Thales nano reactor overview jan 2013

67
Accessing new chemical space with flow chemistry Heather Graehl, MS, MBA Director of Sales North America

description

 

Transcript of Thales nano reactor overview jan 2013

Page 1: Thales nano reactor overview jan 2013

Accessing new chemical space with flow chemistry

Heather Graehl, MS, MBA Director of Sales North America

Page 2: Thales nano reactor overview jan 2013

Agenda •  Company Background •  Intro to Flow Chemistry •  H-Cube Pro Overview •  Reaction Examples •  Gas Module for H-Cube Pro •  Phoenix Module for H-Cube Pro

Page 3: Thales nano reactor overview jan 2013

Who  are  we?  

•  ThalesNano  is  a  technology  company  that  gives  chemists  tools  to  perform  novel,  previously  inaccessible  chemistry  safer,  faster,  and  simpler.  

•  Market  leader:  800  customer  install  base  on  6  conDnents.  •  10  years  old-­‐most  established  flow  reactor  company.  •  33  employees  with  own  chemistry  team.  

•  Headquarters  in  Budapest  •  R&D  Top  100  Award  Winner.

Page 4: Thales nano reactor overview jan 2013

Customers (>800 worldwide)

§  20 out of 20 top pharmaceutical §  Top 3 agrochemical companies §  Petrochemical emerging

Page 5: Thales nano reactor overview jan 2013

Number of Publications on ThalesNano Instruments

0 2 4 6 8

10 12 14 16 18 20

2005

2006

2007

2008

2009

2010

2011

142 in 7 years

Page 6: Thales nano reactor overview jan 2013

What is flow chemistry?

Page 7: Thales nano reactor overview jan 2013

What is flow chemistry?

Performing a reaction continuously by pumping fluid through a coil or fixed bed reactor.

Coil/Glass Chip Homogeneous: Liquid-Liquid

Column Homogeneous: Liquid-Liquid (inert column) Heterogeneous: Liquid-Solid Heterogeneous: Liquid-Solid-Gas

Page 8: Thales nano reactor overview jan 2013

Heating Control

Lower reaction volume. Closer and uniform temperature control

Outcome:

Safer chemistry. Lower possibility of exotherm.

Batch

Flow

Larger solvent volume. Lower temperature control.

Outcome:

More difficult reaction control. Possibility of exotherm.

Page 9: Thales nano reactor overview jan 2013

Heating Control

Lithium Bromide Exchange

Batch

Flow

•  Batch experiment shows temperature increase of 40°C. •  Flow shows little increase in temperature.

Ref: Thomas Schwalbe and Gregor Wille, CPC Systems

Page 10: Thales nano reactor overview jan 2013

Reactants

Products

By-products

Traditional Batch Method

Gas inlet

Reactants

Products

By-products

Batch vs. Flow

Better surface interaction Controlled residence time Elimination of the products

Flow Method

H-Cube Pro™

Page 11: Thales nano reactor overview jan 2013

Catalyst System - CatCart®

• Benefits •  Safety •  No filtration necessary •  Enhanced phase mixing

• Over 100 heterogeneous and Immobilized homogeneous catalysts

10% Pd/C, PtO2, Rh, Ru on C, Al2O3 Raney Ni, Raney Co Pearlmans, Lindlars Catalyst Wilkinson's RhCl(TPP)3 Tetrakis(TPP)palladium Pd(II)EnCat BINAP 30

• Different sizes • 30x4mm • 70x4mm (longer residence time or scale up)

• Ability to pack your own CatCarts • CatCart Packer (with vacuum) • CatCart Closer (no vacuum)

Page 12: Thales nano reactor overview jan 2013

Other Advantages

•  Fast Optimization §  Analytical sample after 5 min to change parameters

•  Safety §  Generate H2 on demand, no tanks §  CatCart system ideal pyrophoric catalysts

•  Automation •  Selectivity

§  Residence time on catalyst controlled, not possible batch

•  Speed §  Better mass transfer, high temp, high pressure §  Optimize for single pass 100% conversion for under

10min reactions

Page 13: Thales nano reactor overview jan 2013

Industry Perspective

Page 14: Thales nano reactor overview jan 2013

The innovation gap

Page 15: Thales nano reactor overview jan 2013

Closing the Innovation Gap

•  Companies are actively looking at new techniques to: §  Decrease reaction times → Faster to market §  Cut down on number steps→Lower cost §  Increase yields→Less purification downstream §  Reduce solvent/waste → Cost savings §  Re-examine industry wide untouchable

chemistries→novel molecules→competitive edge

•  Flow chemistry is one of these techniques being investigated.

