The Chlorine / Cyanuric Acid Relationship and Implications for

19
Chlorine/CYA and Nitrogen Trichloride 1 The Chlorine / Cyanuric Acid Relationship and Implications for Nitrogen Trichloride by Richard A. Falk Abstract The amount of hypochlorous acid (HOCl) in water with Cyanuric Acid (CYA) at typical pool pH is proportional to the FC/CYA ratio and is orders of magnitude lower than the FC level itself. The primary oxidizing and sanitizing compound is hypochlorous acid while hypochlorite ion and the chlorinated isocyanurate compounds (chlorine attached to CYA) have orders of magnitude lower oxidizing or sanitizing capability. The rate of production and total amount of nitrogen trichloride produced from the oxidation of ammonia by chlorine is related to the hypochlorous acid concentration and not to the FC level directly. Though the precise mechanism of oxidation of urea by chlorine is unknown, proposed mechanisms lead to the same conclusion of nitrogen trichloride quantities being proportional to the hypochlorous acid level, all else equal. Therefore, the use of a small amount of CYA in indoor pools should significantly lower the amount of nitrogen trichloride produced in such pools and result in lower rates of outgassing of chlorine, corrosion of metal directly exposed to water and oxidation of skin, swimsuits and hair. The Hypochlorous Acid / Cyanuric Acid Equilibrium Cyanuric Acid (CYA, aka stabilizer or conditioner) is used in pools to protect chlorine breakdown from sunlight. Though CYA absorbs ultraviolet (UV) radiation directly thus shielding the lower depths of water and protecting chlorine in those depths from breakdown, the primary result of having CYA in the water with chlorine (hypochlorous acid) is that it combines with chlorine to form a set of chemical species collectively called chlorinated isocyanurates. These compounds also absorb UV without breaking down as quickly as chlorine. The full chemistry is complicated (well, tedious) because there are 6 different species of chlorinated isocyanurates (that is, chlorine attached to CYA) and 4 different species of Cyanuric Acid and its dissociated ions. There are 13 simultaneous chemical equilibrium equations of the CYA, chlorinated isocyanurates, hypochlorous acid and their combinations though only 10 of these are independent from each other. Look at the chemical structure for CYA here (diagrams from Wikipedia)

Transcript of The Chlorine / Cyanuric Acid Relationship and Implications for

Chlorine/CYAandNitrogenTrichloride 1

TheChlorine/CyanuricAcidRelationshipandImplicationsforNitrogenTrichloride

byRichardA.Falk

AbstractTheamountofhypochlorousacid(HOCl)inwaterwithCyanuricAcid(CYA)attypicalpoolpHisproportionaltotheFC/CYAratioandisordersofmagnitudelowerthantheFClevelitself.Theprimaryoxidizingandsanitizingcompoundishypochlorousacidwhilehypochloriteionandthechlorinatedisocyanuratecompounds(chlorineattachedtoCYA)haveordersofmagnitudeloweroxidizingorsanitizingcapability.TherateofproductionandtotalamountofnitrogentrichlorideproducedfromtheoxidationofammoniabychlorineisrelatedtothehypochlorousacidconcentrationandnottotheFCleveldirectly.Thoughtheprecisemechanismofoxidationofureabychlorineisunknown,proposedmechanismsleadtothesameconclusionofnitrogentrichloridequantitiesbeingproportionaltothehypochlorousacidlevel,allelseequal.Therefore,theuseofasmallamountofCYAinindoorpoolsshouldsignificantlylowertheamountofnitrogentrichlorideproducedinsuchpoolsandresultinlowerratesofoutgassingofchlorine,corrosionofmetaldirectlyexposedtowaterandoxidationofskin,swimsuitsandhair.

TheHypochlorousAcid/CyanuricAcidEquilibriumCyanuricAcid(CYA,akastabilizerorconditioner)isusedinpoolstoprotectchlorinebreakdownfromsunlight.ThoughCYAabsorbsultraviolet(UV)radiationdirectlythusshieldingthelowerdepthsofwaterandprotectingchlorineinthosedepthsfrombreakdown,theprimaryresultofhavingCYAinthewaterwithchlorine(hypochlorousacid)isthatitcombineswithchlorinetoformasetofchemicalspeciescollectivelycalledchlorinatedisocyanurates.ThesecompoundsalsoabsorbUVwithoutbreakingdownasquicklyaschlorine.Thefullchemistryiscomplicated(well,tedious)becausethereare6differentspeciesofchlorinatedisocyanurates(thatis,chlorineattachedtoCYA)and4differentspeciesofCyanuricAcidanditsdissociatedions.Thereare13simultaneouschemicalequilibriumequationsoftheCYA,chlorinatedisocyanurates,hypochlorousacidandtheircombinationsthoughonly10oftheseareindependentfromeachother.LookatthechemicalstructureforCYAhere(diagramsfromWikipedia)

Chlorine/CYAandNitrogenTrichloride 2

andthatofTrichlorandDichlorhere

Trichlor Dichlor andnoticethatessentiallytheNitrogencanhaveeitherhydrogenorchlorineattachedtoitandthattherearethreesuchsites.Qualitatively,chlorinecombineswithCYAtoformnewchemicalsthatareessentiallynotdisinfectantsnoroxidizers(tobedemonstratedlaterinthispaper).CYAhasamoderatelystrongaffinityforchlorinesuchthatwhenCYA>>FC(whenbotharemeasuredintheirrespectiveppm),thenmostofthechlorineisattachedtoCYA.Forexample,whenthepHis7.5andtheFCis3.5ppmandtheCYAis30ppm,then97%ofthechlorineisattachedtoCYA.Nevertheless,thechlorineattachedtoCYAgetsmeasuredintheFCtestbecausethechlorinegetsreleasedfromtheCYAquicklyenoughtoreplenishthechlorinethatisconsumedbythetest(byreactingwithdye).Inaveryrealsense,CYAactsasahypochlorousacidbufferholdingchlorineinreserve,butsignificantlylowersitsconcentrationwhichdeterminestherateofanyreactioninwhichchlorineparticipates.YoucanseefromthestructureofHypochlorousAcid(ontheleft)thatitlookssimilartowater(ontheright)withachlorineatomsubstitutingforahydrogenatom.

