Technology Vehicles - NASA...basis of an assessment of the 5-58 turbojet engine, which uses 1960...

203
\ /- ' ->~ (NASA-Cii- 157444) EARTH-TO-ORETT I POSABLE V79-27 1'32 LAUNCH VYFIICLES: A COMPARATIVE ASSESSHYNT ,- Final Report (Genera 1 Rrsearch Corp., HcLean, Ya.) 202 p HC AlO/MF AG1 CSCL :!2~ rlnclzs 709-02-CR G3/12 26921 Earlh-to-Orbit Reusable Launch Vehicles - A Comparative Assessment - By: Prepared for: National Aeronautics and Space Admintstration Lnngley Reser~rch Center Under Conl~i~ct NASW-2973 for the Office of Aeronautics and Space Technology February 1978 WGRC 78-4673 copy _f ;i of 125 Copies R'ASHINGTON OPERATIONS 7655 OLD SPRtNGriOUSE ROAD A SUBSlUlAnY OF FLOW GENERAL https://ntrs.nasa.gov/search.jsp?R=19790019021 2020-03-15T08:51:44+00:00Z

Transcript of Technology Vehicles - NASA...basis of an assessment of the 5-58 turbojet engine, which uses 1960...

\ /-

'

->~

(N

AS

A-C

ii-

15

74

44

) E

AR

TH

-TO

-OR

ET

T

I P

OS

AB

LE

V79-27 1

'32

LA

UN

CH

V

YF

IIC

LE

S:

A C

OM

PA

RA

TIV

E

AS

SE

SS

HY

NT

,-

Fin

al Report (Genera 1 Rrsearch Corp.,

HcL

ean

, Ya.)

20

2

p H

C

AlO

/MF

A

G1

C

SC

L :!2~

rln

clz

s 709-0

2-C

R

G3

/12

2

69

21

Earl

h-t

o-O

rbit R

eu

sab

le L

aunch V

eh

icle

s

- A

Co

mp

ara

tiv

e A

ss

es

sm

en

t -

By

:

Pre

par

ed

for:

Nat

ion

al A

ero

nau

tics

an

d S

pac

e A

dm

ints

trat

ion

L

nn

gle

y R

eser

~rch

Cen

ter

Un

der

Co

nl~

i~c

t NA

SW

-29

73

fo

r th

e O

ffic

e o

f A

ero

nau

tics

an

d S

pace

Tec

hn

olo

gy

Feb

ruar

y 1978

WG

RC

78

-46

73

c

op

y _

f ;i of

12

5 C

op

ies

R'

AS

HI

NG

TO

N

OP

ER

AT

IO

NS

7

65

5 O

LD

SP

RtN

GriO

US

E R

OA

D

A S

UB

SlU

lAn

Y O

F FL

OW

GE

NE

RA

L

https://ntrs.nasa.gov/search.jsp?R=19790019021 2020-03-15T08:51:44+00:00Z

a u r e a c 0 0 0 4 6 a

EART

H-TO

-ORB

IT

REUS

ABLE

LAU

NCI1

VEH

ICLE

S

- A

COM

PARA

TIVE

ASS

ESSM

ENT

- F

ina

l R

epor

t

PRE

PAR

ED

BY:

Ra

n .

Cd

e

Pr

inc

ipa

l In

ve

stig

ato

r

APP

RO

VED

B

Y:

Tho

mas

M

. Z

ak

rze

Pro

gram

Man

ager

a

M A

sso

cia

te

Dir

ec

tor

, W

ash

ing

ton

O

per

at i

on

s

APP

RO

VE

D

BY

: / D

ire

cto

r,

~a

sv

~t

on

O

pe

ra

tio

ns

GE

NE

RA

L

WA

SH

IN

GT

ON

O

PE

RA

TI

ON

S

76

55

OL

D S

PR

ING

tlO

US

E R

OA

D

WE

ST

GA

TE

R

ES

EA

RC

H

PA

RK

, h

lCL

EA

N.

VA

2

21

01

A SU

BSI

DIA

RY

OF

FLOW

GEN

ERAL

IN

C.

CONT

ENTS

SEC

TIO

N

-

PAG

E -

AB

STR

AC

T i

1

INT

RO

DU

CT

ION

, SU

MM

ARY

, A

ND

C

ON

CL

USI

ON

S

1.1

S

tud

y O

bje

cti

ve

s

1.2

S

umm

ary

of

An

aly

sis

1.3

R

es

ult

s a

nd

C

on

clu

siq

ns

1.4

R

eco

mm

end

atio

ns

REU

SAB

LE

LAU

NCH

V

EH

ICL

E

CO

NC

EPTS

2.1

P

ar

all

el

Lif

t

2.2

C

ow

par

iso

n o

f A

lr-B

rea

thin

g

an

d R

ock

et

Bo

ost

ers

2.3

O

pe

rati

on

al

Co

nc

ep

t

2.4

A

ttri

bu

tes

of

Air

-Bre

ath

ing

T

wo

-Sta

ge

Ve

hic

les

MIS

SIO

N

ASS

ESS

PEN

T A

h LA

UN

CH

VE

HIC

LE

R

EQU

IREM

ENTS

3.1

Sc

en

ari

os

3.2

Mis

sio

n O

pp

ort

un

itie

s

3.3

L

aun

ch V

eh

icle

Re

qu

ire

me

nts

LAU

NCH

V

EH

ICL

E

DE

SCR

IPT

ION

S

4.1

O

rbit

er

Ve

hic

les

4.2

S

ing

le S

tag

e t

o O

rbit

wit

h V

ert

ica

l T

ak

eo

ff

(SST

O-V

Ta)

4.3

S

ing

le S

tag

e t

o O

rbit

wit

h H

ori

zo

nta

l T

ak

eo

ff

(SST

O-H

TO

)

4.4

A

ll-R

ock

et

Tw

o-S

tag

e V

eh

icle

3 m \ O h a c n d . . . . . . u u u u u u

F I G

URES

-

Launch Vehlcle Comparison

Parallel Lift

Propulsion Opt ions

Performance Assessment -

Propulsion

Mission Flight Profile

Ground Operations Profile

Typical Ground Operat ions Flow

Air

-lir

ra

rh

ing

Launch Vehicle Attributes

Future Scenarios

Summary of Mission Classes

Typical Mission OpporCunities

Launch Vehicle Requirements Summary

Orbiter for Hypersonic Uooster Systems

Rocket Orbiter for Suhsonic Parallel-Lift Single Baoster

PAG

E -

3

9

10

12

14

15

17

18

22

2 4

2 6

28

30

33

Single-Stage-to-Orbit Launch Vehicle (Vertical Takeoff, Horizontal Landing) 34

Single-Stage-to-Orbit Launch Vehicle (Horizontal Takeoff and Landing)

36

m \ D m u u u

FIGU

RES

(Co

nt.

)

NO. -

PAG

E

6-4

Mis

sio

n P

ote

nti

al

64

6-5

Op

era

tio

ns

Co

st

Per

F

lig

ht

66

6-6

Op

era

tio

ns

and

M

ain

ten

ance

M

ann

ing

6 7

6- 7

A

ttr

ibu

te

Ass

essm

ent

Sum

mar

y 6

9

vii

1

INTRODUCTION, s

UW

RY

, AND CONCLUSIONS -

1.1

STUDY OBJECTIVES

The Hypersonic Branch of the Langley Research Center (LaRC) Lasked General Research Corporation

(GRC)

in June 1977 to assess the utility of fully reusable two-stage launch vehicles incorporating air-

breathing propulsion.1 The specific objectives of the study were:

1

To establish a set of launch vehicle requirements based on an assessment of future NASA

and military mission opportunities.

2

To establish for comparison purposes a set of launch vetlicle candidates which would be

representative of different levels of technology.

3

To assess the utility of two-stage launch vehicles incorporating air-breathing propulsion

in the booster stage by determining the performance, cost, technology needs, technology

risk, and associated benefits of both these vehicles and competitive nonair-breathing

vehicles.

In evaluating the air-breathing candidates, the preferred staging Mach number

was to be identified (i.e., subsonic, supersonic, or hy~ersonic).

A specific two-stage launch vehicle design comprised of an orbiter and twin air-breathing

b0oste.s capable of Mach 3.5 was suggested by LaRC.

Each booster is powered by eight 350,000-380,000 N

(80,000-85,000 lbf) supersonic turbojets.

j o (I: I C

8 : Z:

L

aY

0

..c : C U a M c .d M a U m L

(I: L aJ u

A rl 4 a U c: 0 N rl & 0 s ui Q 0

PI A a U

< U a Y u X Y

(I: aJ rl U rl C a) > rl rl m 3 c (d

L

h rl 4 a -1 t: O N -4 L 0 C - C 4 rl

a 3 rl U -4 - - s rl 4 (3

44

3

(I: 0 sC r: bJ (I:

rl 4 1

4[ c rl b 3 a u rU -4 rl

aJ 'D rl 3 0 L a V) M C rl 3 & PI U (I: 0 0 n a c a L aJ U rl n & 0

C U 3 n U m C U

01 U 0 c a 0

3 U

0 aJ 3 a -4

- - U w rl rl

rf CJ 4 4 Q L TJ a - - E al u

2 - +

rl M 0

a m 4J aJ m M

a X u P (I:

. -0 (I: C o m

system (TPS), the development of a fully reusable launch vehicle depends upon demonstrated advances

in TPS technology, which may be provided by the Shuttle.

The results of the cost assessment indicate that a fully reusable launch vehicle may reduce

the cost per flight by 60-80% compared to that of the Shuttle. The elimination of expendable and

refurbished hardware requirements would provide a 50% reduction in cost. Increased efficiency,

reduced opel-ations and maintenance manpower, and elimination of facilities indicate a further re-

duction of 50% of the remaining costs. Total savings could run as !>ish as $

34B

over 10 years,

compared to the Shuttle, which is more than the proposed total program cost for the reusable launch

vehicle.

The GRC assessment further indicates that a two-stage parallel-lift launch vehicle would re-

quire a slightly higher initial cost than an SSTO, but would have a lower cost per flight, resulting

in a total program cost that is approximately the same. The parallel-lift vehicles would also have

more operational flexibility, reflected in extended range for self-ferrying, and greater capability

for offset orbit injection, loiter, and recall.

In addition, the parallel-lift launcn vehicles

represent lower development risk because of the high uti1iza:ion

of existin, technology, engines,

and

subsystems.

A twin-booster subsonic-staged parallel-lift vehicle represents the lowest cost and development

risk.

However,it would appear that the investment in thc development of a new high-thrust turbojet

engine for the supersonic parallel-lift vehicle would return tt:e development cost in total program

savings such that the supersonic parallel-lift vehicle would be tibe econolnic choice. It must be

cautioned, however, that the cost difference between the most economic alternatives may not be sig-

nificant because of the uncertainties in the cost estimates.

5

1.4

K

EC

O~l

FlE

NIIA

TT

ON

S

Th

e c

urs

ory

css

ess

me

nt

of

two

-sta

ge

la

un

ch

ve

hic

les

e

mp

loy

ing

air

-bre

ath

ing

b

oo

ste

rs a

s

pre

se

nte

d

311

this

stu

dy

in

dic

ate

s

tlla

t th

eir

u~

il

it

y is s

uf

fic

ien

t t

o j

us

tif

y

ad

dit

ion

al

stu

die

s.

'The

c

on

ce

pt

of

pa

ra

lle

l l

if

t h

as

op

en

ed

a

f

er

tile

new

a

rea

fo

r g

en

era

tin

g

lau

nc

h v

eh

icle

op

tio

ns

.

Th

e p

res

en

t s

tud

y h

as

zo

ns

ide

red

on

ly

thre

e p

ar

all

el-

lif

t v

eh

icle

c

on

ce

pts

an

d a

s

ing

le p

ay

loa

d

siz

e.

A

su

pe

rso

nic

p

ar

all

el-

lif

t v

eh

icle

in

th

e 5

,00

0-1

0,0

00

k

g p

ay

loa

d

cla

ss

is a

n

in~

er

es

tin

g

op

tio

n a

s a

ve

hic

le o

f th

at

siz

e c

ou

ld

use

ex

isti

ng

su

pe

rso

nic

en

gin

es

. T

he

pre

ferr

ed

s

tag

ing

Mac

h

nu

mb

er

ne

ed

s fu

rth

er

stu

dy

. T

he

Mac

h 3

.5

sta

gin

g c

on

sid

ere

d h

ere

fo

r t

he

su

pe

rso

nic

ve

hic

le w

as

se

lec

ted

on

th

e b

as

is o

f a

n a

sse

ssm

en

t o

f th

e 5

-58

turb

oje

t e

ng

ine

, w

hic

h

us

es

19

60

te

ch

no

log

y.

Uti

liz

ati

on

of

a m

ore

a

dv

an

ce

d

en

gin

e c

ou

ld

sig

nif

ica

ntl

y

ch

an

ge

th

e o

pti

mu

m

sta

gin

g X

ach

n

um

ber

.

To

as

sis

t in

de

term

inin

g tl

ie

pre

ferr

ed

s

tag

ing

Mac

h n

um

ber

f

or

an

air

-bre

ath

ing

p

ar

all

el-

lif

t

ve

hic

le,

it i

s r

eco

mm

end

ed h

at

d

da

ta b

ase

b

e

ob

tain

ed

fo

r tu

rbo

jet

en

gin

es

wh

ich

wo

uld

a

ss

ist

in

se

lec

tin

g t

he

ty

pe

of

en

gin

e m

ost

s

uit

ab

le f

or

a

pa

ra

lle

l-li

ft

ve

hic

le a

pp

lic

ati

on

. RDTSE c

os

t

es

tim

ate

s a

ss

oc

iate

d w

iLh

L

l~

e de

ve

lop

me

nt

of

a s

up

ers

on

ic t

urb

oje

t e

ng

ine

s

pe

cif

ica

lly

fo

r a

pa

rall

el-

lif

t v

ell:

cle

wo

uld

b

e

us

efu

l.

Se

ve

ral

imp

ort

zn

t n

ee

ds

fo

r s

up

po

rtin

g t

ec

hn

olo

gy

ha

ve

b

ee

n

ide

nti

fie

d.

Th

e th

erm

al

pro

tec

tio

n

syst

em

fo

r a

f

ull

y r

eu

wh

le v

eh

iclc

: w

ill,

to

a

larg

e e

xte

nt,

d

ep

en

d

on

th

e

su

cc

es

s o

f th

e S

hu

ttle

TP

S.

Ho

wev

er,

the

nii

li L

ar y

use

of

an

Ea

r tll

- to

-orb

it

lau

nc

h v

eh

icle

c

ou

ld

imp

ose

e

nv

iro

nm

en

tal

req

uir

em

en

ts t

ha

t I

II

~~

Y on

ly

be

sa

tis

t ir

d b

y a

mo

re

adv

arrc

ed

TP

S

tha

n

tha

t o

n

the

Sh

utt

le.

It w

ou

ld

ap

pe

ar

de

sir

ab

le

to s

up

po

rt d

ev

elo

pw

nt

of

me

tall

ic '

KPS

o

r s

till m

ore

a

dv

an

ce

d

RS

I c

on

ce

pts

.

Stu

die

s t

o d

ate

ha

ve

in

dic

ate

d

tha

t th

e

tra

ns

on

ic d

rag

of

pa

ra

lle

l-li

ft

ve

hic

les

is a

ke

y

Eac

to

r

in e

ng

ine

th

rus

t-le

ve

l s

ele

cti

on

. L

aRC

is

pre

se

ntl

y

pla

nn

ing

lim

ite

d w

ind

tu

nn

el

tes

tin

g

2 R

EUSA

BLE

LA

UN

CH

V

EH

ICL

E

CO

NC

EPTS

2.1

PA

RA

LLEL

L

IFT

The

lau

nc

h v

eh

icle

in

itia

lly

pro

po

sed

by

LaRC r

ep

res

en

ts a

new

c

on

ce

pt,

c

all

ed

"p

ara

lle

l li

ft"

P

-

in

th

is s

tud

y.

Pa

rall

el

li

ft

is

ilju

str

ate

d b

y

the

tw

o

ve

hic

les

sh

ow

n

in

Fig

. 2-

1.

In t

he

ve

hic

le

t w

ith

ou

t p

ara

lle

l l

if

t,

the

bo

os

ter

pro

vid

es

the

en

tir

e l

if

t d

uri

ng

ta

ke

off

a

nd

cli

mb

an

d

rese

mb

les

.-.

a

ve

ry l

arg

e t

ran

sp

ort

air

cra

ft.

In t

he

pa

rall

el-

lift

v

eh

icle

, b

oth

th

e o

rbit

er

and

b

oo

ste

r w

ing

s

pro

vid

e

li

ft

du

rin

g t

ak

eo

ff

and

c

lim

b.

Th

is p

erm

its

the

bo

osz

er

to b

e r

ed

uc

ed

b

y

ap

pro

xim

ate

ly o

ne-

. ..

thir

d

in s

ize

an

d w

eig

ht.

T

he

or

bit

er

win

g is

siz

ed

pri

ma

rily

to

wit

hst

an

d r

ee

ntr

y h

ea

tin

g.

The

bo

ost

er

win

g is

siz

ed

fo

r fl

yb

ac

k a

nd

la

nd

ing

, b

ut

is m

od

ifie

d

to b

ett

er

mat

ch

the

orb

ite

r w

ing

fo

r

tak

eo

ff

(to

ho

ld

tak

eo

ff

spc

cd

w

ith

in

the

lim

its

of

sta

te-o

f-th

e-a

rt

tire

s).

T

hre

e p

ara

lle

l-li

ft

ve

hic

les

we

re e

va

lua

ted

i

n t

his

stu

dy

(s

ee

S

ec.

4).

r-

b-

2.2

COMPARZSON O

F A

IR-B

RFA

THZN

G

AN

D

RO

CK

ET

BO

OST

ERS

.. . A

ir-b

rea

thin

g

pro

pu

lsio

n

for

Ea

rth

-to

wrb

it

lau

nc

h v

eh

icle

s h

as

bee

n

stu

die

d s

ev

era

l ti

me

s

sin

ce

th

e e

arl

y 1

96

0s.

T

he

co

nti

nu

al

inte

res

t i

n a

ir-b

rea

thin

g

pro

pu

lsio

n is

du

e p

rim

ari

ly

to

th

e

& --

hig

h

en

gin

e s

pe

cif

ic i

mp

uls

e

(I

) o

bta

ina

ble

--a

fa

cto

r o

f 1

0 b

ett

er

fo

r h

yd

rog

en

-fu

ele

d

air

-bre

ath

ing

s P

pro

pu

lsio

n s

yst

em

s co

mp

ared

tu

hy

dro

ge

n-f

ue

led

ro

ck

et

syst

em

s.

Ho

wev

er,

whe

n c

on

sid

ere

d

i.n

th

e c

on

- -.

tex

t o

f o

ve

rall

Sy

sLru

l p

er

for~

ua

nc

e, t

he

wel

l-k

no

wn

e

ng

ine

sp

ec

ific

im

pu

lse

ad

va

nta

ge

s sh

ow

n

in

Fig

. -

2-2

tra

ns

late

in

to l

ess a

dv

an

tag

eo

us

syst

em

~e

rfo

rma

nc

e eff

ec

ts.

Fig

ure

2-3

PERF

ORM

ANCE

ASS

ESSM

ENT - P

ROPU

LSIO

N

Effe

ctiv

e Sp

eclfi

c Im

puls

e,

Turb

ojet

+

Scra

mje

t Tu

rboj

et B

oost

er,

Boos

ter,

Rock

et O

rbite

r Ro

c ke!

Orb

iter

Turb

ojet

Boo

ster

, '"1 s

g Rock

et O

rbite

r Ro

cket

Bo

oste

r, Ro

cket

I

Orb

iter

Stag

ing

Mac

h N

umbe

r

2.3

OPERATIONAL CONCEPT

A typical mission profile (shown in Fig. 2-4) for a horizontal-takeoff two-stage launch vehicle

consists of:

1

A liorizontal takeoff and climb to staging altitude and Mach number using an air-breathing

booster.

2

At staging, the orbiter main engine is started and the booster engines are throttled Lack

to allow the orbiter to fly away from the booscer(s).

3

The Looster(s)

then flies (fly) back to the launch site, either piloted or remotely

guided for a horizontal landing.

4

The orbiter continues into orbit after staging, delivering its payload, and returning

to either the launch site or an alternative lsnding site, and lands horizontally.

A ground operations profile for the parallel-lift two-stage launch vehicle is shown in Fig.

2-5.

After landing, the orbiter is retrieved by

a tow vehicle wtiich supplies a

1 1 ground power

(electrical, pneumatic, transport).

The orbiter is taken directly to a deservicing facility, where

any returned payload is removed.

In the deservicing facil?ty, the hydrogen propellant lines and

propellant tanks are purged

to eliminate any residual hydrogen gases a.id

liquids which could be

a potential explosion hazard.

Any other potentially hazardous material Is also removed. After de-

servicing, the orbiter is towed to the maintenance and assembly facility for routine checkout and

servicing of noncritical, scheduled-maintenance items. All unscheduled maintenance is also completed,

a2d

the orbiter is prepared for baoster mating.

The boosters are serb-ced prior to the ~rblter

return an0 are available for the mating operatiun as soon as the orbiter is ready.

In the case

of the two-booster configuration, it

is envisioned that the boosters would be sufficiently lowered

MIS

SIO

N FL

IGHT

PRO

FILE

Fig

ure

2-5

GROU

ND O

PERA

TION

S PR

OFIL

E (6

0 llo

ur T

urna

roun

d Tl

r~~e

)

Frop

alla

nt

find

Con

sm ab

le

Serv

icin

g Fa

cilll

y

O~b

ilcr

C

l~ec

kot~

l, M

afnl

ena~

~ce,

As

se~n

l~ly

h

d

Payl

oad

Insl

alla

lion

Faci

lily

.-

Jet

Engl

ne S

lart

Po

wer

Tran

sler

4-

fi.9-

- . --

Land

ing

Fow

cr T

~ans

fcr

Tad

for

Take

off

01 bi

ler

Desc

rvic

lr~g

Faci

lily

Boor

tsr

Cl~

ccko

r~l

And

Mai

nlen

ancc

Fa

cilil

y

-

15

G.R

c &I

-

by

hy

dra

uli

c-a

ctf

i.a

ted

la

nd

ing

ge

ar

to a

llo

w t

hem

to

be

to

wed

u

nd

er

the

orb

ite

r w

ing

s.

Th

e

bo

ost

ers

wo

uld

th

en

be

ra

ise

d a

nd

mat

ed

to t

he

orb

ite

r.

Aft

er

the

ma

tin

g o

pe

rati

on

, th

e a

sse

mb

led

ve

hic

le u

nd

erg

oes

a

n i

nte

gra

ted

op

era

tio

ns

ve

rifi

ca

tio

n.

Nex

t th

e p

ay

loa

d is

lo

ad

ed

an

d

the

ve

hic

le

tow

ed

to t

he

pro

pe

lla

nt

and

co

nsu

mab

le s

erv

icin

g f

ac

ilit

y,

wh

ere

fin

al

pre

pa

rati

on

s fo

r fl

igh

t are

com

ple

ted

.

The

c

rew

bo

ard

s th

e v

eh

icle

du

rin

g t

he

fi

na

l s

tag

es

of

pro

pe

lla

nt

loa

din

g t

o c

on

du

ct

the

fin

al

pre

flig

ht

ch

ec

ko

ut.

T

hen

th

e v

eh

icle

is

to

wed

o

nto

th

e r

un

way

a

pro

n,

wh

ere

the

je

t e

ng

ine

s a

re

sta

rte

d,

and

po

wer

is

tra

ns

ferr

ed

fr

om

gro

un

d

to o

n-b

oar

d

syst

em

s.

Th

e v

eh

icle

is

now

re

ad

y

for

tak

eo

ff.

Bas

ed

on

th

e t

ime

lin

e s

how

n in

Fig

. 2

-6,

it i

s e

stim

ate

d

tha

t th

is t

urn

aro

un

d

co

uld

be

ac

co

mp

lish

ed

in

60 h

ou

rs o

ve

r a

2.5

-day

p

eri

od

, as

sum

ing

a

thre

e-s

hif

t o

pe

raii

on

.

2.5

AT

TRIB

UTES

OF AIR

-BRE

ATHI

NG

TWO

-ST-

4GE

VE

HIC

LE

S

Fig

ure

2-7

li

sts

th

e a

ttri

bu

tes

of

air

-bre

ath

ing

rc

usa

ble

ve

hic

les.

A

s a

lre

ad

y n

ote

d,

al

l

lau

nc

h v

eh

icle

s c

on

sid

ere

d

in t

lrr

stu

dy

are

ass

um

zd

to b

e fu

lly

re

usa

ble

, n

ot

req

uir

ing

re

co

ve

ry,

refu

rnis

hm

en

t,

or

re

pla

ce

we

nt

op

era

tio

ns

suc

h a

s t

ho

se a

ss

oc

iate

d w

ith

th

e S

hu

ttle

so

lid

ro

ck

et

mo

tors

(SRM).

Ho

riz

on

tal

ass

em

bly

, ta

ke

off

, an

d

lan

din

g o

pe

rati

on

s a

re c

om

pa

tib

le w

ith

th

is c

on

ce

pt

and

wo

uld

a

pp

ea

r to

re

su

lt i

n a

pp

rec

iab

le s

av

ing

s o

f c

os

t an

d

tim

e c

om

par

ed

to v

ert

ica

l a

sse

mb

ly

and

la

un

ch

op

era

tio

ns,

sin

ce

no

la

un

ch

pad

o

r m

ob

ile

la

un

ch

er

is r

eq

uir

ed

. It

is a

ssu

med

th

at

air

-

bre

ath

ing

de

sig

ns

ar

e c

om

pa

tib

le w

ith

ex

isti

ng

ru

nw

ays

(as

lo

ng

as

th

e b

ea

rin

g p

ress

ure

on

th

e r

un

-

way

is

ke

pt

at

cu

rr

en

t le

ve

ls),

?

he

reb

y e

xte

nd

ing

la

un

ch

sit

e o

pp

ort

un

itie

s

to a

ny

sit

e w

ith

ad

eq

ua

te

run

way

le

ng

th a

nd

th

e a

va

ila

bil

ity

of

cry

og

en

ic s

erv

icin

g.