Page 16: Thales nano reactor overview jan 2013

Survey  Conducted  

Small  scale:  §  Making  processes  safer  §  Accessing  new  chemistry  

§  Speed  in  synthesis  and  analysis  

§  AutomaDon  

Large  scale:  §  Making  processes  safer  §  Reproducibility-­‐less  batch  to  batch  variaDon  

§  SelecDvity  

   Why  move  to  flow?  

Page 17: Thales nano reactor overview jan 2013

Survey Conducted

What chemistries are of interest?

Difficult to perform chemistries

•  Low temperature exothermic reactions •  Reactions with gases •  Very slow reactions or unaccessible chemistry •  Reactions with selectivity issues

Approx. 30% of reactions!

Page 18: Thales nano reactor overview jan 2013

Catalysis reactor: Modular: H-Cube Pro

H-Cube Pro H2 Generation 150°C, 100 bar Hydrogenation Selective C-C coupling

Gas Module 12 Extra gases 100 bar

Phoenix Module 450°C Novel heterocycles

Automated injection & collection. Optimization

H-Cube Midi H2 Generation 150°C, 100 bar Scale Up

Page 19: Thales nano reactor overview jan 2013

H-Cube Pro

Page 20: Thales nano reactor overview jan 2013

H-Cube Pro Overview

•  HPLC pumps continuous stream of solvent •  Hydrogen generated from water electrolysis •  Sample heated and passed through catalyst •  Up to 150°C and 100 bar (almost 1500 psi!)

Page 21: Thales nano reactor overview jan 2013

In Situ H2 Production No more H2 Tanks or costly bomb rooms Safe hydrogenations up to 1450 PSI!!

Hydrogen generator cells §  Solid Polymer Electrolyte

High-pressure regulating valves

Water separator, flow detector, bubble detector

New on H-Cube Pro: •  Double H2 production •  Full H2 mode at any pressure up to 100bar!

Page 22: Thales nano reactor overview jan 2013

H-Cube Pro Overview

Hydrogenation Reactions

Reactions without H2

§ Nitro Reduction § Nitrile reduction § Heterocycle Saturation § Double bond saturation § Protecting Group hydrogenolysis § Reductive Alkylation § Hydrogenolysis of dehydropyrimidones § Imine Reduction § Desulfurization

No Modules § Suzuki Reaction § Heck Reaction § Catalysis (homogeneous or heterogeneous)

With Adding Modules § Carbonylation § Oxidation § Diels Alder § Rearrangements § Supercritical fluids

Page 23: Thales nano reactor overview jan 2013

H-Cube Pro - Higher temperature capability

Page 24: Thales nano reactor overview jan 2013

Lower temperature capability-more selective

T (oC) p (bar) Flow rate (ml/min) Conversion (%) B Selectivity (%)

20 1, controlled 1 37 99 20 1, controlled 2 65 93 20 1, controlled 3 87 77

Solvent Conc. Temp. (°C) Pressure (bar)

Flow Rate (mL/min)

Product Distribution (%, GC-MS)

A B C EtOH 0.1 M 10 10 1 0 100 0

H-Cube

H-Cube Pro

Page 25: Thales nano reactor overview jan 2013

Simple Validation Reactions (out of 5,000)

10% Pd/C, RT, 1 bar Yield: 86 - 89%

Raney Ni, 70°C, 50 bar, 2M NH3 in MeOH, Yield: >85%

Page 26: Thales nano reactor overview jan 2013

Simple Validation Reactions (out of 5,000)

10% Pd/C, 60˚C, 1 bar Yield: >90%

Batch reaction of {3-[(2-carbazol-9-yl-acetylamino)-methyl]-benzyl}-carbamic acid benzyl ester Reagent: H2, catalyst: 10% Pd/C, EtOH, 1 atm, Yield: 76 % Conn, M. Morgan; Deslongchamps, Ghislain; Mendoza, Javier de; Rebek, Julius; JACSAT; J. Am. Chem. Soc.; EN; 115; 9; 1993; 3548-3557.

