The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

27
The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils Otto P. Strausz Department of Chemistry University of Alberta Elizabeth M. Lown Department of Chemistry University of Alberta

Transcript of The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Page 1: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

The Chemistry of Alberta Oil Sands,Bitumens and Heavy Oils

Otto P. StrauszDepartment of Chemistry

University of Alberta

Elizabeth M. LownDepartment of Chemistry

University of Alberta

SEnggas
Stamp
Page 2: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

The Alberta Energy Research Institute and Her Majes.ty the Queen in right of Alberta make no warranty, expressor implied-, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of anyinformation, contained in this publication, nor that use thereof will not infringe on -privately owned ights. Theviews and opinions of the author expressed herein, do not necessarily reflect 'those of'the Alberta Energy ResearchInstitute or'Her Majesty the Queen in. right of Alberta, The Government of Alberta, its officers, employees, agents,and consultants are exempted, excluded and absolved from all liability for damage or 'injury, howsoever caused, toany person in connection with or arising out of'the use by that person for any purpose -of this publication or itscontents.

Copyright © Dr. Otto Strausz 2003

ISBN 0778530965

Published by:

Alberta Energy 'Research 'InstituteSuite 2540, Monenco Place801 6th Avenue S.WCalgary Alberta, Canada T2P 3W2www.aeri.ab.ca

~"~'*~'"~

Page 3: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

ContentsIntroduction . ............ ....................... ................................... 1

Bibliography.................... .................................... ............. 7

1. The Origin of Petroleum! ............................. ......... 91.0 Gen'esis of Petroleum ................................................. 122.0 Migration and Accumulation of Oil ............. ................ 143.0 ChemicalAlteration of Oil DuringMigration ........................ .... 154.0 Chemical Alteration of Pooled Oil ......................................... 16

4.1 Thermal processes .................... .............................................................. 164.2 Deasphalting. ................. ...... 7.. 174.3 Biodegradation and water washing .................................... 17 ...........

Bibliography ................... 1.9 ........ ............ . ................ ..................... !92. Geology of the Alberta Bitumen and Heavy Oil Deposits........................ 21

1.0 Athabasca Oil SandsArea ..... ..................................... 232.0 Carbonate Trend (Carbonate Triangle) ....... .............................................. 243.0 Peace River Oil SandsA rea ....................................................................................... 254.0 Cold Lake O il Sands A rea ........................................................................................... 265.0 Lloydminster'Heavy Oil Deposit ....... . ................................... 26Bibliography . ......................................................... ... 26

3. Composition and Structure of Alberta Oil Sands and Oil Carbonates.................... .... 291.0 The Composition and Structure of Oil. Sands ............................. ,. .. 29

11. Interfacial properties .......................... ......................................... 391,1.1 Interfacial tension ................................................................................... 401.1.2 Electric properties .................................................................................. 50

a) Electric double layer and the zeta potentialof the bitumen/water interface ...................... ....... 50

b) Electric double layer and the zeta potentialof the mineral/water interface .......... ... ,........ 53

1,2 Microstructure of oil sands .......................... 552.0 Physical Chemistry of the Water Flotation Process ............................ 57

2.1 Thehotwater process .................. . ............ ............................. 572.2 The cold water process .......................................... 61

3.0 Interfacial Effects in the In-situ Water Flood Displacement of Bitumen ................. 614.0 Migrational History of the Oil Precursor to the Bitumen ........................................ 625.0 Summary . ............... ..................................... .. 62B ibliography .............................................................................. ................... . ........... 63Appendix 3.1 . . ................. .......... * .......... 67

4. Organic Chemistry: Nomenclature and Some Basic Concepts. ........................... 691.0 Ayclic Alkanes .. .......... 0 ........... . ... ..... 692.0 'C ycloalkanes ................. ; ............... ..................................... ...... ....... 73.3.0 Aromatics .......................... "............ ..... 764.0 Heteroatom-Containing Compounds ..................................................................... 785.0 More About Isomerism in Carbon Compounds ........ ................... 796.0 Chemical Structures of the Bioorganic Precursor Source Materials of Petroleum ....... 827.0 Types of Functional Groups and Chemical Structures in Alberta Bitumens ........... 86

-i-

Page 4: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

J. I1 1 )U L I I J L I ................................................. .. ................... 07

1.0 Definition, Characterization, Separation ................................................. 892.0 Elementl Composition ........................ ................... 933.0 PhyscaiProperties .. ................................ 99...

31. Density and specific gravity ... ............ ..... ....... ..... 993.2 Viscosity .............. .. ............... ....... .. . .. . ........ 1023.3 Thermal properties .......... ....................... ..... 107

3.3.1. Liquid-solid transition ............... ....... ............ 1073.3.2 Liquid-vapor trasition .................... 109

3.3.3 Carbon residue .................. ........................ 1103.3.4 Specific heat and latent heat .............................................. 114

a) Specific heat ........................................... ......................................... .114b) Latent heats of vaporization and.fusion ...................................... 115c) Heat of combustion ...................... ........ 116

4.0 Optical Properties ...... 1184.1 Refractive index ........ ,.. ... 1......1184,2 Optical. rotation ................. ................ ........... 119

5.0 Class •Composition ........ ................................ 1205.1 Distribution in the reservoir................ ........ 126

6.0 Summary ........... ......... .............. . 127B ibliography .. . ... ...... . . ........................................ ........... 129Appendix. .1 Inorganic Constituents of.Petroleums ....................... 132

6. Minerals .......................................................... 135Bibliography .40............. ...................... ..... 140

7. Reservoir W ater .... ...... ........................ 4................ ............... : ........ ...... ......... 143Bibliography ................................... ...... .!'..... . 149

8, M ethylene Chloride-Insoluble Organic M atter...................................................................... 15.11.0 Bitumen-Related OrganicM atter .................................................... .1512.0 Bitumen-Unrelated Organic M atter........................................................................ 158

2.1 Characterization -ofbitumen-unrelated organic matter ................................... 15.82.2 Distribution of the bitumen-unrelated organic matter

in the oil sand tailing fractions. ...... ...... . .164

2.3 Bonding between humic and inorganic substances ........ , .............. 1683.0 Summary ... . ...... ...................... ......... 174Bibliography . ....... . ............. ... , .... .. ,. 176

9. Reservoir Gases ... .............. ... , .... ... ......... ................. 79Bibliography ........................... 188

10. Chemical Composition of the Saturate Fraction ................................. 1891.0 Athabasca Bitumen Saturates ............................................................................ .... 1902.0 Other Alberta Bitumen. Saturates .......................... . .. . .......... 2003.0 The NondistiUable. Portion of Athabasca Saturates........ ......... 2084.0 Summary.. ........... ............................. ,..... 210Bibliography. ,....... : .... ................................. ........ 210Appendix 10.1 Field Ioniz ation, GC-FI Mass Spectrometry............ ...... 212Bibliography ................. 215Appendix 10.2 Adduction Chromatography..... ...... ., ...................... 216Bibliography ............ ..................... ................................. 218

- 11-

Page 5: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

1 . [ of Sub ti on . . .. . .......... . ......................... . . 2

1.0 Monoaromatic Subfracti on . ... .......... ....... .6-2201.1 Subfraction lc ............................ .... 220

1.2 Subfraction.d ............ 220

2.0 Diaromatic Subfraction........ . .................. 2232.1 Subfraion 2a ............... . ..... ... .................. ... 2232.2 Subfraction 2b .......... ........... ................ 2252.4 Subfraction 2 .... .... .... . . . .. ... - . . . . . . . . . . . . . . . . . . . . . . 2 28

2.5 Subfraction 2e .... ..... .................................................... ..... .. . ...... . 2283.0 Triarom atic Subfraction ......................................... .... ....................... ..... .229

3.1 Subfraction 3b .. ................................ ...... 2283.2 Subfraction 3c............. ............................... 2313.3 Subfraction3b ................3d..., .......... ........... ,. ..... . ... , ... . . . . . .2333.24 Subfraction .3e ........................ ,........ .... ... .... ....... ... ,;... .; ....... .. ............ 2331

3.4 Subfraction.3e..... ....... ..... .... ............. 233.3.5 Subfraction3f.............. ... ... ...... 235

4.0 General Properties of'D istillable Aromatics ............................................................... 2365.0 Composition of the Nondistillable Aromatics ........................................................... 240

5.1 NM R studies. ........... . 4 .................................... . ........ 240

5.2 Thermolysis ... ........................................ 2425.2.1 The n-pentane eluent of the pyrolyss oil................2425.2.2 The 50% toluene/n-pentane eluent of the pyrolysis oil ...... 244

a) Distiilablesubfraction ........ ........... .. . .......... 245i) Hydrocarbons ....... .................... 245ii) Suffides. ..... ................................................................... . 245iii) Thiophenes ......................................... 246

b) Nondistillable subfraction ............................................. 2......... ....... 65.23 The T0% methanoVtoluene eluent of the pyrolysis: oil .. ,.. ... ...... 250