Chlorine/CYAandNitrogenTrichloride 3

HypochlorousAcid Water WhenchlorinecombineswithCYA,thisisachlorinesubstitutionforahydrogenatomoressentiallyanexchangeofthechlorineatomtotheCYAandthehydrogenatomfromtheCYAtomakewater.WhenchlorineisreleasedfromCYA,thentheoppositeexchangeoccurs.Thedefinitivescientificpaperthatdeterminedtheequilibriumconstantsbetweenhypochlorousacid,cyanuricacid,andthechlorinatedisocyanurateswaspresentedataconferencein1973andpublishedin1974.Thereferenceisthefollowing:J. O'Brien, J. Morris and J. Butler, “Equilibria in Aqueous Solutions of Chlorinated Isocyanurate”, Chapter 14 in A. Rubin, ed., Chemistry of Water Supply, Treatment and Distribution, 1973 Symposium, (published 1974), Ann Arbor Science, Ann Arbor, MI, pp. 333-358. Thisbookisout‐of‐print,butIreceivedpermissiontoreprint/postitandyoucanretrieveaPDFofthispaperatthefollowingwebpageandIstronglyencourageyoutoreadatleasttheINTRODUCTIONandSUMMARYsectionsofthisdocument(notethattheterm“FreeChlorine”isnotasitisusedtodayandthattheFCtestreallymeasures“reservoirchlorine”asdescribedinthepaper:http://richardfalk.home.comcast.net/~richardfalk/pool/OBrien.htmIhavecreatedaspreadsheetthatcalculatesthevariouschemicalspeciesincludinghypochlorousacidconcentrationgivenstandardwaterchemistryparameters.Thisspreadsheetmaybefoundatthefollowinglink:http://richardfalk.home.comcast.net/~richardfalk/pool/PoolEquations.xlsOnecan,ofcourse,useanyofanumberofstandardchemicalequilibriumprogramstocomputetheconcentrationsofchemicalspeciesusingtheequilibriumconstantsfromO’Brienandconcentrationsconvertedfromstandardppmunits.SuchprogramsincludeCHEMEQL,EQS4WIN,MINEQL+,amongothers.

Chlorine/CYAandNitrogenTrichloride 4

TheFC/CYARatioasaProxyforEquivalentFCwithnoCYA

SimplifiedChemicalEquationsTosimplifythedescription,IwillonlywriteaboutthemostdominantchemicalspeciesfoundatthepHofpoolwater.ForCyanuricAcid(whichIdesignateasH3CY),thespeciesathighestconcentrationistheonethathasdissociatedonehydrogenionwhichIwilldesignateasH2CY‐.Forthechlorinatedisocyanuratespecies,itisCYAwithonehydrogen,onechlorine,andoneopenslotsoisnegativelychargedwhichIwilldesignateasHClCY‐.Thefollowingistheprimaryrelevantchemicalequationtofocuson:HClCY‐+H2OH2CY‐+HOCl"ChlorineboundtoCYA"+Water"CYAion"+HypochlorousAcidHypochlorousAcidisthestronglydisinfectingandoxidizingformofchlorinesoisallIwillwriteabout(asopposedtohypochloriteion).Thechlorinatedisocyanuratesshowlittleifanydisinfectingcapabilityandminimaloxidationpower.Theaboveequationisdescribedbyachemicalequilibriumconstantasshownbythefollowing:[H2CY‐]*[HOCl]/[HClCY‐]=10‐5.62=2.4x10‐6At3.5ppmFreeChlorine(FC),thisisequivalentto4.9x10‐5moles/literconcentrationwhile30ppmCYAis2.3x10‐4concentration.SincetheCYAconcentrationismuchhigherthantheFCconcentration,evenifallthechlorinecouldattachtoCYAviatheaboveequation,theneteffectisthatthetotalamountof"chlorineboundtoCYA"can'tbemorethantheamountofFCandtheH2CY‐doesnotdropverymuch.Rearranging,wehave:[HOCl]=2.4x10‐6*[HClCY‐]/[H2CY‐]Hypochlorousacid(HOCl)isalsoinequilibriumwithhypochloriteion(OCl‐)whereatapHof7.5thisisroughlysplit50/50betweenthesetwospecies.SowecanrewritetheaboveintermsofmeasuredconcentrationsasfollowswhereCYAandFCaretotalconcentrations:FC=[HOCl]+[OCl‐]+[HClCY‐]CYA=[H2CY‐]+[HClCY‐][HOCl]=2.4x10‐6*([FC]‐[HOCl]‐[OCl‐])/([CYA]‐[HClCY‐])andatapHnear7.5,[HOCl]=2.4x10‐6*([FC]‐2*[HOCl])/([CYA]‐[FC]+2*[HOCl])Forpracticalpurposes,becauseCYAismuchlargerthanFC,theHClCY‐canbeinitiallyignoredintheabove.TheaboveequationimpliesthattheHOClconcentrationmustbeverysmallandthatmostofthechlorineisboundtoCYA.Thefollowingisanapproximationwecantest:[HOCl]isapproximately2.4x10‐6*[FC]/[CYA]