Raney Ni, 80˚C, 80 bar Yield: 90%

Batch reference: Reagent: HCOONH4, catalyst: 10% Pd/C, solvent: MeOH, Reaction time: 30 min, 1 atm. Yield: 78 % Kaczmarek, Lukasz; Balicki, Roman; JPCCEM; J. Prakt. Chem/Chem-Ztg.; EN; 336; 8; 1994; 695-697

Page 27: Thales nano reactor overview jan 2013

H-Cube® Reaction Examples

Batch: 200°C, 200 bar, 48 hours

Batch: 150°C, 80 bar, 3 days

Page 28: Thales nano reactor overview jan 2013

Chemoselective hydrogenations

Selective reduction in presence of benzyl protected O or N 5% Pt/C, 75°C, 70 bar, 0,01M, ethanol,no byproduct Yield: 75%

Batch reference: Reagent: aq. NaBH4, Solvent: THF; 0°C, Yield: 76,1 % Nelson, Michael E.; Priestley, Nigel D.; JACSAT; J. Am.

Chem. Soc.; EN; 124; 12; 2002; 2894-2902

Route A: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 25°C. Yield: 80%

Route B: Raney Ni, abs. EtOH, 0,01 M, 70 bar, 100°C. Yield: 85%

No batch reference

Page 29: Thales nano reactor overview jan 2013

Hydrogenations in a simplified manner

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 97% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

Conditions: Au/TiO2, 70 bar, 30°C, residence time 17s Results: 100% conversion, 100% yield

H-Cube® - Chemoselective hydrogenations

Ürge, L.et al. submitted for publication

Selective hydrogenation of the double-bond

Selective hydrogenation to afford oxime

Selective hydrogenation of the double-bond

Page 30: Thales nano reactor overview jan 2013

Hydrogenations in a simplified manner

Conditions: 10% Pd/C, 70 bar, 0°C, residence time 16s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 30°C, residence time 11-17s Results: 100% conversion, 100% yield

Conditions: 1% Pt/C, 70 bar, 100°C, residence time 17s Results: 100% conversion, 100% yield

Ürge, L.et al. submitted for publication

H-Cube® - Chemoselective hydrogenations

Nitro group reduction in the presence of a halogen

Nitro group reduction in the presence of Cbz-group

Nitro group reduction without retro-Henry as a

side-reaction

Page 31: Thales nano reactor overview jan 2013

Hydrogenations in a simplified manner

Conditions:

Raney Ni

Full H2 mode

T = 40°C

v = 1 mL/min

c = 0,012M (25 mL, MeCN)

Result: Yield: 95%

Kappe, O.C. et al. J. Comb. Chem., 2005, 7, 641-43

H-Cube® - Dethionation

Conditions:

10% Pd/C

p = 40 bar

T = 50°C

v = 0.5 mL/min

c = 10 mg/mL (MeOH)

Result: Quantitative reaction (was used in the following reaction step without further purification

Porco, J.A. et al. Angew. Chem. Int. Ed., 2009, 48 (8), 1494-1497

H-Cube® - Formyl group reduction

Page 32: Thales nano reactor overview jan 2013

Deuteration

Substrate Product Deuterium content(%)

Isolated yield / %

99 99

97 98

93 97

96 98

96 99

Mándity, I.M.; Martinek, T.A.; Darvas, F.; Fülöp, F.; Tetrahedron Letters; 2009, 50, 4372–4374

Page 33: Thales nano reactor overview jan 2013

Conversion: 90-95% (TLC) Purity: 70% (LC-MS) without work-up

Batch parameters: K3PO4, TBA-Br, Pd(OAc)2, DMF, 2 hours, 130 °C Reference: (Zim, Danilo; Monteiro, Adriano L.; Dupont, Jairton; Tetrahedron Lett.; EN; 41; 43; 2000; 8199-8202)

Suzuki-Miyaura C-C cross coupling:

Sample reactions

Br

N O 2 B

O H O H

N O 2 CatCart TM 70*4 mm Pd EnCat TM BINAP 30, 2-propanol, TBAF, 80°C, 20 bar, 0.05M, 0.5 ml/min

+

Page 34: Thales nano reactor overview jan 2013

Selective Suzuki coupling (Cl, Cl)

The  condiDons  were:  

1  equivalent  of  2,6-­‐dichloroquinoxaline  with  1.2  equivalent  of  o-­‐Tolylboronic  acid    