5.3 Ruthenium ions-catalyzed oxidation .................. 22..... 26.0 Aromatics in Other Alberta Bitumens ............... .. ... ........ 2537.0 Aromatic Compounds Identified ....................... 254

8.0 Summary ......................................... . ...... . . ... . . ..... .... .... 258Bibliography ............... ............................. 259

12. Chemical Composition of the. Polar Fraction ........ .................................................. . 2611,0 Mass Spectroscopic Studies on the Lower Molecular Weight Components

of Athabasca Polars ............ . .............................................. ......... . .. . . . 2651.1 Subfractions 4 to 7 ........................................................... L., .;.. . ..... 2661.2 Subfraction 8 ......... ............................. 2701.3 Subfractions 9 and 10 .......................... ....... 271:1.4 Subfraction i. ........................ ....... ..... .............. ... 2711.5 Subfiaction 13 .................. , .... ... . ..... ............ 271i.6 Subfraction 14 ......... ..... . , ............. a . s .. .. . . .... .......... ............ 2741.7 Subfracior .......... ............................................ .. ........................................... 276

1.8 Comments. on the mass spectroscopic studies .................... 2762.0 Chemical Studies on Athabasca Polars .. .................................................................... 277

2.1 Sulfur-containing components ........................ . , 2772.1.1 Saturaed.sulfdes and sulfoxides .............................. 277

a) Bicyclic terpenoid sulfides and sulfoxides ........... 2.............. . .... 282

- .1i1 -

Page 6: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

b) Tetracyclic terpenoid sulfides and sulfoxides ..................................... 286c) Tricyclic terpenoid sulfides and sulfoxides .......................................... 288d) Hexacyclic terpenoid sulfides and sulfoxides ............................. .....289e) Monocyclic sulfides and sulfoxides ...... ................................ 291f) Pentacyclic terpenoid sulfides and sulfoxides ....... ........... 293g) Terpenoid sulfides and sulfoxides complexed to asphaltene ................ 293h) Conclusion .............................. ......... if. 293

2.1.2 Thiophenes .............................. .... ..............

.22 Oxygen-containing components ...................... ........ ...... 298.2.2.1 Carboxylic acids and esters ............... ................. 299

a) Tricyclic acids and esters ................... .. ................................ :299*b) Pentacyclic acids and esters ................... ................................... 303c) A cyclic acids and esters ............ .................................................... 304d) M iscellaneous carboxylic acids ........................................................... 305

.22-2 Add anhydrides and esters ........ .................................... ......... 3112.23 K etones.....,,, ................................................................................ . .... 3132.2.4 A lcohols.............................................................. 316

2.3 Nitrogen-containing •components 3......................................... ............ ..... 3192.3.1 Carbazoles in the acetone extract of asphaltene ........... ....... 3212.3.2 Basic nitrogen compounds .............................. .. 3262.3.3 Porphyrins ...... ,...... ...... ...... ... .......... 335

3.0 Composition of the Nbndistillable Polars: . ...................... 3463.1 N M R studies .......... ..... . . ... . ....... ........................ ............................... 347

3.2 Flash pyrolysis of the nondistillable polars.......................................................... 3493.2.1 The n-pentaneeluent of the distillate ................................ 3493..2,2 The toluene eluent of the distillate ........................................................353

a) Distillable -toluene eluent ...... ........... ...... .......... ..- 353b) Nondistillable toluene eluent ...................................... ... 361

3.2.3 The po-ar (CHOH/t0luene) eluent of the distillate ............................ 364

3.2.4 Pyrolysis oil recovered from the reactor .................................. 3683.3 Sum m ary and conclusions ........ .............................................................................. 368

4.0 Therm olysis of the Polars ............ ....... * ................. ......................................... 369Bibliography ...................................................... 371

13. Biomarkers in Bitumens 0-1 ................ ............................... 375Part I. Biomarkers in the Bitumen .................... ............ ...... ...... ...... 3761.0 Hydrocarbon-type Biomarkers ............................... ....... ........ .... ....... 376

Li Cyclic terpenoid-blomarkers.................... .................. .......... 376

1.1.1 Pentacyclic terpenoid hydrocarbons .................. ...................... 3801.1.2 Tetracyclic terpenoid hydrocarbons................................. 387

a) Saturated steroids ...... .... ................................... 387b) Aromatic steroids ................. ............. -.. ................... 391c) Secohopanes ........................................... ........................................393

1.1.3 Tricyclic terpenoid hydrocarbons ..................................................... 3931.1.4 Bicyclic terpenoid hydrocarbons ............................ 3971,1.5 Monocyclic :terpenoid hydrocarbons ............... ........... 398

1.2 Acyclic terpenoid biomarkers .............................. .......... ......... 398*13 Geochemical conclusions from early studies .on hydrocarbon biomarkers ....... 400

2.0 Sulfur-Containing Biomarkers ............ .................. ........ 406

- iv--

Page 7: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

2.1 Origin of sulfides and incorporation of sulfurinto the sedim entary organic matter .................................................................... 407

2.2 Bicyclic terpenoid sulfides... ...................................... 4082.3 Tricyclic terpenoid sulfides ..................................... 4112.4 Tetracyclic terpenoid sulfides ... ................ 4............ ............... ... 413

:2.5 Pentacyclic steroid sulfides ... .......................................... 4152.6 'Hexacyclic terpenoid sulfides ........................... 0... ..... P.. 4152.7 Cyclic terpenoid sulfoxides .................................. ,...4162.8 Thio'phenes ....... .. . ..................................................................... .... . ............. 416

3,0 Biodegradation of Petroleum ................. .......................... ......... ......................... 4174.0 Water Washing of.Petroleum ....................................... 4265.0 Oxygen-Containing Biomarkers ................................................................................. 429

5.1 C arboxylic acids .................................................................................................. 4295.2 Ketones ..................... ............................. 4315,3 A lcohols ...................... ......... .............. ........................................... 432

6.0 Nitrogen-Containing Biomarkers ...................... 4337,0 Secondary Migration of Petroleum .......... ...................................... 437Part I. Biomarkers in the Alkaline Process Water ................................... 4381.0 Hydrocarbon-type biomarkers. .................. .... .......................... 4382.0 Oxygen-Containing Biomarkers ............................................................................... 4453.0 The Origin of Alberta Oil. Sands and Their Secondary Migration ............................ 450

3.1 Timing of hydrocarbon generation and migration.: ....................... 451Bibliography .................................................................................... .... ....... 452A ppendix 13. ......................................................................... ......... .............. .... 457

14. Chemical Composition of Asphaltene .................... I ............. .. P. 4591.0 Introduction ................ . , ............... . ........ ...... 4 4592,0 Solubility Characterisics and Precipitation of Asphaltenes ....................................... 464

21 Solubilityparamneters ................. ............................. 4652.11. General solvency and chemistry.............................................................. 4802.1.2 Solubility- precipitation ......................................................................... 4822.1.3 Fractionation effects in precipitation ......................................................... 486

2.2 Precipitation. procedures ........ ............ ...... ............. 0-4872.2.1 Volume ratio of precipitant to feedstock ............ 4872.2.2 C ontact tim e ........ ............ ..... .......... .......... ......... 4892.2.3 Temperature...... .................. ......... .............. . 4902.24 Pressure ........ .................... .. .............. ..... 4922,2.5 Exposure to oxygen and light . ................ 493

3.0 Elemental Composition of Asphaltenes ...................................................................... 4933.1 C ,H ,N , O and S ............................................................................................... 4933.2 Trace metals ............................................... 495

4.0 ExperimentalProbes into the Molecular. Structure of Asphaltene .................. 4984.1 Thermal degradation of asphaltenes ....................................................................499

4.1.1 Thermolysis ofwhole asphaltenes ........................... 5004.1.2 Thermolysis of extracted Athabasca asphaltene ...................... 507

a) Saturate fraction of the product... ..................................... 508i) Aikanes .......................... *........... 508iR) Alkylbenzenes ............................ ....... ....... ... 508iii) n-Alkylthiophenes 4 ............................ ...... . 509

Page 8: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

b) Arotmatic -fraction of the product .................................... 509i) Sulfi des ... ...................................................... ........................................... 510ii) Benzo[b]thiophenes ................................................... ... .................... 512iii) Dibenzothiophenes .......................... ........... 513

iv) Fluorenes .............................. ......... 515v) Aromatics I and I1 ...... .......................... ....... 7.............. ... 517

c) Polar fraction of the product ................... : .... -- .................. 520

d) Product yields ............... .................... # - , , , , ....... 522e) Flash pyrolysis with toluene-d 8 as the carrier ...................... 523