Hen

ce,

reu

sab

le a

ir-b

rea

thin

g

bo

os

ters

co

uld

pro

vid

e e

xte

nd

ed

ra

ng

e o

pe

rati

on

s e

na

bli

ng

re

mo

te l

au

nc

h s

ite

op

era

tio

ns

wh

ile

re

tain

ing

the

ad

va

nt

a~

~s

o

f c

er-

tra

liz

ed

ma

inte

na

nc

e.

In-f

lig

ht

refu

eli

ng

of

the

bo

ost

er

wo

uld

e

na

ble

th

e

lau

nc

h v

eh

icle

to

be

fl

ow

n

to o

r f

rom

an

y p

lac

e d

esi

red

. T

he

inc

rea

sed

e

ffic

ien

cy

of

Fig

ure

2-6

TYPI

CAL

GROU

ND O

PERA

TION

S FL

OW

(PAR

ALLE

L-LI

FI V

EHIC

LE)

TIM

E FR

OM

TOU

CHDO

WN

(HR)

0

10

2

0

30

40

6

0

60

I I

I I

I I

I

0 LA

ND

ING

, C

ON

NE

CT

SE

t7V

lCE

LIN

ES

, T

RA

NS

FE

R T

O G

RO

UN

D P

OW

ER

, TO

W T

O O

RB

ITE

R

DE

SE

RV

lClN

G F

AC

ILIT

Y

17

S

AF

ING

AN

D D

ES

ER

VlC

lNG

(D

RA

IN A

ND

PU

RG

E P

RO

PE

LL

AN

T S

YS

TE

M)

RE

MO

VE

PA

Y L

OA

D (C

An

GO

)

0 TR

AN

SF

ER

TO

CH

EC

KO

UT

AN

D M

AIN

TE

NA

NC

E F

AC

ILIT

Y

1-1 V

EH

ICL

E C

HE

CK

OU

T,

NO

RM

AL

PR

EF

LIQ

I-IT

MA

INT

EN

AN

CE

1-1 M

AT

E B

OO

ST

ER

S

(-1 IN

TE

GR

AT

ED

OP

ER

AT

ION

S V

ER

IFIC

AT

ION

1)

P

AY

LO

AD

LO

AD

ING

(C

AR

GO

)

TR

AN

SF

ER

TO

PR

OP

EL

LA

NT

AN

D C

ON

SU

MA

BL

E

SE

RV

ICIN

G F

AC

lLl.C

Y

PR

OP

ELL

AN

TS

AN

D C

ON

SU

MA

BLE

SE

RV

ICIN

G

(-

1 O PR

OP

ELL

AN

T T

OP

OF

F

Cn

EW

LO

AD

ING

, F

INA

L C

tlEC

KO

FF

, R

OL

LO

UT

, S

TA

RT

EN

GIN

ES

, T

AX

I 1-1

RE

AD

Y F

OR

TA

KE

OF

F 0 C

RC

17

r.

Figu

re 2

-7

AIR-

BREA

THIN

G LA

UNCH

VEH

ICLE

ATT

RIBU

TES

a FU

LLY

REUS

ABLE

MU

NC

H V

EHIC

LE

a HO

RIZO

NTAL

ASS

EMBL

Y

e HO

RIZO

NTAL

TAK

EOFF

AND

LAN

DING

e M

ULTI

PLE

MU

NC

II, M

UU

'I PLE

LAN

DING

SIT

ES

e EX

TEND

ED R

ANGE

e OF

FSET

ORB

IT I

NJEC

TIO

N

e PA

RALL

EL B

URN

e LO

I1'ER

e SC

HEDU

LEU

MAI

NTEN

ANCE

I

GR

C

18

air-breathing engines compared to rocket engines would enable a 200-km offset orbit injection capa-

bility to be included in the nominal fuel loading.

The offset range could be used for loiter or

recall to the launch site after takeoff.

Extended ferry operations offer the opportunity of using remote launch sites in equatorial

regions or foreign countries. Foreign lease of a launch vehicle for a specific period of time,

compatible with scheduled maintenance, could be desirable in terms of international relations.

A fully reusable launch vehicle would not have launch azimuth restrictions imposed by

falling

solid rocket boosters and external tanks.

Hence launch operations could be conducted from various

sites (some inland), or all launches could be cunducted from a single site, eliminating the need

for

East Coast and West Coast launch sites (as with the Shuttle) to satisfy mission requirements. Sav-

ings in launch site costs could easily run into hundreds of millions of dollars.

For applications in which time-to-orbit

is a key factor, a parallel-burn launch is possible:

the orbiter rocket engines are started once the vehicle starts its ground roll, or as soon as the

vehicle is airborne and a safe distance from the runway, to prevent damage due to rocket exhaust

impingement.

(Local noise ordinances are a consideration as well.)

Another advantage of a parallel-

burn capability is that it might permit the use of lower thrust ~urbojet engines, alleviating the

need for a high-thrust engine development program.

The most important advantage of reusable vehicles identified in this study is scheduled main-

tenance operztions. If the maintenance schedule proposed here can be achieved, an increase in launch

vehicle utilization results, and this is reflected in sinnificant reductions i.1

operating costs.

(Indications are that a factor of at least 2 relative to the Shuttle may be achievable in launch

vehicle utilization rates.)

The ground operations timelines are based on a maintenance schedule

thnt assumes for the launch vehicle a reusable TPS that requires refurbishment only after seven

flights. Technological advances are required before the outlines operations schedule can be

achieved.

3

MIS

SIO

N A

SSES

SMEN

T A

ND

LA

UN

CH

VE

HIC

LE

R

EQU

IREM

ENTS

1

Bas

ed

on

a

surv

ey

of

pro

po

sed

ad

van

ced

sp

ac

e s

yst

em

s (b

oth

NA

sA*'

~ a

nd

mil

ita

ry ),

m

issi

on

op

po

rtu

nit

ies

wer

e id

en

tifi

ed

an

d

ca

teg

ori

ze

d a

cc

ord

ing

to

fu

nc

tio

n,

e.g

.,

ob

serv

ati

on

, co

mm

uni-

ca

tio

ns

, w

eap

on

s,

and

se

rvic

es

. I

n p

ara

lle

l w

ith

th

e m

issi

on

cla

ss

ific

ati

on

, s

ev

era

l sp

ac

e

sc

en

ari

os

pro

po

sed

by

th

e H

udso

n in

stitu

te4

and

th

e A

ero

spa

ce

co

rpo

rati

on

5 w

ere

rev

iew

ed

an

d

con

den

sed

. T

he

sc

en

ari

os

an

d

the

mis

sio

n d

ata

we

re t

he

n c

om

bin

ed

to p

rov

ide

sp

ec

ific

la

un

ch

ve

hic

le p

ay

loa

ds

and

de

liv

ery

orb

its

. T

he

res

ult

s c

an

be

use

d t3 d

efi

ne

fu

ture

Ea

rth

-to

-orb

it

lau

nc

h v

eh

icle

re

qu

ire

me

nts

. N

o a

tte

mp

t w

as

mad

e to

es

tab

lis

h a

s

pe

cif

ic &

ch

pa

ylo

ad

mo

del

suc

h a

s t

ha

t c

urr

en

tly

in

use

fo

r S

hu

ttle

pla

nn

lnb

pu

rpo

ses.

3.1

SC

EN

AR

IOS

The

Hu

dso

n

Ins

titu

te a

nd

th

e A

ero

spa

ce

C

orp

ora

tio

n s

ce

na

rio

s (

Fig

. 3-

1)

wer

e co

nd

ense

d

into

: (1)

bu

sin

ess

as

usu

al

wit

h n

crm

al

gro

wth

, an

d

(2)

the

ra

pid

ex

pa

nsi

on

o

f sp

ac

e o

pe

rati

on

s.

a'@ zg

0-

g 2~

3.1

.1

Sc

en

ari

o N

o.

1

5%

It i

s a

nti

cip

ate

d

tha

t th

e S

hu

ttle

wi

ll

ev

en

tua

lly

bec

om

e a

s

uc

ce

ss

ful

en

terp

ris

e,

and

th

at

*@

5P

co

mm

erci

al u

se o

f sp

ac

e w

ill

gra

du

all

y i

nc

rea

se

as

bu

sin

ess

ve

ntu

res

pro

ve

ec

on

om

ica

lly

su

cc

ess

-

3 9

fu

l.

A

reu

sab

le o

rbit

al

tra

ns

fer

ve

hic

le

(01V

) w

ill

be

de

ve

lop

ed

to

co

nd

uc

t E

art

h o

rbit

al

op

era

- 4

tio

ns

an

d p

rov

ide

low-Earth-to-geosynchronous-orbit

tra

ns

fer.

(A

v

eh

icle

th

at

co

uld

re

ac

h g

eo-

syn

ch

ron

ou

s o

rb

it a

nd

re

turn

wo

uld

a

lso

be

ab

le t

o o

pe

rate

th

rou

gh

ou

t c

is-l

un

ar

spa

ce

as

th

e

nee

d

oc

cu

rre

d.)

T

he

OTV

wil

l b

e E

art

h b

ase

d

and

u

po

n

oc

ca

sio

n r

efu

ele

d i

n l

ow

E

art

h o

rbit

.

The

to

tal

dem

and

for

Sh

utt

le f

lig

hts

is n

ot

ex

pe

cte

d

to e

xc

ee

d 100 p

er

ye

ar.

It i

s n

ot

lik

ely

tha

t a

new

E

art

h-t

o-o

rbit

la

un

ch

ve

hic

le w

il

l b

e d

ev

elo

pe

d.

SCEN

AR I0

WIT

H N

OR

MAL

GRO

WTH

(1

00 S

lIUTl

Lt:

FLIG

I ITS

PER

YtA

R)

BREA

KTHR

OUG

H W

I1-i

THE

RA

PID

EXP

ANSI

ON

OF

SPA

CE O

PERA

TIO

NS

(100

9 LA

UN

CII V

iIilC

LC:

FLIG

HTS

PER

YLA

R)

Fig

ure

3-1

FUTU

RE S

CENA

RIOS

EXPE

CTED

SPA

CE A

CTI

VITY

0

SHU

llLE

IS S

UCCE

SSFU

L

e SP

ACE

BUSI

NES

S AP

PLIC

ATIO

NS

ARE

SUCC

ESSF

UL

e ST

EADY

USE

OF

C I S

-LUN

AR

SPAC

E AF

TER

1980

's

e A

CtI

AtX

E O

CCUR

S -

IN TE

CHNO

LOGY

, PU

BLIC

OPI

NIO

N,

OR S

PACE

EXP

LORA

TIO

NIEX

PLO

ITAT

ION

8

RA

PID

RED

UCTI

ON

IN S

PACE

TRA

NSPO

RTAT

ION

CO

STS

a IM

PRO

VED

RET

URNS

FRO

M S

PACE

INV

ESTM

ENTS

0

RA

PID

EXP

ANSI

ON

IN

SPA

CE S

ERVI

CES

AND

ACTI

VITI

ES

0

RETU

RNS

FRO

M S

PACE

SER

VICE

S AN

D A

CTI

VITI

ES

STRO

NGLY

AFF

ECT

EVEN

TS O

N EA

RTH

GR

C

22

3.1.2

Scenario No. 2

It is assumed that a breakthrough will dramatically change the demand for space utilization,

The nature of the breakthrough could be a change in the public's perception of space, a technologi-

cal

.vent that makes space operations extremely desirable, or a discovery that changes the need for

space operations.

Extremely profitable space investments could initiate a strong competitive demand

and, of course, a recognized military advantiige could accelerate competition between nations.

The

achievement of very low transportation costs could also establish a strong demand for space utiliza-

tion.

Whatever the cause, it is postulated that a rapid increase in space operations can be expected.

Orbital transfer vehicles will be space based.

Several hundred launches per year are anticipated.

3.2

MISSION OPPORTUNITIES

More than 500 near- and far-term proposed advanced space systems were surveyed.

The systems

were categorized functionally as observation, communications, weapons, and support operations.

Each

category was further divided into classes of missions (Fig.

3-2).

Corresponding to each of the two

scenarios above, a set of typical missions was derived from within the mission classes (Fig.

3-3);

they are representatice of the spectrum of expected launch vehicle payload and space operations

requirements.

In the business-as-usual scenario (#l), the launch vehicle is required to carry a

variety of individual spacecratt for near-earth and deep-space operations and to serve as (1) a

spacecraft launch facility; (2) a spacecraft maintenance and repair facility; (3) a short-duration

space laboratory and habitat; (4) an orbital-transfer-vehicle delivery, launch and retrieval system;

and (5) an Earth orbital construction facility, including provisions for teleoperator services.

The

launch vehicle has a high degree of in-orbit flexibility in order to conduct short-term space support

functions to compensate for the lack of space basing.

Fig

ure 3-2

SUM

MAR

Y OF

MIS

SIO

N CU

SSES

SPAC

E FU

NCTI

ON

1 NA

SA M

ISS

ION

S

I M

lLiT

AR

Y M

ISS

ION

S

IAN

0 O

CEAN

S AT

MO

SPW

ERlC

SOLA

R SP

ACE:

NEA

R EA

RTH,

DEE

P SP

ACE

IhiT

RAG

OVE

HNM

ENT

GO

VERN

MEN

T PE

OPLE

PEOP

LE

PEOP

LE

lAN

D O

CEAN

S AT

MO

SPHE

R IC

SO

LAR"

NEAR

EAR

TH S

PACE

NATI

ONA

L C

OM

AN

O &

CO

NTRO

L

INTR

ATHE

ATER

I NTE

RTtIE

ATER

ST

RATE

GIC

FO

RCES

SPEC

IAL

OPE

RATI

ONS

SPAC

E- B

ASED

OFF

EN S

l VE

&

DEFE

NSIV

E W

EAPO

NS

GROU

ND-B

ASED

SP

ACE

DEPL

OYA

BLE

OFF

ENSI

VE &

DEF

ENSI

VE W

EAPO

NS

GR

C

>

24

Fig

ure

3-2 (

Co

nt.

)

SUM

MARY

OF

MIS

SIO

N CL

ASSE

S (Co

nt.)

SPAC

E FU

NCTI

ON

I N

AS

A M

ISS

ION

S

I M

ILIT

AR

Y M

I SSI

ON

S

(Cat

egor

ies)

SUPP

ORT

NA

VIG

ATl

(N

TRAN

SPO

RTAT

ION

CONT

ROL

ENER

GY

PRO

DUCT

ION

& T

RANS

FER

ENVI

RO

IWEN

T M

OD

IFIC

ATIO

N

MAN

UFAC

TUR

ING

RDT&

E A

CTI

ViT

IES

DIS

POSA

L &

CONT

ROL

OF W

ASTE

M

ATER

IAL

SPAC

E CO

N ST

ROCT

I ON

SPAC

E DE

LIVE

RY &

MAI

NTE

NAN

CE

SPAC

E TR

ANSP

ORT

ATIO

N

MAN

NED

SPAC

E O

CCUP

ANCY

NAV

IGAT

ION

TRAN

SPO

RTAT

I (IN

CO

NTRO

L

ENER

GY P

RODU

CTIO

N &

TRAN

SFER

ENVI

RO

NMDJ

T M

OD

IFIC

ATIO

N

RDT&

E A

CTI

VIT

IES

D! S

POSA

L &

CO

lUTR

OL W W

ASTE

M

ATER

l AL

SPAC

E T

RM

SPO

RTAT

ION

SPAC

E C

ON

STR

LCTI

W

SPAC

E DE

LIVE

RY &

Pf I

INTE

NAN

CE

MAN

NED

SPAC

E O

CCUP

ANCY

In t

he

ra

pid

ex

pa

nsi

on

sc

en

ari

o (

12

), a

h

igh

le

ve

l o

f sp

ac

e-b

ase

d

op

era

tic

ns

is p

rov

ide

d b

y

fa

cil

itie

s o

the

r th

an

th

s l

au

nc

h v

eh

icle

. T

he

lau

nc

h

ve

hic

le i

s a

g

en

era

l c

arg

o a

nd

pa

sse

ng

er

de-

liv

ery

sy

ste

m w

ith

ve

ry l

imit

ed

orb

it s

tay

-th

e

ca

pa

bil

ity

an

d n

o

spa

ce

-su

pp

ort

fu

nc

tio

ns.

3.3

l A

UN

Cli

VE

HIC

LE

REQULREMENTS

Sin

ce

in

th

e b

usi

ne

ss-a

s-u

sua

l sc

en

ari

o,

the

la

un

ch

ve

hic

le i

s r

eq

uir

ed

to

pe

rfo

rm m

any

spa

ce

sup

po

rt

fun

cti

on

s (a

s w

ell

as d

eli

ve

r a

va

rie

ty o

f s

pa

ce

cra

ft),

it i

s e

xp

ec

ted

to

be

ab

le t

o r

ea

ch

a h

igh

ly d

ive

rsif

ied

sp

ec

tru

m o

f o

rbit

al

de

sti

na

tio

ns

. In

div

idu

al

pa

ylo

ad

s c

on

sis

t p

red

om

ina

tely

o

f

sin

gle

or

mu

ltip

le s

pa

ce

cra

ft a

nd

e

rec

tab

le ~

tru

ctu

re

s up

to

th

e p

ay

loa

d weight o

f th

e v

eh

icle

.

Lim

ite

d

in-o

rbit

a

sse

mb

ly o

pe

rati

on

s re

qu

irin

g t

wo

or

mo

re

pa

ylo

ad

s a

re r

eq

uir

ed

. In

th

e r

ap

id e

x-

pa

nsi

on

sc

en

ari

o,

a

larg

e n

um

ber

o

f sc

he

du

led

fli

gh

ts t

o a

v

ery

lim

ite

d n

um

ber

of

de

sti

na

tio

ns

are

co

nd

uc

ted

by

th

e l

au

nc

h v

eh

icle

. T

he

pa

ylo

ad

c

on

sis

ts l

arg

ely

of

pa

sse

ng

ers

to

an

d

fro

m s

pa

ce

,

equ

ipm

ent

for

spa

ce

ba

ses,

an

d

ge

ne

ral

ca

rgo

of

wh

ich

a h

igh

pe

rce

nta

ge

is r

esu

pp

ly a

nd

co

ns

tru

cti

on

ma

teri

als

. T

he

lau

nc

h v

eh

icle

re

qu

ire

me

nts

fo

r th

e t

wo

s

ce

na

rio

s a

re

su

mm

ariz

ed

in F

ig.

3-4.

PAY L

OAD

S

Fig

ure

3-4

LAUN

CH V

EHIC

LE R

EQUI

REM

ENTS

SUM

MAR

Y

I I)

BU

SIN

ESS

AS

USU

AL

(2)

BREA

KTHR

OUG

H W

ITH

WIT

14 F

jOR

MA

L G

RO

WlH

TH

E R

API

D E

XPA

NSI

ON

OF

SP

ACE

OPE

RATI

ONS

500

km 35

-58

INC

LIN

ATI

ON

S 90

0 km

SUN

SYN

CHRO

NOUS

20

0- 1

100

km P

OLA

R SY

NC1 I

RONO

U S

EQUA

TORI

AL

ELLI

PTIC

AL

SYl\;

CHHO

NOUS

WEI

GHT

, 70

0-20

,O kg,

SING

LE P

I1

30,0

00 k

g LA

BORA

TORY

SIZE

, 10

-20U

m

350-

900

krn,

35-

W' IN

CLI

NA

TIO

N

200-

1 10

0 km

, PO

LAR

(SPE

C IA

LIZE

D T

RANS

PORT

VEH

ICLE

FR

OM

LOW

EAR

TH O

RB

IT)

5-20

.000

kg

PASS

ENG

ER S

ICAR

GO

5-50.000 k

g GE

NERA

L CA

RGO1

EQ

U I P

MW

T 50

00-5

00,0

00 k

g CO

N ST

RUCT

l ON

MA

TER

IAL

s,ooo,ooo-m,oao,ooo kg

BAS

ES

4

LAUNCH VEHICLE DESCRIPTIONS

The alternative launch vehicles considered in this study are noted in Sec. 1.2 and depicted in

Fig. 4-1. The

3even vehicles, differentiated by propulsion type, number of stages, and staging condi-

tions, are described in more detail in this section.

As noted in Sec. 2, all stages are fully reusable and land horizontally in either a manned or

unmanned mode.

All air-breathing boosters burn RP except the hydrogen-burning scramjet. All rocket

engines use H /

O

propellant.

Each vehicle is designed for minimum liftoff weight with a 30,000-kg

2 2

payload

(in a Shuttle-sized bay)

delivered to a 93 x

185 km,

28O

orbit. All of the horizontal take-

off boosters utilize a wet wing, which reduces structural weight.

The design of the supersonic-staged vehicle (Sec. 4.5) was provided by LaRC at the time that

this study was tasked, and is perhaps the preferred, or reference design. Late in the study, LaRC

provided an additional design, this one for a subsonic-staged vehicle using twin boosters (Sec. 4.8).

Because of limited time, this design received only partial consideration and is hence not included

in all figures comparing the alternatives. Both LaRC designs, as well as the GRC-designed single-

booster subsonic-staged vehicle, use parallel lift, which is of prime interest in this study (see

Sec. 2.1).

Alternative designs for performance and cost comparison were obtained from Martin 6

* 7

*8 (see.

4.2) or Boeing 9*10 (See 4.3),

or were generated as part of this study (Secs. 4.4, 4.6, and 4.7).

Because of the finite effort available, none of these designs is necessarily optimized. The

purpose of this study was to examine the relative merits of different types of vehicles, for which

these designs are quite satisfactory. Within each design type, several options that are not pursued

in this study are available.

" I . . .

The various launch vehicles are discussed in Secs. 4.2-4.8, with emphasis on the booster.

The

orbiters are discussed in Sec. 4.1, the weights of all the vehicles are summarized in Sec. 4.9, and

Sec. 4.10 presents flight parameter data.

Since all vehicles deliver the same payload to the same

orbit, the relative performance is best compared on the basis of gross vehicle weight.

4.1

ORBITER S

EHICLES

The differences in the staging conditions among the several two-stage vehicles naturally lead

to differences in the orbiters, although there was an attempt to use similar design features where

possible.

The orbiters of all two-stage vehicles use an aluminum structure, in contrast to the mare

advanced structural materials of the single-stage-to-orbit vehicles.

All orbiters except the SSTO-VTO use the same engines: modified Space Shuttle main engines

2

(SSME) uprated to 23.8 MN/m

(3450 psia)

chamber pressure and 2.65 MN (596,000 lbf) vacuum thrust,

and

two position nozzles with expansion ratios of 82 and 150.

(Appendix A has more detail on SSME

performance.)

The two hypersonic-staged orbiters are identical vehicles (Fig. 4-1) using a single

SSME.

The other three orbiters and the SSTO-HTO vehicle have three SSMEs each, and the SSTO-VTO

has six advanced engines.

Scramjet engines were also considered for the orbiter stage of the supersonic and subsonic

parallel-lift vehicles.

However, preliminary calculations indicated only a small performance ad-

varltage, which was offset by a relatively large increase in complexity and costs.

Perhaps new

technical data or new design concepts could lead to a different result at a later date.

The projected shift from Earth- to space-based operations suggests a high-density internal

cargo bay and perhaps a capability for carrying very long structural members for assembly in space.

The solar power mission, for example, would require many such structural members and possibly rolls

of aluminized plastic reflecting material.

The orbiter shown in Fig. 4-2 (for the single subsonic-

staged vehicle) attempts to accommodate these requirements. The side-loading cargo doors free the

back of the orbiter for strap-r,n cargo and fairings.

Thls type of door should also be structurally

more efficient than the 18-m (60-ft) Shuttle clamshell-type doors.

Side-loading should also be

operationally more efficient for horizontally oriented operations. The twin tails represent a

further atten.pt

to provide for very long, narrow cargo, and would also provide additional hypersonic

directional stability at moderate angles of attack.

For the hypersonic-staged orbiters (Fig.

4-l),

the Shuttle cargo-bay shape does not seem to

impose much of a penalty.

The cargo bay with the required 5-m

(15-ft)

inside diameter appears to

blend with the lightly ioaded thin wing and relatively narrciw forward hydrogen tank, with little

penalty.

However, for

the

subsonic-staged orbiter, the Shuttle cargo-bay shape, as well as size,

appears to preclude a structure of rnaximum efficiency. The supersonic-staged orbiter is somewhat

less sensitive to structural efficitmcy.

4.2

SI

NG

LE

ST

AG

E TO ORBIT WITH VERTICAL TAKEOFF (SSTO-VTO)

The Martin Company design of the SSTO-VTO (Fig. 4-3) has a gross weight of 1200 metric tons,

based on (1) high-pressure

H /0

. propulsion, and (2)

advanced structure technology. Performance

2 2

of sing1.e-stage-to-orbit vehicles is extremely sensitive to structural welght.

A 1-kg increase in

structure means a 1-kg decrease in payload and consequently a 10% increase in structure (from the

ROCK

ET O

RBIT

ER FO

R SU

BSON

IC PA

RALL

EL-L

IFT SI

NGLE

BOO

STER

ob

jec

tiv

e)

wo

uld

m

ean

a p

ay

loa

d

red

uc

tio

n o

f a

lmo

st

50

%.

Th

e T

PS

co

ns

ists

of

no

n-i

ne

tall

ic

reu

sa

ble

su

rfa

ce

in

5u

lati

on

su

pp

ort

ed

by

a

n a

dv

ance

d m

eta

llic

su

bs

tru

ctu

re.

4.3

SI

NG

LE

ST

AG

E TO

O

RB

IT W

ITH

H

OR

IZO

NTA

L TA

KEO

FF

(SS

M-H

TO

)

Th

e B

oei

ng

co

nc

ep

tua

l d

esi

gn

6

(Fig

. 4

-4)

uti

liz

es

a

roc

ke

t s

led

to

pe

rmit

ho

riz

on

tal

tak

utf

.

Aft

er

the

as

sis

ted

ta

ke

off

, th

e v

eh

icle

is s

ing

le s

tag

e t

o o

rbit

. L

an

din

g w

eig

ht

is o

nly

ab

ou

t 1

4%

of

lif

tof

f w

eig

ht,

s

o t

he

sle

d p

erm

its

a

lig

hte

r la

nd

ing

ge

ar,

a

s w

ell

as

pro

vid

ing

in

itia

l v

elo

cit

y.