ConcentraDon  set  to  0.02M  

Solvent:  Methanol  

Base:  NaOH  

AnalyDcs:  GC-­‐MS  

Flow  rate  (ml/min)  

Pressure   Temperature  Catalyst   Base  

Result  (bar)   (oC)   LC-­‐MS,  220nm  

0.8   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  82%  SelecDvity:  48%  

0.3   20   100  Fibrecat  1007  

(70mm)  3  ekv  

Conversion:  99%  SelecDvity:  48%  

0.8   20   100  Fibrecat  1035  

2.5  ekv  Conversion:  16%  

(30mm)   SelecDvity:  100%  

0.8   20   100  Fibrecat  1029  

(30mm)  2.5  ekv  

Conversion:  18%  SelecDvity:  100%  

0.8   20   100  Fibrecat  1048  

(30mm)  2.5  ekv  

Conversion:  40%  SelecDvity:  100%  

0.8   20   100  10%  Pd/C  

2.5  ekv  Conversion:  89%  

(30mm)   SelecDvity:  14%  

0.5   20   50  Fibrecat  1048  

2.5  ekv  Conversion:17%  

(30mm)   SelecDvity:  ~100%  

0.5   20   100  Fibrecat  1048  

2.5  ekv  Conversion:  35%  

(30mm)   SelecDvity:  ~100%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecDvity:  73%  

0.2   20   100  Fibrecat  1007  

2.5  ekv  Conversion:  93%  

(70mm)   SelecDvity:  80%  

0.2   20   100  Fibrecat  1029  

2.5  ekv  Conversion:  12%  

(30mm)   SelecDvity:  100%  

Page 35: Thales nano reactor overview jan 2013

Purity (LCMS): 63%

Batch parameters: Pd(OAc)2, PPh3, TEA, DMF, 3 days, 110°C, yield: 70% Reference: J. Chem. Soc. Dalton Trans., 1998, 1461-1468 J. Chem. Soc. Dalton Trans., 1998, 1461-1468

Heck C-C cross coupling:

Sample reactions

CatCartTM: Pd (PPh3)4, TBAF, 2-propanol, 0.05M, 100oC, 1 bar, 0.2 ml/min.

Page 36: Thales nano reactor overview jan 2013

Conversion: complete Purity (crude azide product): 95-100% (TLC)

Batch reference: (Saxon, Eliana; Luckansky, Sarah J.; Hang, Howard C.; Yu, Chong; Lee, Sandy C.; Bertoyyi, Carolyn R.; J. Am. Chem. Soc. EN; 124; 5`; 2002; 14893-14902) Parameters: NaN3, DMF, 12 hours, 20 °C; Yield: 91%

In-situ organic azide synthesis:

Sample reactions

Page 37: Thales nano reactor overview jan 2013

Faster Optimization

Monitor reaction progress after 5 minutes!

Temperature can be changed during the reaction

50 reaction conditions can be validated in a day.

Page 38: Thales nano reactor overview jan 2013

Example for fast optimization

•  Batch reactions gave results after 4 hours!

H. H., Horváth; G, Papp; Cs., Csajági; F., Joó; Catalysis Communications; 8; 3; 2007; 442-446

Page 39: Thales nano reactor overview jan 2013

Hydrogenation of diphenylacetylene, one day optimization, %f(T)

•  [RuCl2(mTPPMS)2]/Molselect DEAE

•  p(H2) = 30 bar, [S] = 0.1 M •  Solvent: toluene/ethanol 1/1 •  24 experiments, total operation time

is one day H. H., Horváth; G, Papp; Cs., Csajági; F., Joó; Catalysis Communications; 8; 3; 2007; 442-446

Page 40: Thales nano reactor overview jan 2013

Hydrogenation of diphenylacetylene, one day optimization, %f(pressure) [RuCl2(mTPPMS)2]/Molselect DEAE

T = 50 oC, [S] = 0.1 M Solvent: toluene/ethanol 1/1

26 experiments, total operation time is one day

H. H., Horváth; G, Papp; Cs., Csajági; F., Joó; Catalysis Communications; 8; 3; 2007; 442-446

Page 41: Thales nano reactor overview jan 2013

Prof. Oliver Kappe, University of Graz, B. Desai, D. Dallinger, C. O. Kappe, Tetrahedron, 2006, 62, 4651-4664.