42 Reductive degradation of asphalteries .................................. 5234.2.1 Naphthalene radical anion reduction ........................................... ...... 5234.-2,2 N ickel boride reduction .......................................................................... 525

a) Saturates from the NiB desulfurization ......... ............. 528i) HMA saturates .......... o ............. R ..... ., . ... 528

1. Alkanes ........................................ .... 5292. Alkylcyclohexanes ............... ... .. .............. ...... 5313. Tricyclic:terpanes . ........ ........ 5324, Steranes ......... i ............... A ........... 5325. H opanes ......... ............................... ! .......................................... 5326. Gammacerane ................................................................. 535

ii) LM A saturates. ............................................................................ 5351.- n-Alkanes ................................ 5352. Bicyclic terpanes .................................................................... 5353. Tricyclic terpanes ................................... , ................................. 5 364. Steranes ....................................... 5365. Hopanes ........ . .... .......................... 5366. Pristane/phytane ........ . ....... ............ 536

lii.)- Summary and conclusions from theNiB reduction experiments .................................................... 538

4.3 Hydrolytic degradation of asphalteies ..................................................... 5394.4 Oxidative degradation of asphaltenes by ruthenium

ions-catalyzed oxidation (RICO) ........................................................ ... .. 5424.4.1 Low-MW products from Athabasca asphaltene ........... .... 544

a) Alkyl side chains attached to aromatic carbon . ..... , ...... 544b) Alkyl bridges connecting two aromatic units. ...... ............. 552c) Aromatic units ..................... . .. ... ...... ........ 553d) Other types of reactions occurring in R.CO..... ................. 555

4,4.2 High-MW products ................... ................... 557a) Elemental com position.,., ............................................................. .557b) Pyrolytic fragments ................. ............................. .......... 559

4.4.3 Oxidative degradation of-other Alberta asphaltenes ....... ................ :5634.4.4 Foreign asphaltenes ....................... 567

5.0 Spectroscopic Probes Into the Molecular Structure of Asphaltene ..... 5755.1 Nuclear magnetic resonance spectroscopy........ ................... 5755.2 Fourier transform infrared spectroscopy .......................... _.- 5845,3 Ultraviolet-visible spectroscopy .... ...... ..... ........................ 585

5.4 Electron paramagnetic resonance :(EPR)'.and electronnucleardouble resonance (ENDOR) spectroscopy ......................... 592

- vi -

Page 9: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

5.4.1 The vanadyl porphyrin spectrum ...... .................................................... 593'5.42 The organic free radicals spectrum ...... .............:i.......... 5945.4.3 The nature of the free radicals,. ........... ... ... ........ 602

a) Triaryliradicals .. ........................... 602b) Perinaphthyl radicals .. ............... 4. ......... 603c) Radical ions .............................. ......... 604

5.5 'Magnetic susceptibility .............................................................. 6055.6 Conductivity and didectric properties ................... ................ 606

6.0 The covalent. structure of the asphaltene molecule. ............................................... 6066,1 Structural elements from thermolysis .......... ............................. 607

61.1 n-Alkanes . .................... .6086.1.2 Alkylbenzenes .... ..... ....... ................... 6096.13 Thiophenes ....... ... 6096.1.4 Sulfides ..................... ..... .............. . . .......... ......... .6096.1.5 Condensed thiophenes.. .......,............... 6096.1.6 Condensed. arom atics ............ ......................... .. .... ..... 6106.1.7 Additional compounds .. . .................. 1 6106.1.8 Combined yield ........... ............................ .... 6106.1.9 Pattern of substitution in alk lated cyclic compounds .............610

6,2 Reductive degradation ....... ....................................... 61.16.3 Oxidative degradation..... .- ,.*,. ...... 614

6.3.1 Bridges between ring strictures.............................. 6166.32 Additional products identified in RICO experiments ............ 617

6.4 HO. and BBr3 cleavage ofthe C -O bonds ........................... ..... 6176.5 The nature of the remainder of ihe asphaltene core... ......... .. 6186.6 The. size of the polyaromatic sheets ...........................1 6206,7 The covalent M W of asphaltene .......................................................... . ... 621

6.7.1 MW ron chromatographic and chemical studies .............................. 62267,2 M W distribution ......................... ....................... ............ 62967.3 MW from mass spectrometric studies........................ 6306.7.4 MW from molecular rotational correlation

time-fluorescence depolarization (RCT-FDP) ............. , 6326.8 The fifth compound class of'petroleum ..................... ..... 632

7.0 The origin of asphaltene.... ....................... ........... ...... 6348.0 Micelles. to be or not to be? ..... .................... . . .... 637Bibliography I, ........................................ ............ ... 652A ppendix 14.1 .................. .......... ............. .. . ............................................. 663Appendix 14.2 ..... ... ....................... ................. 664Appendix 14.3 ...... ............. ... ...................... 665Appendix:14.4 Products and their yields from the'RICO of various organic compounds .............. ........... .............. 666References ............ .......... +.. . ....... ........ 667Ap dix- 14. .......... 668'Ap en 1.5. . ............ ...... .......................... 66Appendix 14.6 Elemental. analysis of low-molecular-weight (LMA)and high-molecular-weight (HMA) Athabasca asphaltenes

and their RICO: products ........................ ............ q .. . .. ..... .669A ppendix 14.7 ........................................................ ...................... .......................670A ppendix 14.8 ,,672....................................... ....... ........ ....... ....... 672 'Appendix 14.9 .... ............. ........ .... ....................... 673

- vii -.

Page 10: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

E piog e .............. ........... ......... ......... ........... X ...................... . ......................... ...... 67 5

Subject Index . .. . . ......... ..................... . .............. .. ............. ........ 679

Chemical Index ............................................................................................................. ..... 689

- viii -

Page 11: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemistry of Alberta Oil Sands

the oil. Also,.it is possible that asphaltene precipitation takes place in the reservoir and that

the -supernatant -oil becomes saturated with asphaltene. In a deep reservoir the temperatureand pressure are both high a-ad during the passage of the -oil to the surface as the values ofthese parameters decline, the solubility of the asphaltene will decrease and this may causefurther precipitation.

Heavy oils, on the other hand, have experiencedas arule only mild exposure to geothermalheat, theirasphaltene's alkyl complement is intact and the high aromatic and resin contents oftheir maltene fraction makes .this maltene an-excellent solvent for asphaltene, capable ofpeptizinglarge amounts of it.

As the preceding discussions demonstrate, solubiity-as are other properties--7isdetermined by molecular composition, structure, size, conformation and colloidal structure.The same parameters -determine chemical reactivity as well.

Asphaltene has the.least favorable composition of the crude oil, fractions: it has thehighest NOS, metal and ash contents, the lowest H/C ratios and the highest MW andaggregation state. Also,. asphaltene is known to be the most important source of coke during thecracking -and refining operations. The residual asphaltenes from these operations, aside fromtheir solubility-based operational definition, may have little.in common with their predecessor,the native asphaltene. Their MW is much reduced, alkyl, sulfide and other bridges broken andappendages .largely removed, -and at the same -time their aromaticity increased.

Athabasca oil :sand asphaltene is .one of the -most extensively'investigated asphaltenes.Instrumental and, in particular, chemical studies. have brought to light many structural featuresof this material and led to the detection and identification of a host of constituent molecules.Some of the architectural principles of this asphaltene have also been elucidated and the roles ofC-C, C-S (and C-O) bridges and side-chain appendages demonstrated.

2.0 Solubility Characteristics andPrecipitation of Asphaltenes

The solubility.ofasphaltene in the maltene of crude oil and the stability of the asphaltene.solution with.respect to precipitation are of considerableinterest to all.phases of the petroleumindustry-recovery, transportation, storage, refining, upgrading-where asphaltene precipitationcan cause troublesome operational difficulties. When, conditions under which the asphaltenesolution is -stable are changed,, asphaltene -precipitation may take place. Asphaltene solubilitymay be affected by composition (addition and mode of addition of a miscible solvent, chemicalreactions), temperature, pressure, contactwith surfactants, metal orhydrogen ions (pH),. exposureto an electrical -potential differential such as that generated by moving charges when the oilflows in a conduit (electrokinetic. effect),- frictional -electricity (triboelectric effect), mechanical.shear (shaking, acoustic vibration), etc.

