The boundedness of the L1-norm of Walsh-Fejér...

24
The boundedness of the L 1 -norm of Walsh-Fej´ er kernels Rodolfo Toledo University of Ny´ ıregyh ´ aza August 26, 2016 6th Workshop on Fourier Analysis and Related Fields ecs, Hungary R. Toledo (University of Ny´ ıregyh ´ aza) The boundedness of the L 1 -norm of ... 6th Workshop on Fourier... 1 / 24

Transcript of The boundedness of the L1-norm of Walsh-Fejér...

  • The boundedness of the L1-norm of Walsh-Fejérkernels

    Rodolfo Toledo

    University of Nyı́regyháza

    August 26, 2016

    6th Workshop on Fourier Analysis and Related Fields

    Pécs, Hungary

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 1 / 24

  • Trigonometric system

    The L1-norm of kernels corresponding to operators related toorthonormal systems plays an important role in the convergence oforthogonal series.

    Dirichlet kernels:

    Dn(x) =1

    2π+

    n∑k=1

    cos k(x) =1π·

    sin(n + 12)(x)2 sin 12(x)

    Lebesgue constants:

    Ln =∫ 2π

    0|Dn(x)|dx =

    ∫ π2

    0

    ∣∣∣∣sin(2n + 1)tsin t∣∣∣∣ dt

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 2 / 24

  • Trigonometric system

    Fejér (1910)

    Ln =4π2

    log n + a0 + εn (εn → 0).

    Thus Ln = O(log n).

    Gábor Szegő (1921)

    Ln =16π2

    ∞∑k=1

    14k2 − 1

    (1 +

    13

    +15

    + · · ·+ 12k(2n + 1)− 1

    )

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 3 / 24

  • Trigonometric system

    Fejér kernels:

    Knf (x) :=D0f (x) + D1f (x) + · · ·+ Dnf (x)

    n + 1

    =1

    2(n + 1)π

    (sin (n+1)(x)2

    sin x2

    )2≥ 0,

    However ∫ 2π0|Kn(t , x)|dt = 1

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 4 / 24

  • The Walsh-Paley system

    The binary expansion n = (n0,n1, . . . ) of the number n ∈ N:

    n =∞∑

    k=0

    nk2k , (nk = 0 or nk = 1)

    The binary expansion x = (x0, x1, . . . ) of the number x ∈ [0,1[:

    x =∞∑

    k=0

    xk2k+1

    , (xk = 0 or xk = 1)

    The Rademacher system:

    rk (x) := (−1)xk ,

    where k ∈ N and x ∈ [0,1[.Figure: Rademacher function r3

    The Rademacher system is orthonormal, but not complete.R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 5 / 24

  • The Walsh-Paley system

    Walsh functions:The finite product of Rademacher functions.

    The Walsh-Paley system:

    ωn(x) :=∞∏

    k=0

    rnkk (x) = (−1)∑∞

    k=0 xk nk (x ∈ [0,1[,n ∈ N).

    The Walsh-Paley system is an orthonormal and complete systemdefined on the interval [0,1[.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 6 / 24

  • The Walsh-Paley system

    Walsh-Dirichlet kernels:

    Dn(x) :=n−1∑k=0

    ωk (x) (x ∈ [0,1[)

    Dyadic intervals:

    Ik (i) :=[

    i2k,i + 12k

    [(i = 0, . . . ,2k − 1), Ik := Ik (0)

    Paley’s lemma:

    D2k (x) =

    {2k , x ∈ Ik ,0, x ∈ [0,1[\Ik .

    Figure: Dirichlet kernel D8

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 7 / 24

  • Walsh-Lebesgue constants

    Walsh-Lebesgue constants:

    Ln :=∫ 1

    0|Dn(x)|dx (n ∈ N).

    Figure: Walsh-Lebesgue constants

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 8 / 24

  • Walsh-Lebesgue constants

    Fine (1949)Iteration for Walsh-Lebesgue constants: If n = 2k + m where0 ≤ m < 2k , then

    Ln = 1 + Lm −m2k.