The

e

stim

ate

d

lif

tof

f w

eig

ht

is

ap

pro

xim

ate

ly 1

25

0 m

etr

ic t

on

s (2

,75

0,0

00

lb

).

The

s

led

wo

uld

wei

gh

ab

ou

t 250 m

etr

ic t

on

s.

Ho

riz

on

tal

tak

eo

ff

pe

rmit

s a

lo

we

r in

itia

l th

rust

-to

-we

igh

t r

ati

o t

ha

n v

ert

ica

l ta

ke

off

.

Opt

imum

th

rust

-to

-we

igh

t fo

r s

led

-as

sis

ted

h

ori

zo

nta

l ta

ke

off

is

ap

pro

xim

ate

ly 0

.7

com

par

ed

to 1

.3

for

ve

rtic

al

tak

eo

ff.

'Chi

s re

su

lts

in

su

bs

tan

tia

l e

ng

ine

we

igh

t re

du

cti

on

s an

d c

on

seq

ue

nt

str

uc

tura

l

we

igh

t sa

vin

gs

fro

m l

es

s s

trin

ge

nt

ve

hic

le b

ala

nc

e

req

uir

em

en

ts.

Th

e T

PS

is a

n i

nte

gra

ted

me

tall

ic

he

at

sh

ield

an

d

su

bs

tru

ctu

re o

f h

on

eyco

mb

c

on

str

uc

tio

n,

refe

rre

d t

o a

s a

"ho

t s

tru

ctu

re."

4.4

A

LL-R

OC

KET

TW

O-S

TAG

E V

EH

ICL

E

The

c

on

ve

nti

on

al

ap

pro

ac

h

to a

tw

o-s

tag

e la

un

ch

ve

hic

le

(all

-ro

ck

et

pro

pu

lsio

n)

is i

nc

lud

ed

fo

r

co

mp

ari

son

wit

h

the

air

-bre

ath

ing

b

oo

ste

rs.

Th

is r

oc

ke

t b

oo

ste

r (F

ig.

4-5)

is

po

wer

ed

by

fo

ur

SS

ME

s,

the

orb

ite

r by

o

ne.

T

he

gro

ss

we

igh

t is

10

50

me

tric

to

ns

(2,3

10

,00

0

lb).

T

he

orb

ite

r is

id

en

tic

al

to t

he

on

e d

esi

gn

ed

fo

r th

e s

cra

mje

t la

un

ch

ve

hic

le

(Sec

. 4

.8),

ar\d

th

e r

oc

ke

t b

oo

ste

r is

de

sig

ne

d

to

pro

vid

e

the

de

sir

ed

pe

rfo

rma

nc

e

wit

h

tha

t o

rbit

er.

C

on

seq

ue

ntl

y t

he

ov

era

ll d

esi

gn

is

no

t o

pti

mu

m,

po

ss

ibly

co

ntr

ibu

tin

g t

o t

he

so

mew

hat

d

iffi

cu

lt s

tag

ing

co

nd

itio

ns

(7

5 km

alt

itu

de

) th

at

res

ult

in

som

e u

nc

ert

ain

ty

reg

ard

ing

th

e T

PS

and

th

e t

ec

hn

olo

gic

al

ris

k a

ss

oc

iate

d w

ith

th

e d

esi

gn

.

Fig

ure

4-4

SING

LE-S

TAGE

-TO-

ORBI

T LA

UNCH

VEH

ICLE

(H

ORIZO

NTAL

TAK

EOFF

AND

LAN

DING

- SL

ED A

SSIS

T)

OR

BIT

ER

HY

DR

OG

EN

/OX

YG

EN

Pf3

OP

EL

LA

NT

S

NO

RM

AL

OIt

OW

f I4

Sl l

tlIC

1 II

IIE

M

OD

lFIt

rII !

;IIU

I I L

E M

AIN

EN

GIN

E

AD

VA

NC

ED

TP

S

SL

ED

EX

IST

ING

RO

CK

ET

EN

GIN

E

EX

IST

ING

AV

ION

ICS

A

DV

AN

CE

D T

IRE

S

Fig

ure

4-5

TWO-

STAG

E-AL

L-RO

CK E

T M

UNCH

VEH

ICLE

(H

ORIZ

ONTA

L TA

KEOF

F AN

D LA

NDIN

G)

e RO

CKET

BO

OSl

ER

e (M

ach

101

Stag

ing)

PR

OPE

LLAN

TS

a HY

DROG

EN 1 O

XYG

EN

e NO

RMAL

GRO

WTH

STR

UCTU

RE

a M

OD

IFIE

D S

HUTT

LE M

AIN

ENG

INE

e AD

VANC

ED T

PS

4.5

SU

BSO

NIC

--ST

AG

ED

SIN

GL

E

AIR

-BR

EA

TH

ING

B

OO

STER

PA

RA

LL

EL

-LIF

T

VE

HIC

LE

To

en

ab

le t

he

use

of

cu

rre

ntl

y p

rod

uce

d je

t e

ng

ine

s,

sub

son

ic s

tag

ing

of

the

pa

rall

el-

lift

lau

nc

h v

eh

icle

is c

on

sid

ere

d.

Th

e e

ng

ine

se

lec

ted

is t

he

F-1

00

cu

rre

ntl

y u

sed

i

n t

he

F-1

5 an

d F

-16

fig

hte

r p

lan

es.

T

o *

xax

imiz

e th

e u

se o

f e

xis

tin

g h

ard

wa

re,

a si

ng

le-b

oo

ste

r c

on

fig

ura

tio

n i

s s

ele

cte

d,

mak

ing

max

imum

u

se o

f 7

47

win

g s

tru

ctu

re.

Th

e o

rbit

er

in

th

e s

ub

son

ic c

on

fig

ura

tio

n w

as

init

iall

y

siz

ed

fo

r a

hig

h-d

en

sity

p

ay

loa

d

and

s

ide

lo

ad

ing

ra

the

r th

an

to

p

loa

din

g a

s is

th

e c

ase

wit

h t

he

sup

ers

on

ic c

on

iig

ura

tio

n

(Sec

. 4

.6)

and

th

e S

hu

ttle

. F

or

co

nsi

ste

nc

y i

n c

os

tin

g,

an

orb

ite

r fo

r th

e

sub

son

ic v

eh

icle

co

nfi

gu

red

wit

h t

he

Sh

utt

le p

ay

loa

d bay is

als

o c

on

sid

ere

d.

Fig

u?:e

4-

6 sh

ow

s th

e v

tl~

icle

co

nfi

gu

rati

on

(d

esi

gn

ed

b

y G

RC

), w

hic

h

use

s p

ara

lle

l-li

ft

bo

os

ter

flig

ht.

S

tag

ing

oc

cu

rs at

ti70

0 m

alt

itu

de

..I

2

50

fp

s (

Mac

h 0

.8),

o

nly

sli

gh

tly

gre

ate

r v

elo

cit

y

tha

n

the

sle

d-a

ss

isir

d

lau

nch

of

tlrc

? S

ST

O-I

iir)

. T

he

init

ial

ve

hic

le w

eig

ht

is 1

37

1 m

etr

ic

ton

s,

of

wh

ich

1

10

4 m

etr

ic

Lor

is is

th

e o

rbit

er

plu

s p

ay

loa

d.

Th

is w

eig

ht

is h

ea

vie

r th

an

th

e S

STO

-HTO

b

ec

au

se

of

dif

fere

nc

es

in

th

e

tec

hn

olo

gy

le

ve

ls a

ssu

med

.

4.6

SU

PER

SON

IC-S

TA

CE

D

'LW

N

AIK

-BR

EA

TH

ING

B

OO

STER

PA

RA

LL

EL

-LIF

T

VE

HIC

LE

Th

e d

esi

gn

fo

r th

e su

pe

rso

nic

vs

hic

le

(Fig

. 4-

7)

was

su

pp

lie

d b

y

LaR

C a

t th

e i

nit

iati

on

of

this

stu

dy

, to

be

co

mp

ared

wit

h o

the

r c

on

ce

ptu

al

de

sig

ns.

T

he

ve

hic

le i

nc

orp

ora

tes

RP

pro

pe

lla

nts

in

un-

man

ned

twin

b

oo

ste

rs,

and

hy

dro

gen

/ox

yg

en

in t

he

ro

ck

et

orb

ite

r u

sin

g t

hre

e m

od

ifie

d S

hu

ttle

mai

n

engines.

The boos1 e

l- is

yo

wr-

red

by

e i ~

I)L

35

0,00

0-N

(8

0,0

00

-lb

f)

thru

st

sup

ers

on

ic

turb

oje

t e

ng

ine

s,

wl~

ich

wo

uld

c

on

sti

tute

a

new

d

ev

elo

pm

en

t.

Ex

isti

ng

220

,000

-N

(53

,00

0-l

bf)

th

rus

t e

ng

ine

s c

ou

ld p

ro-

vid

e t

he

te

cim

olo

gic

i4l

bil

se.

'I'l

~c i

nit

ial

gro

ss w

eig

ht

is 1

28

5 m

etr

ic

ton

s.

Th

e s

tag

ing

co

nd

itio

ns

are

Mac

h 3.

5 a

t a

n a

ltit

ud

e o

t 1

8,0

00

m

(5

7,0

00

f

r)

.

(Sin

gle

Boos

ter)

8 T

URBO

JET

BOOS

TER

e (

mh

0.8 S

tagi

ng)

e tlY

DRO

GEN

IOXY

WU

PROP

ELLA

NTS

8 C

URRE

NT S

TRUC

TURE

e EX

I STI

NG T

URBO

FAN

ENG

INES

a

MO

DIF

IED

SHU

rCLE

MA

IN E

NGIN

E m

ADVA

NCED

IP

S

.-

Fig

ure

4-7

SUPE

RSON

IC-S

TAGE

D PA

RALL

EL-L

IFT L

AUNC

H VE

HICL

E (T

win

Boos

ter)

0 HY

DRO

GEN

-OXY

GEN

O

RBIT

ER P

ROPE

LLAN

TS

0 C

URRE

NT S

TRUC

TURE

e A

I R-B

REAT

HING

, RP

V-TY

PE

BOO

STER

S

0 N

EW S

UPER

SON

lC T

UR B

OJf

3 LV

GIN

E

6 A

DVAN

CED

TPS

0 M

OD

IFIE

D S

HUTT

LE M

AIN

EN

GIN

ES

4.7

AIR

-BR

EATH

LNG

B

OO

STER

H

YPE

RSO

NIC

-STA

GED

V

EII

ICL

L

Th

e sc

ram

jet-

po

wer

ed

bo

ost

er

(Pig

. 4-

8)

use

s tu

rbo

jet

pro

pu

lsio

n

to t

ax

i,

tak

e o

ff,

accele

rate

to s

cra

mje

t ta

ke

ov

er

spe

ed

, an

d

fly

bac

k.

A

du

al-m

od

e sc

ram

jet

(su

bso

nic

an

d s

up

ers

on

ic c

am

bu

stio

n)

is a

ssu

med

f

or

pri

ma

ry p

rop

uls

ion

. T

he

six

tee

n 350,000-N c

las

s t

urb

oje

t are

sim

ila

r to

th

ose

use

d

for

the

su

pe

rso

nic

pa

rall

el-

lift

b

oo

ste

rs.

Gro

ss w

eig

ht

is 1

04

9 m

etr

ic

ton

s,

of

wh

ich

th

e o

rbit

er

co

ns

titu

tes

21

6 m

etr

ic

ton

s.

An

aly

sis

of

the

sc

ram

jet

bo

ost

er

ind

icate

s tb

t t

he

de

cre

asi

ng

th

rus

t c

oe

ffic

ien

t a

t th

e M

ach

nu

mb

er

ch

ara

cte

ris

tic

of

scra

mje

ts is

mo

re

of

a

lim

itin

g f

ac

tor

on

sta

gin

g M

ach

nu

mb

er

tha

n i

s s

pe

-

cif

ic i

mp

uls

e.

Th

e b

oo

ste

r h

as

a

scra

mje

t c

ap

ture

are

a e

qu

al

to a

bo

~t

o

ne

-te

nth

th

e a

ero

dy

na

mic

win

g

refe

ren

ce

are

a.

It a

pp

ea

rs t

o b

e q

ui

~c

d

iff

icu

lt t

o a

ch

iev

e a

h

igh

er

rati

o,

at

lea

se

for

inte

gra

ted

ve

hic

le/p

rop

uls

ion

co

nc

ep

ts.

Co

nse

qu

en

tly

, a

d

rag

co

eff

icie

nt

of

0.0

20

0

tra

ns

late

s i

nto

a

co

eff

i-

cie

nt

of

0.2

00

w

hen

refe

ren

ce

d

to t

he

ca

ptu

re a

rea

. A

bove

a

bo

ut

Mac

h 1

0 o

r p

erh

ap

s lb

ch

12

, th

e

thru

st

av

ail

ab

le a

bo

ve

dra

g r

eq

uir

em

en

ts is

li

ke

ly t

o b

e m

arg

ina

l fo

r a

cc

ele

rati

on

an

d c

lim

b.

Th

is

de

sig

n h

as

a

sta

gfn

g M

ach

nu

mb

er

of

10

.

4.8

SU

BSO

NIC

-STA

GED

T

WIN

AIR

-BR

EATH

ING

B

OO

STER

P

AR

AL

LE

L-L

Im

VE

HIC

LE

The

a

dv

an

tag

e o

f tw

in

bo

ost

ers

ov

er

a

sin

gle

bo

ost

er

is i

n d

evel

op

men

t c

os

t a

nd

th

e c

os

ts o

f

sup

po

rt f

ac

ilit

ies

. T

he

ve

hic

le d

esi

gn

(F

ig.

4-9

) w

as

av

ail

ab

le o

nly

ia

te i

n t

his

itu

dy

, a

ad

he

nc

e

is c

on

sid

ere

d o

nly

in

th

e c

os

t a

na

lyse

s (S

ec.

7).

It i

s n

ote

d,

tho

ug

h,

tha

t re

lati

ve

to

th

e s

ing

le-

bo

ost

er

de

sig

n

the

use

of

Ro

lls

Ro

yc.

R

B21

1-52

4B

en

gin

es

de

cre

ase

s fu

el

con

sum

pti

on

an

d

inc

rea

se

s

the

ca

pa

bil

ity

fo

r e

xte

nz

ed

ra

ng

e o

pe

rati

on

s,

de

sp

ite

th

e h

ea

vie

r e

ng

ine

we

igh

t.

Fig

ure

4-8

HYPE

RSON

IGST

AGED

AIR

-BRE

ATHI

NG T

WO-

STAG

E LA

UNCH

VEHI

CLE

e TU

RBOJ

ET P

iU S

SCRA

MJE

T BO

OSTE

R

a (M

ach

10 S

tagi

ng)

a AL

L HY

DRO

GEN

IOXY

GEN

PR

OPEL

LANT

S a

ADVA

NCED

STR

UCTU

RE

e AD

VANC

ED S

UPER

SO

NIC

TURB

OJET

a

ADVA

NCED

SCR

AMJE

T e

MO

D IF

1 ED

SHUT

TLE

MA

IN E

NGIN

E a

ADVA

NCED

TPS

GR

C

I

42

4.9

V

EH

ICL

E

WEI

GH

TS

The

w

eig

ht

bre

akd

ow

ns

for

the

se

ve

n c

an

did

ate

ve

hic

les

are

sho

wn

in

Fig

. 4

-10

, a

nd

de

tail

ed

we

igh

t st

ate

me

nts

fo

r a

ll v

eh

icle

s a

re i

n A

pp

end

ix A

. T

he

syst

em

dry

we

igh

t is

a b

ett

er

ind

ica

tor

of

co

st

tha

n i

s t

he

to

tal

syst

em

we

igh

t.

As

sta

gin

g M

ach

nu

mb

er

inc

rea

se

s,

the

in

cre

as

e i

n b

oo

ste

r w

eig

ht

is m

ore

th

an

co

mp

ensa

ted

by

the

re

du

cti

on

in

orb

ite

r w

eig

ht,

re

su

ltin

g

in a

n o

ve

rall

de

cre

ase

in

to

tal

syst

em

we

igh

t a

t la

un

ch

.

The

a

pp

are

nt

dis

cre

pa

nc

y b

etw

een

th

e s

ub

son

ic-s

tag

ed

o

rbit

er

and

th

e s

led

-la

un

ch

ed

o

rbit

er

(th

eir

we

igh

ts a

re c

om

pa

rab

le)

is d

ue

to t

he

ad

van

ced

s

tru

ctu

re u

sed

in

th

e s

led

-as

sis

ted

v

eh

icle

co

mp

ared

to t

he

cu

rre

nt-

str

uc

ture

te

ch

no

log

y o

f th

e s

ub

son

ic v

eh

icle

. T

he

Bo

ein

g-d

esig

ned

sl

ed

-la

un

ch

ed

ve

hic

le a

lso

em

plo

yed

a

s

lig

htl

y l

igh

ter,

h

ot-

str

uc

ture

T

PS

com

par

ed

to a

n

on

-me

tall

ic

reu

sa

ble

su

r-

fac

e i

ns

ula

tio

n (

RS

I)

on

th

e s

ub

son

ic v

eh

icle

. T

he

Ma

rtin

VTO

si

ng

le-s

tag

e-t

o-o

rbit

v

eh

icle

als

o

use

s ad

van

ced

s

tru

ctu

re b

ut

wit

h R

SI.

Fo

r th

e a

ir-b

rea

thin

g

ve

hic

les

, th

e

tota

l d

ry w

eig

ht

inc

rea

se

s s

low

ly w

ith

sta

gin

g M

ach

nu

mb

er,

and

a

ll

air

-bre

ath

ing

v

eh

icle

s a

re h

ea

vie

r th

an

th

e s

ing

le-s

tag

e-t

o-o

rbit

v

eh

icle

s.

Th

e d

ry w

eig

ht

of

sub

son

ic a

nd

su

pe

rso

nic

air

-bre

ath

ing

sy

ste

ms

is a

pp

rox

ima

tely

tr

iple

th

at

of

the

sin

gle

-sta

ge

-to

-

orb

it v

eh

icle

s d

ue

in

la

rge

pa

rt

to d

iffe

ren

t a

ssu

mp

tio

ns

reg

ard

ing

str

uc

ture

te

ch

no

log

y a

nd

en

gin

e

we

igh

t.

4.1

0

FL,I

GH

T PA

RA

MET

ER

DATA

The

m

ain

fl

igh

t p

ara

me

ters

a

ss

oc

iate

d w

ith

ea

ch

la

un

ch

ve

hic

le a

re s

um

mar

ized

in

Fig

. 4-

11.

The

tw

o h

yp

ers

on

ic

syst

em

s (t

he

all

-ro

ck

et,

C

, an

d

the

air

-bre

ath

ing

b

oo

ste

r,

F)

ac

tua

lly

sta

ge

at

ap

pro

xim

ate

ly e

qu

iva

len

t e

ne

rgy

co

nd

itio

ns-

-th

e

Mac

h n

um

ber

sh

own

for

the

ro

ck

et

bo

os

ter

is d

ue

to

low

er

so

nic

ve

loc

ity

at

the

hig

h s

tag

ing

alt

itu

de

.

Fiq

ure

4-1

0

LAUN

CH VE

HICL

E W

EIGH

T DA

TA

29,0

00-k

g (6

5,00

0-lb

m)

Paylo

ad

92.5

x 18

5-km

(5

0 x

100 n

mi),

28

" Or

bit

VE

IiIC

I-E

OP

TIO

NS

-

ST

AG

ING

S

STO

S

STO

T

S

TS

15

TS

T

AK

EO

FF

V

TO

H

TO

H

TO

~

+ro

I I

TO

H

TO

P

RO

PU

LS

ION

n

R

R/R

TJ

/R

TJ/

n

T.1-

SJI

R

ST

AG

ING

10

0.8

3.5

lo+

MACH N

O.

GR

OS

S W

T

1207

1250

1050

1371

1285

1049

(2660)

(2750)

(23 14)

(3022)

(2833)

(2313)

OR

BIT

ER

WT

1207

1250

216

1 104

824

216

(2660)

(2750)

(476)

(2433)

(1817)

(476)

BO

OS

TER

WT

-

249"

834

267

4 GO

833

(549)

(1 838)

(589)

(1010)

(1837)

TO

TA

L D

RY

WT

114

99

19G

330

35 1

422

(251 1

(218)

(432)

(741)

(775)

(930)

All

wei

gh

ts WOO.

"Sle

d w

eig

ht not

i~lc

lud

ed in g

ross

.

Fig

ure

4-1

1

FLIG

HT P

ARAM

ETER

DAT

A

A

B

C

D

E

F

STA

GIN

G

. SS

TO

SSTO

TS

TS

TS

TS

TA

KE

OFF

V

TO (H

h)

tITO

H

TO

HTO

H

TO

llTO

P

RO

PU

LSIO

N

fl

n R

/R

TJ/

n TJ

/R

TJ-S

C/R

STA

GIN

G C

ON

OlT

lON

S

MA

CH

NO

. 0

VE

LOC

ITY

(m

hec)

0

ALT

ITU

DE

(m

) 0

DY

NA

ME

PR

ESSU

RE

(N/m

2)

0

MAX

. D

YN

AM

IC P

nES

SU

RE

(~

Irn

2)

35,0

00

WIN

G L

OA

DIN

GS

(~

/m2

) BO

OST

ER A

T T

AK

EO

FF

- O

RB

ITE

R A

T T

AK

EO

FF

27,3

00

OR

BIT

ER

AT

STA

GIN

G

- O

RB

ITE

R A

T LA

ND

ING

31

00

THR

US

T/W

EIG

HT

TAK

EO

FF

STA

GIN

G

AZ

IMU

TH

CA

PA

BIL

ITY

36

00

OFF

SE

T C

AP

AB

ILIT

Y (

km)

93

GR

C

4 6

5

TECH

NO

LOG

Y

ASS

ESSM

ENT

An

ass

ess

me

nt

of

the

key

te

ch

no

log

y n

ee

ds

for

ea

ch

la

un

ch

ve

hic

le i

s p

erfo

rmed

u

sin

g a

met

ho

do

log

y

pre

vio

usl

y d

ev

elo

pe

d

for

NA

SA

Ile

ad

qu

art

ers

,l1

an

d

ex

te~

.de

d h

ere

to

in

clu

de

a

tec

hn

olo

gy

de

fic

ien

cy

co

st

fac

tor

(TD

CF

).

Th

is f

ac

tor

is u

sed

to

de

riv

e a

te

ch

no

log

y d

efi

cie

nc

y c

os

t th

at

ca

n b

e

add

ed

to t

he

tra

dit

ion

al

RD

TdE

co

sts

. T

his

te

ch

no

log

y

rea

din

es

s a

sse

ssm

en

t m

eth

od

olo

gy

ha

s p

rov

ed

us

efu

l fo

r g

en

era

tin

g f

utu

re t

ec

hn

olo

gy

pro

gra

m n

ee

ds

and

fo

r in

dic

ati

ng

th

e t

ec

hn

olo

gic

al

ris

k

inh

ere

nt

in

pro

po

sed

fl

igh

t p

rog

ram

s.

In o

rde

r to

fo

rma

liz

e a

te

ch

no

log

y r

ea

din

es

s m

eth

od

olo

gy

, it i

s n

ec

ess

ary

to

es

tab

lis

h a

mea

sure

by

w

hic

h

the

sta

tus

an

d

ob

jec

tiv

es

of

tec

hn

olo

gy

re

ad

ine

ss

ca

n b

e d

efi

ne

d.

Th

e te

ch

no

log

y

rea

din

es

s e

va

lua

tio

n c

rit

er

ia a

re s

how

n in

Fig

. 5

-1

as

dif

fere

nt

lev

els

of

rea

din

es

s,

us

ing

a

sev

en

-le

ve

l s

ca

le (

wh

ich

ha

s su

bse

qu

en

tly

bee

n

use

d

by

OA

ST,

the

Off

ice

of

Ae

ron

au

tic

s an

d

Sp

ac

e

Tec

hn

olo

gy

, N

ASA

H

ea

dq

ua

rte

rs,

to a

ss

ist

in e

sta

bli

sh

ing

te

ch

no

log

y n

ee

ds

for

adv

ance

d

pro

gra

ms,

and

te

ch

no

log

y

rea

din

es

s e

sti

ma

tes

fo

r p

rop

ose

d

spa

ce

pro

gra

ms)

. E

ach

e

lem

en

t o

f a

p

rop

ose

d

syst

em

ca

n b

e e

va

lua

ted

to

de

term

ine

its

cu

rre

nt

sta

tus

an

d

the

eff

ort

re

ma

inin

g b

efo

re i

nc

orp

ora

tio

n i

nto

a

new

p

rog

ram

.

Alt

ho

ug

h

the

met

ho

do

log

y r

eq

uir

es

su

bje

cti

ve

in

pu

ts

(re

pre

se

nta

tiv

e o

f a

c

las

s o

f d

ec

isio

n

too

ls c

ate

go

riz

ed

as

a D

elp

hi

pro

ce

ss),

it h

as

be

en

sh

own

tha

t th

e p

roc

ess

of

as

sig

nin

g c

urr

en

t

sta

tus

an

d

req

uir

ed

sta

tus

fo

r te

ch

no

log

y

rea

din

es

s i

s c

on

du

civ

e t

o a

n o

ve

rall

co

nse

nsu

s.

A

tec

h-

no

log

y a

sse

ssm

en

t in

vo

lve

s m

any

de

cis

ion

s;

larg

e d

isa

gre

em

en

ts i

n a

ny

s

ing

le d

ec

isio

n d

o n

ot

sig

nif

ica

ntl

y c

ha

ng

e t

he

ov

era

ll r

es

ult

s.

5.1

METHODOLOGY FOR ESTIMATING TECHNOLOGY DEFICIENCY COSTS

Items requiring equivalent gains in technology readiness levels may not be achievable with the

same degree of effort.

To account for differences in effort, technology risk criteria have been

established and are shown in Fig. 5-2. The numerical values of risk (3, 6, and 9) have been select-

ed such that risk and the gain in readiness level have approximately the same weighting in determining

technology readiness.

Several factors that are useful in evaluating the cost associated with technical risk are de-

fined in Fig. 5-3.