Asphaltene precipitation may occur spontaneously in the.rese-rvoir as a result.ofpetroleumgas buildup. In-a pooled reservoir the precipitated asphaltene may settle to the bottom resultingin animprovement in the quality of-the supernatant crude (lower density, viscosity and heteroatomcontent).. Troublesome .asphaltene precipitation may-take place in the rear-wellbore region.whereasphaltene deposition can block pore throats resulting in -a reduction of permeability, changesin wettability and. a reduction in the cross-sectional. area forflow during the.oil recovery operation.The asphaltene particles in the oil have been .postulated to carry some positive :surface charge

- 464 -

Page 12: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Composition ofAsphaltene

and therefore preferentially deposit on pores containing kaolinite,which is negatively charged.(This could also occur in interfaces with acidic media 10 at pHvalues _ 6.5 (v.'.) In the courseof thermal processing of the oil or upgrading of the bitumen, asphaltene precipitation leads to

coke-formation and enhanced coke yields. Another occurrence ofasphaltene precipitation is inthe laboratory during the analytical determination of the asphaltene content of oil samples.

The separation of asphaltene can be achievedby either digestion of the sample with a precipitant(n-C 5 or n-C 7) or precipitation with a precipitantfrom a concentrated solution of the sample in adiluent. The quantities and properties of theprecipitated asphtene depend on the temperature,nature and.quantities of diluent and precipitant used.(For this reason, in data reporting it is -desirable toindicate the precipitant used in the isolation of theasphaltene by a prefix, eg. n-C 5-asphaltene, n-C 7-asphaltene, etc.) The solvent power and.precipitate-forming efficiency ofmanyhydrocarbon liquids havebeen investigated and compared. Some results,showing the variation in the percentage amount ofprecipitate formed •from Athabasca bitumen andfrom an Arabian light atmospheric .residue'dilutedwith an equal volume -of benzene upon addition of40 volumes of the specified solv.cnt at room.temperature as a function of the carbon number ofvarious types of hydrocarbons, 11,12 are shown inFigure 14.1. The precipitate[ yield in both cases ishighest with the smallest alkane used, propane,:anddecreases rapidly at first and then more graduallywith increasing carbon number in .the three mostefficient series of precipitating agents,, .2-methyl-alkanes, n-alkanes and terminal alkenes. The

CD

.30--'15250

CD

.t 20

10-

2 4 6 8 10 1.2

Carbon number of solvent

Figure 14.1 Precipitate yield from Athabasca.bitumen and Arabian light atmospheric residuesas a function of carbon number of the precipitant.Athabasca: *., n-atkanes; 4, 2-methyl paraffins;0, 1 -alkenes; x, cycloparaffins; 0, methylcyclo-paraffins. Data -from Ref. 11. Arabian: 0, n-paraffins. Data from Ref. .1.2.

efficiency of bringing about .precipitation for these-three series of hydrocarbons follows theorder of listing. Cycloalkanes, on the other hand, are relatively good solvents for petroleumasphaltene, although not for coal asphaltene, and therefore are inefficient precipitating agents.The ability of a solvent to solubilize asphaltene or, in general, to -dissolve a solid -or to form a.homogeneous solution with another liquid, maybe expressed-in terms of solubility parameters.

2.1 Solubility parametersSolubility-parameters are molecular properties -which are defined eitherin terms of the -cohesion.energy density or the internal pressure ofthe..solvents, which-are assumed to be nonpolar liquids.Thus, Hildebrand' 3 defined a solubility parameter which is related to internal pressure as the

ratio of-the surface tension and the cubic root of-the molar volume,

(dyn-m0P'l.cr m-2= 0.1 N-Mo1 3.mm-? = 101 J.mo11 3.m-3)

-where 81 is the.solubility parameter, y is the surface tension and Vis the molar volume.

(a)

- 465-

Page 13: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

(hildebrand = caIV2.cm- 2 = (MPa112)/2.04)

where AE, and AHL are the energy and. the enthalpy of vaporization, R. is the universal gasconstant.and Tis- the temperature (K).The more Widely-used parameter,. 48., .is imp0rtant in. theestimation of the heat of mixing. for two nonpolar liquids a. and b:

n aE ,aA.(xa Va- + Xb Vb (a 51)? (3)

where the. O's are the volume fractions of the liquids :and the x's are their mole fractions. From.

-the. free energy equation

AGm =A Hm - TA Sm, (4)

where AGr is the free. energy .and ASin the entropy of mixing, it. is. evident that, in order. toobtain a -negative value.f0.r o .,,,. which is: necessary for mixing to. occur,. AH must be reduced.This can be achieved if 5a and. 8, .have similar values. The entopy of'mixing, ASh, usually.haspositive values and thus, the important, conclusion we have arrived.at is that, for mixing of two

nonpolar liquids or.. dissolution offa nonpolar solid in a nonpolarsolvent to occur, the componentsshould have similar 8values. Liquids differing by two, hildebrands .in their S values are generalyincompletely miscible, since -the internal pressure (hOlding a. unit volume of liquid together)exerted by the liquid with. the higher internal pressure (i.e.. higher: solubility parameter) will"extrude' the molecules of the liquid with the lower internal. pressure (lower solubility parameter)out of the solution. matrix.

The. solubillty parameter theory was derived for regular solutions, which are defined: assolutions for which the entropychange: on.. mixing, ASm: equals the. ideal value. and. the: volumechange on mixing,: A.K, V is -zero,: but. no restriction, is imposed on the: enthalpy of mixing., The. secriteria are usually satisfied by solutions of nonpolar solutes: in .n onpolar solvents. where the.primary interrolecular forces are. London.dispersion forces (instantaneous:dipole-induced dipoleinteractions). However, the above criteria are- not satisfied when: a) the solute, and solventmolecule.s .are polar. (in. which case dipole-dipple., dipole.-induced-dipole,, charge, transfer andhydrogen bonding ;interactions may become important);: b). specific molecular orientation effectsare operatve;-c) the solvent and solute .molecul*es have rather different- sizes;. a nd: d) the. !oWdensity of one. of the liquidsi near its. critical point.Therefore, the solubility parameter theorywould not be expected to. be. applicable -for colloidal aggregate sohutions. ofpolar, random,

polydispersed macromolecules like asphaltenes- Yet; as..will be seen from the data, available, thecorrelation between the solubility of asphaltene and. solvent solubility.. parameter is quite goodfor nonpolar and low-polari ty solvents.1 -

Nellensteyn 1 6 was the -first to. relate solvent power for asphalte.ne to physical poper.tie.sof the: solvents,. He found .that, .fbr simple' hydrocarbons.,, the per.icentage yield of asphaltene.precipitate ftom bitumen decreases with increasing surface tension of the solvent.The validityof this relationship fblows from. the relatve.constancy of the .cubic root. of-the molar volumes ofsaturated hydrocarbons in. the. expression, for S1, Eq, (1).. Subsequently, Labouti 7 correlated.

-466.-

Page 14: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Compositlon of-Asphaltene

asphaltene solubility with the 81 value of solvents andshowed that the percentage amount of precipitate.tends to decrease with increasingvalues of the solubilityparameter *81 of the solvent and that precipitateformation ceases altogether above a certain value (-4.6.dynmol1/ 3_crn-2 ), Figure 14.2.

A' more exhaustive study of the -correlationbetween asphaltene -solubility and precipitation frombitumen solutions on one hand, and the solubilityparameters 61 and 62 on the, other, has been reported 1"-on Athabasca bitumen. The yield of precipitate froma concentrated benzene s6lution of the bitumen uponaddition of a 40-fold volume excess of a series ofhydrocarbons and other liquids is tabulated in'Table14.1 and plotted as a function of the solubility para-meters 81 -and 62 of the precipitan.t in Figure 14,3,where it is seen that the -yield of precipitate increaseswith decreasing 1 or 82. Precipitate formation ceaseswhen 82 reaches a value of about 17..1 \Pa 1 2 becausethe asphaltene becomes- completely soluble in hydro-carbons with 62 a 17.1 MPaI 12 , A 62. vlue can beassigned to asphaltene aswell. From the. observation.that asphaltene becomes completely soluble in solventswith 82 17.1 MPa11 2 , and since. toluene, benzene;methylene chloride, pyridine and nitrobenzene with82 values of 18.2, 18.9, 20.2, 21..7 and 22.5 MPa1 2,

respectively, are all. excellent solvents for- petroleumaspha*tene, the value for 62 of asphaltene can beestablished as not less :than 19.6 MPal1 2.. Thus, liquidswith k5 < 17.1 MP.a112 do .not interact sufficientlystrongly with asphaltene to break up the bonds betweenthe -asphaltene molecules by solvation and thereforewould not effectcomplete. solubilization, On the other

CE

.0 0..1 0

20 A hydrocarbons4Z

1. ethers10.

aA'

03.5 4.0 4.5

S8 of solvent

Figure 1.4.2 Relation of amount precipitatedfrom a Mexican bitumen upon dilution with :a100-fold quantity of precipitant to solubilityparameter 61. From J.W.A. Labout, Ref. 17. ©1950, Elsevier,, Amsterdam.