Chlorine/CYAandNitrogenTrichloride 5

Thechlorinevaluesof[HOCl]and[FC]canbemeasuredinthesameunits(astheyareonbothsidesoftheequationsoanyfactorscancel),butwecanconvertthe[CYA]concentrationintoppmbymultiplyingtherighthandside(numerator)bythemolecularweightofCYA,129.075g/mole,and1000mg/g(multiplyingthedenominatorbythisnumberconvertsCYAintoppm)resultingin:HOClisapproximately0.3*FC/CYATheaboveapproximationisn'tterriblyfarofffromtheaccuratecalculation.AtanFCof3.5ppmandaCYAof30ppm,theactualHOClis0.051ppmwhiletheaboveapproximationgives0.035ppm.YoucanseewheretheFC/CYAratiocomesfrom‐‐itisadirectresultofthechemicalequilibriumbetweenchlorineattachedtoCYAvs.separatechlorineandCYA.Amoreaccurateapproximationisgivenbymodificationoftheformulanotremovingthe[FC]terminthedenominator(whichresultsinafactorthatistheratioofCYAandCl2molecularweights):HOClisapproximately0.31*FC/(CYA‐(1.8*FC))or0.31*(FC/CYA)/(1–(1.8*(FC/CYA)))whichwiththeFCof3.5ppmandCYAof30ppmresultsin0.046whichiswithin10%ofthecorrectresult.However,theaboveapproximationfallsapartratherquicklywhentheCYA/FCratioislessthan5anditisstillpHdependent(theassumptionswereatapHof7.5forthedominantspecieswhichdeterminestheequilibriumconstant).AtapHof7.5,thereisroughlyanequalamountofhypochlorousacidandhypochloriteionsothe3.5/30ratioof0.117isclosetotheFCthatproducesthesameamountofhypochlorousacidiftherewasnoCYA,namely0.106.ThefollowingtableshowshowtheFC/CYAratiocanbeusedasareasonableproxyforFCwithnoCYAwhenthepHisnear7.5. FCas%ofCYA

FC/CYA EquivalentFCwithnoCYA(basedon30ppmCYA)

EquivalentFCwithnoCYA(basedon50ppmCYA)

EquivalentFCwithnoCYA(basedon100ppmCYA)

2.06*0.31*(FC/CYA)/(1–(1.8*(FC/CYA)))

1% 0.01 0.0075 0.0075 0.0076 0.00652% 0.02 0.0152 0.0153 0.0154 0.0135% 0.05 0.0396 0.0400 0.0404 0.03410% 0.10 0.0854 0.0866 0.0874 0.07820% 0.20 0.202 0.206 0.208 0.2030% 0.30 0.36 0.37 0.38 0.4240% 0.40 0.60 0.62 0.64 0.9150% 0.50 0.92 0.98 1.02 3.260% 0.60 1.39 1.50 1.61 N/A

Chlorine/CYAandNitrogenTrichloride 6

FCas%ofCYA

FC/CYA EquivalentFCwithnoCYA(basedon30ppmCYA)

EquivalentFCwithnoCYA(basedon50ppmCYA)

EquivalentFCwithnoCYA(basedon100ppmCYA)

2.06*0.31*(FC/CYA)/(1–(1.8*(FC/CYA)))

70% 0.70 2.03 2.27 2.50 N/A80% 0.80 2.89 3.35 3.88 N/A85% 0.85 3.41 4.05 4.84 N/A90% 0.90 4.00 4.87 6.02 N/A95% 0.95 4.66 5.81 7.49 N/A100% 1.00 5.38 6.90 9.30 N/AYoucanseefromtheabovethataconstantFC/CYAratioresultsinthesamehypochlorousacidconcentration(orequivalentFCwithnoCYAwhichisaboutdoubleatpH7.5)independentofCYAlevel(from30to100ppm)evenwhentheFCasa%ofCYAisuptoaround50%atwhichpointtheerrorisaround10%ofthehypochlorousacidconcentration(orequivalentFCwithnoCYA).Thisiswhy3ppmFCwith30ppmCYAisthesameas6ppmFCwith60ppmCYAisthesameas10ppmFCwith100ppmCYA.AstheCYAlevelclimbs,theFCmustalsobeincreasedproportionatelyinorderforthehypochlorousacidconcentrationtoremainconstant.TheFC/CYAratioitselfasaproxyfortheequivalentFCisaroughguidewhentheratiois20%orless,butyoucanseethatit’sonlyroughsince1ppmFCat100ppmCYAisnotequivalentto0.0100butratherto0.0076ppm.Nevertheless,itdoesgiveanorder‐of‐magnitudesensefortheeffectofCYA.Themoreaccurateformulashowninthelastcolumn,stillbasedontheFC/CYAratio(the2.06factorconvertsHOCltoequivalentFCatapHof7.5),isreasonablyaccurateuptoanFC/CYAratioof30%.

ComplexChemicalEquationsSohowcanoneconcludewhatthedominantspeciesaresincethatistheassumptionIstartedwithabove?Let'slookatthedetailedequationsandgothroughaprocessofeliminationbasedonthepH.We'llstartwiththeeasiercasetoanalyze,namelyCYAanditsdissociatedspecies.Someofthefollowingequationsuseanadjustedequilibriumconstantfortheionicstrengthintypicalpoolwaterat300ppmCH,100ppmTA,30ppmCYAand525ppmTDS.Alloftheequilibriumconstantscomefromthe1974O'Brienpaper,butyoucanalsoseetheseconstants(withsomeminorerrorsduetousingslightlydifferentsources)inthefollowinglinkhttp://www.epa.gov/hpv/pubs/summaries/tricltrz/c14659rr.pdfondocumentpage12(PDFpage18).H3CYH2CY‐+H+ pK=‐log10(K)=6.83H2CY‐HCY2‐+H+ pK=11.26HCY2‐CY3‐+H+ pK=13.32

Chlorine/CYAandNitrogenTrichloride 7

Let'stakealookatthefirstreaction'sequilibriumexpression:[H+]*[H2CY‐]/[H3CY]=10‐6.83Takingthenegativelog10ofbothsidesgives:pH‐log10([H2CY‐]/[H3CY])=pKlog10([H2CY‐]/[H3CY])=pH‐pKSofromtheabove,andgeneralizing,onecanseethatwhenpH<pKthentheratiointhelog10islessthan1whilewhenpH>pKtheratiointhelog10isgreaterthan1.SothismeansthatatapHof7.5,thefollowingaretrue:[CY3‐]<<[HCY2‐][HCY2‐]<<[H2CY‐][H2CY‐]>[H3CY]SothisiswherewegetourinitialassumptionofH2CY‐beingthedominantcyanuratespecieswherewecanseethatthenextmostdominantcyanuratespeciesisH3CY.Forthechlorinatedisocyanurates,wehavethefollowing(thepKareadjustedforionicstrength):H2ClCYH++HClCY‐ pK=5.28HClCY‐H++ClCY2‐ pK=9.98HCl2CYH++Cl2CY‐ pK=3.70wherewecanconcludethefollowingatapHnear7.5:HClCY‐>>H2ClCYClCY2‐<<HClCY‐Cl2CY‐>>HCl2CYSooftheabovespecies,HClCY‐andCl2CY‐aredominant,butwecannotyettellwhichismoredominantbetweenthesetwo.Thereareadditionalchemicalequationsrelatingtotheinteractionofchlorinewiththechlorinatedisocyanuratesasfollows:Cl2CY‐+H2OHClCY‐+HOCl pK=4.51HCl2CY+H2OH2ClCY+HOCl pK=2.93Cl3CY+H2OHCl2CY+HOCl pK=1.80BecausetheHOClconcentrationisrelativelysmall(pHOCl>4.6;actually>6),thisimpliesthefollowing:HClCY‐>Cl2CY‐

