Testing the Penning trap (operated as a Paul trap)

13
Testing the Penning trap (operated as a Paul trap)

description

Testing the Penning trap (operated as a Paul trap). endcap. ring. endcap. DC. trap potential. +. -. RF. ~. bias potential. +. DC. -. ground. Trap T est - The Experimental Setup. -3 k V. +250 V. 100 e V. Faraday cup. Einzel lens. Ar + source. Trap testing: - PowerPoint PPT Presentation

Transcript of Testing the Penning trap (operated as a Paul trap)

Page 1: Testing the Penning trap (operated as a Paul trap)

Testing the Penning trap

(operated as a Paul trap)

Page 2: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Trap Trap TTest - est - The Experimental SetupThe Experimental Setup

+250 V 100 eV

pA

Faraday cup

Einzel lens

Ar+ source

endcap ring endcap

DC-+

ground

RF

~

DC

+

-

trap potential

bias potential

Capturing and

storing

Detection

-3 kV

Trap testing: Vary the trapping time Vary the trapping

voltages Monitor the ion count

Page 3: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Overview of the SystemOverview of the System

Trap and optics voltage supplies

Measuring cycle

Channeltron

Page 4: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

First ResultsFirst Results

• Dependence on the trap voltage as expected

• Strong dependence on RF amplitude

0 10 20 30 40 500

20

40

60

80

100

120

140

160

180

Co

un

t

Capture Voltage [V]

Bias Voltage: 37 VTrapping time: 2 s

Paul trap stability diagram

qz ~ RF amplitude

az ~

Vd

c

De

tect

ed

nu

mb

er

of

ion

s

Trap voltage [V]

Bias Voltage: 37 VTrapping time 2 sRF apmpitude 300 V (1 MHz)

Page 5: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Trap Test - ResultsTrap Test - Results

• Exponential decay expected• Storage time vs. ion count – “dead time” problems• Good results at low ion counts

0 2 4 6 8 10 120

50

100

150

200

250

300

Co

un

t

Trapping time [s]

10 V DC capture71 V biasD

ete

cte

d n

um

be

r o

f io

ns

Trap voltage: 10 VBias voltage 71 VRF apmpitude 300 V (1 MHz)

-1 0 1 2 3 4 5 6 7 8

0

40

80

120

160

200

240

280

320

pressure: 8,7 * 10-8 mbarDC capture: 5 VRF amplitude: 300 V

Equation: y = A1*exp(-x/t

1) + y

0

2/DoF = 2.40751

R2 = 0.99624 y

0-152.77896 ±39.54893

A1

451.80571 ±38.26513

t1

7.05356 ±1.04705

raw data corrected

Ion

co

un

tTrapping time [s]

Page 6: Testing the Penning trap (operated as a Paul trap)

Laser system & Locking

Page 7: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Laser - Laser - An Overview of an ECDLAn Overview of an ECDL

External Littrow resonator

Single mode operation

Simple and fast constr-uction

Cheap components

Page 8: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Laser Laser Linewidth MeasurementsLinewidth Measurements

• Laser and FPI linewidth convolution• Sutalble for most applications

0,00 0,01 0,02 0,03 0,04-0,005

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,033 0,034 0,035 0,036 0,037

0,00

0,01

0,02

0,03

0,04

inte

nsi

ty [

arb

. u

nits

]

frequency [arb. units]

FWHM= 18 MHz

in

ten

sity

[a

rb.

un

its]

frequency [arb. units]

FSR = 2 GHz

Page 9: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Laser Laser Locking and StabilizationLocking and Stabilization

Faraday rotatorLASER toexperiment

Variableattenuator

Reference FPI

DifferentialamplifierSimulated

by reference electronics

PD 1

PD 2

Page 10: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

• Successful locking for more than 30 min.

• Up to 2 GHz scanning range

• Scannable

Laser Setup OverviewLaser Setup Overview

Page 11: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Locking StabilityLocking Stability

0 400 800 1200 1600 2000

-3

-2

-1

0

1

2

3

err

or

sig

na

l [V

]

time [s]

-10 0 10 20 30 40 50 60 70 80-1,2

-0,8

-0,4

0,0

0,4

0,8

time [s]

err

or

sig

na

l [V

]

• Laser in lock – error signal drifts around the zero

• Out of lock – error signal drifts randomly

Page 12: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Spectroscopy TestSpectroscopy Test

The assembled laser system

Thermal Li atomsource

Results:

• fluorescence at 671 nm• two hyperfine components

Page 13: Testing the Penning trap (operated as a Paul trap)

Zoran Anđelković

Improvement and OutlookImprovement and Outlook

• Penning trap under construction at GSI• Operation of the laser system with different

wavelengths (laser diodes)• First SPECTRAP experiments expected during 2009

Further improvement:

Implementation:

• Locking of the FPI to a He-Ne• Broader (mode-hop free) scanning rang• Test – spectroscopy inside the trap