The technology deficiency index (TDI)

is the gain in technology level required to

achieve readiness (difference between levels in Fig. 5-1) times the risk, summed over the individual

elements of the system. In comparing competing alternatives, the TDI indicates the relative risk to

be expected due to technol~gy deficiencies.

The technology deficiency factor (TDF) indicates the d

eg~re d

l technology deficiency (a normal-

jzed value of the TDI).

One minus the TDF id an indication of how near technology readiness is to

being achiever.

The TDF is incorporated into the technology deficiency cost factor (TDCF), which

is used

to estimate the cost associated with technology uncertainty in the development of a new

system.

RDTCE cost estimates are multiplied by the TDCF to account for technology risk.

Additional effort is needed to define more precisely an appropriate cost factor to account

for technology deficiencies at program initiation if more accurate program cost estimates are to

be made.

It is hoped that the impact of technology deficiencies on program cost as indicated in

this analysis is sufficient to stimulate additional work.

Fig

ure

5-2

TECH

NOLO

GY R

lSK

ASSE

SSM

ENT

CRIT

ERIA

TE

CH

NO

LOG

Y E

XIS

TS

AN

D H

AS

BE

EN

DE

MO

NS

TR

AT

ED

IN

OT

tiE

R E

QU

IPM

EN

T

LOW

A

LT

ER

NA

TIV

ES

Afl

E B

EIN

G D

EV

ELO

PE

D,

AL

TH

OU

GH

TH

EY

(3)

AR

E N

OT

YE

T P

RO

VE

N

0

PA

RA

LL

EL

DE

VE

LOP

ME

NT

S A

RE

PO

SS

IBLE

LE

VE

L O

F R

ISK

41 -

TE

CH

NO

LOG

Y D

OE

S N

OT

EX

IST

AN

D M

US

T B

E D

EV

EL

OP

ED

HIG

H

AL

TE

RN

AT

IVE

S D

O N

OT

EX

IST

(9

) P

AR

AL

LE

L D

EV

ELO

PM

EN

TS

AR

E N

OT

PO

SS

IBLE

TE

CH

NO

LOG

Y E

XIS

TS

BU

T H

AS

NE

VE

R B

EE

N D

EM

ON

ST

RA

TE

D

AL

TE

RN

AT

IVE

S A

RE

PO

SS

IBLE

BU

T A

RE

CO

ST

LY IN

TE

RM

S O

F

ME

DIU

M

DO

LL

AR

S

(6)

RE

SO

UR

CE

S A

ND

SC

HE

DU

LE A

RE

MA

RG

INA

L F

OR

PA

RA

LL

EL

D

EV

ELQ

PM

EN

TS

BU

T P

AR

AL

LE

L D

EV

EL

OP

ME

NT

S A

RE

ST

ILL

P

OS

SIB

LE

Fig

ure

5-3

TECH

NOLO

GY R

EADI

NESS

ASS

ESSM

ENT

FACT

ORS

- A

- TE

CHNO

LOGY

DEF

I c I E

NC

Y

COST

FA

CTO

R (TDC

F) -

.1 - TDF

GR

C

52

5.2

TE

CHN

OLO

GY

D

EFI

CIE

NC

Y

CO

STS

Th

e d

ata

use

d

in t

he

te

ch

no

log

y r

ea

din

ess

an

aly

sis

ar

e p

rese

nte

d

in A

pp

end

ix

B,

and

th

e

res

ult

s o

f th

e a

ssess

mefi

t are

su

mm

ariz

ed

in F

igs.

5-

4 an

d

5-5.

A

s e

xp

ec

ted

, th

e s

ub

son

ic p

ara

lle

l-

li

ft

ve

hic

le h

as

the

lo

we

st

TD

I.

On

ly

the

TPS

an

d

the

in

tern

ali

ze

d c

on

tou

r-c

on

fig

ure

d

pro

pe

lla

nt

tan

ks

(in

clu

din

g a

c

ryo

ge

nic

we

t w

ing

) a

pp

ea

r to

re

qu

ire

sig

nif

ica

nt

tec

hn

olo

gy

ad

va

nc

es.

T

he TDI

Inc

rea

ses

rap

idly

wit

h s

tag

ing

Mac

h nu

mbe

r b

ec

au

se o

f in

cre

ase

d

the

rma

l p

rote

cti

on

re

qu

ire

me

nts

--

the

scr

amje

t-p

ow

ered

b

oo

ste

r re

pre

se

nts

ve

ry a

dv

ance

d

tec

hn

olo

gy

, as

it i

s s

imil

ar

to a

se

con

d

orb

ite

r,

bu

t c

om

pli

ca

ted

by

a

ir-b

rea

thin

g

pro

pu

lsio

n r

eq

uir

em

en

ts.

It

is i

nte

res

tin

g t

o n

ote

th

at

the

sle

d-a

ssis

ted

SS

TO

ve

hic

le h

as

a

hig

he

r T

DI

tha

n e

ith

er

the

VTO S

STO

o

r t

he

su

pe

rso

ntc

-sta

ge

d

pa

rall

el-

lift

v

eh

icle

. T

he

ho

t m

eta

l T

PS

and

th

e a

dv

ance

d

str

uc

ture

(c

ryo

ge

nic

we

t w

ing

, s

led

as

sis

t)

of

the

HTO

SSTO

re

pre

se

nts

hig

he

r te

ch

no

log

ica

l ri

sk

th

an

th

e d

evel

op

men

t o

f la

rge

jet

en

gin

es

for

the

su

pe

rso

nic

pa

rall

el-

lift

v

eh

icle

.

Th

e re

lati

ve

ra

nk

ing

of

the

la

un

ch

ve

hic

le c

an

did

ate

s b

ase

d

on

TD

CF

pa

rall

els

th

e r

an

kin

g

ba

sed

o

n t

k,e

TD

I,

as

is

to b

e e

xp

ec

ted

. T

he

hig

he

r th

e t

ec

hn

olo

gy

ris

k,

the

hig

he

r th

e I

DZ

F

sho

uld

be.

5.3

KEY

TECH

NO

LOG

Y

NEE

DS

Th

e e

va

lua

tio

n o

f th

e T

DI

for

ea

ch

ele

me

nt

in t

he

la

un

ch

ve

hic

le p

rov

ide

s a

n e

asy

qu

an

tita

tiv

e

met

ho

d

for

de

term

inin

g

tec

hn

olo

gy

n

eed

s.

A TD

L v

alu

e o

f 1

8 o

r g

rea

ter

was

a

rb

itr

ar

ily

se

lec

ted

fo

r d

ete

rmin

ing

key

tec

hn

olo

gy

n

ee

ds,

w

hic

h a

re

sho

wn

in F

ig.

5-6.

The e

va

lua

tio

n s

ho

ws

tha

t a

fu

lly

re

usa

ble

ad

van

ced

T

PS

co

mp

ati

ble

wit

h s

ch

ed

ule

d m

ain

ten

an

ce

was

th

e o

nly

key

te

ch

no

log

y

tha

t w

as

req

uir

ed

by

ev

ery

la

un

ch

ve

hlc

le o

pti

on

. T

he

hy

pe

rso

nic

1 ORBITER (330) SLED "11

BOOSTER (402) 1

VEHI

CLE

OPT

IONS

r

TEC

t IN OL

OG Y

1.

I4

1.12

1.06

1.08

1.15

DEFI

C IE

NCY

GR

C

55

STAG

S NG

TAkE

OFF

PRO

PULS

ION

STA

GIN

GM

AC

HN

O.

SSTO

SS

TO

TS

TS

TS

TS

VTO

t I

T0

IGO

11

10

HTO

t I

T0

R R

RIR

TJli?

TJ

IR

TJ-S

JIR

-

-

0.8

3.5

10+

--

10

--

X X X

X

X

X X X

X X

LI

0

scra

mje

t-p

ow

ered

b

oo

ste

r h

as

the

mo

st

ne

ed

s,

and

th

e s

ub

son

ic t

urb

oje

t-p

ow

ere

d

bo

ost

er

the

few

est

. T

he

foll

ow

ing

ad

dit

ion

al

po

ints

ar

e n

ote

d:

1.

Al

l h

ori

zo

nta

l ta

ke

off

v

eh

icle

s b

en

efi

t s

ign

ific

an

tly

if

th

ey

us

e a

cry

og

en

ic

wet

w

ing

.

Th

e sc

ram

jet

pro

pu

lsio

n

syst

em

is i

n a

ve

ry

ea

rly

sta

ge

of

dev

elo

pm

ent,

re

qu

ire

s

new

te

st

fa

cil

itie

s,

and

is

ex

tre

me

ly

se

ns

itiv

e t

o v

eh

icle

co

nfi

gu

rati

on

an

d

str

uc

tura

l w

eig

ht.

Bo

th

of

the

sin

gle

-sta

ge

v

eh

icle

s

req

uir

e s

ign

ific

an

t im

pro

vem

ents

in

ad

van

ced

ma

teri

als

, s

tru

ctu

res

, a

sse

mb

ly,

and

m

an

ufa

ctu

rin

g

ca

pa

bil

itie

s.

Th

e d

evel

op

men

t o

f ne

w

tes

t h

ard

wa

re

to a

ssis

t in

qu

ali

ty c

on

tro

l d

uri

ng

man

u-

fac

turi

ng

is a

n

imp

ort

an

t a

rea

th

at

is o

fte

n o

ve

rlo

ok

ed

.

6

CO

ST

ASS

ESSM

ENT

The

mo

del

de

ve

lop

ed

by

A

ero

spac

e ~

or

po

ra

tio

n'~

to

ev

alu

ate

co

sts

of

Ea

rth

-to

-orb

it

and

o

rb

ita

l

tra

ns

fer

ve

hic

les

is

use

d

in t

his

stu

dy

. B

ased

o

n

sub

syst

em

co

st-e

stim

ati

ng

re

lati

on

sh

ips

, th

e

mo

del

g

en

era

tes

PDT

&E

, in

ve

stm

en

t,

op

era

tio

ns,

an

d m

ain

ten

an

ce

c

os

t e

stim

ate

s.

6.1

L

IFE

CY

CLE

C

OST

S

Th

e l

if

e c

yc

le c

os

t e

stim

ate

s fo

r e

ac

h l

au

nc

h v

eh

icle

co

nsi

de

red

in

th

e s

tud

y a

re s

ho

wn

in

Fig

. 6-

1.

Th

e to

tal

pro

gra

m

co

sts

fo

r v

eh

icle

s A

, B

, D

, E

, an

d

G

ar

e f

or

all p

rac

tic

al

pu

rpo

ses

the

sam

e,

wh

ere

as

bo

th

the

hy

pe

rso

nic

tw

o-s

tag

e la

un

ch

ve

hic

les

(C

an

d

F)

are

sig

nif

ica

ntl

y m

ore

co

stl

y.

Th

e H

TO

sin

gle

-sta

ge

-to

-orb

it

is t

he

le

as

t e

xp

en

siv

e v

eh

icle

by

a

n

arro

w m

arg

in.

Fo

r tw

o-

sta

ge

ve

hic

les

, h

igh

er

sta

gin

g n

um

ber

s le

ad

to

lo

we

r o

rbit

er

co

sts

, b

ut

hig

he

r b

oo

ste

r c

os

ts.

Fig

ure

6-1

sh

ow

s th

at

alm

ost

a

bil

lio

n d

oll

ars

in

RD

T&E

co

sts

ca

n b

e

sav

ed

by

de

ve

lop

ing

th

e

Lan

gle

y-d

esig

ned

su

bso

nic

tw

in b

oo

ste

r v

eh

icle

in

ste

ad

of

the

la

rge

r s

ing

le b

oo

ste

r.

Inv

est

me

nt

co

sts

do

no

t ch

ang

e s

ign

ific

an

tly

bet

wee

n

sin

gle

an

d

twin

bo

ost

ers

, an

d

the

le

arn

ing

cu

rve

plu

s l

ow

er

fir

st

un

it

co

st

ten

ds

to c

om

pen

sate

fo

r th

e l

arg

er

num

ber

of

twin

bo

ost

ers

re

qu

ire

d.

Th

e o

ve

rall

res

ult

in

go

ing

fro

m a

s

ing

le t

o a

tw

in b

oo

ste

r is

to

re

du

ce

pro

gra

m

co

sts

by

ap

pro

xim

ate

ly S

IB.

Wit

ho

ut

the

in

clu

sio

n o

f te

ch

no

log

y d

efi

cie

nc

y c

os

ts,

the

su

pe

rso

nic

pa

rall

el-

lift

v

eh

icle

(E)

is l

ess e

xp

en

siv

e t

ha

n

eit

he

r su

bso

nic

ve

hic

le

(D

and

G

).

Wit

h

the

in

clu

sio

n o

f te

ch

no

log

y d

efi

cie

nc

y

co

sts

, th

ou

gh

, th

e t

win

-bo

ost

er

sub

son

ic p

ara

lle

l-li

ft

ve

hic

le

(G)

is l

ess e

xp

en

siv

e.

Ho

wev

er,

the

dif

fere

nc

es

are

re

lati

ve

ly s

ina

ll a

nd

a

re n

ot

sig

nif

ica

nt:

be

ca

use

of

the

un

ce

rta

inty

of

the

co

st

est

ima

tes.

A

pp

end

ix

C

sho

ws

de

tail

ed

co

st

da

ta

for

ea

ch

la

un

ch

ve

hic

le.

5-VE

H I C

LE F

LER

10-Y

R O

PERA

TI O

N S

4197

FLI

GHT

S

Fig

ure

6-1

LIFE

CYC

LE C

OST

J

A B

C 0

E I--

G

STAG

l NG

S ST

0 SS

TO

TS

TS

TS

TS

TS

TAKE

OFF

VTO

HTO

\IT0

HTO

HT

O HT

O

HTO

PRO

PULS

ION

R R

RIR

TJ IR

TJ

IR

TJ-S

JIR

TJIR

( )

incl

udes

cos

t ass

ocia

ted

with

tech

nolo

gy r

isk.

*

Subs

onic

Win

Boo

ster

. G

RC

In order to provide a rough indication of the accuracy of the cost models, operations costs

per flight for the current Shuttle are derived using Boeing, Martin, and Aerospace models (see

Jig.

62

).

Martin and Boeing estimates agree with current average costs quoted for the Shuttle,

whereas the Aerospace model appears to be in agreement with the projected

low

user costs given in

two NASA publications. l3*l4 The differences among the estimates are due primarily to differences

in manpower requirements--the Aerospace values assume a manpower forecast representative of mature

operations. Also, the RDT&E costs generated by the Aerospace model appear high compared to the costs

estimated for the Shuttle. However, when actual R

DT&

E costs are available, the Aerospace model

estimates may well prove to be more realistic since traditionally RDTdE projected ccsts have been

underestimated.

The Martin model is based on manpower time estimates, which are converted to costs using

labor rates, whereas the Aerospace model is based on subsystem cost projections plus operations and

mzintenance manning estimates.

Differences between the Martin and Aerospace models in estimating

investment and operations costs appear to be simply bookkeeping; some of the operations cost

associated with facilities in the Martin model are considered in the Aerospace model to be investment

costs.

6.2

MISSION MODEL FOR COST EVALUATION

The cost estimates presented in Fig. 6-1 are based on 10-year operations of a 5-vehicle

fleet capable of completing 4197 flights. The utilization rate for the vehicles is high compared

to that for the Shuttle because of two factors:

(1) a 1-day average mission duration (compared

to

a 14-day average mission duration for the Shuttle),

and

(2)

scheduled maintenance. A 1-day average

mission is proposed as realistic for these vehicles based on the mission assessment in which a new

I.

,

. -

I.

, .

, ,

. .

I/

.

- .

.

- .

- .

- . .

. .

- ..

.-

.. .- ~

. ..

. -

. .-

-. ..

. ."-

--.

..-. -

.

- F

igu

re 6-2

SHUT

TLE

COST

COM

PARI

SON

OPER

ATIO

NS C

OST

PER

FLIG

HT

MA

RT

IN"

AE

RO

SP

AC

E

CO

ST

EL

EM

EN

T

- P

RO

GR

AM

SU

PP

OR

T (G

RO

UN

D O

PE

RA

TIO

NS

, F

LIG

HT

OP

ER

AT

ION

S, &

PR

OG

RA

M R

ES

ER

VE

S)

- S

PA

RE

S

- S

RM

- E

XT

ER

NA

L T

AN

K

- E

NG

INE

S

- F

UE

L A

ND

PR

OP

EL

LA

NT

S

TO

TA

L

CO

ST

- K

SC

CIV

IL S

ER

VIC

E

- L

AU

NC

H O

PE

RA

TIO

NS

- F

LIG

HT

OP

ER

AT

ION

S (J

SC

) - n

EF

UR

BlS

HM

EN

T

- S

RM

- E

XT

ER

NA

L T

AN

K

- E

NG

INE

S

TO

TA

L

-

--

- O

PE

RA

TIO

NS

- SP

AR

ES

AN

D P

RO

PE

LL

AN

TS

-

RA

NG

E/B

AS

E S

UP

PO

RT

-

EX

PE

ND

AB

LE

HA

RD

WA

RE

T

OT

AL

'Bas

ed o

n 1

5-ye

ar O

pera

tions

, 10

16 'L

sunc

ties

GR

C

6 1

lau

nc

h v

eh

icle

in

th

e f

utu

re w

ou

ld

de

liv

er

ca

rgo

an

d/o

r p

ass

en

ge

rs

to a

li

mit

ed

nu

mb

er

of

de

sti

na

tio

ns

.

Sch

edu

led

ma

inte

na

nc

e a

pp

ea

rs t

o b

e m

ore

a

pp

rop

ria

te f

or

a

full

y r

eu

sab

le

lau

nc

h v

eh

icle

tha

n a

n a

s-y

ou

-go

m

ain

ten

an

ce

ph

ilo

sop

hy

as

so

cia

ted

wit

h a

p

art

iall

y r

es

ua

ble

la

un

ch

ve

hic

le s

uc

h

as

th

e S

hu

ttle

, w

her

e re

co

ve

ry a

nd

re

furb

ish

me

nt

op

era

tio

ns

are

re

qu

ire

d.

Fig

ure

6-3

p

res

en

ts a

ma

inte

na

nc

e s

ch

ed

ule

wh

ich

sp

an

s th

e e

nti

re o

pe

rati

on

al

li

ft

of

the

ve

hic

le.

It

is p

rop

ose

d

tha

t

af

ter

11

2 m

issi

on

s th

e o

rbit

er

wi

ll

un

de

rgo

an

en

gin

e c

han

geo

ut.

A

fte

r 4

48

mis

sio

ns

it i

s o

ve

r-

ha

ule

d,

and

a

fte

r t

wo

ov

erh

au

ls i

t is

re

tire

d.

Ov

erh

au

ls

and

e

ng

ine

ch

an

ge

ou

ts a

re

made

in c

en

tra

l-

ize

d m

ain

ten

an

ce

fa

cil

itie

s.

As

no

ted

in

Sec

. 2

.3,

turn

aro

un

d

tim

es

fo

r tw

o-s

tag

e

air

-bre

ath

ing

v

eh

icle

s a

re e

stim

ate

d

to

be

60

ho

urs

. S

imil

ar

turn

aro

un

d

tim

es

hav

e b

een

p

rop

ose

d

by

th

e M

art

in

Com

pany

f

or

th

e S

STO

-VTO

ve

hic

le,

and

th

e B

oei

ng

Com

pany

h

as

est

ima

ted

a

18

0-h

ou

r tu

rna

rou

nd

ti

me

for

the

SST

O-II

TO

. H

ow

ever

,

assu

min

g a

fu

lly

re

usa

ble

pro

tec

tio

n s

yst

em

is d

ev

elo

pe

d,

the

SST

O-H

TO

mig

ht

als

o a

ch

iev

e a

6

0-h

ou

r

turn

aro

un

d

tim

e.

So

as

no

t to

un

rea

lis

tic

all

y p

en

ali

ze

th

e S

STO

-HT

O,

a

60

-ho

ur

turn

aro

un

d ti

me

was

~

ss

um

ed

for

co

sti

ng

pu

rpo

ses.

Th

e m

issi

on

ca

pa

bil

ity

(F

ig.

6-4)

o

f e

ac

h

laa

nc

h v

eh

icle

is d

ete

rmin

ed

by

co

mb

inin

g t

he

mai

n-

* te

na

nc

e

sch

ed

ule

(in

clu

din

g u

nsc

he

du

led

ma

inte

na

nc

e, \ =

0

.95

),

a

ve

rag

e f

lig

ht

du

rati

on

, an

d

the

turn

aro

un

d

tim

e.

A

tota

l e

xp

ec

ted

ve

hic

le l

ife

tim

e o

f 5

93

2 d

ay

s (1

6.2

5

ye

ars

) is

pro

jec

ted

. T

he

mis

sio

n

fac

tor

(to

tal

num

ber

of

mis

sio

ns

div

ide

d b

y

ve

hic

le l

ife

tim

e)

is 0

.23

, co

mp

ared

to

ap

pro

xi-

ma

tely

0

.14

fo

r th

e S

hu

ttle

(n

ot

inc

lud

ing

ov

erh

au

l ti

me

).

Bas

ed

on

a m

issi

on

fa

cto

r o

f 0

.23

,

each

la

un

ch

ve

hic

le w

ou

ld

be

ca

pa

ble

of

83

9

mis

sio

ns

du

rin

g a

1

0-y

ear

op

era

tin

g p

eri

od

; o

r,

fo

r a

* Rep

rog

ram

mab

le

reli

ab

ilit

y,

fiv

e-v

eh

icle

fl

ee

t,

4197 m

issi

on

s c

ou

ld b

e f

low

n.

Com

pare

d to

cu

rre

nt

op

era

tio

na

l p

roje

cti

on

s

of

lau

nc

h v

eh

icle

dem

and,

420 m

issi

on

s p

er

ye

ar

is u

nre

ali

sti

c.

How

ever

, to

av

oid

d

isc

ussio

n a

bo

ut

the

va

lid

ity

of

sp

ec

ific

mis

sio

n m

od

els,

c

os

t co

mp

ari

son

s b

etw

een

th

e l

au

nc

h v

eh

icle

op

tio

ns c

on

-

sid

ere

d

in t

he

stu

dy

are

bas

ed

on

the

max

imum

p

ote

nti

als

of

the

la

un

ch

ve

hic

les,

wh

ich

pro

vid

e a

n

ind

ica

tio

n o

f th

e m

inim

um

co

st

pe

r f

lig

ht

tha

t m

ay

be

ac

hie

va

ble

wit

n

each

.

6.3

O

PER

ATIO

NS

CO

STS PER F

LIG

HT

A co

mp

aris

on

o

f e

stim

ate

d o

pe

rati

on

s c

os

ts p

er

flig

ht

is s

how

n in

Fig

. 6

-5,

ind

ica

tin

g t

ha

t

co

sts

pe

r fl

igh

t b

etw

een

$2.5M

and

$3

M

co

uld

b

e a

ch

iev

ed

wit

h a

fu

lly

re

usa

ble

la

un

ch

ve

hic

le.

The

low

er

est

ima

te c

orr

esp

on

ds

to t

he

tw

o-s

tag

e su

bso

nic

, p

ara

lle

l-li

ft

ve

hic

le a

nd

th

e h

igh

er

to s

ing

le-

sta

ge

ve

hic

les,

wit

h

the

tw

in b

oo

ste

r d

esi

gn

s in

th

e m

idd

le.

Th

e c

os

ts o

f th

e h

yp

ers

on

ic-s

tag

ed

ve

hic

les

(no

t p

ara

lle

l l

if

t)

are

hig

he

r,

and

p

rob

ab

ly

no

t c

om

pe

titi

ve

. C

ompa

red

to t

he

SSTO-VTO,

the

re

du

cti

on

in

orb

ite

r s

ize

fo

r a

tw

o-s

tag

e v

eh

icle

re

su

lts

in

sig

nif

ica

nt

pro

pe

lla

nt

co

st

sav

ing

s.

In t

he

ca

se o

f th

e S

STO

-HTO

v

eh

icle

, th

e s

led

as

sis

t in

cre

ase

s o

pe

rati

on

s c

os

ts t

o a

le

ve

l ju

st

abo

ve

tho

se f

or

the

su

bso

nic

and

sup

ers

on

ic p

ara

lle

l-li

ft

ve

hic

les.

The

e

lim

ina

tio

n o

f ex

pen

dab

le h

ard

ware

pro

vid

es

su

bs

tan

tia

l sa

vin

gs

rela

tiv

e t

o t

he

Sh

utt

le;

de

leti

ng

ju

st

the

so

lid

-ro

ck

et

bo

oste

rs a

nd

th

e e

xte

rna

l p

rop

ell

an

t ta

nk

ac

co

un

ts f

or

a

red

uc

tio

n

of

alm

ost

40

%.

The

man

nin

g

co

st

for

op

era

tio

ns a

nd

m

ain

ten

an

ce is

ab

ou

t e

qu

al

for

the

sin

gle

- an

d

two

-sta

ge

lau

nc

h v

eh

icle

s,

bu

t in

cre

ase

d

eff

icie

nc

y i

n g

rou

nd

cre

w a

nd

f

ac

ilit

ies

du

e 50

an

in

cre

ase

d

lau

nc

h r

ate

pro

vid

es

an

ad

dit

ion

al

33%

re

du

cti

on

. A

lto

ge

the

r it i

s e

stim

ate

d

tha

t a

fu

lly

re

usa

ble

lau

nch

ve

hic

le c

an

re

du

ce

man

pow

er

req

uir

em

en

ts b

y

ap

pro

xim

ate

ly

80

% c

om

par

ed

to t

ho

se

of

the

Sh

utt

le.

Com

pare

d to

a s

ing

le-s

tag

e-t

o-o

rbit

la

un

ch

ve

hic

le,

a

two

-sta

ge

pa

rall

el-

lift

v

eh

icle

eli

min

ate

s t

he

nee

d

for

a

lau

nc

h p

ad

, b

ut

req

uir

es

a c

om

par

able

e

xp

en

dit

ure

fo

r a

se

pa

rate

pro

pe

lla

nt-

se

rvic

e a

nd

as

sem

bly

fa

cil

ity

. A

co

mp

aris

on

of

man

nin

g

esti

ma

tes i

s s

how

n i

n F

ig.

6-6.