Chlorine/CYAandNitrogenTrichloride 8

H2ClCY>>HCl2CYHCl2CY>>Cl3CYSotheassumptionthatHClCY‐isthedominantchlorinatedisocyanruatespeciesisreasonableandthenextmostdominantchlorinatedisocyanuratespeciesisCl2CY‐.Inspiteoftheaboveequilibrium,therateofreleaseofchlorinefromCYAisratherfast(seethehalf‐lifeconstantsintheaforementionedEPAlink)soallofthechlorineattachedtoCYAmeasuresasFCintheFCtestbecausetheHOClgetsusedupreactingwiththedyeinthetestandmoreHOClisreleasedfromthatattachedtoCYA(orisconvertedfromhypochloriteion)inthetimeofthetest.Essentially,theFCtestmostlymeasurestheamountofchlorinein“reserve”anddoesnotmeasuretheamountofactivedisinfectingandoxidizingchlorinealone.

GraphsofChlorinevs.pHThetraditionalindustrygraphshowinghypochlorousacidandhypochloriteionasafunctionofpHisincorrectinthepresenceofCyanuricAcid(CYA).ThetraditionalgraphandthecorrectgraphwhenCYAispresentareshownbelow:

SinceitishardtoseetheproportionaleffectsofpH,thefollowingaretheequivalentgraphsusingalogscaleforFCconcentration:

Chlorine/CYAandNitrogenTrichloride 9

Ifyoulookcarefully,youwillseethattheloggraphontherightisthesameasshownintheO’BrienpaperinFigure14.5onpage352exceptthatmypHrangeisnarrowerandIhavecombinedmultiplechlorinatedcyanuratespeciesintoone“Cl‐CYA”curve.Inparticular,theshapeoftheHOCl(red)andOCl‐(green)curvesisthesameasintheO’Brienpaper.This,ofcourse,isnotasurprisesinceIusedtheO’Brienequilibriumconstantstogeneratethegraphfromaspreadsheetthatcomputeschemicalspeciesconcentration.TheabovegraphsshowthatCYAbuffershypochlorousacidsuchthattheeffectofpHonhypochlorousacidlevelisnotasstrongaswithoutCYA(i.e.theredcurveismore“flat”,especiallyabovepH7.5).

EffectsofCyanuricAcidonDisinfectionandOxidationThoughtheabovechemistrydemonstratestheverylowlevelofhypochlorousacidinthepresenceofCyanuricAcid(CYA),howdoweknowthatchlorineattachedtoCYAisnotaseffective?Therehavebeennumerousscientificstudiestoanswerthisquestionsolet’slookatonesreadilyavailableonlineandmostbeingfreeofcharge.Ifonecalculatesthehypochlorousacidconcentrationwhenthereisharddataforkilltimes(notjust“<30seconds”),oneisabletopredictthekilltimeswithinafactorof2inmostcasesthusdemonstratingthathypochlorousacidistheprimarydisinfectingagentandthatthechlorinatedisocyanurateshaveamuchdiminishedcapacityexceptasareservoirforhypochlorousacid.

Chlorine/CYAandNitrogenTrichloride 10

BacteriaThefollowingfourpaperspublishedfrom1965to1969showthesignificantreductioninbacterialkilltimeswhenchlorineisinthepresenceofCyanuricAcid(CYA).NotethatthefourthreferencedemonstrateshowammoniainwaterreducessomeoftheapparenteffectofCYAonchlorinekillrates,mostlikelyduetotheformationofmonochloraminewhichisnotmoderatedinstrengthbyCYA(thoughisalesspowerfulbactericidethanhypochlorousacid).ItshouldalsobenotedthatthepresenceoforganicmatterinthewatercanconsumechlorinesuchthatlowFClevelscanbecomeineffective.ThisiswhereCYAcanbecomehelpful,wherehigherFClevelscanbeusedtonot“runout”ofchlorinewhilehavingmoderatedstrengthinspiteofthehigherFClevel.http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1256554&blobtype=pdfhttp://www.pubmedcentral.nih.gov/picrender.fcgi?artid=377704&blobtype=pdfhttp://www.pubmedcentral.nih.gov/picrender.fcgi?artid=546955&blobtype=pdfhttp://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1227093&blobtype=pdf

VirusesThefollowing1988paperdemonstratesthesignificantreductioninvirusactivationtimewhenchlorineisinthepresenceofCyanuricAcid(CYA).http://www.jstor.org/pss/3863297

ProtozoanOocystsThefollowingtwopapersin1983and2009demonstratethesignificantreductionininactivationofprotozoanoocystswhenchlorineisinthepresenceofCyanuricAcid(CYA).http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=239534&blobtype=pdfhttp://www.iwaponline.com/jwh/007/jwh0070109.htm

AlgaeThefollowing1981paperdoesnotdemonstrateanysignificantaffectofCyanuricAcid(CYA)onchlorineeffectivenessagainstkillingalgae.Thisisnotonlyinconsistentwithallpreviousstudiesasshownabove,butitisinconsistentwiththeexperienceofover20,000(mostlyresidential)poolownersreportingatThePoolForumandover10,000poolownersreportingatTroubleFreePoolwherethechlorine/CYArelationshiphassuccessfullykeptthesepoolsfreeofalgaeusingchlorinealone.Icanonlyspeculatethatthegrowthmediausedtoculturethealgaemayhavecontainedammonia‐likecompoundsthatcreated