4Hv .RTi"

ev0)

£0

0 2 .4 6. 10 12 14 16 1.8

Amount precipitated (wt%)

Figure 14.3 Relation of amount precipitated fromAthasbasca bitumen to solubility parameters, 6.and .8, using pure solvents and solvent blends,After .D.L Mitchell and JOG.. Speighti Ref. 11, ©1973, Butterworth-Heinemann,.Oxford, U.K,

hand, :the solvation energy of the isolvents with 8.2 in the 17.1-22.1 MPa14 range is sufficientlylarge to overcome the -cohesion energy of asphaltene and cause solubilization. From detailedsolubility -studies a value of 23,0 MPa1t2 has been reported for a "purified" asphaltene and asignificantly lower value of 20.0. MPa11 2 for the same asphaltene in its parent oil.. Othervalues(in .MPa1/ 2) reported for a variety of different asphaltenes using different methods of-measurementinclude:

20.51920.60-20.92 (crude oil)217

207 (D, p, .8H: 20.2, 2.0, 4.0)22

2024.

21.9-21.52021.15-21.90 (n-C 7 asphaltene) 21

19,50; 20.04 (1-1.07 x 10-3TC) 23

Figure 14.3 also features data on binary benzene-n-pentane solvent mixtures, the 5values of which .are additive: and can be. calculated from the molar, compositions of solvents a*and b:

-467-

Page 15: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Table 14.1 Yields of precipitate from Athabasca bitumen using various solventsSolubility parameter, 6 Precipitate.

(dyn-moPl 3 .*c m - ) (Cal /2.-4/2) MPal' 2 bitumen'

- 468 -

After D.L. Mitchell and. J.G. Speight, Ref. 11.© 1973, Butterworth-Heinemann; used in the construction of. plots :inFigure. 14,3. b.Bitumen was diluted'with an equal volume ofbenzene before precipitation with a 40-fold. volume of n-Pentane.

normal hydrocarbonspentane 3.2 7.0 14.4 16.9hexane 3.5 7.3 14.9 13.5heptane 38. 7.5 1.5.3 11.4octane 3.9 7.6 15.4. 9.8nonane 4.0 7,7 .6 9.4decane 4,1 7.7 15.8 9,0

.2-methyl hydrocarbonsisopentane 3.1 6.8 13.8 17.6isohexane. 3.4 7.1 14.4 15.3isoheptane 3;7 7.,2 14.8 12.8isooctane 3.8 7.4- 15.0 11.5is.ononane 39 7.5 15.4 10.0

3i9decan 3,9 7.6 15.5 9.8terminal alkenes

pentene 34 7.1. 1.4.6. 6.2hexene 3i6 7.3 15.0 13.0heptene 3.8 75 15.4 109.octene 4.0 7.6 15.6 %0nonene. 4.1 7.7 1.8 8.6decene "- 4.1 7.8 16.0 8.5

cycloparaffinscyclopentane 5.0. 8.2 16.8. 1.0methylcyclopentane 4.6 7.9 16.2 1.4ethykyclopenitane 4'6 9.0 18..5 (?) 19cyclohexane 5.3 8.2 16.8 0.7methylcyclohexane. 4.7 79 16,2 1.0ethylcycl phexane. 4;9 8.1 16.6. 1.4decallri 5.5 8.6 17.6 0

aromaticsbenzene 6.5 9,2 018.9tolUene 6 0 8.9 18.2: 0v-xylene 6.1 9.0 18.5- 0m-xylene 5.8 8.8 18.0 0,-xylene 5.7 8.8 18.0 0ethylbenzene 5.9 8.8 18.0. 0n-propylbenzene 5-6 8.7 17.8 0n-butylbenzene 54 8.6 17;6 0.

miscellaneous hydrocarbons2,2,4-trinethylpentaneisooctane .3.4 6.9 141 15.8neopentane 24 6.2 12.7 21.5n eohexane 3.2 6.7 13.7 1.7;9cyclohexene 6.0 8.5 17.4 0

other solventspyridine 8.6 10,6 21.7 0nitrobenzene 9.3 10.8 22.1 "0chloroform 6.3 9.2 18.9 0carbon tetrachlor.ide 5.8 8.6 1.7.6 0methylene chloride. 71 9.8 20.1 0

Page 16: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Composition. ofAsphaltene

Xa V~a + x6 Vb

where xs and Ms are the mol.e fractions and molar volumes.

The observed -variation in..the. quantities of precipitate formed -as a fiunction of the 8'values of the .solvents in Table 141 and Figure *143 is -closely similar to that using 62 values.'11

From the limiting 51 values at. which precipitation ceases, for example, with cyclohexane having5t = .5.3 dynes.moi"/3 .cn- 2 and a precipitate yield. of only 0.7%, the maximum value of thesurface tensiOn of the solvent at Which precipitation still takes place can be -estimated. Thus,-taking the molar volume of cyclohexane, 108,7 cmj3 m6l1, and multiplying its cubic .root, 4.8cmmol-/3, by 81 = .5.3 .dynes-molt/.cm-2:, we obtain for y, the, surface tension of-the liquid :at-which precipitation still occurs, .25.4 .dynes-cmn'l. All good -solvents for asphaltene, such asbenzene, .for which y =.29.3 dynes,.cm-1, have surface tensions greater -than 25 dynIes.cm and-poor solvents causing precipitation :of asphaltene from its polution have surface tensions lowerthan 25 dynescm-., e.g. n-pentane, --y 1.5.7 dynes-cm' 1.

More advanced theoretical treatments of solubiiity parameters have led.to the extensionof:the range of their applicability to include polar molecules. In one such treatment the effectivesolubility parameter is the sum of three independent components:

= V2 V + (6)

.8 D is included to take into consideration the dispersion forces which nearly correspond to the .62values isted inTable 14., , pto'take into consideration the polar, and :SH, the hydrogen bondinginteractions. This so-called three-dimensional solubility parameter theory is capable of giving.satisfactory accounts of the soltibility behavior ofrany weakly polar molecules and may explain,'Table 14.2, why .pyridine, quinoline and nitrobenzene, for example, are better solvents forasphaltene than carbon disulfide. In the latter molecule only.dispersion forces -are operative, but'in the former solvents, moderate-strength polarization and hydrogen, bonding interactions arealso operative in addition to strong dispersion forces. Nonetheless, the intermolecular force-dominating the solubility of asphaltene is the dispersion force and the interaction energy ansingfrom this force. is proportional to the product of the polarizabilities -of the- asphaltene and the.solvent .(v. i.). The. polarizabilities of arom afic compounds are, in general, higher than those ofparaffinic compounds and this explains their higher solventpower

The closest match of the 8D , 8p and .SHvalues with Athabasca asphaltene occurs for thecase of naphthalene (Table 14,2), :-.methylnaphthalene, (anthracene, phenanthrene), .0-dichlorobenzene and methylene chloride;, these compounds are probably the best pure solvents:fot asphaltene,

'There are several 'treatments of the solubility of polymers :reported in 'the literature. Byapplying thermodynamic, statistical, statistical thermodynamic and statistical mechanical modelsas well as -'ractal aggregation kinetics and, more recently molecular mechanics calculations,various theories have been developed for homogeneous and heterogeneous polymers andasphaltenes. For asphaltene solubility and precipitation point calculations., .the mhost notabletreatment is in terms .of the simple solution thermodynamic.'model-based. :equation 23 whichrelates the solubility of asphaltene to a combination of the.solubility parameter with the Flory-Huggins entropy of:mixing for -polymer solutions..

'n order to understand this we need 'to consider the .equation for the energy of mixing for -onemole of solution, given by the Hildebrand-Scatchard (H-S) equation

-469-

Page 17: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

i. atie i'*-..t nree-.cn~mensionai soiuD1it~y parametmers 01i various. JIqUIC L at

Solvent

benzenemethyl .chloridemethylene chloridechloroformcarbon tetrachloridetetrahydrofurandiethyl etheracetoneacetophenonemethyl isobuatyI ketonemethyl. isoamyl ketonenitrobenzenepyridineanilinequinoline

carbon disulfidedimethyl i.ulfoxidedimethyl .sulfonebenzyl alcohol.cycohexanolo-dichlorobenzenewaterb-asphaltene:asphaltenenaphthalenec-methylnaphthalenephenanthreneanthracenepentene-.1*hexene-1heptene-1octene-1.none-idecene-1cyclopentenemethylcyclopentaneethylcyclopentaneethylcyciohexaneundecanedodecane

Molar volume..V

89,4

63,.980.797.181.7

1.04.874.0

117.41.25.8142.8102.7

80.991.5

11.8.060,07.1.37.5.0-

1036106.01.12.8

18.0

a .molar mass

-470 -

2 Solid, treated as supercooled liquid. b Values uncertain. c Athabasca asphaitene with3,920 gmol-' (from Ref,,22),

:8.D

18.415.313.417.817.81.6.814.515.519.,61:5.3

15.917.619.019.4

19.4.204.18A419,0*

17.418.01!5.520.2

Parameters

06.1

11,73.105,72,9

'10.48.66.15.7

14.08.85.16.90

16.319.46.34-19.8

15.92.0

2.00.8

4.13;9

3.63 .53.4

.3..35,83.53.32.60.00.0

(MPa1+2)

2.03.99.6:

5-.70.68.05.1.6.93.74.14.10.05.9

10.28.90.6

10.212,21-3.713,5

0.042124..,0

3;9.4,7

2,72.3

1.34.10.00.00,0

0.00,0

8(total)18.5 •.