65

I

I'

I

m

Fig

ure

6-5

5-VE

HICL

E FL

EET

10-Y

EAR

OPE

RATI

ON S

41

97 F

LIG

HTS

OPER

ATIO

NS C

OST

PER

FLIG

HT

VEHI

CLE

OPT

IONS

STAG

ING

SS

TO

SSTO

TS

TS

TS

TS

TS

TA

KEOF

F VT

O

HT0

HT

O HT

O HT

O HT

O HT

O

PRO

PULS

ION

R R

RIR

TJIR

TJ

IR

TJ-S

JIR

TJIR

ST

AGIN

G M

AC

H N

O. -

-

10

0.8

385

lo+

0.8*

*Tw

in B

oost

er S

ubso

n k P

aral

lel-L

ift L

aunc

h Ve

hicl

e C

RC

I

66

OPE

RATI

ONS

(R

ECUR

RING

CO

STS)

- 3.0

3.0

4.

1 2.8

2.5

4.3

2.7

OPER

ATIO

NS A

ND M

MNT

ENAN

CE

MAN

NING

(H

ours

Per

flig

ht)

SH

UT

TL

E

SIN

GLE

-ST

AG

E -T

O-O

RB

IT*

- IN

CR

EA

SE

D G

RO

UN

D C

RE

W U

TIL

IZA

TIO

N.

53%

TO

86%

- D

ELE

TE

SO

LID

GW

KE

T B

UO

ST

ER

S

- D

EL

ET

E E

XT

ER

NA

L O

RB

lTE

R T

AN

K

- D

EL

ET

E V

ER

TIC

AI.

IN

ST

AL

LA

TIO

N

- R

EP

LAC

E R

Sl W

ITH

ME

TA

LL

IC T

PS

-

RE

OU

CT

ION

IN

HY

PE

RG

OL

IC P

RO

PE

LL

AN

T U

TlL

IZA

TIO

N

- ?E

DU

CE

D P

AY

LO

AD

SU

PP

OR

T

- IN

CR

EA

SE

D E

FF

ICIE

NC

Y

- A

DO

ITIO

N O

F G

RO

UN

D S

LE

D

-AD

DIT

ION

O

F I

NT

ER

NA

L L

H2

/L0

2 T

AN

KS

TW

O-S

TA

GE

-TO

-OR

BIT

. tiT

0 (A

IR-B

RE

A W

ING

BO

OS

TE

R)

- D

EL

ET

E I1

YP

ER

GO

LlC

PR

OP

EL

LA

NT

S

- nE

PL

AC

E M

ET

AL

LIC

TP

S W

ITH

AD

VA

NC

ED

RS

I -

DE

LE

TE

LA

UN

Cli

PA

D

- A

DO

AIR

-BR

EA

TH

ING

BO

OS

TE

RS

- A

DO

Lti

2/L

02

SE

RV

ICE

FA

CIL

ITY

NE

T C

HA

NG

E

+83

.BO

EIN

G

SIN

GLE

-SIA

GE

-TO

-OflB

IT

ST

UD

Y

Altogether, the operating cost per flight of a fully reusable launch vehfcle is reducible

by approximately 50% (relative to the Shuttle) by eliminating expendable hardware.

In addition,

reductions in labor-intensive operations can reduce the remaining operations costs by approximately

50X, for total savings of roughly 60-80% of Shuttle costs.

6.4

COST SAVINGS FROM VEHICLE ATTRIBUTES

The advantages of various operational and hardware components of the alternative launch

vehicles are discussed in Sec. 2.4.

That discussion is summarized in Fig.

6-7, which also includes

the cost savings over 10 years (4200 flights) that can be attributed to each characteristic. Note

that just reuse O

L the entire lacnch vehicle accounts for an estimated saving of $348 over 10 years,

reiatlve to the Shuttle, which is greater than the estimated total cost of the proposed program.

Fig

ure

6-7

AllR

IBUT

E AS

SESS

MENT

SUM

MAR

Y

AT

TR

IBU

TE

T

OT

AL

CO

ST

SA

VIN

G

10 Y

R,

4194

FL

IGH

TS

RE

DU

CE

D C

OS

T,

INC

RE

AS

ED

LA

UN

Ct4

VE

tiIC

LE

U

TIL

IZA

TIO

N,

INtA

ND

LA

UN

CH

. 3G

0° A

ZIM

UT

H

FR

OM

AN

Y L

AV

NC

Ii S

lTE

INC

RE

AS

ED

EF

FIC

IEN

CV

OF

LA

UN

CH

,MA

ItiT

EN

PY

CE

,

AN

D G

RO

UN

D O

PE

RA

TIO

NS

CO

MP

An

ED

TO

VE

RT

ICA

L

AS

SE

MB

LV

RE

DU

CE

D G

RO

UN

D E

QU

IPM

EN

T A

ND

FA

Cii

tTlE

S

CO

MP

AR

ED

TO

VE

Rll

CA

L L

AU

NC

H

EL

IMIN

AT

ION

OF

VE

RT

ICA

L L

AU

NC

H P

AD

INV

ES

1-

ME

N1

AN

D O

PE

RA

TIO

NS

CO

ST

PO

'CE

NT

IAL

LA

UN

CH

OP

ER

AT

ION

S F

RO

M E

XIS

TIN

G

AIR

FIE

LD

S (

RE

QU

IRE

S Ii

YD

AO

GE

N A

ND

OX

VG

Fp

i C

qV

OG

EN

lC P

RO

PE

LL

AN

T S

UP

PLY

)

CE

NT

RA

LIZ

ED

MA

INT

EN

AN

CE

OP

ER

AT

ION

S F

OR

n

lSF

En

SE

D L

AU

NC

H W

ER

AII

ON

S

RE

MO

TE

LA

UN

Cli

SlT

E U

TIL

IZA

TIO

N (E

QU

P-T

OR

IAL

, F

OR

EIG

N C

C)U

NT

RV

), F

OR

EIG

N L

EA

SE

, D

ISF

ER

SE

D

LA

UN

Ct1

OP

El3

AT

ION

S

--

$20M

PE

R S

lTE

Sl8

8M

PE

R L

AU

NC

H S

ITE

, A

ND

$836110 I

N O

QE

RA

TIO

NS

C

OS

T

$100

PE

R M

AIN

TE

NA

NC

E

FA

CIL

ITY

PE

R L

AU

NC

tl

SlT

E

r

Fig

ure 6-7 (

Can

t.)

' AT

TRIB

UTE

ASSE

SSME

NT S

UMM

ARY

(Con

t.)

PA

HA

L I

EL

R

ED

UC

ED

TIM

E-T

O-O

RB

IT, I

NC

RE

AS

ED

LA

UN

CH

B

UR

N

I V

EH

ICL

E R

EL

IAB

ILIT

Y

I

--

Yi

rr

iE

T on

wr

INJE

CT

ION

LO

ITE

R

AT

TR

IBU

TE

INC

RE

AS

ED

LA

UN

CH

oP

Po

nT

uN

I1 IE

s, 3

60°

LA

UN

CH

A

ZIM

UT

H C

AP

AB

ILIT

Y F

RO

M A

NY

LA

UN

CH

SIT

E

LA

UN

CH

BE

FO

RE

MIS

SIO

N F

IN.1

L C

OM

MIT

ME

NT

SC

llE

DU

l E

D

MA

INT

EN

AN

CE

--

&T

OT

AL

CO

ST

SA

VIN

G

10 Y

R,

4194

FL

IGH

TS

INC

RE

AS

ED

MA

INT

EN

AN

CE

EF

FIC

IEN

CY

, IN

Cn

FA

SE

D L

AU

NC

H V

EH

ICL

E U

TIL

IZA

TIO

N

BOOSTER

ORBITER

Structure

Bod:.

-2roup

Wing Group

Tail Sroup

Thermal Protection System

Landing Gear

Contingency

Propulsion

Rocket Engines

Propellant System

RCS

Contingency

Equipment

CrewIPayload Provisions

Flight Controis

Electrical and Power

Hydraulic System

Environmental Contrvl System

Avionics

Contingency

Orbiter Empty Weight

T.40

LE A

-1

SING

LE-S

TAGE

-TO-

ORBI

T VT

O (M

ARTI

N)

ki log

rams

, (p

ound

s)

Not Applicable

ORBITER

(Cont.)

In j PC

ted Load

Crew

Residuals

RCS Propellants

OMS Propellants

Reserves

Retained Fluids

Payload

Injected Weight

Ascent ~ro~ellants/~luids

LO2 /LH2

Dumped Fluids

In-Flight Losses

Orbiter Cross Weight

Gross Launch Vehicle Weight

TABL

E A-

1 (C

ont.

)

S IN

GLE

-STA

GE-

TO-O

RB I

T V

TO

(MA

RTI

N)

ki 1

ogra

ms

(pou

nds)

GROUND ACCELERATORJSLED

Gross Gleight

Propellants (usable)

Taped Residuals

Structure, Avionics,

kiydraulics, and Power

ORBITER

Structure

Body Group

Wing Group

Tail Group

Thermal Protection System

Landing Gear

Contingency

Propulsion

Rocket Engines

Propellant System

RCS

Contingency

TABLE A-2

SING

LE-S

TkGE

-TO-

ORBI

T HTO

(BOE

ING)

ki 1

ogra

ms

(pou

nds

)

35,264

(77,746)

26,172

(57,700)

3,270

(7,210)

(Integral)

3,342

(7,368)

6,638

(14,634)

ORBITER (Cont . )

Equipment

~rew/Payload Provisions

Flight Controls

Electrical and Power

Hydraulic System

Environmental Control System

Avionics

Contingency

TABL

E A

-2 (Cont. )

S INGLE-STAGE-TO-ORB IT H

TO (B

OEIN

G)

kilograms

(pou

nds)

Orbiter Empty Weight

99,282

(218,880)

Injec ted

Load

Crew

Residuals

RCS Propellant

OMS Propellant

Reserves

Retained Fluids

Pay load

Injected We'ght

Ascent ~ropellants/Fluids

ORBITER (Cont.)

Ascent Propellants/Fluids

LO*/LH~

Dumped Fluids

In-Flight Losses

Orbiter Gross Weight

Gross Launch Vehicle Weight

TABL

E A

-2

(Co

nt.

)

S IN

GLE-

STAG

E-TO

-ORB

IT HTO

( BOE

ING)

k

i 1 og

ram

s (p

ound

s)

BOO

STER

: xu

ctu

re

Bo

dy

/~a

ce

lle

Gro

up

Win

g G

roup

Ta

il G

roup

Th

erm

al P

ro

tec

tio

n S

yste

m

Lan

din

g ;m

ar

En

gin

e S

ec

tio

n

Co

nti

ng

ency

Pro

pu

lsio

n

Tu

rbin

e E

ng

ines

Roc

ket

E

ng

ines

Air

In

-Su

ctio

n

and

E

xhau

st

Fu

el-/

P:-

up

ella

nt

Sys

tem

Oth

er

Co

nti

ng

ency

Eq

ui~

rnen

t

Fli

gh

t C

on

tro

ls

Ele

ctr

ica

l S

yste

m

Hy

dra

uli

c S

yste

m

Pow

er

Av

ion

ics

Bo

ost

er E

mpt

y W

eigh

t

TABL

E A

-3

TWO-

STA

GE-T

O-OR

B IT

(ALL

ROC

KET

POW

ERED

)

Ki 1

ogra

ms

( pou

nds )

BOOSTLR (Cont . )

Staging Load

Residuals

Reserves and Landing

Flyback Fuel

Booster Weight At Staging

Boost Propellants

JP

LO

,/L

H~

Rooster Gross Weight

OK

BIT

ER

Structure

Body Group

Wing Group

Tail Group

Thermal Protection System

Landing Gear

Contingency

TABL

E A

-3

(Co

nt.

)

TUO-

STA

GE-

TO-O

RE I

T (

ALL

RO

CKET

POW

ERED

)

Ki 1

ogra

ms

(pou

nds)

ORBITER (Cont . ,

Propulsion

Rocket Engines

Propellant System

RCS and OMS

Contingency

Equipment

Crew/Payload Provisions

Flight Controls

Electrical Power

Hydraulic System

Environmental Control System

Avionics

Contingency

TABL

E A

-3

(Co

~t.

)

TWO

-STA

GE-

TO-O

RB

IT

(ALL

RO

CKET

PO

WER

ED)

Ki 1

ogra

ms

(pou

nds)

Orbiter Empty Weight

I.:jected

Load

Crew

Residuals

RCS Propellant

OMS Propellant

Reserves

Retained Fluids

Payload

OR

BIT

ER

(C

on

t.)

Orb

iter

In

jec

ted

Wei

ght

Asc

ent

Pro

pel

lan

t/F

luid

s

LO

~/

L~

~

Dum

ped

Fluids:

In-F

lig

ht

Lo

sses

Orb

iter

Gro

ss W

eigh

t

Sys

tem

Gro

ss W

eigh

t

TABL

E A

-3

(Co

nt.

)

TWO-

STAG

E-TO

-ORB

IT

(A

LL R

OCKE

T PO

WER

ED)

Ki l

ogra

ms

(pou

nds)

TABL

E A-

4

TWO

-STA

GE-

TO-O

RB

IT

(S

UB

SON

I C

STA

GIN

G,

SIN

GL

E

BO

OST

ER,

COM

PACT

CA

RGO

BAY

)

Ki l

ogra

ms

(pou

nds)

BO

OST

ER

WEI

GH

T E

STIM

AT

E

Str

uc

ture

Win

g G

rou

p

65

,99

8

Ta

il G

rw

p

9,0

72

Bod

y G

rou

p

(in

clu

de

s n

ac

ell

es

) 2

7,2

15

Lan

din

g G

ear

42

,45

6

Lau

nch

S

tru

ctu

re

4,5

36

kro

pu

lsio

n

* T

urb

ofa

ns

(12

JT-9

D-7

0B)

49

,83

2

Fu

el

Sy

stem

2

,26

8

Oth

er

51

7

Eq

uip

men

t

Fli

gh

t C

on

tro

ls

2,7

21

Ele

ctr

ica

l 1

,54

2

Hy

dra

uli

c

2,2

68

Au

xil

iary

Po

wer

S

yst

em

54

4

Av

ion

ics

1,1

34

Cre

w P

rov

isio

ns

---

- --

* Use

of

16

F-1

00-P

b-

"

: *re

s in

pla

ce

of

12

3T

-9D

-70B

er

igin

es w

ou

ld

ha

ve

th

e f

oll

ow

ing

estimate

imp

act

on

we

igh

t st

:crb

a-

L;

(1)

cn

gin

e w

eig

ht

wo

uld

d

ec

rea

se t

o a

bo

ut

21

,77

2

kg

(4

8,0

00

lb)

from

4

9,8

32

k

g (109,8<,0 ib

);

(2)

the

na

ce

lle

we

igh

t w

ou

ld

de

cre

ase

by

a

bo

ut

6,8

04

k

g

(15,0

00

lb);

(3

) g

ross

we

igh

t w

otl

d

rem

ain

ab

ou

t th

e s

am

e s

inc

e f

ue

l fl

ow

s w

ou

ld

inc

rea

se

ab

ou

t 2

.5 times.

TABL

E A

-4

(Con

t. )

TW

O-S

TA

GE

-TO

-OR

BIT

(S

UB

SON

IC

STA

GIN

G,

SIN

GL

E

RO

OST

ER,

COM

PACT

CAR

GO B

AY)

Ki 1

ogra

ms

(po

un

ds)

BOOSTER W

EIG

HT

EST

IMA

TE

(C

on

t.)

Br,

ost

er Em~*y W

eig

ht

Cre

w

Re

sid

ua

ls

Re

serv

es,

S

ho

rt F

lyb

ack

, an

d

Lan

din

g

Off

se

t F

uel

Bo

ost

er

Wei

gh

t a

t S

tsg

ing

Bo

ost

er

Pro

pe

lla

nts

(M

ach

0.3

8/S

L

to

Mac

h 0

.81

22

k

ft)

JP

(<

5

0(,

0 I

b}

LOX

(i

n o

rbit

er

tan

ks)

LH2

(in

orb

ite

r ta

nk

s)

Eo

os t

sr

Gro

ss W

eig

ht

(c-e

ludin

g

bo

ost

er

pro

pe

lla

nts

in

orb

ite

r)

So

ost

er

Pro

pe

lla

nts

in

Orb

ite

r 1

02

,51

2

(22

6,0

00

)

LO

X

88

,84

4

(1-9

5,8

67

)

LH

13

,66

8

(30

,13

3)

Orb

ite

r C

ross

Wei

gh

t a

t S

tag

ing

Sy

stem

Cro

ss W

eig

ht

at

Lif

t-o

ff

Ta

xi

Pro

pe

lla

nts

(J

P)

TABL

E A

-4

(Co

nt.

)

W3-

STA

GE-T

O-OR

B I i (

SUB

SONI

C ST

AGIN

G,

SIN

GLE

BOO

STER

, CO

MPA

CT C

ARGO

BAY

) K

i 1 og

ranl

s (p

ound

s )

BOO

STER

W

EIG

HT

EST

IMA

TE

(C

on

t.)

Rm

way

Pro

pe

Lla

nts

J?

LOX

(in

or

blt

er

)

I.H2

(In

or

bit

er

)

Ram

p G

ross

Wei

ght

OR

BIT

ER

W

EIG

HT

ES1;MATE

Str

uc

tur

e

Win

g C

rou

p

Ta

il C

rou

p

Bod

y C

rou

p

Th

erm

al

Pr

ote

cti

on

Sy

stem

(e

xte

rn

al)

Str

uc

tur

e C

on

tin

gen

cy

(10

%)

Pro

pu

lsio

n

Ro

cket

E

~i~

inc

s

(th

r5

e

596,

000

1~ gA

c!

RCS

and

O

MS

Pro

pu

lsio

n

con^

ing

;?n

cy (

5%

)

TABL

E A

-4

(Con

t. )

TWO-

STAG

E-TO

-ORB

IT (

SUB

SONI

c ST

AGIN

G, SIN

GLE BO

OSTE

R, COM

PACT

CAR

' RA

Y )

ORBITER WEIGHT ESTIMATE (Cont.)

Equipment

CrewIPayload Provisions

Flight Controls

Electrical

Hydraulic

Environmettal Control System

Avionics

Equipment Contingency (5%)

Orbiter Empty Weight

' ,l jec ted Load

Crew

Residuals

RCS Propellants (100 ftlsec)

OMS Propellants (650 ftlsec)

Reserves

Subsystem Retained Fluids

Payload

Injected Weight

Ki 1

ogra

ms

(pou

nds)

h n n 0 0 0 0 0 0 o o m

a a a 1 1 s 0 0 0 k k k 2 0 u cl

TABLE

A-5

(Cont. )

(SUBSONIC STAGING, SINGLE BOOSTER, PARAMETRICALLY RESIZEO FOR SHUTTLE CARGO BAY)

Ki lograms (pounds)

BOOSTER WEIGHT ESTIMATE (Cont.)

Booster Empty Weight

Crew

Residua1.s

Reserves, Short Flyback and

Landing

22,679

(50,000)

Offset Fuel

(1FR)

Booster Weight at Staging

Boost Propellants (Mach 0.38/5.1

to Mach 0.8/22 kft)

LOX (in orbiter tanks)

LH2 (in orbiter tanks)

Booster Gross Weight (excludes

boost propellants in orbiter)

Boost Propellants in Orbiter

112,717

(248,500)

LOX

97,681

(215,350)

LH2

15,036

(33,150)

Orbiter Gross Weight at Staging

937,575 (2,067,000)

System Gross Weight at Lift-off

Taxi Propellants (

JP

)

TAB

LE A

-5 (Cont .

) (S

UB

SON

IC

STA

GIN

G,

SIN

GLE

BO

OST

ER,

PARA

MET

RICA

LLY

RE

SIZ

ED

FOR

SH

UTT

LE C

ARGO

BAY

) K

i log

ram

s (p

ound

s)

BOOSTER WEIGHT ESTIMATE (Cont.)

Runway Propellants

JP

LOX (in orbiter)

LH2

(in orbiter)

Ramp Gross Weight

ORBITER W

EIGHT ESTIMATE

Structure

Wing Group

Tail Group

Body Group

Thermal Protection System

(external)

Landing Gear

Structure C

ontingency (10%)

Propulsion

Rocket Engines (three

59

6,0

00

lbVAC)

RCS and OMS

Propellant System/Misc.

Propulsion Contingency (10%)

TABL

E A

-5

(Co

nt.

)

(SU

BSO

NIC

ST

AG

ING

, SI

NG

LE B

OO

STER

, PA

RAM

ETRI

CALL

Y R

ESIZ

ED F

OR S

HUTT

LE C

ARGO

BA

Y)

Ki 1

ogra

ms

(pou

nds

)

ORBITER WEICHT ESTIMATE (Cont.)

Equipment

~rewfPay1oad Provisions

Flight Co~~trols

Electrical

Hydraulic

Environmental Control System

Avionics

Equipment Contingency (5%)

Orbiter Empty Weight

Injected Load

Crew

Residuals

RCS Propellants (100 ft/sec)

OMS Propellants (650 ft/sec)

Reserves

Subsystem Retained Fluids

Payload

Injected Weight

TABL

E A

-5

(Con

t.)

(SUB

SONI

C ST

AG1 R

G,

SIN

GLE

BOO

STER

, PA

RAM

ETRI

CALL

Y R

ESIZ

ED F

OR S

HUTT

LE C

ARGO

BAY

) Ki 1

ogra

ms

(pou

nds)

ORBITER WEIGHT ESTIMATE (Cont.)

Post-Staging Ascent Propellants

LOX

2

Dumped Fluids

In-Flight Losses

Orbiter Gross Weight at Staging

Boost Propellants in Orbiter

LOX

Li1

2

Orbiter Lift-off Weight

Runway Propellants (in orbiter)

LOX

LH2

Orbiter Ramp Weight

TABL

E A

-6

TWO-

STAG

E-TO

-ORB

IT

(SUP

ERSO

NIC

STAG

ING,

TW

IN

BOOS

TER)

ki

logr

ams

(pou

nds)

BOOSTER (both boosters)

Structure

~ody/Nacelle Group

Wing Group

Tail Group

Thermal Protection System

Landing Gear

Engine Section

Contingency

Propulsion

Turbine Engines

Scranjet Engines

Air Inductjon and Exhaust

Fuel/Propellant System

Contingency

Equipment

Fliqht Controls

Electrical System

Hydraulic System

Power

Avionics

Booster Empty Weight

TABLE A-6 (Cont.)

TWO-STAGE-TO-ORB IT (SUPERSONIC STAGING, TWIN BOOSTER)

ki 1

ograms (pounds)

BOOSTER (Cont.)

Staging Loading

Residuals

Reserves and Landing

Flyback Fuel

Booster Weight at Staging

Boost Propellants

JP

L02/LI12

Booster Gross Weight (both

boosters)

ORBITER

Structure

80,308

(177,050)

Body Group

29,483

(65,000)

Wing Group

18,144

(40,000)

Tail Group

2,268

(5,000)

Thermal Protection System

17,009

(37,500)

Landing Gear

6,123

(13,500)

Contingency

7,280

(16,050)

TABL

E A

-6

(Con

t . )

TWO

-STA

GE-

TO-O

RB

IT (

SUPE

RON I C

STA

G1 N

G,

TWIN

BO

OST

ER)

ki ! og

ram

s (p

ound

s)

ORBITER (Cont . )

Propulsion

Rocket Engines

Propellant System

RCS and OMS

Contingency

Equipment

Crew/Payload Provisions

Flight Controls

Electrical Power

Hydraulic System

Environmental Control System

Avionics

Contingency

Orbiter Empty Weight

Injected Load

Crew

Residuals

RCS Propellant

OMS Propellant

Reserves

Retained Fluids

Payload

TABL

E A

-6

(Con

t. )

TWO

-STA

GE-

TO-O

RB

IT (

SUPE

RSO

NIC

ST

AG

ING

, TW

IN B

OO

STER

)

ki 1

ogra

ms

(pou

nds

)

ORBITER (Cont . )

Orbiter Injected Weight

Ascent Propellants/Fluids

LO~/LH~

Dumped Fluids

In-Flight Losses

Orbiter Gross Weight

System Gross Weight

BOOSTER

Structure

Bdy/Nacelle Croup

Wing Croup

Tall Group

Thermal Protection System

Landing Cear

Engine Section

Contingency

Propulsion

Turbine Engines

Scr

am

jet Engines

Air Induction and Exhaust

Fuel/Propellant System

Con t l uyency

Equipment

Flight Controls

Electrical System

Hydraulic System

Power

Avionics

TABL

E A-

7

TWO-

STAG

E-TO

-ORB

IT

(HY

PERS

ON I C

STAG

ING

)

k i 1 o

gram

s (p

ound

s )

Booster Empty Weight

TABL

E A-

7 (Cont .)

BOO

STER

(C

ont . )

Sta

gin

g L

oad

Re

sid

ua

ls

Reserves

and

L

and

ing

Fly

ba

ck F

ae

l

Bo

ost

er Weight

at

Sca

gin

g

Boo

st

Pr

op

ell

an

ts

JP

LH

2

Ba

ost

er

Cro

ss W

eigh

t

ORBITER

--

Str

uc

tur

e

Bo4

y C

rou

p

Win

g G

rou

p

;'a

il

Gro

up

Th

erm

al

Pr

ote

cti

on

Sy

stem

Lan

din

g C

ear

Co

nti

ng

ency

TWO

-STA

GE-

TO-O

RBIT

(H

YPER

SONI

C ST

AGIN

G)

kilo

gram

s (p

ound

s)

TABL

E A-

7 (C

on

t.)

TWO

-STA

GE-

TO-O

RB

IT (

HYP

ERSO

NIC

STA

GIN

G)

ki 1

ogra

ms

(pou

nds)

OR

BIT

ER

(C

on

t.)