Chlorine/CYAandNitrogenTrichloride 11

compounds(suchasmonochloramine)thatinhibitedalgaegrowthandwerenotaffectedbyCYAlevel.http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=241858&blobtype=pdf

OrganicsThefollowing2001paperdemonstratesthatfortheoxidationofmonochlorodimedone(MCD),therateswithchlorinatedcyanurateswereestimatedtobe1/150ththatofthefreechlorinesolution(hypochlorousacidplushypochloriteion;mostlytheformerasthepHwas7.0).http://dx.doi.org/10.1016/S0043‐1354(01)00482‐1U.S.Patent5,591,692issuedin1997andassignedtoBio‐Lab(nowpartofChemtura)demonstratesasignificantreductionintherateorproductionofchloroform(trihalomethane,THM)fromhumicacidreactingwithchlorinewheneitherCyanuricAcidorglycolurilwaspresent.GlycolurilisverysimilartoCYAinthatitbindstochlorine,butdoessosomewhatmorestronglythanCYA.http://www.google.com/patents?vid=USPAT5591692

Real‐PoolStudiesonDisinfectionandORPThoughsomeofthescientificstudiesnotedaboveusedrealpoolwaterinadditiontochlorinedemand‐freewater,therehasbeenacontroversyintheindustryastowhetherthechemistryofchlorineandCYAappliesto“realpools”.Thefollowingtwostudiesusingrealpoolsattempttoanswerthisquestion.

PinellasCounty,FloridaPoolStudy1992(1994)ThefollowingisalinktothemainpageforthePinellasstudywithlinksundertheheading“FloridaStudyDetailsMicrobicidalProperitesofChlorine”.http://www.nspf.com/Research_Archives.htmlOneoftheconclusionsofthisstudywasthatFreeChlorine(FC)hadbyfarmoreinfluenceonthebacteriapopulations(disinfectionconditions)thananyothervariable.However,thestudydidnotlookspecificallyatcalculatedhypochlorousacidconcentrationsoIdecidedtodothatmyself.First,IputalloftherawdataintoaspreadsheetwhichcanbeviewedinHTMLatthefollowinglink:http://richardfalk.home.comcast.net/pool/Pinellas.htm

Chlorine/CYAandNitrogenTrichloride 12

IextractedrelevantcolumnsofdataandsortedbyFreeChlorine(FC)andbycalculatedhypochlorousacid(HOCl)concentrationsasshowninthefollowinglinksandhighlightedinredthebacteriaandalgaecountsthatwereconsideredtobeaproblemaccordingtostudycriteria.http://richardfalk.home.comcast.net/pool/PinellasFC.htmhttp://richardfalk.home.comcast.net/pool/PinellasHOCl.htmToseetheeffectsofFCandcalculatedHOCl,Ireorganizedthedataintogroupsincreasinginalogarithmicfashion.Let’sfirstlookatthedatausingFC.Duetospacelimitations,Ionlyshowbacteriaandnotalgae,butthealgaedatadidn’tmakeanysenseanywaywithonly4poolswithgreenalgaeandthatpoolswithnoFCandhighbacterialcountshadnogreenalgae. Count FC HPC TCOLI FCOLI NCOLI PSEUD TSTAPH FSTREP 49 < 0.1 48.98% 36.73% 20.41% 57.14% 6.12% 6.12% 2.04% 4 0.1-0.19 25.00% 0.00% 0.00% 75.00% 0.00% 0.00% 0.00% 14 0.2-0.39 14.29% 7.14% 7.14% 14.29% 7.14% 28.57% 0.00% 35 0.4-0.79 8.57% 11.43% 5.71% 20.00% 2.86% 11.43% 0.00% 44 0.8-1.59 9.09% 6.82% 4.55% 9.09% 2.27% 2.27% 0.00% 111 1.6-3.19 4.50% 6.31% 4.50% 9.01% 0.00% 7.21% 0.00% 189 3.2-6.39 4.76% 5.82% 3.70% 12.17% 0.00% 3.17% 0.53% 29 6.4-12.79 0.00% 6.90% 3.45% 0.00% 0.00% 3.45% 0.00% 11 > 12.8 0.00% 9.09% 0.00% 0.00% 0.00% 0.00% 0.00% 486 Overall 9.88% 9.67% 5.76% 15.84% 1.23% 5.56% 0.41%YoucanseeanS‐curvelikeeffectwhereathresholdFCroughlyat0.2resultsinasignificantdropinthepercentageofpoolswithbacteriacounts,thoughthereisnolevelofchlorinethathasnocountswhatsoeverthoughpool#318hadanHPCof31000andanNCOLIof320(and2TSTAPH)andyethad5ppmFreeChlorine(FC)withapHof7.2andnoCyanuricAcid.Sothereareclearlynoabsolutes.Nowlet’slookatsomethingthereportdidn’texamine–calculatedhypochlorousacidconcentration.Count HOCl HPC TCOLI FCOLI NCOLI PSEUD TSTAPH FSTREP 58 < 0.001 43.10% 31.03% 17.24% 51.72% 5.17% 5.17% 1.72% 10 0.001-0.0019 30.00% 20.00% 20.00% 50.00% 0.00% 10.00% 0.00% 22 0.002-0.0039 9.09% 4.55% 4.55% 9.09% 0.00% 13.64% 0.00% 44 0.004-0.0079 2.27% 13.64% 6.82% 13.64% 4.55% 9.09% 0.00% 92 0.008-0.0159 7.61% 6.52% 3.26% 9.78% 0.00% 2.17% 0.00% 94 0.016-0.0319 4.26% 5.32% 2.13% 12.77% 0.00% 6.38% 1.06% 55 0.032-0.0639 3.64% 3.64% 3.64% 3.64% 0.00% 0.00% 0.00% 28 0.064-0.1279 0.00% 0.00% 0.00% 7.14% 0.00% 0.00% 0.00% 83 >0.128 4.82% 8.43% 6.02% 10.84% 1.20% 9.64% 0.00% 486 Overall 9.88% 9.67% 5.76% 15.84% 1.23% 5.56% 0.41%