University of Graz-Prof. Oliver Kappe

Page 42: Thales nano reactor overview jan 2013

Catalysis reactor: Modular: H-Cube Pro

H-Cube Pro H2 Generation 150°C, 100 bar Hydrogenation Selective C-C coupling

Gas Module 12 Extra gases 100 bar

Phoenix Module 450°C Novel heterocycles

Automated injection & collection. Optimization

H-Cube Midi H2 Generation 150°C, 100 bar Scale Up

Page 43: Thales nano reactor overview jan 2013

H-Cube Pro Modules

Expanding Chemistry Capability of H-Cube and

H-Cube Pro

Page 44: Thales nano reactor overview jan 2013

Gas Module

Page 45: Thales nano reactor overview jan 2013

Gas  Module  

•   Versa7le:    Compressed  Air,  O2,  CO,  C2H4,  SynGas,  CH4,  C2H6,  He,  N2,  N2O,  NO,  Ar.  

•   Fast:    ReacDons  with  other  gases  complete  in  less  than  10  minutes  

•   Powerful:    Up  to  100  bar  capability.  

•   Robust:    All  high  quality  stainless  steel  parts.  

•   Simple:    3  bubon  stand-­‐alone  control  or  via  simple  touch  screen  control  on  H-­‐Cube  Pro™.  

Page 46: Thales nano reactor overview jan 2013

Use of Gas Module Attached to the H-Cube Pro™

Gas Module HPLC pump H-Cube Pro™

Filter included Check valve included

Page 47: Thales nano reactor overview jan 2013

Alcohol oxidation: Optimization

Pressure Temp. (oC) CatCart Conversion Selectivity

40 25 1 % Au/TiO2 0 – 40 65 1 % Au/TiO2 6.5 >85 40 25 1 % Au

/Fe2O3 0 – 40 65 1 % Au

/Fe2O3 12.7 0 40 25 5 % Ru

/Al2O3 2.8 ~100 40 65 5 % Ru

/Al2O3 3.6 ~100 100 65 5 % Ru

/Al2O3 2.7 ~100 100 100 5 % Ru

/Al2O3 8.5 ~100 100 140 5 % Ru

/Al2O3 15.5 ~100 100 65 1 % Au/TiO2 5.6 84 100 100 1 % Au/TiO2 47.2 93 100 140 1 % Au

/TiO2 ~100 93 100 65 1 % Au

/Fe2O3 4 0 100 100 1 % Au

/Fe2O3 31 7 100 • Area% of desired product in GC-MS / (100 – Area% of reactant in GC-MS)

General conditions: H-Cube Pro with Gas Module, 50 mL/min oxygen gas, 1 mL/min liquid flow rate (0.05M in acetone, 20 mL sample volume), CatCart: 70mm., 1 % Au/TiO2 (cartridge: 70mm, THS 01639),

Batch ref.: Oxygen; perruthenate modified mesoporous silicate MCM-41 in toluene T=80°C; 24 h; Bleloch, Andrew; et al. Chemical Communications, 1999 , 8,1907 - 1908

Very fast addition of alcohol to gold surface. Alkoxide formation.

Page 48: Thales nano reactor overview jan 2013

Aromatization of heterocycles

Reaction parameters were tested: -  H-Cube Pro with and without GasModule -  Oxidizing agent: Hydrogen-peroxide and Oxygen -  Catalyst: MnO2, Amerlyst 36, Au/TiO2 -  Solvent: Acetone/H2O2, Acetone -  Temperature 60-150oC, pressure 20-50 bar, flow rate 1 ml/min, concentration: 0.05 mmol/ml

Oxidizing  agent   Solvent   Catalyst  

Temperature  (oC)  

Pressure  (bar)   Conversion   Comment  

MnO2   Acetone   MnO2   60   20   82%   Blockage  afer  10  minutes  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   70   20  68%  afer  1  run  78%  afer  2  run  

H2O2  Acetone  -­‐  H2O2  

(4-­‐1)   Au/TiO2   100   30  68%  afer  1  run  98%  afer  2  run  

The  catalyst  was  reacDvated  with  H2O2  between  the  runs.  