16.920.2

17,819.515.619.92.1.7.1.7.017,417.4;

22.521.822.522.420426.629.823.8224201547,7

20.720.319.721,220,020.314.51-5.015.3

15.8

1-6.0

16.2.16.3.16.016.2

19220.6

-13.914.414.6i5.015'.415.715.315.715.916.116,016.2

Page 18: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Composition of Asphaltene

AMU=. (XL L + XA VA) .(8L- 5 A)2 CA,

where r VA/V L =xL/(mxA+xL), A.= m XA/(n'XA + XL), isthe molar volume. and x isthe. mole fraction.The most important derived molar property, from the -.-S equation.is the activity coefficientfA

RTJn (f) = RTIn (aA/x,) =V A.(8L -6A)

where "a" is the activity. The .infinitely dilute solution where VAxA << VL. xL, RTIn (aA/xA) =.VA(VLxL/V~xA + Vx)( t A)I =VA (.- a) These equations are valid forthe binary mixtureg of'species4'andL where n, 'the molecular sizes, are not too :different. If this conidition is not met the inclusion of acorrection term, the Flory-Huggins size effect term is necessary This involves replacing .-RlnxA in theentropy of mixing with .- R[In xA + 41, (1 - VL/VA)].. Various modifications of the resulting equation led todifferent results -as -illustrated by Eqs-. (7-9):

'EVA =exp - K Y.(- [I ~L 2 L] (7)

Here,fvAis the volume fraction of asphaltene soluble in the crude oil (liquid), VA and VL are themolar volumes of asphaltene and- crude oil (liquid) and 8 A and SL are the respective solubilityparameters.

The Flory-Huggins term appended activity coefficient function, has been used withvarious. modifications -with lesser -or greater success for "molecularly dispersed" asphaltenesolutions in pure. solvents or solvent mixtures and' in deasphaltened crude oil. Anotherexample 22,25 of this 'is Eq. (8)

K, = ex p ~1 - KL+In (7~V) +~~ ~j 8

and its three-dimensional variant, Eq. (9)

K1 =.exp 1- - +. In RT [(5-D1 5D> -bv[Lpm + H -. Hm) 1. (9)

where Kis the equilibrium ratiox//x/(xJ and x/ are the solid- and liquid-phase mole fractions of-component i), V/- and. V, are the liquid-phase molar volumes of component i and the solvent, .andthe variable :b is a weighting factor, The expression containing the squared differences of thesolubility parameters in Eq. (9) is the distance between the solvent solubility "sphere" and thesolubility sphere of asphaltene -component -i The closer the two spheres, the more likely theasphaltene to.be dissolved.

Eq.. (7) gave. good results for precipitation point predictions when nonassociatedasphaltenes were treated as. homogeneous substances, but predictios .for. the amount ofprecipitated asphaltene were lss satisfactory.. In recent studies on Athabasca asphaltene, themolar mass distribution was determined experimentally and correlations were developed .forthe physical properties .required for the solubility calculations: molar volume and the solubilityparameter. Solubility curves calculated -this way for 'Eqs, (8) and (9) in comparison withexperimental measurements are. shown in Figures 14.4 and 14,5. It is .seen that both the one-'dimensional and-the three-dimensional solubility parameter models correctly predict the solubility.of asphaltene in nonpolar and slightly polar solvents including :normaland branched alkanes,aromatics, dichlioromethane, .i-hexene and decalin. In: slightly more polar media the three-'dimensional model gives better results.for the solubility.ofasphaltene than the one-dimensional

-471-

Page 19: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

.0.1 0.2 0.3 0.4 0.5 0.0. 07Volume fraction of toluene in solvent mixture

:0.0 0.1. 0.2 :0,3 Q4 .0. 0.8 0.7Volume fraction of toluene insolvent mixture

Figure 14,4 Solubility of asphaltenes in solutions of.toluene/n-alkanes. 0, precipitation method,0, solubility method;--, one-dimensional model, Eq. (8), - - -, three-dimensional model, Eq.(9). From K.. Mannistu., et al, Ref. 22. © 1997, American Chemical Society,

C

0

0..0 0.1 .0.2 0,3 0.4 .0.5 0.6-Volume fraction of dichloromethane in solvent mixture.

• tQtuene/acetone

S :Q2 04 0.6 0.8

'Volume fraction of toluene In solVent mixture

Figure 14.5 Solubility of asphaltenes in solutions of dichloromethane/n-hexane and toluene/•acetone. 9, precipitation method, Q, :solubility.method; -, .one-dimensional model, Eq. (8), - -,three-dimensional model, Eq. (9).From.K.D. Mannistu eta/, Ref.,22.© 1997, American ChemicalSociety.

- 472 -

Ck .

*0.

0.8

2,

0.01.0

0.

oQ)

-0.4

0.0

.0.8

0.0 "0.0

Page 20: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Composition. ofAsphaltene

model. For highly polar solvents the one-dimensional model fails, while the three-dimensionalmodel gives results of limited validity.*

It has also been observed22 :25 ,26 that -the amount of asphaltene precipitate is greaterwhen the asphaltene is -dissolved from. a solid form than when it is precipitated from solution.This behavior is not consistent with the solubility model for asphaltene considered thus far, :andthe reasons .for the observed "hysteresis" will be discussed later in this chapter.

None. of the soubility models discussed above takes into consideration the presence ofelectrica charges or .free spins on asphaltene (or the -stream electrical .charges in a flow of oilthrough a pipe).

A diagrammatic :approach to the solubility of asphaltene employs a two-dimensionalsolubility parameter 'field 'in which a.closed'area representing the complete solubility domain ofa petroleum. fraction is mapped out. The 'two solubility 'parameters used are the complexingsolubility parameter 8c and the.-field force solubility parameter SFF- The former is- considered tobe the measure of the "interaction energy that requires a specific orientation between an atomofone molecule and -a second atom of a different molecule" (essentiallythe vectorial sum of Spand H, i.e. c = + ') and the.latter to be the measure.of'the.interaction energy of the.liquidthat. is not destroyed by changes in the orientation of'the molecules". Hydrogen bonding anddonor-acceptor interactions -are part of the complexing solubility parameter component andvan derWaals and dipole interactions are part of the field'force'solubility parameter component.The solvent power of each liquid is repres'ented by a vector from the origin to a point on thesediagrams, Figure 14.6, with the magnitude, of the vector being 'the -overall solubility parameter80=Q AC + OFfJ

In the 'plots of Figure '14.627 the.'residue fractions -are divided according to whether theyare completely soluble, partially soluble or insoluble.This defines solubility polygon areas'basedon the fact that mixtures of solvents are solvents. Even nonsolvents on one side of the. solubilitydomain can be mixed: with nonsolvents on the oth*er side to. form solvents. Examples are. seen inFigure 14.6D for 50-50% by volume of methyl ethyl ketone and n-hexane and -tetrahydro-quinoline with cyclohexane and with decalin.

This method, aside:from its .simplicity, offers the advantage that solubility is not definedby a single point-a single solubility parameter value-but instead by a visual image of a closeddomain in a solubility parameter field. In the example provided by'the Cold Lake residue fractionsit is 'seen that the saturate fraction has .low solubility, even in moderately-complexing .liquids.The large -solubility area of the aromatics is attributed to the low.molecularm ass of'this fraction,.the lowest among the fractions. Asphaltene, as seen, requires high S FF and low Sc values.formaximum solubility It is: noted that solvents for cokerepresent a subset of-solvents for asphaltene,asphaltene for resins,, resins. for- aromatics meaning that solvents for asphaltene are solvents forresins, etic. and neither these fractions can be solvent extracted but can readily be precipitated.