Chlorine/CYAandNitrogenTrichloride 13

HereyoucanseeanevensteeperS‐curveeffectataverylowchlorinelevelofaround0.002ppmHOClwhichatapHnear7.5isanFCof0.004ppmwithnoCYA.Basically,whatappearstobegoingonisthatittakesanincrediblylowchlorineleveltokillmostbacteriafasterthantheycangrowsoonecannotreallyconcludethatFCisthemostinfluentialvariablesinceonecouldjustasreadilyconcludethatitisHOClinstead.MostheterotrophicbacteriahaveaCTvalue(chlorineconcentrationinppmtimestimeinminutes)fora99%(2‐log)killofaround0.08andthisisequivalenttoa50%killCTvalueoflog10(1/0.5)*0.08/2=0.012.Bacterialgenerationtime(thetimeittakestodoubleinpopulation)isfrom15to60minutessousing15minutesthismeansitwouldtakeonly0.012/15=0.0008ppmFCtokillbacteriafasterthantheycanreproduce.Sincerealpoolwaterhasslowerkilltimesthanlabconditions,thestudyresultsarenotsurprisingandthemainpointisstillthesame–mostofthecommonbacteriaareincrediblyeasytokill(ingeneral)sothestudyresultsinrealitywereinconclusivewithrespecttoFCvs.calculatedHOCl(orevenFC/CYAwhichtheyalsodidn’tlookat).

Oxidation‐ReductionPotential(ORP)Thegraphsbelowweretakenfrom620samplesfrom194commercial/publicpoolsandspaswiththedatacollectedbyJeffLuedemaninBloomingtonandRichfield,Minnesota.There'salotofscatterandoutliers(asmallamountofvariationisfromthedifferentpH),butthebasictrendisprettyobvious.Inthelowergraph,thediamondstotheupperrightareunstabilizedpools,thediamondstothelowerleftarestabilizedpools,andthesquareswiththeredbordersarestabilizedpoolswithCYA<30so15ppmwasusedinthecalculations.(Thefirstgraphsays"DPD"fortheFreeChlorineaxis,butinfactaFAS‐DPDtestfromtheTaylorK‐2006Ckitwasused).

Chlorine/CYAandNitrogenTrichloride 14

ItshouldbeprettyobviousthatORPismorehighlycorrelatedwithhypochlorousacidconcentrationthanwithFreeChlorine(FC)alone.

SideEffectsofChlorineSourcesCyanuricAcid(CYA)isadouble‐edgedsword.Ontheonehand,itprotectschlorinefromrapidbreakdowninsunlightanditalsomoderateschlorine’sstrength,butontheotherhandtoomuchCYAcanmoderatethatstrengthtolowerkillratesandoxidationtoanunacceptablelevel,especiallyforpreventingalgaegrowth.TheuseofstabilizedchlorinecanbuildupCYAfairlyrapidly.ThefollowingarechemicalfactsthatareindisputableandbasedonthecorechemistrywherechlorinemeasurementsareinunitsofppmCl2.Forevery10ppmFreeChlorine(FC)addedbyTrichlor,italsoincreasesCyanuricAcid(CYA)by6.1ppm.Forevery10ppmFCaddedbyDichlor,italsoincreasesCYAby9.1ppm.Forevery10ppmFCaddedbyCal‐Hypo,italsoincreasesCalciumHardness(CH)byatleast7.1ppm.Forevery10ppmFC,allsourcesofchlorineadd8.2ppmsaltasthechlorineconvertstochloridewhenitgetsusedup(oxidizingorganics,killingpathogens,breakingdownfromsunlight).Chlorinatingliquid,bleachandlithiumhypochloriteaddanadditional8.2ppmsaltwhileCal‐Hypoaddsaround2ppmadditionalsalt.Asimplecalculationshowsthatevenatalow1ppmFCperdaychlorineusage,continueduseofTrichlorwillincreaseCYAbyover100ppmin6monthsifthereisnowaterdilution.UsingCal‐HypowillincreaseCHbynearly130ppmin6months.Allsourcesofchlorinewillincreasesaltlevelsbyatleast150ppmin6monthswithchlorinatingliquid,bleachandlithiumhypochloriteincreasingsaltatdoublethisrate.Mostoutdoorresidentialpools

Chlorine/CYAandNitrogenTrichloride 15

withoutpoolcovershavechlorineusagecloserto2ppmFCperdayandevenweeklybackwashingofsandfiltersisnotenoughtodilutethewaterexceptinthesmallestofpools.ThereisnoproductlabelingnordocumentationoftheabovechemicalfactsandsuchinformationisnottaughtinNSPFCPOnorAPSPTECHcoursesotherthanavaguequalitativedescriptionofhowstabilizedchlorinecanleadtoabuildupofCYAandthatCal‐HypoincreasesCH.Theissueisnotsomuchhavingtodowithsafety(except,perhaps,forperson‐to‐persontransmissionrisk)sinceithasalreadybeenshownhoweasyitistokillmostbacteriawithverylowlevelsofchlorine(thatis,lowFC/CYAratios),butalgaeismuchhardertokillsocontinueduseofstabilizedchlorinewithoutsupplementalalgaecidesorphosphateremoverscanleadinitiallytonascentnon‐visiblealgaegrowththatappearsasamysteriouschlorinedemandbeforeeventuallyshowingasanalgaebloom.TheswimmingpoolindustryonlytalksabouthowCYAprotectschlorinefromsunlightsodoesnotconsideritspositiveandnegativeeffectsasachlorinebuffermoderatingchlorine’sstrength.ThegeneralrecommendationofnotusinganyCYAatallinindoorpoolsorspasleadstoinconsistentsanitationwithactivechlorine(hypochlorousacid)concentrationsinindoorpoolsandspasbeing5‐20timesormorehigherthaninmostpoolsusingCYA.Thishasimplicationsforoxidationofswimsuits,skinandhair,corrosionrates,andforproductionofnitrogentrichlorideasdescribedbelow.