Pro

pu

lsio

n

Rock

et

En

gin

es

Ro

pel

lan

t S

yst

em

RCS

and

O

MS

Co

nti

ng

ency

Eq

uip

men

t

Cre

w/P

aylo

ad

P

ro

vis

ion

s

Fli

gh

t C

on

tro

ls

Ele

ctr

ica

l P

ower

Hy

dra

uli

c S

yst

em

En

vir

on

men

tal

Co

ntr

ol

Syst

em

Av

ion

ics

Co

nti

ng

ency

Orb

iter E

mpt

y W

eigh

t

Inje

cte

d L

oad

Cre

w

Resi

du

als

RCS

Pr

op

ell

an

t

OM

S P

ro

pe

lla

nt

Res

erv

es

Ret

ain

ed

Flu

ids

Pa

ylo

ad

Chamber Pressure (psi)

Expansion Ratio

0

10,000

20,000

30,000

40, OCO

SO, 000

60,000

70,000

80,000

90,000

100,000

150,000

~2OO,OOO

TABL

E A

-8

UPRA

TED

SSM

E C

HA

RA

CTE

RIS

TIC

S

3450

821150

Thrust

Newtons (lb)

2,015,489

(453,100)

2,231,672

(501, 700)

2,349,995

(528,300)

2,439,405

(548,400)

2,498,565

(561,700)

2,535,04112,532,372 (569,900/569,300)

2,579,041

(580,000)

2,607,992

(586,300)

2,623,561

(589,800)

2,633,34'

(592,000)

2,639,574

(593,400)

2,641,798

(593,900)

2,651,139

(596,000)

Specific Impulse, ~

-~

/k

~

TABL

E A

-9

Rocket Booster :

Subsonically Launched Orbiter:

* Private communication from 5

. Watt, Aerodynamic Coefficient Data and Scramjet Performance

Data Package, July 1977.

100

TABL

E A

-10

* Source:

see

foo

tno

te t

o Table

A-9

'~ncludes viscous drag

101

TABL

E A-

1 1

2

Turbojet Engines (A

= 2.2

m /engine)

C

2 Scramjet (A

= 157 m

total)

C

Mn -

-

C~

Specific Impulse

(3P

Fuel)

-

Mn

-

C~

Specific Impulse

(LH

2 Fuel) ,N-s/kg

(N-sec/kg)

* Source:

see footnote to Table A

-9

TABL

E B-

1

SING

LE-S

TAG

E-TO

-ORB

IT

(Ma

rtin

VTO

) I

Tec

hrl

olo

gy

i

Tec

hn

olo

gy

R

ea

din

ess

R

ea

din

ess

L

ev

el

Re

qu

ire

d

Le

ve

l R

eq

uir

ed

Gain -

Risk

Tec

hn

olo

gy

Nee

d

Lau

nch

V

eh

icle

Str

uc

ture

- A

ero

dy

nam

ic

Su

rf a

ce

s

Win

gs

(dry

win

gs)

. Hori

zo

nta

l an

d V

ert

ica

l S

tab

iliz

ers

. Con

tro

l S

urf

ac

es,

F

ins,

and

F

air

ing

s

- B

ody

an

d T

ank

s

Inte

gra

l P

rop

ell

an

t T

ank

s (i

ns

ula

tio

n,

he

at

sin

k,

se

ali

ng

)

Lo

ad

Ca

rry

ing

Str

uc

ture

(t

hru

st,

in

tert

an

k,

win

g

bo

dy

, in

ters

tag

e)

. Pro

pe

lla

nt

Feed

, F

ill,

D

rain

, an

d

Tra

nsfe

r (p

res

su

riz

ati

on

, a

nti

-slo

sh

)

- L

an

din

g

Gea

r

Str

uts

, B

rac

es,

a

nd

Dep

loy

men

t D

ev

ice

s

Sh

ock

Att

en

ua

tio

n D

ev

ice

s

. Tire

s

TABL

E B

-1

(Con

t. )

SING

LE-S

TAG

E-TO

-ORB

IT

(Mar

tin

VTO

)

Tec

hn

olo

gy

T

ech

no

log

y

Re

ad

ine

ss

Re

ad

ine

ss

Le

ve

l R

eq

uir

ed

L

eve 1

Re

qu

ire

d

Gai

n -

Ris

k

Tec

hn

olo

gy

Nee

d -

Lau

nch

V

eh

icle

(C

on

t . )

e T

her

mal

P

rote

cti

on

Sy

stem

(TPS)

- C

ov

er P

an

els

(R

SI,

h

ot

str

uc

ture

s,

bo

nd

ing

ma

teri

als

, lo

ca

l a

bla

tors

, s

tru

ctu

ra

l in

terf

ac

e)

- In

su

lati

on

- M

eta

l H

eak

S

ink

- T

ran

spa

ren

t A

rea

s

Gu

idan

ce a

nd

N

av

iga

tio

n

- G

uid

an

ce R

efe

ren

ce

- G

uid

an

ce E

va

lua

tio

n a

nd

C

on

tro

l O

utp

ut

Co

mm

un

icat

ion

s

- A

nte

nn

a S

yst

em

s

- T

ran

sm

itte

r E

qu

ipm

ent

- T

ran

sce

ive

r E

qu

ipm

ent

- T

ele

vis

ion

S

yst

em

Inst

rom

en

ta t

ion

Pa

ne

ls

- S

en

sors

- S

ign

al

Pro

ce

ssin

g,

Tra

nsm

issi

on

, a

nd

Dis

pla

y

- C

rew

S

tati

on

an

d

Fli

gh

t C

on

tro

ls

TABL

E B

-1

(Co

nt.

)

SIN

GLE

-STA

GE-

TO-O

RB

IT

(Ma

rtin

VTO

)

Tec

hn

olo

gy

T

eclm

olo

gy

R

ea

din

ess

R

ea

din

ess

L

ev

el

Re

qu

ire

d

Le

ve

l R

eq

uir

ed

G

ain

T

ech

no

log

y N

eed

Lau

nch

V

eh

icle

(C

on

t . )

Po

wer

S

up

ply

an

d

Dis

trib

uti

on

- E

lec

tric

al

. Pow

er

Ge

ne

rati

on

(e

ng

ine

g

en

era

tor

un

it,

fu

el

ce

lls,

ba

tte

rie

s, RTG,

ga

s g

en

era

tor)

Po

wer

C

on

ve

rsio

n a

nd

D

istr

ibu

tio

n

- H

yd

rau

lic

s

. Pow

er

Co

nv

ers

ion

an

d D

istr

ibu

tio

n

(hy

dra

uli

c,

pn

eu

ma

tic

)

En

vir

on

me

nta

l C

on

tro

l an

d L

ife

Su

pp

ort

- P

ers

on

ne

l A

cc

om

od

ati

on

s an

d

Eq

uip

men

t

- L

ife

Su

pp

ort

Eq

uip

men

t

- E

nv

iro

nm

en

tal

Sy

ste

ms

(te

mp

era

ture

an

d a

tmo

sph

eri

c c

on

tro

l)

Aer

od

yn

amic

s

- C

on

fig

ura

tio

n

Liq

uid

R

ock

et

En

gin

e (

s)

- SS

HE

(p

ote

nti

al

mo

dif

ica

tio

ns,

n

oz

zle

, li

feti

me

, p

erf

orm

an

ce

)

- New

Hig

h

Pre

ss

ure

LH

-LO

2

2 -

New

Hig

h

Pre

ss

ure

HD

-LO

2 (p

oss

ibly

d

ua

l-fu

el)

- O

W (

ex

isti

ng

MMH/N2O4,

mo

dif

ica

tio

ns

o

r LH

,-LO

,

TABL

E B-

1 (C

ont.

)

SI N

GLE

-STA

GE-

TO-O

RBIT

(Mar

tin

YTO

)

Tec

hn

olo

gy

T

ech

no

log

y

Rea

din

ess

Re

ad

ine

ss

Le

ve

l R

equ

ired

L

ev

el

Req

uir

ed

Gai

n -

Rf s

k

Tec

hn

olo

gy

N

eed

Lau

nch

Ve

hic

le

(Co

nt . )

Att

itu

de

Co

ntr

ol

En

gin

es

- E

xis

tin

g T

hru

ste

rs

(MM

H/N

0 )

2 4

- N

ew

Th

rust

ers

(N

H

/N

0

or

LH

-LO

)

24 24

2 2

Air

-Bre

ath

ing

E

ng

ines

- S

ub

son

ic T

urb

ofa

n J

et

En

gin

e (e

xis

tin

g e

ng

ine

) -

- N

ew S

ub

son

ic T

urb

ofa

n J

et

En

gin

e (7

0-8

0,0

00

lb

f)

- -

Ex

isti

ng

Su

pe

rso

nic

Tu

rbo

jet

or

Tu

rbo

fan

(5

-58

, C

E-4

) -

- N

ew S

up

ers

on

ic T

urb

oje

t (7

0-8

5,0

00

Ib

f)

- -

Sc

ram

jet

(su

pe

rso

nic

b

urn

ing

) -

- C

ombi

ned

Ram

jet-

Scr

amje

t (s

ub

ca

sic

plu

s s

up

ers

on

ic b

urn

ing

) -

Ma

nu

fac

turi

ng

Ma

nu

fac

turi

ng

Pro

ce

ss a

nd

Met

ho

ds

To

oli

ng

- P

lan

nin

g,

De;

ign,

F

ab

ric

ati

on

, A

ssem

bly

of

To

ols

, D

ies,

J

igs

, an

d

Fix

ture

s

- T

est

E

qu

ipm

ent

to S

up

po

rt M

an

ufa

ctu

rin

g

- P

rog

ram

ing

an

d P

rep

ara

tio

n o

f T

apes

an

d M

ach

ines

fo

r N

um

eri

ca

lly

Co

ntr

oll

ed

Eq

uip

men

t

TABL

E 0-

1 (C

on

t. )

SING

LE-S

TAG

E-TO

-ORB

IT

(Ma

rtin

VTO

)

Tec

hn

olog

y 1

Technology

Readiness

Ree

d iness

Level

Required

@' i !

Leve 1

Required

Ca in

Risk

-

-

Teclmology Need

Ground Equipment

Planning, Design, Fabrication, and Testing

Instrumentation and Test Equipment (automated checkout

and maintenance)

Test llardware

Ground Test (sixuctural, dynamic, propulsion and system

integration, wind tunnel)

Flight Test (instrumentation, test articles, and special

equipment)

Facilities and Equipment

Vehicle Test Facilities

Engine Test Facilities

r Launch Faciltties

Operational and Maintenance Facilities

0 .%nufacturiug

Facilities

Wind Tunnel Facilities

0 Propellant Production Facilities

Slmulators and Special Timing Equipment

Flight

m Operations

Maintenance

TABL

E B-

1 (C

on

t.)

SING

LE-S

TAG

E-TO

-ORB

IT

(Ma

rtin

VTO

)

Technology

Teclrnology

Readiness

Rerdinese

Level

Required

level

-

.--

Required

Gain

Risk -

LI I CI - A A - C . A

Z S t P 9 9 a n - w - w - - -

x x x -1 x x x i - 1

lAR

LE 8

-2

(Co

nt.

)

SIN

GLE

-STA

GE-

TO-O

RB

IT

(Boe

ing

HTO

)

---

or

bll

er

._

sLen.

Te

cl~

no

log

y

Te

cl~

no

log

y

Te

clm

olo

gy

R

ea

din

en

s T

ec

hn

olo

gy

R

ea

dit

ten

s

Rea

din

ems

Le

ve

l R

eq

ulr

ed

R

ead

8 n

es

s

Le

ve

l R

eq

ulr

d

Ga

in

Req

uir

ecl

Rla

k

Lev

el

Rls

k

--

- &

In

Le

ve

l R

equi

red_

- 'l

ec

l~

nv

lu

~

Need

1.a

un

ch

Ve

hic

le

(Co

nt.

)

r

Th

erm

al

Pro

tec

tlc

m

Sy

ste

l (T

PS

)

- C

ov

er

Pa

ne

ls (RSJ, h

ot

str

uc

ture

s.

bo

nd

ing

m

ate

ria

ls,

loc

al

ab

lato

rs)

- l

~~

s:

~l

at

Io

n

- m

eta

l ll

ead

S

ink

- T

ran

sp

are

nt

Are

as

Cu

ida

nc

e a

nd

Na

vtg

a- t

on

- C

uld

an

ce

R

ef e

re~

hc

e

- C

uld

a~

lce

Ev

alu

ati

o~

~

an

d

Cv

ntr

ol

01

1tp

ut

- C

rew

Sta

t to

n

imd

F

l Ig

ht

Co

nL

rols

TABL

E 8-

2 (C

on

t. )

SIN

GLE

-STA

GE-

TO-O

RB

IT

(Boe

i ng

I1TO

)

Tec

lrn

olo

gy

T

eclm

nolo

gy

Tec

l,n

olo

&y

R

ea

din

ess

T

ech

no

log

y

Ren

dln

ess

Req

uir

ed

Ren

d ln

es

s

Lev

el

Req

uir

ed

Re

ad

ine

ss

I.e

vd

Ca i

n

Req

uir

ed

Rink

C

hin

R

isk

L

eve 1

-

Le

ve

l R

equ

ired

- --

Tec

hn

olo

gy

Nee

d

Lau

nch

Ve

hic

le

(Co

nt.

)

r P

ower

S

up

ply

an

d

Dis

trib

uti

on

- E

lec

tric

al

Pow

er

Ge

ne

rati

on

(e

ng

ine

ge

ne

rato

r u

nit

. fu

el

ce

lls

, b

att

eri

es

. R

IT,

ga

s

ge

ne

rato

r)

4

Pow

er

Co

nv

ers

ion

an

d

Die

trih

uti

on

5

- Il

yd

rau

llc

s

. Pow

er

Co

nv

ers

ion

an

d D

istr

ibu

tio

n

(I~

yd

rau

lic

, pn

eu

an

~ic

)

r E

nvir

onm

enta

l C

on

tro

l a

nd

Lif

e S

up

po

rt

- P

ers

on

ne

l A

cc

om

da

t io

ns

an

d

Equ

lp

rnen

t

- L

ife

Sq

pp

ort

Eq

ulp

nen

t

TABL

E 8-

2 (C

on

t.)

SING

LE-S

TAG

E-TO

-ORB

IT

(Boe

lng

HTO

)

---

Orb

ite

r ------.--

Sle

d

Te

cl~

~to

log

y

Te

ct~

lwlu

gy

T

eclm

ulo

py

R

ca2

lne

sa

Te

cl~

no

lu~

y Rea

d hem

s R

ead

lnea

s L

evel

R

eq

ult

ed

R

en

dlr

~e

as

Lev

el

Req

uir

ed

Lev

el

Ga

in

Le

ve

l -

.

- K

lsk

R

equ

ired

---

---

Ris

k

-

Ce

In

La

u~

~c

h

Ve

hic

le

(Co

nt.

)

. .

Liq

uid

Ro

cket

E

np

,in

e(s)

- S

SU

E

(po

ten

tia

l lu

d:f

ica

tto

ns

, n

oz

zle

, 11 F

etir

ne,

p

erfu

rman

cr.)

- N

au

l

li

~h

Pre

ss

ure

L1I

2-M

2 -

- N

ew H

igh

P

ress

ure

IID

-I.C

i 2

- -

OM

S (e

xjs

tin

g N

NII

IN~

U~

, w

di

f ic

at I

on

s N

2~

4/N

20

4,

or

1.11

-1.0

) 3

2 2

. Att J

ttd

r C

on

tro

l E

lr~

ine

s

- E

xts

ttn

g T

l~rc

~rc

ters

()

.Otl

l/N

0 )

2 4

-

New

T

hru

ste

rs

(N2

ll4

/N2

O4

, o

r L

IIZ-1

.0

) 4

- S

~rb

sorr

f c T

urb

ofa

n .

kt E

llg

lae

(ex

isti

ng

en

gin

e)

- -

Ncw

S

ub

son

ic T

urh

c~C

an Je

t R

ng

ire

(70-8

0,O

W

Ibl)

-

- E

xln

tln

p,

Su

pe

rso

nic

Tu

rbo

jet

or

Tu

rl~

ofn

n

(J-S8,

CE

-4)

- N

cu

Sc~

per

::r~

r~ic

l'

url

~o

jei (7

0-8

5,M

)O

Ihf)

TABL

E 0

-2 (

Co

nt.

)

SING

LE-S

TAG

E-TO

-ORB

IT

(Boe

ing

HTO

)

Orb

ite

r

Tec

hn

olo

gy

T

ech

no

log

y

Re

ad

ine

ss

Rea

dln

esa

Le

ve

l --

Le

ve

l R

equ

ired

Te

cl~

no

log

y

Tec

tmo

log

y

Re

ad

ine

ss

Re

ad

lne

ss

Lev

el

Le

ve

l R

equ

lred

--- -

Req

ulr

ed

Gai

n

Rls

k

-

Te

fl~

~io

log

y

Nee

d

Uen

uf a

c tu

rin

g

0

kta

nu

fac

turi

ng

Pro

ce

ss a

nd

H

eth

od

s

To

uli

ng

- F

lan

hln

~, D

esig

n,

Fa

bri

ca

tio

n.

Ass

emb

ly

of

To

ols

, D

lea.

J

igs

, an

d

Fix

l*~

res

- T

est

E

qu

ipm

ent

to S

op

po

r t

Uan

uf a

ctu

r in

g

- P

rog

ram

ing

an

d

Pre

pa

rati

on

o

f T

apes

anc

l H

ac

hi~

~e

s

for

N~

~w

rl

ca

ll

y

Co

ntr

oll

ec

l E

qu

ipm

ent

Cro

c~n

d E

qu

ipm

ent

0

P~

RI

II

I~

II

~.

Dcs

ign

. F

ab

ric

ati

on

, an

d T

es

t ln

g

Ins

tr~

me

nta

tlo

n an

d T

est

E

qu

ipm

ent

(au

tom

ated

cl

ierk

ou

t a

nd

ma

lnte

na

nc

e)

Te

st

llar

clw

are

. (:roun

d T

est

(s

trt~

ctu

ral.

dy

nam

ic,

pro

pt~

lu

ion

ori

d s

ys

t (.m

In

lep

,rn

tio

n,

uln

d

t~

~n

ne

l)

. I:llg

ht

Te

st (

inet

rurn

eaL

atio

n.

Le

st

art

icle

s.

and

s

pw

ial

equip

men

t)

T~c&

"_~;

l~~y

-Nt$

~l

Fi~

cil

ltir

s an

d

Eq

~~

lpn

en

t

0

Ve

hic

le T

est

Fa

cll

itle

s

0

En

~tn

e Te

st F

ac

llit

les

0

1.i1

unch

Fa

cil

itie

s

Op

era

tio

na

l an

d h

inte

na

nc

e F

ac

llft

ies

r

Ma

nu

fact

uri

ng

Facil

itie

s

r W

ind

Tu

nn

el

Fa

ct I

f t

ies

0

Pr

op

ell

en

t P

rod

trct

too

Fa

cll

ltle

s

TABL

E 8-

2 (C

on

t.)

SINGLE-STAGE-TO-ORBIT

(Boe

ing

HTO

)

-

-

Orb

iter

Tec

ltn

olog

y R

ead

inee

s L

evel

--

Tec

ltn

o lo

gy

Xea

d i~

tee

s

I.ev

el

Req

ulr

ed

Cn

111

Req

ulr

ed _

Tec

l~n

u

Ln

~y

T

ech

nol

ogy

Rea

dln

eee

Rea

dln

eee

Lev

el

Lev

el

Req

ulr

ed _

TABL

E 8-

3

TWO-

STAG

E-VE

HICL

E (R

ock

et R

oo

ster

) t".

> .;

f '

:

i T

tch

no

lo~

y

Tec

l~e

u

log

y

Tec

lln

olo

gy

R

ea

din

ess

T

ec

l~n

olo

gy

Ue

ad

ir~

ese

R

ead

ines

s L

ev

el

Req

uir

ed

Rea

dln

ens

Lev

el

Re

qu

irn

l L

ev

el

Req

uir

ed

Gai

n

kls

k

kEl!!lcL

d R

isk

-

Le

ve

l -

Ga

in

Te

cl~

no

lo~

y

Nee

d

Lau

nch

V

eh

icle

- A

ero

dy

nam

lc

Su

rfa

ce

s

Wln

gs

(cry

og

en

ic v

et

vln

g-s

ea

lln

g,

he

at

sln

k)

Ho

riz

on

tal

and

V

ert

lca

l S

tab

iliz

ers

. Con

tro

l S

urf

ac

es.

P

lns,

an

d

Fa

lrin

gs

- B

ody

and

T

ank

s

Inte

gra

l P

rop

ell

an

t T

ank

s (i

ns

ula

tio

n.

he

at

sin

k,

se

ali

ng

)

. Land

C

arr

yin

g S

tru

ctu

re (

thru

st,

in

tert

an

k

uln

g-h

od

y,

inte

rsta

ge

)

. Pro

pe

l la

nt

Fee

d.

FiI

1,

Dra

in,

an

d T

ran

sfe

r (

pr

es

s~

~r

lza

t Io

n,

an

tl-s

los

h)

- I.

md

in

g (

:ra

r

Str

nts

, Il

rac

es,

an

d

Dep

loy

men

t D

ev

ice

s

. Slto

ck A

L tt

?nt~

.it ln

n I

)ev

lce

s

Tlr

es

TABL

E 8-

3 (C

ont.

)

TWO

-STA

GE-

VEHI

CLE

(Ro

cket

B

oo

ster

)

Bo

oste

r O

rblt

er -

Te

clm

olo

~y

T

ec

l~~

~o

lng

y

Te

ch

no

log

y

Rco

d ln

es

a

Te

ch

no

lo~

y R

ea

din

ess

R

eodln

eea

Le

ve

l H

eq

ulr

ed

R

ea

dln

ea

s

Le

ve

l R

equ 1

red

Le

ve

l R

eq

ulr

ed

G

a In

R

lsk

-

Le

ve

l --. R

eq

ulr

ed

--

.- -. O

aln

W

lsk

- --

law

ch

Ve

hlc

le

(Co

nt . )

Th

erm

al

Pra

tec

tio

n S

ys

Le

r (T

PS

O

- C

over

Pa

ne

ls

(RS

[,

ho

t s

tru

ctu

res

, b

on

din

g

na

terl

nls

, lo

ca

l a

hla

tors

)

- In

su

lntl

on

- M

eta

l Il

ea

t S

lnk

- T

ran

sp

are

nt

Are

as

r 1:u

ldnnce

and N

av

lga

t to

n

- (:(

I Lcli~

nce R

eC

cre

nce

- C

uld

itn

c~

Eva

lust io

n a

nd C

on

tro

l O

ut1

111t

. 1:onnlll

llc;I t

Io

ns

- A

ntr

~~

na

S

yntc

ms

- 'T

r;~

nrr

ml t

t rr E

q~

rlp

n~

tin

t

- T

ran

sc

rlv

rr E

:'c

lr~

l~~

mc

nt

- P

elr

vls

lon

Sysio

m

Ins

tr~

~n

en

La

t Io

n P

an

els

- S

en

so

rs

- S

1~

1l.t l

f'r~

ct-

rr~

l I

IR. T

rna

sm

lsslo

n,

and D

lsp

lay

- (:

~-c

w S

tat 10

11 a

1161

F IIR

IIL

Con1 r

ols

TWO

-STA

GE-

VEHI

CLE

(Ro

cket

Bo

ost

er)

Te

ch

no

log

y

Ta

cl~

no

lo&

y

Te

ch

no

log

y

Re

ad

ine

ss

Te

ch

no

log

y

Rea

d l

ne

m

Rea

din

ess

bw

el

Re

qu

ire

d

Rea

din

ess

Le

ve

l R

equ

l re

d

CA I

n

Re

qu

ire

d

Rin

k

Ca

ln

Lev

e 1

-- L

evel

- R

eq

uir

ed

.-

Irk!!!

Tec

lmo

los

y N

eed

Po

ve

r S

up

ply

an

d

nts

trlb

r~

tlo

n

- E

lec

tric

al

Po

wer

G

en

ere

tlo

n

(en

gin

e g

en

er

at

i~

n un

it,

fu

el

ce

lls

, b

att

eri

es

. R

TC

, g

as

ge

ne

rato

r)

5

Po

ve

r C

on

vrr

slo

n an

d

Dis

trih

oti

on

5

- :!

yd

rau

llis

Po

wer

C

on

vP

rs I

on

aed

2b

is:r

lb

uti

on

(h

yd

rau

lic

, p

ne

tma

t: -

.)

En

vlr

otm

ent.

11

C

on

tro

l a

nd

L

ife

SII

III P

- .

- P

ers

on

ne

l A

ccon

mnn

dat l

on

s a

nd

E

qu

ipm

ent

- 1.

1 f

c S

up

per t

Eq

ulp

ne

nt

-

Eu

vl

rc~

rmc

att

nl S

yst

em

s (t

em

pe

ratu

re

an

d

iltm

osl

,llr

r lr

co

ntr

ol)

TABL

E 8

-3 (

Co

nt.

)

(Roc

ket

Boo

ster

)

-

Bo

oste

r

Tecla

nolo

gy

Te

clm

olo

8y

Read ln

es

n

Re

ed

lne

ss

Le

ve

l R

eq

ulr

ed

L

ev

el

Re

pir

ed

C

mln

---

-- -- -

Ris

k

-

Te

clm

olo

~y

T

ec

l~n

olo

gy

Read I ne

ss

Re

ad

itu

se

L

ev

el

Requ l re

d

Re

~p

lr

e~

V

aln

L

ev

el - -

Ris

k

- --

-

r

I.lq

uid

R

ocke

t E

ng

tne

(s)

- S

SN

E

(p

o~

en

tia

l mo

dfi

lca

tlo

ns

. n

oz

zle

. ll

f~

tlm

e. pe

rfo

rmln

ce

)

- Il

rw lll~

l~

P

res

su

re 1

.H -ID

2

2

- N

ew

1{ip

,i1 P

res

su

re I

ll)-L

C)

(po

aa

lbly

d

ua

l-fu

el)

2

-

OM

S

exi

st in

^ W

lI/N

20

4,

ad

iflc

atl

on

s N

I1 /

N 0

or

LII

-1.

0 )

24

2

4'

2 2

Att

Ito

..e

C

on

tro

l E

ng

lne

v

- E

xls

i IIIR

Th

rus

ters

(K

4lI/N

0

2

4

- N

cw

Tl~

rus

ters

(N. I

1 /N

0

or

LII

-1.0

)

24

24

2

2

- N

cw

SII~S

IIII~C

Tu

rlm

f;~

n .l

eL

e

ng

ine

(7

0-8

0,0

00

lbf)

- E

x!ci

t 11

1p; S

up

erw

nlc

T

urb

oje

t o

r T

urb

ofa

n

(.I-

5n

2

rx

-4)

- Nru

Su

pe

rso

nic

T

urb

ole

t (7

0-8

5,0

00

lh

f)

TABL

E 0-

3 (C

ont .