    Properties (Fine)Ln = O(log n)L2n = Ln

    L2n+1 =1 + Ln + Ln+1

    21n∑n

    k=1 Lk ≥ C log n

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 9 / 24

  • The L1-norm of Walsh-Fejér kernels

    Walsh-Fejér kernels: If x ∈ [0,1[

    Kn(x) :=1n

    n∑k=1

    Dk (x), ‖Kn‖1 :=∫ 1

    0|Kn(x)|dx

    Figure: The L1-norm of Walsh-Fejér kernels

    The property ‖Kn‖1 ≤ 2 holds for all n ∈ P.R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 10 / 24

  • The L1-norm of Walsh-Fejér kernels

    Yano (1951)

    K2k (x) =

    2k+1

    2 , x ∈ Ik ,2j−1, x ∈ Ik (2k−j−1), j = 0,1, . . . , k − 10, elsewhere in [0,1[.

    Note that if x ∈ Ik (2k−j−1), then x = (0, . . . ,0︸ ︷︷ ︸j

    ,1,0, . . . ,0︸ ︷︷ ︸k−j−1

    , xk , xk+1, . . . )

    Figure: K32 Walsh-Fejér kernel K32

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 11 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    Iteration for the L1-norm of Walsh-Fejér kernels: It was unknown untilnow.

    The idea: Let n < 2k+1. Let us look at the values of Dn(x) when K2k (x)is positive.

    LemmaLet k ,n ∈ N such that n < 2k+1.

    If x ∈ Ik+1 then Dn(x) = n.If x ∈ Ik \ Ik+1 then

    Dn(x) =

    {n, n < 2k ,2k+1 − n, 2k ≤ n < 2k+1.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 12 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    Lemma (continue)

    Suppose x ∈ Ik (2k−j−1) for some j = 0,1, . . . , k − 1 and let p andn′ be non-negative integers such that n = p2j+1 + n′ holds, where0 ≤ n′ < 2j+1. If n < 2k or also, if n ≥ 2k but x is in the first half ofthe interval Ik (2k−j−1) then

    Dn(x) =

    {n′, n′ < 2j ,2j+1 − n′, 2j ≤ n′ < 2j+1.

    Moreover, if n ≥ 2k and x is in the second half of the intervalIk (2k−j−1) then

    Dn(x) =

    {−n′, n′ < 2j ,n′ − 2j+1, 2j ≤ n′ < 2j+1.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 13 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    Corollary

    If n < 2k+1, then the value of Kn(x) is nonnegative if the value ofK2k (x) is positive.

    LemmaLet k ,n ∈ N such that n < 2k+1.

    If x ∈ Ik+1 then

    nKn(x) =n(n + 1)

    2.

    If x ∈ Ik \ Ik+1 then

    nKn(x) =

    {n(n+1)

    2 , n < 2k ,

    n(n+1)2 − (n − 2

    k )(n − 2k + 1), 2k ≤ n < 2k+1.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 14 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    Lemma (continue)

    Suppose x ∈ Ik (2k−j−1) for some j = 0,1, . . . , k − 1 and let p andn′ be non-negative integers such that n = p2j+1 + n′ holds, where0 ≤ n′ < 2j+1. If n < 2k or also, if n ≥ 2k but x is in the first half ofthe interval Ik (2k−j−1) then

    nKn(x) =

    {p4j + n

    ′(n′+1)2 , n

    ′ < 2j ,p4j + n

    ′(n′+1)2 − (n

    ′ − 2j)(n′ − 2j + 1), 2j ≤ n′ < 2j+1.

    Moreover, if n ≥ 2k and x is in the second half of the intervalIk (2k−j−1) then

    nKn(x) =

    {2k+j − p4j − n

    ′(n′+1)2 , n

    ′ < 2j ,2k+j − p4j − n

    ′(n′+1)2 + (n

    ′ − 2j)(n′ − 2j + 1), 2j ≤ n′ < 2j+1.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 15 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    New notation:

    n′j :=j∑

    i=0

    ni2i = n mod 2j+1,

    where j is a nonnegative integer.