BreakpointChlorinationModelsandCyanuricAcidEffectsonNitrogenTrichlorideThebasicbreakpointreactionwasdescribedbyGriffin(1939),butthefirstreasonabledetailedmodelwasproposedbyWei&Morris(1974‐‐inChapter13inthesame"ChemistryofWaterSupply,TreatmentandDistribution"bookthathastheO'Brienpaperonthechlorine/CYAequilibriumconstants).SubsequentimprovementsweremadetothemodelbySaunier&Selleck(1976)andmostrecentlybyJafvert&Valentine(1992)whichshouldbeconsideredtobethebestmodelto‐date.ThefollowingisthefollowingpaperChad T. Jafvert and Richard L. Valentine, “Reaction Scheme for the Chlorination of Ammoniacal Water”, Environ. Sci. Technol., Vol. 26, No. 3, 1992, pp. 577-585. Alinktobeabletopurchasethispaperisthefollowing:http://pubs.acs.org/doi/abs/10.1021/es00027a022Thoughthemodellists14reactions,includingbothforwardandreversereactionrates,thedominantreactionsarethefollowing:(1)HOCl+NH3NH2Cl+H2OHypochlorousAcid+AmmoniaMonochloramine+Water

Chlorine/CYAandNitrogenTrichloride 16

(2)HOCl+NH2ClNHCl2+H2OHypochlorousAcid+MonochloramineDichloramine+Water(3)HOCl+NHCl2NCl3+H2OHypochlorousAcid+DichloramineNitrogenTrichloride+Water(4)NHCl2+NCl3+2H2O2HOCl+N2(g)+3H++3Cl‐Dichloramine+NitrogenTrichloride+WaterHypochlorousAcid+NitrogenGas+HydrogenIon+ChlorideIonThefirstreactionproducingmonochloramineisbyfarthefastest.Itisover95%completeinoneminutewhentheFCisaround10%oftheCYAandtheammoniaismuchlessthanthechlorinesothatthechlorinelevelremainsfairlyconstant.WithnoCYA,thereactionismostlycompleteinacoupleofseconds.Thesubsequentreactionsarefarslower.Youcanthenseethathypochlorousacidparticipatesintworeactions(afterinitiallyproducingmonochloramine),oneproducingdichloramineandanotherproducingnitrogentrichloride.Sothenetreactiongoingfrommonochloraminetonitrogentrichloridetakestwohypochlorousacidandthisnetreactionratevariesasthesquareofthehypochlorousacidconcentration.Youcanseethatnitrogentrichlorideisbrokendownbydichloramineandthelatterisproducedwithareactionratethatvarieslinearlywithhypochlorousacidconcentration.Sointhesteadystate,theamountofnitrogentrichlorideislinearlydependentonthehypochlorousacidconcentration.Thiscanalsobeseenbythefollowingratereactionbalanceatsteadystate.k3*[HOCl]*[NHCl2]=k4*[NHCl2]*[NCl3]RateofformationofNitrogenTrichloride=RateofdestructionofNitrogenTrichlorideso,k3*[HOCl]=k4*[NCl3]Thenitrogentrichlorideconcentrationinthesteadystateislinearlyproportionaltothehypochlorousacidconcentration.Sincenitrogentrichlorideisveryvolatile,thisimpliesthattherateofoutgassingofnitrogentrichloridemaybeproportionaltothehypochlorousacidconcentrationsincetheoutgassingrateislikelytobeproportionaltoitsconcentrationinthewater.Asimilarratereactionbalancefordichloraminegivesthefollowing.k2*[HOCl]*[NH2Cl]=k3*[HOCl]*[NHCl2]+k4*[NHCl2]*[NCl3]RateofformationofDichloramine=RateofdestructionofDichloramineandsubstitutingtheearliersteady‐stateequationwehavek2*[HOCl]*[NH2Cl]=k3*[HOCl]*[NHCl2]+k3*[HOCl]*[NHCl2]whichreducesto

Chlorine/CYAandNitrogenTrichloride 17

k2*[NH2Cl]=2*k3*[NHCl2]Sotheratioofmonochloraminetodichloramineisconstantandindependentofhypochlorousacidconcentration.Wecanlookatthesteady‐stateformonochloramineassumingaconstantintroductionofammoniaintothewater.k1*[HOCl]*[NH3]=k2*[HOCl]*[NH2Cl]RateofformationofMonochloramine=RateofdestructionofMonochloraminesotheratioofammoniatomonochloramineisconstantandindependentofhypochlorousacidconcentration.Finally,wecanlookatthesteady‐stateforammonia.k=k1*[HOCl]*[NH3]RateofformationofAmmonia=RateofdestructionofAmmoniawhichsaysthatforaconstantrateofintroductionofammonia,theamountofammonia,andthereforemonochloramineanddichloramine(fromabove),areinverselyproportionaltothehypochlorousacidconcentration.Earliermodelshadreactionsforminganintermediate,andtheJafvert&Valentinemodelhasthisaswell,butitisnotthedominantreactioninthatmodel.ThefollowingshowstheintermediatereactionssuchasfoundwithWei&Morris.(5)NHCl2+H2ONOH+2H++2Cl‐Dichloramine+WaterIntermediate+HydrogenIon+ChlorideIon(6)NOH+NH2ClN2(g)+H2O+H++Cl‐Intermediate+MonochloramineNitrogenGas+Water+HydrogenIon+ChlorideIon(7)NOH+NHCl2N2(g)+HOCl+H++Cl‐Intermediate+DichloramineNitrogenGas+HypochlorousAcid+HydrogenIon+ChlorideIonIntheWei&Morrismodel,thereisnodestructionofnitrogentrichloride,soit'srateofproductionistheproductofthehypochlorousacidconcentrationandthedichloramineconcentration.Intheabove,reaction(7)ismoredominantthanreaction(6).TheformationoftheintermediateNOHisaratelimitingstepsodichloramineisbuiltupandthereforetherateofproductionofnitrogentrichlorideislinearlydependentonthehypochlorousacidconcentration.Forarealisticexample,considerapoolwith3ppmFCandnoCYAvs.apoolwith3ppmFCand30ppmCYA.BothareatapHof7.5(thereisfarmorenitrogentrichlorideproducedatlowerpH)andthetemperatureis77F.Ifitisassumedthatthechlorinelevelismaintained

