

case division [Tim78b], 204, 204, 209

note on 2-groups of — [Tim79c], 208

weakly closed case [Tim81], 206

large extraspecial [Tim78a], 77, 192,199, 200, 202, 262

minor correction [Tim79b], 192

root involutions [Tim75a] , 180, 190,191, 202–206, 210, 211, 265, 299

Solomon- —, tightly embedded [ST79] ,207, 297

{3, 4}+-transpositions [Tim73] , 190,194, 196, 200, 201, 204, 265

weakly closed TI-sets [Tim75b] , 190,195, 205, 206, 247, 297–299, 307

Tits, J.

Borel- —, Borel-Tits Theorem [BT71] ,18, 164, 180

buildings (ICM 1962 lecture) [Tit63] ,169

Lie type presentations [Tit62] , 263

-Weiss, Moufang polygons [TW02] , 97,105, 116, 118

Tits building, see also building

Tits system, 258

torus

in Lie type group, 257

nonsplit —, 257

Page 48: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

346 INDEX

split —, 257

transfer

control of, 271

theorems, 271

transposition

methods for identifying groups, 186, 187,189–191, 193, 194, 196, 199–202,204–208, 210, 211, 264

odd —, 265

3- —, 264

{3, 4}+- —, 265

transvection, 264

groups generated by —s, see alsoMcLaughlin’s Theorem

Trichotomy Theorem, 67, 68, 72, 80, 127,133, 150, 173, 183, 184, 213, 223, 304

for GW type, 33

Simplified —, 75

Weak —, 67, 68, 160

triple cover, 260

twisted groups of Lie type, 255

2An, double cover of alternating group, 260

2An Theorem, 45, 48, 49, 53

2-component

type, see also component type

2-connected, 142, 154

2-constrained, 268

2-generated p-core, 31

Aschbacher’s theorem on proper —2-core, 40

weak —, 37

2-layer, 253

2-local subgroup, 251

2-nilpotent, 34, 253

2-Preuniqueness Case, 37

2-Preuniqueness Theorem (Odd Case), 40

2′-component, 253

2-rank, 252

2-rank 2 Theorem, 35, 35, 38, 51, 55, 99,175, 180, 186, 187

2-reduced, 229

2-transitive, 30

2-uniqueness subgroup, 29

2-Uniqueness Theorem, see also StronglyEmbedded Theorem

type

a2 for involution, 189

characteristic p —, 9

characteristic 2 —, 9

component —, 10

c2 for involution, 187

even —, 66

GF (2) —, 73

GF (2n) —, 204

Gorenstein-Walter —, see also GW type

GW —, 10

Lie — groups, see also Lie type groups

noncharacteristic 2 —, 25

noncomponent —, 33

standard —, 152simplified —, 72

Suzuki — for involution, 187symplectic —, 252

twisted Lie — groups, 255

unbalancedlocally —, 278

locally k- —, 279Unbalanced Group Theorem, 42, 44, 52,

55, 56, 60

unbalancing triple, 44unipotent

element in Lie type group, 257radical of parabolic subgroup, 257

uniquenesscase, 79, 213, 223

for GW type, 31odd order — theorem, 29

problem for simple groups, 7subgroup, 26, 29, 31, 86, 90, 100systems, 105

theorems, 31, 94, 96, 103, 122, 138, 215,219, 221–227, 233–236, 238, 239, 241,242, 244–246, 295, 300, 301

2- — subgroup, 29Uniqueness Case Theorem, 68, 74, 78, 80,

86, 127, 133, 214, 299

universalform of Lie type group, 261

Volume 1, Gorenstein’s odd case outline[Gor83] , xi

Waldecker, R., xii

Wales, D.Conway- —, construction of Ru [CW73]