* It is interesting to, note the linear relationship in Figure 14.3 between measured. asphaltene solubilityand the solubility parameter (q = a (8-8,5), where q is the amount of precipitate f6ri'ed and a is a.proportionality factor) in contrast to the -exponential character of Eqs, (7-9) as well.as that.oC'the equationIn xa = -/RTp, [(8 -9 )2] (Where. xais the mle fraction solubility of the asphaltene, 8S and 8, arethesolubility parameters of the solvent and -the asphaltene, Ma is the molecular weight andp.p is the. density ofasphaltene) derived from. the activity coefficient finction without the Flory-Huggins correction. term'.J.G.Speight, The Chemistry and Technology of Petroleum, Third Edition, 1.999, Marcel'Dekker, N.Y. p. 452.

-473.-

Page 21: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

x InfsOubte PC x Insoluble PCNM NM

* EDA DMSO. Ac EDA DMSOt

w'o'EA. - ,EtA

NE DMF ENE DMF8- p. B 'An '$

An PtA .8* A PtA'E

2- 2-NP DM -- NP NMP

CI DMAA /W M M

Cx A d 1,4D x .. .'.4 " " . ,,"oBL A

6- e" EtA"MK . -'YHONE : w.EC

I /T

EA " MCDSOM _ x' RO "gHO,:

1"CEK4

C HC

Y,

. T

4-H #& t" CV" C C2 0.- e* 'O 4L, 4- P EA . C. EDP , .. DEA./

7 8 9. 10 7 8

Field f~resotubiiity parameter oponents Field force solubility parameter components

Figure 14.6 Two-dimensional solubility parameter diagrams for Cold Lake saturates, aromatics resns

and asphaltenes at concentrations 0.1 g25 rn. The dark triangle in the asphatenes diagram represents

coke.From iA. Wiehe and S.K. Iang,

Ref 27. © 199, Elsevier.

- 474 -

Page 22: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical.. Composition of Asphaltene

The method is clearly an empirical oneand the diagrams in Figure 14.6 would.have to be determined for each asphaltene(fraction) sample over the entire solubility,range.

A simple. schematic approach tothe solubility ofasphaltene2 8 is based ona phase diagram representation in termsof polarity and MW. In the schematicMW. versus. polarity plot. shown in. Figure14.7 the diagonal line for. n-heptaneindicates the phase distribution betweenprecipitated asphaltene, above and to theright of the diagonal line,. and the n-heptane solution of the asphaltene below

Precipitating solvent:

n-cs n-C7 cy-0 6

petr~oleum asphattenes

. . ., " ccal asphaltenes

Polarity

Figure 14.7 Comparison of petroleum and coal asphaltenesprecipitation, Adapted from RB. Long, Ref, 28. 0 1981,American Chemical Society.

and to. the.left of the line. As seen from the diagram, less-polar .materials of higher MW andmore-polar materials of lower MW both precipitate as asphaltene, With w-pentane as theprecipitating. agentthe diagonal line.shifts to the left including both less-polar and lower-M.Wmaterials in the precipitate and therefore increasing the total amount. of precipitate,

The extension at the. lower right, ofthe diagram depicts, the phase distribution. for coalliquids, Coal asphaltenes have lower MWs and, on account of their high phenolic oxygen content,a higher polarity than petroleum asphaltenes. In the diagram, both n-heptane and n-pentaneare shown to cause asphaltene precipitation from either petroleum residua.or coal liquid solutions,but cyclohexane does not cross through the polarity-MW field of the petroleum asphaltene,only that of coal liquids. This. representation illustrates the fact that coal asphaltenes are notsoluble in cyclohexane while'petroleum asphaltenes are.

Thus, even if such a diagrammatic representation does not advance the theory ofasphaltene solubility, it. may serve as a simple educational aid.

A measure of the solvent-solute interaction .is the enthalpy of solution,, but only a.few measurements, of enthalpies of solution have been reported for asphaltene. These includethe heats of solution ofAthabasca asphaltene29 in toluene and xylene to form. 1.0% solutionsat 25QC:

Substance. dissolved Solvent AH/j (g substance dissolved).

bitumen toluene 18.39asphaltene toluene -6.94maltene toluene .8.87bitumen x'ylene 13.20asphaltene xylene -8,88maltene xylene 5.14bitumen methylene chloride 18.2

From these data and.the asphaltene content. of the.bitumen, 17%, it can.be calculated that.upondissolution of 1.0-g asphaltene in 4.98-gmaltene the heat. of dissolution will.,be -73.2j, whichis an order of magnitude larger than the heat of solution in toluene or xylene. Further dilution

-. 4715-

Page 23: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

with the maltene to -give 1.0% solution of the asphaltene would be accompanied by even.moreheat evolution. The :exothermlcity of these processes is a manifestation of solvent .strengthslindicating that the order of solvent -strength for asphaltene in toluene ~ xylene < < maltene, inagreement with the values of the solublity parameters from direct measurements,Tables 14.1,14.3 and 14.4. Also the high exothernicity explains the good solubility ofAthabasca asphaitene

in the :maltene fraction of its bitumen.

Table 14.3 Cot 0 and B2 solubiity parameters30a.5.,MP"11/ 2

Solubility parameter Cot 0V Cot 0 (literature)

Pure hydrocarbons:n- .heptane -1,O0 -1.100 15.31.-heptene .-0.35 - -

cyclohexane 0,.48 +0.35 16.81.,2-dime thylcyclohexane +0.38 - -xylene +2.14. +.73 18,0benzene +2.38 ,+138 .18..8decalin +1,79 -..

tetralin +214 +1,96 19,4

Hydrocarbon mixtures.deodorized varsol -0.21coker gas oil +0.18 -

virgin gas oil +0.18 -

Athabasca coker gas oil +0.82 -

hydrotreated A.C.G.O. +0.91 - -

Athabasca natural gas oil +0.99 - -

.steam cracked -gas oil +1.12cracked.gas .oil +1.28 - -

Solvesso + 150 +2.37 +2.41 1.7.3'heavy aromatic naphtha t2.75 - -

Other pure solvents.isobutylheptylketone +1.41 +0,80 15.9pyridine +2.41 +1.30 21.8tetrahydrofu.iran +2,.41 - 19.5carbon tetrachioride +1.94 +1.19 -17.7"trichloroethylene +2,41 +1.46 19.0o-dichlorobenzene +4.13 +2.90 20.8

Table 14.4 Solubility parameter and compositional data for Athabasca bitumen compoundclass fractions30a

Oil fraction Solubilityparameter .H/C ratio Wt%

Cot 0V sulfur nitrogen

Saturates 1.i 1.65 1.9 <0.02Aromatks 3.2 1.38 5,9 0.2Resin 1 4.0 1.53 5,4 0,7Resin 2* 4.5 1.46 5,1 0.9Asphaltene - 1.23 8.2 1.2Maltene 2.4 - -

* More polar.

-476-

Page 24: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Composition ofAsphaltene

The endothermicity of the dissolution in maltene is due in part to the low affinity ofthearomatic solvents for the saturate fraction of the maltene and'in part to the much higher cohesionenergy density of the resin fraction of the 'maltene compared 'to that of the aromatic solvents(v.i. and-Tables 14.3 and 14.4).

As has been discussed above, in solubility parameter theory, solubility-that 'S, themaximum amount of solute that a given quantity of solvent under a given cOndition is capableof keeping in solution-i's related to the total cohesion energy or internal pressure, i. e.,solubilityparameters of the sOlVent and solute..Solubility parameters can be calculated from a- variety ofdifferent physlical properties of a substance; however, direct measurement of solubility yieldsthe. most reliable data. For this -reason, other empirical methods for solubility parametermeasurements and comparisons have been proposed. The one employed at the Imperial Oilresearch depattment in Sarnia 3° a in the late 1950s-early 1960s is based :on incompatibilityarising:from the insolubility of the least-soluble asphaltene components ofthe oiL30 This criticalsolubility pointr-precipitation -point or flocculafion threshold:-- of asphaltenes was determinedby titrating oil in solution with -different solvents against'a reference titrant, such as 'n-heptane,using microscopic observations of the -precipitation end point.