)

TWO-

STAG

E-VE

HICL

E (R

ock

et

Bo

ost

er)

--

hs

t e

r

Te

clm

olo

gy

Te

ch

no

log

y

Rend in

es

s

Re

ad

ine

ss

Le

ve

l R

eqa 1

red

L

ev

el

-

Re

qu

lre

d

Ga

in

Orb

ite

r - . - -

- --

- -

Te

clu

w lo

gy

T

ech

no

loe

y

Rca

dln

ess

Rca

dln

esn

L

ev

el

Re

qu

lre

d

Re

qu

ire

d

Ca

ln

Le

ve

l - -

- -

- - -

r M

an

ufa

ctu

rin

g P

roce

ss a

nd

M

eth

od

s

2 4

2

- P

lan

nin

g.

De

sig

n.

Fa

bri

ca

tio

n.

Asse

mb

ly

of

Tw

ls.

Ute

s.

Ji~

s,

an

d

Fix

ture

s

2 4

2

- T

es

t E

qu

ipm

en

t to

Su

pp

ort

h

nu

fac

turln

g

2 4

2

- Y

ro

~ra

lrln

p: a

d P

rep

ara

tio

n o

f T

apes and

Ha

ch

lne

s fo

r N

um

eri

ca

lly

C

on

tro

lle

d E

qu

ipm

en

t 5

6

PLan~

.*ng.

Ucslg

n.

Fa

brica

tio

n,

an

d T

es

tin

g

3 5

2

r

Ins

tru

me

nta

tio

n a

d T

es

t E

qu

ipm

en

t (a

uto

ma

ted

c

l~rc

ko

rrt a

nd m

ain

ten

an

r-e

)

r C

~OIIII

~ T

est

(rlt

rw

tl~

rn

l. dyn

am

ic,

pr

np

~~

lslm

and

sy

str

n I~

~te

~r

atlo

n.

wln

d tu

nn

el)

r

Fl l

gh

t T

es

t (

Ina

tr~

~m

~~

nL

att

n~

~.

Le

st

nrt

lcle

s.

~III

sp

cc

la l cq

11

1[u

c?

nr)

m Vehicle Test Facllttirs

Ell~lIIe TesL Facllitles

1~11nch

Facll Illre

operational and Malntenance Fa

cili

ties

a Manufacturtn~ Facl Ll t

les

a W11d Tun~~el

Facilities

m, Propellant Product Ion Facllitles

TABL

E 8-

3 (C

on

t.)

TWO

-STA

GE-

VEtII

CLE

(Roc

ket

Bo

ost

er)

hater

--

--

Tectu~ology

Technolo~y Rend ln

es

e

Read1 aeon

Le

ve

1

- La

ve l

Required

TABL

E 0-

4

TWO

-STA

GE

-VE

IIICLE

(A

ir-B

rea

thin

g B

oo

ste

r.

Sub

soni

c S

tag

ing

)

Te

clr

;wlo

~y

T

ec

hw

~lo

~y

T

ech

no lo

gy

Read ln

css

Te

cb

~~

olo

~y

R

ea

Jl~

ten

s

Re

ad

ine

ss

Leve 1

R

eq

uir

ed

R

eadln

em

s L

eve

l R

eq

ulr

erl

R

eq

uir

ed

L

eve

l -

Cn

in

I1.k

--- L

ev

el -

Re

9%

lccd

. G

ain

I1.k

-. --

Te!?!!?

! _uL

!!~?!

lau

nch

Ve

hic

le

Str

uc

ture

- A

ero

dynam

ic

Se

rvic

es

r U

ln

~r

(c

ryo

ee

nlc

w

et

wln

g-s

ea

lin

e.

he

at

sln

k)

5

r tl

ori

zo

ntn

l and V

ertl

crl

Sta

bil

ize

rs

5

, C

on

trrt

l S

urf

ace

s.

Fin

s.

and F

airin

gs

5

- B

od

y a

d T

an

ks

In

te

~ra

l Pro

pe

lla

nt

Tanks

(in

riu

latl

on

. h

ea

t s

ink

, s

ea

lin

n)

- . I~

md

ln

~

Ca

rry

ing

Str

uc

ture

(t

hru

st.

In

tert

an

k.

win

g-b

dy

. in

ters

tag

e)

5

Pro

pe

lla

nt Fred.

Fll

l.

Dra

in, ad T

ran

sfe

r (p

res

su

riz

ati

on

. a

nti

-slo

sh

) 5

- IA

IUI

lng

Ga

r

. Stru

ts.

Bra

cer.,

and D

eplo

ym

ent

I)e

vic

es

5

Sll

urk

fi

t te

ntm

t La

m

(kv

lce

s

5

Tl rrn

3

TYO-

STAG

E -V

EtlIC

LE

( Air

-Bre

ath

ing

B

oo

ster

, S

ubso

nic

Str

gln

g)

Te

ch

olq

y

f rc

lnw

r lomy

Te

ck

nrl

og

y

Re

ad

ine

ss

T

erh

no

lqy

R

ea

dl~

rna

R

ea

dln

ea

r L

ev

el

Re

ys

lr cJ

Ic

ad

lnc

rm

lev

el

Rzq

nL

rr.B

C

aln

k*c 1-

_%!?

_ni_

- -

.-

. R1.k

-- _!*--

.lcw

ecd

_

.- --

G

I l 11

. - -

='*

lau

nc

h Y

eh

lcle

(r

un

t. )

Th

rrw

l P

rote

ctl

o%

Sy

sta

(RS)

- Cu

vrr

P

an

els

(L

SI.

Im

t s

tru

ctu

re.,

b

on

dln

s

wtr

rla

ls.

loc

al

ab

lato

rs)

- le

aru

tat

lon

- &

tia

t lt

rat Slnk

- T

ran

sp

are

nt

Are

as

C~

ld.~

na

rr

ad N

dv

l~a

t

Inn

- C

~s

lda

m:c

Rc

fcre

nre

- (:

r~lr

lan

cc

Ev

nlu

at t

un

ad

mn

tr

al

Ou

tpu

t

TAM

E 8-4

(C

~a

t.)

TW-S

TAG

E-O

RB

IT

(Air

-8re

rth

lng

Bo

aste

r, S

ub

so

nic

S

tag

lng

)

0

Po

wr S

up

ply

an

d D

lstr

lkrtl

on

. Fw

er

Ch

zne

ratl

on

(c

wln

e

#e

ne

rato

r u

nit

, fu

el

ce

lls

. h

alt

erle

s.

RX

. a

s g

en

era

lor)

5

. Po

arr

C

on

ve

rslo

n end

Dla

trlb

utl

on

5

. Pcw

rr

Co

nverm

lon

an

d D

lmtr

?b

ut:

on

(I

~y

dra

ull

c.

pn

etn

~tl

c)

Enulrfmncntel

Cn

ntr

al

an

d L

Ife

Su

pp

ort

- P

crs

n~

na

r 1 A

cc

ah

lat

fan

s a

nd

E

q~

nlp

ea

t

- I.

I Tr

Sas(t

prr

t E

qw

lpcr

eni;

- E

~n

vlr

.~~

~rn

-r~

tnl

Sy

ste

uv

(tm

pe

rr

t~

~r

e

and

.~tr

rvu

pl~

cr

lc I

-on

1 c

ot)

TABL

E 8-

4 (C

on

t. )

TWO

-STA

GE-

VEH

ICLE

(A

ir-B

reat

hin

g

Bo

ost

m.

Sub

soni

c S

tag

lng

)

Llq

uld

R

oc

ke

t E

ng

lne

(s)

- SS

ME

(p

ote

ntl

al

mo

dif

ica

tio

ns

, n

oz

zle

. ll

leti

ne

. p

erf

orm

an

ce

)

- N

ew

lllg

h P

res

su

re L

H LO

2

2

- N

ew

lllg

h

Pre

ss

ure

Il

l)-L

Op

(po

ss

ibly

d

ua

l-fu

el)

- O

MS

(ex

lstt

ng

EM

II/N

Z04

, m

od

lfic

ati

on

s

N I

I /N

0

or

1.11

-L

O2)

2

4

24

' 2

. AtLtt

n~

le C

on

tro

l E

ng

1ac

.s

- C

xl

st

ln

~

Th

rvsL

crs

(M

MIII

N 0 )

2 4

-

New

T

hru

ste

rs

(N

H IN

U

o

r 1

.112

-LO

2)

24

2

4

- S

ul,

son

ic T

nrl

~o

fnn

.le

t E

ng

lne

(

ex

is

~i

ng

en

gin

e)

- N

ew

S~

rhs

on

lc Tu

rho

fan

.Je

t E

ng

ine

(7

0-8

0.0

00

Ib

f)

- E

xls

tln

g S

up

ers

on

ic

Tu

rbo

jet

or

Tu

rbo

fan

(.I-58,

IiE

-4)

- C

mrh

ln

ed

H

:m)e

L-S

vr;

~rn

Je

t (

st~

l~s

on

lc

p 1

11s

~w

pr

rs

on

lr II

~I~

IIII

IK)

TABL

E 8-

4 (C

ont.

)

TWO

-STA

GE-

VEIII

CLE

(A

lr-B

reat

hin

g

Bo

ost

er.

Sub

soni

c S

tag

ing

)

Orb

ite

r B

oo

sle

r

Te

clm

olo

~y

T

ec

l~a

olo

~y

T

ec

lmo

log

y

Rea

d i

ne

sa

T

ec

l~n

olo

gy

Re

ad

lne

aa

R

ea

din

ess

L

ev

el

Re

qu

lre

d

Aea

d 1

11

ros

Le

ve

l L

ev

el

lie

qu

lre

d

ra

in

- L

eveL

R

e9

uir

ed

!@

! ---

Req

ul r

eal

Ga

ln

--

--

RL

sk

0 M

an

ufa

ctu

rin

g

Pro

ce

ss

an

d U

etl

wd

s

To

oli

ng

- P

lan

nin

g.

De

sig

n.

Fa

bri

ca

tio

n.

Ass

emb

ly

of

To

ols

. D

ies.

J

igs

, a

nd

F

Lx

ture

s

- 'l'

es t

Eq

ulp

ue

nt

to S

up

po

rt

Ua

nu

fac

tu

rin

g

4

- P

rogra

mm

ing

an

d

Pr

ep

ar

ati

o~

~

of

Ta

pe

s a

nd

U

ac

l~ln

e~

f

or

Nu

me

ric

all

y

Co

ntr

oll

ed

E

qu

l pm

ent

5

0

Pli

~n

nlr

~g

. I)es

ip,n

, F

ab

ric

atl

on

, a

nd

'T

est

ing

0

lns

trw

ne

~~

tatl

on

a

nd

T

es

t E

qu

lpn

en

t (e

uto

mn

te

d c

he

ck

ou

t a

nd

ma

inte

na

nc

e)

Trs

t ll

ard

w~

re

0

(:ro

un

d

Trs

t (s

tru

ctu

ral.

d

yo

nm

lc,

pro

pu

lsio

n a

~b

d

sy

stt

w~

Inte

gra

tio

n.

win

d

tun

ne

l)

Fli

gh

t T

vsL

(

i~~

s~

ru

cn

en

tn~

lon

, te

st

ar

tic

les

, a

nd

s

l~

wt

:~

l

eq

uip

ine

nt)

Fo

ci l

itle

s

. ,

Ve

hlc

le Test

Fa

cil

ltle

d

En

gin

e T

est

F

ac

ilit

ies

r O

pe

ra

tlo

w1

an

d

Ha

inte

nm

ice

Fa

cil

itie

s

r

Ha

riu

fact

uri

n~

Fa

ci l

i tle

s

Win

d T

un

nel

F

acl

ll

t ics

r

Pro

pel

l.t

nl

Pro

cl~

wt lo

ll

Fa

cll

1 t

ies

S11

n11

lnt1

~r.

r .IIIC

I S

pe

cia

l l'

raln

lnl:

E

qu

ipm

ent

TAO

LE 8

-4

(Co

nt.

)

TUO

-STA

GE-

VEH

ICLE

(A

i r-B

reat

hin

g B

oo

ster

. S

ubso

nlc

Sta

g1 n

g)

-

Boo

sLer

-

--

--- -

Te~

:lt~

tolo

gy

T

ec

lmo

lo~

y R

end

inen

s R

end

lnes

s L

evel

I.

evel

R

equ I r

ed

-----

-- -

TABL

E 0-

5

TWO

-STA

GE-

VEIIIC

LE

(Alr

-Bre

ath

ing

B

oo

ster

. S

uper

soni

c S

tag

ing

)

Tec

lmo

loy

,y

Tc

cI

~~

ml

~~

~y

T

ec

hn

olo

gy

R

em

lln

ea

s T

ac

l~n

olo

~y

Rea

d l

ue

sn

Re

ad

ine

ss

Lo

ve1

R

eq

ulr

ed

R

e~

dln

es

s

Le

ve

l R

cg11

1 re

d

Le

ve

l R

eq

uir

ed

C

UL

II

Ris

k

Le

ve

l %

ulr.

ej-.

- J!nl*.-.

---

RL

sk

-- - - - -

---

I.a

un

ch

Ve

hic

le

0

Str

uc

ture

- A

ero

dy

na

mic

S

urf

ac

es

. Win

gs

(cry

og

en

ic

we

t w

ing

-ae

ali

n~

, h

ea

t s

ink

)

. Hort

zo

uta

l a

nd

Ve

rtic

al

Sta

hll

iza

rs

. Con

tro

l S

urf

ac

es

. F

ins

, a

nd

F

air

ing

s

. Inte

gra

l P

rop

ell

an

t T

an

ks

(Ln

sula

tio

n.

he

at

sin

k,

se

al1

ng

)

. #mad

Ca

rry

ing

Str

uc

ture

(t

hru

st,

in

tert

an

k,

win

g-b

ody.

Inte

rsta

ge

)

. Pro

pe

lla

nt

Fee

d.

F1

11

. D

rain

. a

nd

T

ran

sfe

r (

pr

es

s~

~r

iz

at

to

~~

. a

nti

-slo

sh

)

- L

an

dl

ng

C

en

r

. St.r

~~

te. R

r;~

ce

s. a

nd

D

eplo

ym

ent

De

vic

es

. Sho

ck

Att

en

ua

tio

n

1)e

vic

es

. l'lr

es

TABL

E 8-

5 (C

ont.

)

TWO

-STA

GE-

VEHI

CLE

(Air

-Bre

ath

ing

B

oost

er.

Sup

erso

nic

Sta

gin

g)

Tc

cl~

no

log

y

Te

cl~

llo

lo~

y

Trc

l~n

ulo

gy

Rea

d 1

11

ese

Te

ch

no

log

y

Re

ad

l~~

es

n

Re

ad

ine

ss

Le

ve

l R

equ

Lre

d

Re

ad

iae

ns

Le

ve

l R

eq

uir

ed

L

ev

el

_ Rc

qu

ire

d

Ca

ln

Rin

k

Le

ve

l R

asp

1 re

d

Ca

tn

----

~ K

lsk

?

r T

~clu

l_u

?.o

Nee

d

1.a1

1nct

1 V

eh

lcle

(C

on

t .)

P I

Th

erm

al

Pro

tec

tio

n S

yst

em

(T

PS

) '

I

- C

ov

er

Pa

ne

ls

(KS

I,

tmt

str

uc

ture

s.

bo

nd

lng

m

ate

ria

ls,

loc

al

ab

lato

rs)

, .

- In

su

lati

on

- H

eta

l R

ea

t S

lnk

- T

ran

spa

ren

t A

rea

s

0

Gu

lda

nc

e a

nd

N

nv

lga

tln

n

- G

uid

an

ce

R

efe

ren

ce

- C

.uld

;rn

ce

Ev

alu

ati

on

a

nd

C

on

tro

l O

utp

ut

- A

nte

ma

Sy

st~

ms

- T

ran

sm

lttc

r E

qu

ipm

ent

- T

ran

sc

eiv

er

Eq

uip

men

t

- T

ele

vis

lon

Sy

ste

m

TABL

E B

-5

(Co

nt.

)

TWO

-STA

GE-

VEHI

CLE

(Air

-Bre

ath

ing

B

oo

ster

. S

up

erso

nic

Sta

gin

g)

Bo

ost

er

Orb

ite

r --

--

--- .

Te

ch

no

lu~

y

Te

cl

~~

~n

lo

~y

'C

ecl~

un

lng

y

Ren

d l

ne

ss

T

ec

l~n

olo

gy

R

e4

ine

ns

R

encl

inea

s L

ev

el

Re

qu

ire

d

Rea

d l

ne

ss

I.

ev

cl

Re

qu

ire

d

Le

ve

l -- Re

eu

ire

d -

Ca

in -

Ris

k

Le

ve

l _

.%!!r

ed

Go

4 11

- R

ink

I.ai

tnct

~ V

eh

icle

(C

on

t . )

0

Po

wer

S

up

ply

an

d

Uis

trih

uti

on

- E

lec

tric

al

. Pow

er

Ce

ne

rat I

on

(e

ng

ine

ge

ne

rato

r u

nit

. fu

el

ce

lls

. b

att

er

ies

, R

'CC

, g

as

ge

ne

rato

r)

5

. Pow

er

Co

nv

ers

ion

an

d

Dis

trih

utl

on

5

- Il

yd

rau

l lc

s

. t'ow

er

Convers

ion

an

d

Uis

tr ib

ut

Ion

(h

yd

ra1

11

lc.

pn

eu

nn

t ic

)

En

vir

on

me

nta

l C

on

tro

l a

nd

L

ife

Su

pp

ort

- P

ers

on

ne

l A

cc

ov

no

da

tio

ns

an

d E

qu

ipm

ent

- L

ife

Su

pp

ort

E

qu

ipm

en

t

- E

~w

lro

nn

eu

tal S

yst

em

s (t

em

pe

ratu

re

an

d

atm

osp

heri

c

co

ntr

ol)

TABL

E 8-

5 (C

on

t.)

TWO

-STA

GE-

VEH

ICLE

(A

ir-B

reat

hin

g B

oo

ster

, S

up

erso

nic

S

tag

ing

)

~o

os

ter

Orb

1 ~cr

------

- ~-

.----

- ---

-Te

cl~

nn

lo~

y

Te

rl~

no

log

y

Te

cl~

no

lo~

y Rea

d 1

11em

s T

ec

l~n

olo

l(y

Rr

ntI

ll~

es

~

Rc

ad

lne

sn

I.cv

el

Req

u L

red

R

end

lnen

m

I.ev

e H

ey11

1 re

d

Le

ve

l -- .-

Cn

in

Re

qu

ire

d

--

Ris

k

Le

ve

l R

eap

I re

d

Gal . I!-_

R

lek

I.lq

trid

R

urk

et

En

gin

e(8

)

- S

SH

E

(p

ote

nti

al

nn

dif

icn

tio

na

, n

oz

zle

, li

feti

me

.

- N

ew

ll

l~

l~

P

res

su

re I

.II -1

.0

2

2 -

New

ll

lglt

P

res

su

re I

lll-L

O

(po

ss

ibly

du

al-

fue

l)

2

- OMS

(ex

lsti

al:

WII

I/N

~O

~, w

di

f lc

ati

on

s N

2H4/

N20

4.

ur

1.11

-1

.0

) 2

2

I

At

t l

Lw

le C

on

Lro

l E

ng

ines

- E

xL

stl

n~

Th

rus

ters

(H

EII

I/N

O )

2

4

- N

ew

l'l

~r

~~

st

cr

s

(N21

l4/N

2O4

or

LII

-L

O2)

2

Al r

-Hrc

-i~

th l

n~

E

ng

ine

s

- S

ub

s~

mlc

T~

trb

ofa

n .le

t E

ll~

ine

(e

xls

t lnp

, e

n~

ln

e)

- N

w S

ut~

so

nlc

Tu

rlm

fan

Je

t E

ug

lne

(7

0-8

0.0

00

lb

f)

- E

xls

tln

g S

uy

era

ua

lc T

urb

oje

t o

r T

urb

ofa

n

(.I-58.

GE

-4)

- N

ew

S~

~p

rr

sr

rn

ic

Tu

rbo

iet

(70

-85

.00

0

Ibf)

TABL

E 0-

5 (C

on

t.)

TWO

-STA

GE-

VEIII

CLE

(A

ir-B

rea

thin

g B

oo

ster

. S

up

erso

nic

Sta

gin

g)

Te

clu

tolo

~y

T

ec

l~~

tolo

~y

T

eclm

olu

gy

Re

ad

ine

ss

rec

lt~

wlo

gy

Readis

team

R

ea

din

ess

L

ev

el

Re

qu

lre

d

Re

ed

lne

ss

Le

ve

l R

eq

ul r

ed

L

ev

el

Re

qu

ire

d

--

GI tn

R

isk

~

eq

ulr

%L

. -.

-

Ris

k

--

-

Le

ve

l -- -

Ca 111

T

ec

)h!~

~_

ly

Need

Ha

nu

fac t

trrl

ng

0

kn

ufa

ctu

r fn

g P

roce

ss a

nd

Me

tho

ds

4

- P

lan

nln

g.

Ile

slg

n.

Fa

brica

tio

n,

Assem

bly

o

f T

oo

ls.

Die

s. J

igs

, a

nd

F

ix*

res

- 'T

est

Eq

ulp

wn

t to

Su

pp

ort

M

an

ufa

ctu

rin

g

4

- P

ril

g~

ala

l np,

and P

rep

ara

t Lon o

f T

ap

es a

nd

W

icl~

lne

s fo

r N

me

ric

all

y C

on

tro

lle

d E

quip

ment

5

r

Pla

nn

l ng.

De

sjg

n.

Fa

bri

ca

t ion.

an

d T

es

tin

g

. Insrr

um

en

La

t lu

n a

nd

Te

st

&lu

ipm

en

t (a

uro

mo c

ed ch

ecko

ut

an

d m

ain

tenance)

0

~:r

~*

wv

l T

esL

(s

tru

ctu

ral,

d

yn

nm

lc.

pro

pu

lsio

n a

nd

syste

m

1n

tep

.rn

t Io

n.

uln

d tu

nn

el)

TABL

E 8-

5 (C

on

t. )

THO

-STA

GE-

VEIII

CLE

(A

ir-l

lre

ath

lng

Bo

ost

er.

Sup

erso

nic

Sta

gjn

g)

r V

c41

lcle

Tes

t F

ac

ilit

les

0 Engine

Tes

t F

r~

cll

it

lee

0 la

un

ch F

acilitie

s

0 O

per

ati

on

al

and

Ma

inte

na

nce

Fa

cil

itle

s

0 W

an

ufa

ctu

rin

g

Fa

cil

itie

s

0 W

ind

Tn

nn

el

Fa

cil

ltle

s

Pro

pel

ln

nt

Pro

cl~

rct io

n F

ac

ilit

ies

S (n

trtl

crt

urx

an

d

Sp

ec l

a1

Trn

f nln~ Eq

r~

ipw

~it

TABL

E P

-6

TWO

-STA

GE-

VLIII

CLE

(Alr

-Bre

a th

ing

Bo

ost

er,

t!

yper

sont

c S

tag

fng

)

Te

ch

no

lc~

y

Techno lo

gy

T

ec

l~n

olo

gy

Rend In

em

s

Te

clm

wlo

gy

Read1 nesm

R

ea

din

ess

Leve 1

R

eq

ulr

ed

R

ea

dim

sa

L

ev

el

Re

qu

lrd

L

ev

el

Re

qu

ire

d

Ca

ln -

Ris

k

Le

ve

l Z

eq

ulr

ed

G

ain

La

un

ch

Ve

l~ic

le

Str

uc

ture

- A

eru

dyn;~

a!c

S

urf

.~ce

m

. Wings

(cry

og

en

ic w

et

win

g-s

ea

lin

g.

he

at

sin

k)

. Ibrlz

on

tal

an

d V

erti

ca

l S

tabiliz

ers

. Con

tro

l S

urf

ace

s.

Fin

s,

an

d F

air

ing

s

- Rody

an

d T

anks

. Inte

gra

l P

rop

ell

an

t T

anks

(11

1su

lat i

on

. 11

e.1t

Y

l nk,

se

al

in^)

. had

Ca

rry

ing

Str

uc

ture

(t

hru

st.

in

tert

an

k.

vln

g-l

std

y.

inte

rsta

ge

)

. Pr~

~p

ell

an

t F

eed.

Fil

l,

Dra

ln,

an

d T

ran

sfe

r (p

res

sr~

rl

za

t io

n.

an

t 1-s

los

h)

- I.

md

lnp

, (:ear

. Stru

ts.

Bra

ce

s.

an

d Ik

plo

ym

en

t lk

vlc

es

. Sl~

oc

k Att

en

tmt

ton

De

vic

es

. l'lre

s

TABL

E B-6 (

Con

t.)

TWO

-STA

!X-V

EHIC

LE

(Air

-Bre

ath

ing

B

oo

ster

, tly

pers

onlc

Sta

gin

g)

Pa~

uer S

up

ply

an

d

Dl s

tr ib

ttt i

on

- E

Lc

cL

rlc

al

Po

wer

G

en

era

tio

n

(en

gin

e

ge

ne

rato

r u

nit

, fu

el

ce

lls

. Im

tte

rfe

s.

RT

C,

ga

s g

cn

era

so

r)

5

. Pmve

r C

on

ve

rsio

n

ad

Dis

trib

uti

on

5

r

Po

wcr

(:

on

ve

rsio

n

an

d D

tstr

ibu

tin

n

(hy

dra

ttll

c.

En

vlr

on

ae

nta

l C

on

tro

l an

d

Lif

e S

up

po

rt

- P

ers

nn

nc

l A

cr->

dat

1.

~11s

an

t1 F

5u

lpc

nt

- 1.

1 fe

Su

lvp

br t

F

41

1tl

ne

nt

- B

r~v

lrc

mru

ntn

l Systcas (t

em

pe

tatu

re

an

d

i~

l~

~a

pl

~r

r

lc r

n~

~C

rn

l)

TABLE

0-6

(Cont.)