, 260

embedding of J2 in G2(4) [Wal69a] ,247, 262

Hall- —, existence and uniqueness of J2[HW68] , 260

Wall, G. E.Brauer-Suzuki- —, characterization of

L2(q) [BSW58] , 34, 264

Walter, J., 7, 42, 44, 48, 253, 272abelian Sylow 2-subgroups [Wal69b] ,

182

characterization of Chevalley groups[Wal86] , 51

Gorenstein- —, balance [GW75], 21, 169

Gorenstein- —, dihedral Sylows[GW65a] , 34

Gorenstein- —, layer [GW71] , 169

weakBN-pair of rank 2, 96

closure, 96, 300fundamental — inequality FWCI, 95

Page 49: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

INDEX 347

generalized — Wi, 300

methods, 90, 94–96, 106–116, 121, 122,218, 219, 223, 225–228, 230–235,238–243, 246, 292, 299

parameters, 94, 95, 96, 107, 108, 110,124, 225, 227, 231, 232, 241, 242,262, 300, 301

k-balance, 280

S-blocks, 218

2-generated p-core, 37

Weak Trichotomy Theorem, see alsoTrichotomy Theorem

weakly closed, 269

Weir, A.

Sylow subgroups of classical groups[Wei55] , 169

Weiss, R.

Tits- —, Moufang polygons [TW02] ,97, 105, 116, 118

Weyl group in Lie type group, 131, 132,143, 144, 174–177, 182, 257

width

of extraspecial group, 252

Wielandt, H., 7, 271

Hall- — Transfer Theorem, 175, 180

Williamson, C.

Burgoyne- —, on Borel-Tits theorem[BW76] , 169

Burgoyne- —, semisimple Chevalleyclasses [BW77] , 169, 180, 258

Wong, S. K.

Dempwolff- —, characterization of Ln(2)[DW77a] , 192

Dempwolff- —, large extraspecialreducible I [DW77b], 77, 191

Dempwolff- —, large extraspecialreducible II [DW78], 191, 191

Janko- —, characterization of HS[JW69] , 187, 188, 260

Lundgren- —, large extraspecial solvable[LW76] , 202, 203

Patterson- —, characterization of Suz[PW76] , 190, 192, 194, 200

Solomon- —, L2(2n) blocks [SW81],297, 298

Wong, W., 39

Fong- —, characterization of rank 2groups [FW69] , 170

wr, see also wreath product

wreath product A wr B of groups, 251

wreathed 2-group, 252

Yamada, H., 56

standardG2(2n),3 D4(2n), U5(2),2 F4(22n+1)[Yam79a, Yam79b, Yam79c,Yam85] , 56

standard U6(2) [Yam79d] , 59

Yamaki, H.characterization of Sp6(2) [Yam69] , 180

Yoshida, T.character-theoretic transfer [Yos78] ,

146, 182, 271Egawa- —, standard 2Ω+

8 (2) [EY82] , 59

Z∗(G), preimage of Z(G/O2′ (G)

), 15, 253

Z∗-Theorem (Glauberman), 72, 167, 171,180, 185, 190, 198, 253, 269

Zassenhaus, H., 30, 264ZJ-theorem (Glauberman), 29

Page 50: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple
Page 51: The Classifi cation of Finite Simple Groups · 2019. 2. 12. · Mathematical Surveys and Monographs Volume 172 American Mathematical Society The Classifi cation of Finite Simple

SURV/172

www.ams.orgAMS on the Web

For additional informationand updates on this book, visit

www.ams.org/bookpages/surv-172

The book provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the “even case”, where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein’s 1983 book, which outlined the classification of groups of “noncharacteristic 2 type”.

However, this book provides much more. Chapter 0 is a modern overview of the logical structure of the entire classification. Chapter 1 is a concise but complete outline of the “odd case” with updated references, while Chapter 2 sets the stage for the remainder of the book with a similar outline of the “even case”. The remaining six chapters describe in detail the fundamental results whose union completes the proof of the classification theorem. Several important subsidiary results are also discussed. In addition, there is a comprehensive listing of the large number of papers referenced from the literature. Appendices provide a brief but valuable modern introduction to many key ideas and techniques of the proof. Some improved arguments are developed, along with indica-tions of new approaches to the entire classification—such as the second and third generation projects—although there is no attempt to cover them comprehensively.

The work should appeal to a broad range of mathematicians—from those who just want an overview of the main ideas of the classification, to those who want a reader’s guide to help navigate some of the major papers, and to those who may wish to improve the existing proofs.

surv-172-smith3-cov.indd 1 2/4/11 1:15 PM