Chlorine/CYAandNitrogenTrichloride 18

ataconstantlevelandthatthereisaconstantintroductionofammoniainthewateratarateof0.1ppmNperhour,thenwehavethefollowingsteadystateamountusingJafvert&ValentineinaspreadsheetImadeinthefollowinglinkhttp://richardfalk.home.comcast.net/~richardfalk/pool/Breakpoint.xlsOXIDATIONOFAMMONIASPECIES NOCYA 30ppmCYAMonochloramine 0.02ppm 0.70ppmDichloramine 2.97ppb 85.42ppbNitrogenTrichloride 70.96ppb 2.35ppbYoucanseefromtheabovethatwithnoCYAinthewater,thereislessmonochloramineanddichloraminebutmorenitrogentrichloridecomparedtohavingCYAinthewater.ThedifferencesareroughlyafactoroftheCYAlevelbecausethatisroughlythedifferenceinthehypochlorousacidconcentration(thebreakpointchlorinationspreadsheetassumes3ppmFCwith30ppmCYAresultsinabout0.05ppmhypochlorousacidatpH7.5‐‐theactualamountiscloserto0.042ppm).Nitrogentrichlorideisthemostvolatileandirritating.Themonochloramineodorthresholdis0.65ppm(650ppb);fordichloramineitis100ppb;fornitrogentrichlorideitis20ppb.Theequilibriumconcentrationsinairformonochloramineanddichloraminearesomewhatlowerthanthatinwater,butnitrogentrichlorideisextremelyvolatilesowillnotsaturatetheairbeforebecomingextremelynoticeableandirritating.Theaboveisjustforbreakpointchlorinationofammonia.AsseeninTable4.1ondocumentpage62(PDFpage85)ofthefollowinglinkhttp://www.who.int/entity/water_sanitation_health/bathing/srwe2full.pdfureahas68%ofthenitrogeninsweatcomparedto18%forammoniawhileinurineit's84%vs.5%.Thereisnodefinitivemodelforoxidationofureabychlorine,thoughsomemechanismshavebeenproposed(byWojtowicz)includingtheslowformationofaquad‐chloroureafollowedbyrapidbreakdowntodichloramineandnitrogentrichloride.IfIrepeattheaboveanalysisusingan80%/20%splitofureatoammoniaandassumeasteadystatebuildup,thenIgetthefollowingresults.OXIDATIONOFUREA&AMMONIASPECIES NOCYA 30ppmCYAMonochloramine 0.01ppm 0.28ppmDichloramine 1.19ppb 34.17ppbNitrogenTrichloride 70.84ppb 2.35ppbYoucanseethattheresultingnitrogentrichlorideisthesameasbefore,butthatthereislowermonochloramineanddichloraminebyafactorof2.5.

Chlorine/CYAandNitrogenTrichloride 19

Therateofammonia/ureaintroductionof0.1ppmNperhourisforheavybatherloadssinceitrepresentsachlorineusageofnearly1ppmFCperhour.Oneswimmermayproducearound0.1ppmNperhourin1000gallonssoonlyapoolwithmanypeoplebeingactivewouldhavethissortofusage.Ofcourse,havingchildreninthewaterthaturinatewouldprovideaveryhighload.Ifachildurinates100ml(3.4fluidounces),thenin1000gallonsthisisabout0.3ppmN.SincetheUVinsunlightbreaksdownnitrogentrichloridefairlyquicklyandsinceaircirculationisalsogoodoutdoors,thecurrentrecommendationsforFCasa%ofCYAarereasonableforoutdoorpools.Theslowerbreakpointisnotgenerallyaproblemunlessthebatherloadishigh.Forcommercial/publicpoolswithhigherbatherloads,anFCthatis20%oftheCYAlevelmaybemoreappropriate.Forindoorpools,theslowerbreakpointmightbemoreofanissuesoperhapsanFCthatis20%oftheCYAlevelmaybebetterevenwhenthereisnothighbatherloadinsuchpools.Fromthemodels,notusinganyCYAatallinanypool(indoororoutdoor)canresultinfarhigherirritatingnitrogentrichlorideconcentrationsandalsohasthechlorinelevelbetoostrongforoutgassingofchlorine(mostlyhypochlorousacid),corrosionofimmersedmetalandoxidizingofswimsuits,skinandhair.Sinceitisnotpracticaltomaintain0.2ppmFCeverywhereinanindoorpoolduetolocalusageandimperfectcirculation,usingasmallamount(20ppm)ofCYAasahypochlorousacidbuffermakessense,butshouldnotbeoverdone.Toensuresufficientoxidationrates,anFCof4ppmwith20ppmCYA,whichisequivalentto0.2ppmFCwithnoCYA,couldbeareasonablebalancebetweenoxidationratesandabalancebetweenmonochloramine,dichloramineandnitrogentrichloridewhilestillprovidingplentyofchlorinetonotrunoutlocallyunderbatherload.

NextStepsClearly,investigationsonvolatilechlorinedisinfectionby‐products,includingmonochloramine,dichloramineandnitrogentrichloride,shouldincludeanalysisofwater(bothinthelabandinrealpools)usingCyanuricAcid(CYA)aswellasthosewithout.Unfortunately,allstudiesIhaveseenthathavebeendoneandthatarecurrentlyinprogressarenotlookingatCYAatall.TheEPASwimmingPoolWaterDisinfectantsstandard,DIS/TSS‐12,needstoberevisedtoreflecttheeffectofCYA.ThecurrentlaboratorystandardmeasureskillrateswithoutanyinitialCYAinthewater.Also,theEPAmaximumlimitof4ppmFCforswimmingpools,whichisbasedondrinkingwaterstandards,needstobere‐evaluatedinlightofCYA’smoderationofchlorine’sstrengthandtheminimalskinabsorptionofCYAand,byextension,thechlorinatedcyanuratesasdescribedinthefollowinglink:http://www.informapharmascience.com/doi/ref/10.3109/15569529309036260Foringestion,itisFCthatmattersindependentofCYA,butthe4ppmFCstandardwasbasedondrinkingquartsofwatereverydayandtheamountofswimmingpoolwaterthatisnormallyswallowedisafarsmalleramount.