O2  (10  ml/min)   Acetone   Au/TiO2   75   11   8%  

O2  (10  ml/min)   Acetone   Au/TiO2   150   11   95%  

Afer  10  minutes  the  conversion  was  dropped  to  

50%  

O2  (50  ml/min)   Acetone   Au/TiO2   150   20   >  98%  

Page 49: Thales nano reactor overview jan 2013

Ø  Conditions: 100oC, 30 bar, CO gas, 0.5 ml/min liquid flow rate, 0.01 M in THF Ø  Catalyst: Polymer supported Pd(PPh3)4 Ø  Reaction was repeated Ø  Different gas flow rates were tested

Results

Aminocarbonylation

ReacDon  HC-­‐Pro  with  gas  module  (CO  flow  rate)  

10 ml/min

30  ml/min  

30  ml/min  

30  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

60  ml/min  

Conversion  %   60   65   62   66   79   79   79   82  

Reproducible Conversion for Each Flow Rate

Page 50: Thales nano reactor overview jan 2013

Phoenix Module

Page 51: Thales nano reactor overview jan 2013

Phoenix Flow Reactor High Temperature Synthesis

Powerful & New Parameter Space Up to 450°C, 100 bar

Versatile: Cartridges for Heterogeneous and loops homogeneous capabilities.

Fast: Reactions in seconds or minutes.

Chemical Resistance: Stainless steel, Hastelloy, and teflon options

Innovative: Validated procedure to generate novel bicyclic compounds

Scale Up: Different size CatCarts, MidiCart, Loops

Simple: 3 button stand-alone control or via simple touch screen control on H-Cube Pro™.

Page 52: Thales nano reactor overview jan 2013

Catalyst Cartridges (Heterogenous Rxns)

Type   Volume   Max.  T/p  (100  bar  unDl  it  is  indicated  otherwise)  

Comment  

H-­‐Cube  Pro  Type  CatCarts  30  mm   0.38  mL   250°C   Packed  by  

ThalesNano  70  mm     0.76  mL   250°C   Packed  by  

ThalesNano  Metal-­‐Metal  Sealing  High  T  CatCarts    

125  mm  (1/4  SS  id  3  mm)   0.9  mL   450  °C   User  can  fill  125  mm  (1/4  SS  id  3.8  mm)   1.3  mL   450  °C   User  can  fill  125  mm  (1/2  SS  id  9.4mm)   9  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3mm)   1.8  mL   450  °C   User  can  fill,  filters  

are  needed  250  mm  (1/4  SS  id  3.8  mm)   2.6  mL   450  °C    User  can  fill,  filters  

are  needed  250  mm  (1/2  SS  id  9.4mm)   18  mL   450  °C   User  can  fill,  filters  

are  needed  H-­‐Cube  Midi  Type  MidiCarts  

MidiCart   7.6  mL   150  °C   Packed  by  ThalesNano  

Page 53: Thales nano reactor overview jan 2013

Loop-Reactor Options (homogenous rxns)

•  Control Residence/Rxn Time by Length/Volume of Coil.

•  Materials and Sizes §  Stainless steel (1 – 16 mL) – up to

450oC and 100bar •  Coil (1/16” 4-16 ml) •  Short coil (1/16” 1-4ml) •  Static mixer (3/8”, 32ml) •  Acidity limit

§  Hastelloy (4 – 16 ml) – up to 450oC and 100bar

•  Less sensitive to acid though more expensive than stainless steel

§  PTFE coil (4 – 16 ml) – up to 150oC or 20bar

•  Easy to recoil •  Versatile

Page 54: Thales nano reactor overview jan 2013

Places dedicated for connection of Phoenix

2.

1.

1.) reaction in the Phoenix Flow Reactor, followed by a reaction in the H-Cube Pro 2.) reaction in the H-Cube Pro, followed by a reaction in the Phoenix Flow Reactor

i.) if inert CatCart is placed into the H-Cube Pro: reaction in the Phoenix Flow Reactor only ii.) engineering: forget about the H-Cube Pro CatCart place

Page 55: Thales nano reactor overview jan 2013

To Heat Exchanger

Back from Heat Exchanger

To Heat Exchanger Back from Heat Exchanger

Heat exchanger and release valve (140 bar)

Page 56: Thales nano reactor overview jan 2013

Heterocyclic rings of the future, J. Med. Chem., 2009, 52 (9), pp 2952–2963.