    Theorem

    Let k ∈ N and n be a positive integer such that 2k ≤ n < 2k+1. Then,the following iteration is valid:

    n‖Kn‖1 =n + n′k−1‖Kn′k−1‖1 −Γn

    2k+1,

    where

    Γn := 2n′k−1(n′k−1 + 1) +

    k−1∑j=1

    (nj2j(2j − 1) + (1− 2nj)n′j−1(n

    ′j−1 + 1)

    ).

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 16 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    The essence of the proof:

    n‖Kn‖1 =∫

    A|nKn(x)|dx +

    ∫A|nKn(x)|dx := I1 + I2,

    where

    A =k−1⋃j=0

    Ik (2k−j−1) ∪ Ik

    and use the iteration nKn = 2kK2k + mD2k + rkmKm.

    I1 =

    ∫A

    2kK2k (x) + mD2k (x) dx +∫

    Ark (x)mKm(x) dx = 2k + m + 0 = n

    I2 =

    ∫A|0+rk (x)mKm(x)|dx =

    ∫A|mKm(x)|dx = ‖mKm‖1−

    ∫A

    mKm(x) dx

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 17 / 24

  • Iteration for the L1-norm of Walsh-Fejér kernels

    New notation: Let n = 2k0 + 2k1 + · · ·+ 2ks , where k0 < k1 < · · · < ks.Denote

    n′ki =i∑

    r=0

    2kr

    where i = 0,1, . . . , s.

    Theorem

    Suppose that n = 2k0 + 2k1 + · · ·+ 2ks , where k0 < k1 < · · · < ks arenonnegative integers. Then

    n‖Kn‖1 =n + n′ks−1‖Kn′ks−1‖1 −

    Γn2ks+1

    ,

    where

    Γn = n′ks−1(3n′ks−1 + 2) +

    s−1∑i=0

    (4ki + (ki+1 − ki − 2)n′ki (n

    ′ki + 1)

    ).

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 18 / 24

  • Properties of the L1-norm of Walsh-Fejér kernels

    Let n = 2k0 + 2k1 + · · ·+ 2ks and denote

    γn := 2n′ks−1 +s−1∑i=0

    (ki+1 − ki − 2)n′ki (n ∈ P)

    Lemma

    γn ≥ 0 and γn = 0 if and only if n is a power of 2.

    Theorem

    ‖K2n‖1 − ‖Kn‖1 =1

    4n

    (γn′k02k0

    +γn′k12k1

    + · · ·+γn′ks2ks

    )≥ 0

    and the equality holds if and only if n is a power of 2.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 19 / 24

  • Properties of the L1-norm of Walsh-Fejér kernels

    Theorem

    Let k ∈ N. If n,m ≥ 2k and n + m = 3 · 2k − 1, then

    n‖Kn‖1 −m‖Km‖1 = n −m.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 20 / 24

  • Properties of the L1-norm of Walsh-Fejér kernels

    For a fixed positive integer k denote by n∗(k) the index less than 2k+1

    such that‖Kn∗(k)‖1 = max{‖Kn‖1 : 1 ≤ n < 2k+1}.

    Theorem

    Let k ∈ P. Then1 If k is even then n∗(k) = 1 + 22 + 24 + · · ·+ 2k and

    ‖Kn∗(k)‖1 =1715− s + 1

    4s+1 − 1+

    15 · 4s

    ,

    where s = k2 .

    2 If k is odd then n∗(k) = 21 + 23 + · · ·+ 2k and

    ‖Kn∗(k)‖1 =1715− 1

    2s + 1

    4s+1 − 1+

    130 · 4s

    ,

    where s = k−12 .

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 21 / 24

  • Properties of the L1-norm of Walsh-Fejér kernels

    Theorem

    sup{‖Kn‖1 : n ∈ P} =1715

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 22 / 24

  • Publication

    https://doi.org/10.1016/j.jmaa.2017.07.075

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 23 / 24

  • Thank you for your attention.

    R. Toledo (University of Nyı́regyháza) The boundedness of the L1-norm of ... 6th Workshop on Fourier... 24 / 24