The -method is -illustrated schematically.in. Figure 14.8. The volumes of solvent perweight of oil are plotted as a .function of thevolume oftitrant per weight of oil Good solventsgive positive slopes, Figure 14.SA, If the line is

vertical, Figure 14.8B., :the :asphaltenes are:criticallysoluble in the solvent. If the line .has anegative slope, Figures 14.8C and D, it represents.a poor solvent, When the solvent and titrant arethe same the slope of the line is -45 6 with the x-axis. The smaller the positiveslope the better thesolvent, Figure 14.8E. Thus, the slope of thelinedescribed for a 'given solvent-titrant system is ameasure of the solvent power of the solvent andcot 0, Figure 14.8F, is a :practical measure of thesolvent power for hydrocarbon mixtures. Theexperimental procedure is relatively quick andgives reproducible .results-whlich.are transposablefrom one solveint system to the -other. Some.examples of the.results are :shown in Figures 14:9and 14.10 where the characteristic nature of thex-axis intercept for a particular precipitant isillustrated for pure and 'industrial hydrocarbons,and the characteristic nature, of the y-axisintercept: for a particular solvent;

"Values of cot'0, (Volume) and cot 0 (m0lar)solubility -parameters- relative to .n-heptane aregiven in Table 14.3 along with their .82 values.The *higher the solvent powejr, 'the larger thepositive value cot 0 will acquire. A poor .solvent

Test describes a line

oilis Asoluble

asphaltenespeipitate

Titrant

Asphaltenes are criticallysolublein solvent

Solvent = titrant

.General descriptionof solvent

Relative solvent -power

Cot 0 is a measure

Titranl Titrant

Figure 14.8 Interpretation of 'the cot 0 solubilityparameter. From Ref. 30a.

-. 477.-

Page 25: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

ChemistryofAlberta Oil Sands

0 1' 2 3 4 5 6 7 8 9 10Titrnt (n-heptane) to.oil ratio (mUg)

0 'deodtorlz~d /

8- varsof rgin 1 ;2,:dimethyl / lollexanegas oil cyclohexane,/A

6& Ahabascanatural gas oil

Sn-hptane xylene

01.- - - tetra]in

0 5. 10 15 20 2.5 30Titrant (deodorized varsol) to o ratio (mUg)

Figure 14.9 Experimental titration plots for the. cot 0 solubility parameter. From Ref...30(a),

1 . 1 L I I I

0 20 40 60 80 100. 120 140. 1Titrant to oil ratio (mmoles/g oil)

-VV 1-0

- Ct I " I i I

20 40 .60 80 100 120Titrant to.oil"ratio (mmoles/g oil)

-20

-40 Figure 14.10 Experimental titration plots for the cot ~ solubility parameter for pure and industrla1~hydrocarbon

Figure 14.10 EXperimental titration plots for the cot 0 solubility parameter for pure andindustrial.hydrocarbonsolvents showing y-axis intercepts. From Ref. 30(a).

- 478.-

titrantsolvent n-heptane deodorized

varsol

1,2-dimethylcycfoheXane 14 Acyclohexane T

xylene ( W

tetralln 0 0

titranilvent n n deodorized,

n-heptane varsol

.4 Adeodorized varso v "

virgin gas oil a3Athabasca natural gas oil 0 0

Page 26: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemical Composition of Asphaltene

has a negative value and the titrant has a value.of-1.0. Solvents with values below -1 are poorersolvents than the titrant and solvents in which asphaltenes are just critically soluble have a cot0 value of zero.*

Cot O solubility parameters for the low-hydrogen-bonding hydrocarbons with 82 - 19,4MPa1 2 correlate well with -2 but polar solvents like pyridine and ketones do not.

At the critical solubility point the interfacial tension between the immiscible phaseschanges from zero to a positive value. Also, cot 0 is zero at the critical solubility point and hence

x=nI .cot o rn= o, (10)

X= I

where m is the molefraction of the solvent component x.'From this equation cot O:values can becalculated for a single component of solvent mixtures..If the solubility parameter of the tittantis known the: solubility parameter of the solvent can be.calculated and vise versa.

Cot .0 Values for the silica gel separated class fractions of a bitumen, along with somecompositional data, are presented in Table 14.4. The data -predict increasing- solvent powers forasphaltene in the order.saturates < aromatics < resin I !< resin 2. Moreover, the resins 2 (cot =4.5) are far superior solvents:to any pure solvent (cot 0, (max) - 4.13).

Following these .earlier studies, since the early 1980s various other methods for thedetermination of the flocculation threshold have been developed (or reported as being underdevelopment) and employed in the oil industry. These incorporate more advanced detectiontechniques, overcoming the -drawbacks of visible light/visual microscopic detection systems.They include, among others, the following:i) infrared laser llght/variable length fiber optics/photodetector;.ii) capillary viscometry;'iii) electrical conductivity measurements;iV) optical fluorescence spectroscopy/cross-polarization microscopy;v) differential scanning calorimetry;vi) refractive index measurement. This method. is based on the correlation between the

.Hildebrand solubility parameter and the cohesion -parameter "a" in .the .van der Waalsequation of state (which is a.different.measure of the internal pressure.):

=142

82 (11)

The correlation can be shown,31 with some assumptions, tolead to-the following expressionfor 82 in terms ofthe refractive -index n:

(F x '\)1/2 03 n2-

k388 4 o) V/N (n2 + 2) 3 4 (12)

where a is the hard -sphere diameter of the molecule, h is Planck's constant, .U is -the UVabsorption frequency and Nis Avogadro's number;

vii) laser photon correlation spectroscopy;viii) particle size analysis;ix) heat transfer analysis, etc.

. 0 1s characteristic for the solvent relative to the titrant; the x-axis intercept is a characteristic of the oiland it is a measure of the stability :ofthe asphaltene solution in the oil; the y-apds intercept is a characteristicof the solvent, independent of the titrant used and is a measure of solvent power.

-479-.

Page 27: The Chemistry of Alberta Oil Sands, Bitumens and Heavy Oils

Chemistry of Alberta Oil Sands

Employing a flocculation -threshold -point apparatus,the design ofwhich was based on technique "'i", a "precipitationpotential" scale has been established 32 for a set of solvents/precipitants. On this scale, Figure 14.11,'precipitants have posi-tive precipitation potentials .and solvents negative precipitationpotentials. The.rankings (according to solvent power) reportedcorrelate -well with the cot 0 values.

Returning to 'Figure .14.1 we note-that the difference.in yields between 'the n-heptane and the n-decane precipitateis quite small, but the n-pentan-e precipitate. yield is about 1.5-2..5 times .greater than the -n-heptane precipitate yield, Thehigher alkanes precipitate only the least-rs6luble portions ofthe asphaltene which, in general, have a different compositionand.MW from. the lower-alkane-precipitated asphahenes. Theyield of the material corresponding to the difference betweenn-pentane and propane precipitation is quite large and thismaterial was defined in the early days of petroleum chemistryas the resin fraction of the oil..

SolVents

38 '.... pyridine

-3.26----.- -

-2.52 .:-

chloroformTHF

toluen benzene

-2.36 -.. .ye..

-1.69 ......tetralin -

-1,47 .....n-dodecylbenzene -

.decalin

. . ....... --- .66

diisopropylbenzere............-. 1,30

-0,38 ...... cyclohexane

V

dodecylcyclohexane ................ 075

.0.99 - -, -n-heptane

1,04 -...

-n-decane

-n-dodecane1.00

12 -- n-pentane

The material corresponding to the 'difference between n-hexadecn. .

the n-pentane and n-heptane precipitates represents low-MWasphaltene fragments and maltene molecules adsorbed to theasphaltene. These materials are analogous to what used to be 2,73-.- squalanecalled the'"difference asphaltene"., the material which is remov-able .from n-C 5-asphaltene by ether extraction. The quant- Precipitantsities of the "difference asphaltenes" for a number ofAthabascaoil sand and conventional crude oil asphaltenes have been Figure 14.11 Precipitation potentialreported to 'comprise 30-35% of the n-C-asphaltene. scale. From G. Hotier.andM. Robin,

r e t Ref, 32. Q 1983, Inst. Franc.'Petr.Sequential extraction ofAthabasca n-'C5 -asphaltene33 havingan initial number average .(VPO) molecular weight of 3350gmolI with n-pentane, :ethanol, acetone and ethyl acetate 'removed 37% 'of the asphaltene andthe molecular weight of the residual asphaltene increased to 6320 g-mo1- 1. The color of theisolated asphaltene -varies with the mode of separation. Thus the native, Athabasca n-C5-asphaltene has a dark brown color.. After acetone extraction, which removes 21-22% material.,"the extract has a deep eddish-brown color and the extracted asphaltene is black.

The shapes of the curves in Figure 1.4.1 are probably representative of most nativebitumens and petroleum vacuum residua but conventional crude oils may .show considerabledeparture from 'these curves, Examples of such departures are provided:by the Rengiu, Zhongyuanand. Shengly crudes .from China 34 with 10-15% n-C-5-asphaltene -and less than 0.2% n-C 7-asphaltene contents. Thus, some 98% ofthese n-C.-asphaltenes should be considered to be resins;

2.1.1 General solvency and chemistry

It has been known for some time that the intermolecular forces between hydrocarbons and.nonpolar, non-hydrogen-bonded .molecules are, in general, dominated by London dispersionforces. The interaction energy, ej generated 'between molecule A and molecule B by dispersionforces is given by the equation

- 480.-