• 3000 potential bicyclic systems unmade • Many potential drug like scaffolds Why? • Chemists lack the tools to expand into new chemistry space to access these new compounds. • Time • Knowledge

The quest for novel heterocycles

Page 57: Thales nano reactor overview jan 2013

57

Our focus: 2 main cyclization routes

• Gould-Jacobs-reaction

• Meldrum’s acid variation

Curran, T.T. in Named reactions in Heterocyclic Chemistry; Li, J.-J., Corey, E. J. Eds. Wiley Interscience: New York, 2005, pp423-436

Page 58: Thales nano reactor overview jan 2013

Gould-Jacobs Cyclization

•  Standard benzannulation reaction •  Good source of:

•  Quinolines •  Pyridopyrimidones •  Naphthyridines

•  Important structural drug motifs

Disadvantages: • Harsh conditions • High b.p. solvents • Selectivity • Solubility

Condensation

Cyclization

Saponification Decarboxylation

methylenemalonic ester

W. A. Jacobs, J. Am. Chem. Soc.; 1939; 61(10); 2890-2895

Page 59: Thales nano reactor overview jan 2013

59

• Gould-Jacobs-reaction §  Replacement of diphenyl ether with THF

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., (accepted for publishing)

Cyclization conditions: a: 360 °C, 130 bar, 1.1 min b: 300 °C, 100 bar, 1.5 min c: 350 °C, 100 bar, 0.75 min

Pyridopyrimidinone Quinoline

No THF polymerization!

Batch conditions: 2 hours

Page 60: Thales nano reactor overview jan 2013

Pyrolysis of Meldrums Acid

ketene

•  Meldrum’s acid is more acidic than malonic ester=easier synthesis of adduct •  Decomposition needs no purification •  Lower temperature reactions

Page 61: Thales nano reactor overview jan 2013

61

Process exploration

• Meldrum’s acidic route to pyridopyrimidones and to hydroxyquinolines

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., (accepted for publishing)

Cyclization conditions: a: 300 °C, 160 bar, 0.6 min b: 300 °C, 100 bar, 0.6 min c: 360 °C, 100 bar, 1 min d: 350 °C, 130 bar, 4 min e: 300 °C, 100 bar, 1.5 min

The nature of the substituents is critical because they increase or decrease the nucleophilicity of the ring: Electron donating groups increase yields, Electron withdrawing groups decrease yields.

Page 62: Thales nano reactor overview jan 2013

62

• Extension to the synthesis of naphthol and phenyl-substituted salicylic acid-derivatives

• Formal mechanism:

Lengyel L., Nagy T. Zs., Sipos G., Jones R., Dormán Gy., Ürge L., Darvas F., Tetrahedron Lett., (accepted)

Page 63: Thales nano reactor overview jan 2013

63

Thermal cyclisation of amino-flavon

• Solution Phase Flow Thermolysis method

50% Yield 95% NMR purity

In collaboration with the Patonay Group from Debrecen University

Page 64: Thales nano reactor overview jan 2013

Going supercritical: 350°C<T>500°C

Page 65: Thales nano reactor overview jan 2013

Razzaq, T.;, Glasnov, T.N.; Kappe, O. C., Continuous-Flow Microreactor Chemistry under High-Temperature/Pressure Conditions, Eur. J. Org. Chem., 2009, 9, 1321-1325

Transesterification

Esterification

Conditions:

p = 180 bar T = 350°C v = 0.5 mL/min c = 0.05 M (MeOH)

85% yield

Remark: little or no reaction below 200°C

Conditions:

p = 120 bar T = 300°C v = 1.0 mL/min c = 0.33 M (EtOH)

87% yield

Remark: 3 passes little or no reaction below 200°C

Under supercritical conditions

MeOH and EtOH act as an acidic

catalyst

Page 66: Thales nano reactor overview jan 2013

Esterification in supercritical methanol

- Suppression of side reactions by increasing the pressure and flow rate - MeOH: Tcr = 239.4°C, pcr = 80.8 bar - Concentration: 0.05M

Temp.  (°C)   Pressure  (bar)   Residence  7me  (sec)   Calc.  yield  (%)*  300   150   30   15  425   117   18   9  450   118   7,2   38  450   118   12   25  450   109   12   27  460   140   9   55  460   144   9   54  460   135   9   59  436   137   9   74  460   137   9   76  481   137   9   76  496   137   6,9   76  483   137   5   80  483   137   3,3   80  475   137   2,6   74  475   137   2,9   79  

- Isolated yield 60%, NMR 98%

* By calibration curve, loop size 1.5 mL

Rapid optimization

Page 67: Thales nano reactor overview jan 2013

Thank you for your attention