TYO

-STA

GE-

VEHI

CLE

(Alr-lreathhg

Bo

os

ter,

H

yp

ers

on

ic

Sta

gin

g)

- S

SM

E

(po

ten

tla

1 modif lc8tluns, n

nx

rle

, 1

1 F

et l

me.

p

er

Co

rran

ce)

- N

ew H

l~lr

Pre

sslu

re 1

1D-1

A)2

(possible d

ua

l-fu

el)

r A

ttit

nd

e (

hrr

tru

l E

n*l

nc

u

- E

xln

t ln

g l

lwu

ste

rs (

WI

N 0

)

2 4

- H

ew

Th

rus

ters

(N

21I4

/W2O

4 o

r U

IZ- ID

2)

TABL

E 0

-6

(Co

d.)

TWO-STAGE-Vf 1I

IClE

(A

i r-B

rea

thin

g B

oost

er.

Ilyp

erso

nic

Sta

gin

g)

- Planntog.

Iksl

gn

. Fabrication. Assembly

of

Ttw

la.

Dles. .ligs.

an

d Fl~tures

- Programmln~ and Preparatlun of

Ta

pes

and

Hachllccn

fur

Ntmrrlcally

CX

mtr

olle

d Equlpent

r Fll~l~t

Test (Inat.rtmentatlttn, test artlrlrs,

and xyeclal crj~~lpumt)

F.u

.1 1

i t

les

an

d

Erp

lpm

rnt

. a

r

Ve

hlc

le T

es

t F

ac

illt

les

r

h~

in

e

Te

st

Fa

cil

lt

ie

s

r

I..t

unch

F

ac

l l 1

tie

s

Op

era

tlo

n.1

1

an

d P

lain

ten

an

ce

F

ac

ilit

ies

r

M.~

nu

fac

ttlr

~ll

g Fa

cil

itie

s

r W

ind

Tu

nn

el

Fa

cil

itie

s

r

Pro

pe

lla

nt

l'rw

lc~

ctl

on

Fn

cil

ltle

s

S l

na

~la

tors

'tnd

Sp

ec

lo1

Tra

inin

g E

qu

ipm

ent

Yll

ylr

t

I)p

ern

t l

oll

s

r

~L

I 11

lt~

.ll.

lllc

f?

TABL

E 8

-6

(Co

nt.

)

TUO

-STA

GE-

VEH

ICLE

:4ir

-Ere

ath

lng

B

oo

ste

r,

Hyp

erso

nic

Sta

gin

g)

--

Do

os

ter

--

Te

ch

no

log

y

Te

ch

no

log

y

Ne

ed

ine

ss

Re

ad

lne

ss

Le

ve

l L

ev

el

_- Hea

jlli

red

R

eq

uir

ed

rd

111

--- 4 4 - 2 - - 2 2 2 2

Orb

ite

r -

Te

cl~

no

log

y

Te

cli

mlo

~y

Re

ad

itte

sa

Rea

d l

ne

ee

L

ev

el

Le

ve

l R

eap

I re

d

-

- -.

- --

APPE

NDIX

C

COST

DAT

A BA

SE

Tables C-1

and

C-2

provide the values of the various

cost estimating factors that were used in the cost

model of Ref. 12 to generate vehicle costs.

Tables

C-3

through C-8 show the cost estimates, in millions

of dollars, for the alternative launch vehicles.

TABL

E C-

1

COST

ESTIMATING

INPUT

FACT

ORS

I T

wo

-Sta

ge

Ve

hic

les

I M

ach

10

M

ach

3.5

M

ach

0.8

S

yst

em

Orb

ite

r B

oo

ste

r B

oo

ste

r B

oo

ste

r D

evel

op

men

t

Co

nce

pt

Fo

rmu

lati

on

Su

pp

ort

ing

Tec

hn

olo

gy

Pro

gra

ms

Str

uc

ture

Aer

od

yn

amic

S

urf

ac

es

Co

mp

lex

ity

Fa

cto

r

- C

om

mo

nal

ity

F

ac

tor

- C

on

fig

ura

tio

n F

ac

tor

- M

ate

ria

l F

ac

tor

Bo

dy

/Tan

k

Co

mp

lex

ity

Fa

cto

r

- C

om

mo

nal

ity

F

ac

tor

- C

on

fig

ura

tio

n F

ac

tor

- M

ate

ria

l F

ac

tor

- P

rop

ell

an

t F

ac

tor

Th

erm

al P

rote

cti

on

S

yst

em

Co

mp

lex

ity

Fa

cto

r (9

0%

we

igh

t in

pa

ne

ls;

10

% w

eig

ht

in

in

su

lati

on

)

- C

om

mo

nal

ity

F

ac

tor

- C

on

fig

ura

tio

n F

ac

tor

- M

ate

ria

l F

ac

tor

Dev

elo

pm

ent

1

Av

ion

ics

Fa

cto

r

Com

mon

ali t

y F

ac

tor

Co

mp

lex

ity

F

ac

tor

Ele

ctr

ica

l P

ower

F

ac

tor

Hy

dra

uli

c P

ow

er

Fa

cto

r

En

vir

on

me

nta

l C

on

tro

l/

Lif

e S

up

po

rt F

ac

tor

Dro

p

Tan

k

Co

mp

lex

ity

F

ac

tor

Em

erg

ency

R

eco

ver

y

Pro

pu

lsio

n

TABL

E C-

1 (C

ont.

)

COST

ESTIMATING

INPUT FACTORS

I- T

wo-

S ta

ge

Ve

hic

les

-

Mac

h 1

0

Mac

h 3

.5

Mac

h 0

.8

Sy

ste

m

Orb

ite

r B

oo

ste

r B

oo

ste

r B

oo

ste

r

a

Pri

ma

ry R

oc

ke

t E

ng

ine

Fa

cto

r --

- C

om

mo

nal

ity

F

ac

tor

--

- C

om

ple

xit

y F

ac

tor

- -

1.9

3

' 11 .~

cld

es g

uid

an

ce

an

d

na

vig

ati

on

, co

mm

un

icat

?n

u,

and

ir

?~

tru

me

nta

tio

n/~

an

els

. i !

143

4

Sin

gle

- S

tag

e

VTO

TABL

E C

-1

(Co

nt.

)

COST

EST

IMA

TIN

G I

NPU

T FA

CTOR

S

Tw

o-S

ta

~e

V

eh

icle

s

Sin

gle

- S

tag

e

I M

ach

10

lh

ch

3.5

M

ach

0.8

S

yst

em

O

rbit

er

Bo

ost

er

Bo

ost

er

Bo

ost

er

Dev

elo

pm

ent

Pro

pu

lsio

n

(Co

nt.

)

Re

ac

tio

n

Co

ntr

ol

En

gin

es

Fa

cto

r --

(2

.0)

--

--

--

(2.0

) -

Co

mm

on

alit

y

Fa

cto

r - -

1

.0

--

--

--

1.0

- C

om

ple

xit

y F

ac

tor

--

2.0

- -

--

--

2

.0

0

Air

-Bre

ath

ing

E

ng

ine

s

- T

urb

oje

t E

ng

ine

Fa

cto

r --

- -

C

om

mo

nal

ity

F

ac

tor

--

--

a

Co

mp

lex

ity

Fa

cto

r --

--

- S

cra

mje

t E

ng

ine

Fa

cto

r --

--

a

Co

mm

on

alit

y

Fa

cto

r --

--

a

Co

mp

lex

ity

Fa

cto

r - -

--

Num

ber

of

Eq

uiv

ale

nt

Har

dw

are

Un

its G

rou

nd

T

est

0

Fli

gh

t T

es

t

Num

ber

of

Eq

uiv

ale

nt

Fu

ll

Du

rati

on

S

tati

c T

es

ts

Ve

rtic

al

Fli

gh

t T

est

D

ura

tio

n M

on

ths

TABL

E C-

1 (C

on

t. )

COST

EST

IMA

TIN

G I

NP

UT

FACT

ORS

Sin

gle

- S

tag

e

Iko-S

ta

ge

Ve

hic

les

Mac

h 1

0

Mac

h 3

.5

Mach

0.8

S

yst

em

O

rbit

er

Bo

ost

er

Bo

ost

er

Bo

ost

er

Dev

elo

pm

ent

Num

ber

of

Ve

rtic

al

Fli

gh

t T

es

ts

5

--

--

--

--

. W

ind

Tu

nn

el

Te

st

Ho

urs

Co

mp

lex

ity

--

Inc

lud

ed

60,000

30,000

32,000

60,000

wit

h

--

Bo

ost

er

1.8

1

.8

1.8

1

.8

Fa

cil

itie

s a

nd

E

qu

ipm

ent

Ve

hic

le T

es

t F

ac

ilit

y

Co

mm

on

alit

y

Fa

cto

r

En

gin

e T

es

t F

ac

ilit

y

Co

mm

on

alit

y

Fa

cto

r

Lau

nch

F

ac

ilit

ies

Op

era

tio

na

l a

nd

M

ain

ten

an

ce

F

ac

ilit

ies

- N

umbe

r 1

- N

umbe

r o

f V

eh

icle

s M

ain

tan

ed

--

. Nu

mbe

r o

f V

eh

icle

s M

an

ufa

ctu

red

C

on

cu

rre

ntl

y

--

TABL

E C

-1

(Con

t.)

COST

EST

IMA

TIN

G I

NPU

T FA

CTOR

S

lbo

-Sta

ge

Veh

icle

s I B

S

tag

e M

ach

10

Mach

3.5

Mach

0.8

S

yst

em

Orb

iter

B

oo

ster

B

oo

ster

B

oo

ster

r

- D

evel

opm

ent

Tra

inir

g

0

Fli

gh

t C

rew

P

erso

nn

el

Gro

und

Cre

w

Per

son

nel

-

Gov

ern

men

t P

rogr

am M

anag

emen

t an

d P

erso

nn

el

(man

-yea

rs)

2100

Pro

pel

lan

t C

ost

TABL

E C-

1 (C

on

t. )

COST

ES

TIM

AiIN

G I

NPU

T FA

CTO

RS

Tw

o-S

tage

Vehicles

Mac

h 10

Mac

h 3

.5

Ela

ch

0.8

S

yst

em

O

rbit

er

Bo

ost

er

Boo

e ter

Bo

ost

er

I -

Sin

gle

- S

tag

e 6

Fir

st

Un

it C

ost

Str

uc

ture

Aer

od

yn

amic

S

urf

ac

es

Co

mp

lex

ity

F

ac

tor

- C

on

fig

ura

tio

n F

ac

tor

- M

ate

ria

l/C

on

stru

cti

on

F

ac

tor

~o

dy

/'l'

an

k S

tru

ctu

re

Co

mp

lex

ity

F

ac

tor

- C

on

fig

ura

tio

n F

ac

tor

- ~

ate

ria

l/~

on

str

uc

ti

on

F

ac

tor

- P

rop

ell

an

t F

ac

tor

0 T

her

mal

P

rote

cti

on

Sy

stem

C

om

ple

xit

y

Fa

cto

r (9

0%

p

an

el

we

igh

t;

10%

ins

ula

tio

n

we

igh

t)

--

- C

on

fig

ura

tio

n F

ac

tor

--

- ~

a te

ria

l/~

on

s

tru

c ti

on

F

ac

tor

--

0

Gu

idan

ce

and

N

av

iga

tio

n

Co

mp

lex

ity

Fa

cto

r --

~n

str

um

en

tati

on

/Pa

ne

ls

Co

mp

lex

ity

F

ac

tor

--

TABL

E C

-1

(Con

t. )

COST

E

STI

WTI

NG

IN

PUT

FACT

ORS

I T

wo-

S ta

ge

V

eh

icle

s 1 S

ing

le-

Sta

ge

\ I M

ach

10

M

ach

3.5

M

ach

0.8

S

yst

em

Or

bit

er

B

oo

ster

Bo

ost

er

Bo

ost

er

Fir

st U

nit

Co

st

Str

ucL

ure

(C

on

t.)

tly

dra

uli

c C

om

ple

xit

y F

act

or

--

1.0

1

.0

1.0

1

.0

Pro

pu

lsio

n

- R

ock

et

En

gin

e C

osp

lex

ity

F

act

or

- R

eact

ion

Co

ntr

ol

Co

mp

lex

ity

F

act

or

--

- A

ir-B

rea

thin

g

En

gin

es

Tu

rbo

jet

Com

ple

xi t

y

Fa

cto

r - -

S

cra

mje

t C

om

ple

xit

y

Fa

cto

r --

-

Dro

p T

ank

Co

mp

lex

ity

F

act

or

--

TARLE

C-1

(Con

t. )

COST

ESTIMATING

INPU

T FA

CTOR

S

I 'h

o-S

ta

ge

Veh

i ale

s

I Sin

gle

- Stage

Mac

h 10

Mac

h 3

.5

Ela

ch 0

.8

Sy

stem

O

rbit

er

Bo

ost

er

Boo

e te

r B

oo

ste

r In

ve

stm

en

t

Num

ber

of

Lau

nch

S

ite

s (

tota

l)

1

Ground

Su

pp

ort

Eq

uip

men

t (p

erc

en

t o

f RCD)

70%

--

--

--

--

70

%

Num

ber

of

Ad

dit

ion

al

Liq

uid

P

rop

ell

an

t F

ac

ilit

ies

1

Num

ber

of

New

V

eh

icle

s - -

4

Num

ber

of R&D

Ve

hic

les

Mo

dif

ied

Pro

du

cti

on

Tim

e (u

~o

ntl

ls)

--

15

Le

arn

ing

Cu

rve

- -

9 2%

Num

ber

of

Ve

hic

les

Main

tain

ed

a

t S

ite

Go

ver

nm

ent Program M

anag

emen

t (m

an-y

ears

) 1

20

0

--

r l m u m 0 0 0 0 0 0 0 0 0 d d d l d g

AERO SURFACES

Aluminum S h e e t

Alurrinum S/S/F'

T i t an ium S h e e t

T i t a n i u m S/S/F

s s steel2

L 605 A l l o y

TABLE C - 2

STRUCTURE MTER!AL/CONSTRUCTiON FACTORS

VTO - SINGLE-STAGE-TO-ORP I T

Combined f a c t o r 1 .74

BODYITANK STRUCTURE

Aluminum S h e e r

Aluminum S/S/F

T i t an ium S h e e t

T i t an ium S/S/F

S S S t e e l

Rene '41, e t c .

T H E W PROTECTION SYSTEII

Columbium

T i t a n i urn

L 605 Al loy

S S S t e e l

Rene '41, etc.

0.06

0.40

0.06

0.35

0.39 -- -

Combined f a c t o r 1 . 2 6

0.53 - Combined i ac t o r 3 . 3 3

'~k-!~, 'Jcr in~er/ t rame. ' super s t a i n l e s s s t e e l ( h i g h t e m p e r a t u r e ) .

TABLE C-2 (Cont. )

STRUCTURE WTERIAL/CONSTRUCTION FACTORS

ORBITER

AERO SURFACES

Aluminum Sheet

Alqminum S/S/F

Titanium Sheet

Titanium S/S/F

S S S t e e l

L 605 Alloy

BODY~TANK STRUCTURE

Aluminum Sheet

Almi.~um S/S/F

Titanium Sheet

Titanium S/S/F

S S S t e e l

Rene '41, e t c .

THERMAL PROTECTTO:! SYSTEM

Columbium

Titanium

L 605 Alloy

S S S t e e l

Rene '41, e t c .

0.06

0.10

0.28

0.81

0.13

0.31 - Combined f a c t o r 1.69

0.06

0.40

0.11

0.58

0.17

0.05 - Combined f a c t o r 1.37

0.53 - Combined f a c t o r 3.33

T A e L E C - 2 (Con:.!

AERO SURFACES

Aluminum Sheet

Aluminum S/S/F

Titanium Sheet

Titanium S/S/F

S S S t e e l

L 605 Alloy

BODY / TLLK STRUCTURE

STRUCTURE MATER I A L / C O N S T R U C T I ON FACTORS MACH NO. 10 BOOSTER

Aluminum Sheet

Aluminum S / S / F

Titanium Sheet

Titanium S/S/F

S S S t e e l

Rene '41, e t c .

THERMAL PROTECT J Ch SY STE?? -..

Columbium

Titanium

L 605 Allow

S S Stee l

Rene '41 e t c .

0 .03

0.10

0 . 2 8

0.92

0.07

0 . 3 1 - Combined factor 1 . 7 4

0 .06

0 .40

0 .04

0 . 35

0 .39 -.

-- Combined factor 1-26

1.38

0.37

0.31

0..53 - Combined factor 2 .59

TABLE C-2 (Cont. )

STRUCTURE MATERIALICONSTRUCTIOPi FACTORS MACH NO. 3.5 BOOSTER

AERO SURFACES

Aluminum Sheet

Aluminum S / S / F Titanium Sheet

Titanium S/S/F

S S Steel

L 605 Alloy

BODY / TANK STRUCTURE

Aluminum Sheet

Aluminum S /S/F

Titanium Sheet

Titanium S / S / F

S S Steel

Rene '41, etc.

-- - Combined factor 1.06

-- -

Combined factor 1.17

AERO SURFACES

Aluminum Sheet

Aluminum S/S/F

Titanium Sheet

Titanium S/S/F

S S Steel

L 605 Alloy

B W Y / TANK STRUCTURE

Aluminum Sheet

Aluminum S/S/F

Titanium Pheet

Titanium S/S/F

S S Steel

Rene '41, etc.

TABLE C-2 (Cont. )

STRUCTURE MATERIAL/CONSTRUCTION FACTORS

MACH NO. 0.8 BOOSTER

Combined factor 0.95

-- - Combined factor 0.99

TABLE C-3

SINGLE-STAGE-TO-ORBIT (VTO)

COST COST ELEMENT OEIICNATION 1 0181TER 1 lOOSTER SYSTEM EOS TOTAL

1000 / TOTAL ROT&€ 1 1 760.7 I 1100 / CONCEPTUAL AND OEFlNTlON PHASE 1 1 I 47.2

1110 Conceptual Studies IContmtor) 3.4

- - - - - 1130 / Other Study SUPPOR-

1140 I SEnD Contractor(J

1 1218 I Drop Tanks 1 1 I 1 -- I 1 1220 1 Propulsion ! 1 1 1 1234.5 ;

!

, 1120 / Program Definition Studies (Contnctod 1 - - - - - -

- -

1212 ( Landing Gear

1213 ( Thermal Protection S y n m

30.3

1214

1214-1

I ... F I --

I I I 317.6 I '

I I i 1230 ( Vehicle Integration 1 ' 129.5 1

6792.0 , 1 2623.1

I 999.9

- - - - -

13.5

1200 I ENGINEERING OEVELOPMENT PHASE

1210 / Air Frame

Avionics

Guidance and Navigat~on

1

1214.2 / Communications 1 1

7- - - - - - - - - - - -- -- -- - - - - -

1 1240 I Initial Tooling i I I i 303.9 I I

I

1211

547.9 1

144.8

1221 I Rocket Engines - Primaly

--

t

Stnrcture

I I

I 1 1118.0 I

1211-1

121 1-2

121 1-3

i

I 121 4-3 I Instnrmentation/Panels

1222 I I I 1 -- I I

Rocket Eng~nes - Secondary I

I

1223 1 Air4reatbing Engmes I ! I I -- I

1224 I I Orientat~on Control 1 1 i I 1 116.5 I

I I

Aerodynamic Surface

BadyITank S t ~ c t u r e

Nonintegral Tanks

117.0 1 1

1 286.1 1

1 196.4

1 803.5

11211.4 j Other

1215 1 Power Supply and Oistnbunon I 1 338.8 I 12151 ( Efwtrical Power I I 1 1 268.5

I --

1215-2

I i i -- I *

! 1 Hydraulic Powsr 70.3

418.9 ! -- 1

1 1216 Environmantal Control & Life Support

1217 Emeroencv I

TABLE C-3 (Cont.)

SINGLE-STAGE-TO-ORB IT (VTO)

COST ELEMENT OESIGNATION

1261 Ground Test 1 6 3 2 . 6

1262 I Flight Test 4 2 1 . 7

1270 ! Test Operations 1 4 1 4 . 0

1271 [ Ground Test I 1 5 7 . 0

1272 1 Flight Test 1 1 1 3 7 . 5

I I 1272.1 Horizontai I 6 8 . 2

I 1272-2 / Vertical 1 69 .3

1273 1 Wind Tunnei Test 1 1 1 1 9 . 5 .I

1280 / Facilities and Eouipment I I ! 7 5 6 . 9 . 1

1281 I Vehicle Test Facilities 1 1 I 1 2 6 . 3 1 1

1282 I Engine Test Facilities 1 1 / 1 1 9 . 9 !h I

1283 Launch Facilities I 1 7 8 . 0 I' 1284 Operational & Maintenance Facilities 1 1 4 1 . 8 1

I I 1285 I Manufacturing Facilities 7 . 6 I I

1286 ! Wind Tunnei Facilities I 1 I -- I 1287 1 Propellant Production Facilities 1 I 1 f 57.8 !

I

1288 1 Suppon Equipment 1 1 I -- i 1289

I I ! I Activation I 1 3 5 . 5 I

1 I

1290 I Training 1 1 1 1 8 . 8 / 1291 I h m n n e l I I 34 .5 1 1291-1 / Flight Crew 1 t 1 29.7 1

1291-2 / clround Crew 1 1 I 4 . 8 1 I

1292 I I Simulators and Equioment I 1 1 1 8 4 . 3 1

- - -

1300 I SYSTEM I N ~ ~ R A T I O N ENGINEE~ING / I I 1 2 1 9 . 3 1 I

I 1310 I I I I / Contractor Program Management 1 4 0 1 . 6

I ! I 1320 I SEfTO Contractor(sl ! i 1 -- i

I i 1

1400 / TECHNOLOGY SUPPORT PHASE ! -- i

I i I

1410 i Aerothermo Technology -- I

1420 I StructureIMaterial Technology 1 I I ! -- I

I 1430 j Propulsion Technology I I I -- I

TABLE C-3 (Cont. )

SINGLE-STAGE-TO-ORBIT (VTO)

I COST

. - - - -- - - --

I Operational & Maintenance Facilities I

1440

1500

I 2150 / Ground Equipment 1 1 3 9 . 5 I

ORBITER BOOSTER SYSTEM ELEMENT I NUMBER

Other Technology

GOVERNMENT PROGRAM MGMT.

EOS TOTAL COST ELEMENT DESIGNATION

2000 I TOTAL ItJVESTMENT

-- 5 7 . 8

1

- - - - -- - - - - - - -- - - - - - - -

2130 I Manufacturing Facilities 1

1 2220 ! R8'1 Vehicle Modifications 1 1 1 1 1 2 6 . 5 1 -

1

2140 1 Propellant Production Facilities 1

-- I 1 4 1 . 6

I

I

1 -- 1 1 1 1 . 6

i i I 2160 / Suopon Equipment

2340 I Additional and S u v L ~ i n p Tooling 1 1 1 -- , 2350 1 Contractor Prooram Manaaernent 1 I -- I

2 3 6 1 . 0

2200 I REUSABLE VEHICLE FLEET 1 1 1 1 2 1 9 1 . 2

2210 I New Vehicle Manufacturing I 1 1 4 2 8 . 3 1 % 2170

-- - -- -- - -- - -

2230 I Initial S p a n 1 1 I 2240 I

1 2400 i GOVERNMENT PROGRAM MGMT. I ! I i 1 8 0 . 9

1 3000 1 TOTAL OPERATIONS I , 112,460.4 ! I

I I

r j I

1 3100 / OPERATIONS 1 I 1 1 6 1 8 . 8 ! 1 3110

I I I

] bunch Operations I 1 ! 5 5 . 0

I I I 3120 / Recovery rlperationr I 2 5 . 7 ! 3130 i Command and Control i I ! ~45.6

I

, 3140 I Replacement Training I 1 i 5 0 . 6

I

I

Activation

1 4 2 . 8 / I I Sustaining Tooling I

I 45.6 1

2250 / Engineering Suppon I 1 I I 285, 1 6 2 . 3 1 -- 1

' 2260 I Contractor Program Management 1 1 1

2300 ( EXPENOABLE HARDWARE 1 1 I --

2320 . 1 Sparessupport I

2330 I

Engineering Support I 1 -

I -- !

2270 1 SEITD Contractorlsl 1

T A B L E C - 3 (Cant.)

SINGLE-STAGE-TO-ORB,IT (VTO)

-

3150 1 Facility & Equipment Maintenance 1 1 I 387.1 1 1

COST ELEMENT COST ELEMENT OESIGNATION 1 NYMI IR 1 ORBITER 800STE3 I

1 3162 1 Space-Qsed Maintenanre Operations I 1 I -- 1

I 1 159.9

227.2

3151 1 Launch & Maintenance Facilities I

3160 '

3161

I I 3170 In-Plant Engineering Support I 1 269.6 /

SYSTEM

3152

1 3180 1 Program Integration and Management I 1 1 168.5

EOS TOTAL

Ground & Support Epuiprnat I

t r I I

Vehicle Maintenance

Ground-Batad Maintenance Operations

513.7

513.7

321 1 Structure 1 i 1 678.8 1 3200

321 0

SPARES AND PROPELLANT SUPPORT

FollowOn Spares

3212 1 Thermal Protection System

1 4114 / Other 1 1 I I ! I --

I I I , i ! 4120 ! Landing Gaar I 0.3 I i i ! 4130 ! Thermal Protection System I ' 14-3.9 i

I i I 1 (140 1 Avionics ! 26.6 I

10.671.1

8645.5

3221 1 Basic Cost (Ground-lased) 1 1 --

3300 / RANGE/BASE SUPPORT 1 1 170.5

i i I 1 4141 I

Guidance and Navigation 1 12.2 1

1 1 3019.7 /

421.7 I

331.9 1 107.8 / 41.6 1

I

66.2 1

-_ ! I

$ F

3213 Rocket Engines 4 3214 Air-Breathing Engines

I I 4000

I 3215 1 Subsynems I I 1 4060.6

3216 Other I -- 3217 1 Transportation (Space-Based) I -- , 3220 / Propellants and Gases 1 2025.6 1

886.4 . --

AIR VEHICLE FIRST UNIT COST

4100 AIR FRAME ! I 4110 1 Structure I 1 41 11 1 Aerodynamic Surfaces 1 I I

I 1 41 12 / BadyITank Structure I [ 4113 1 Nonintqnl Tanks i I I 1

TABLE C-3 (Cont.)

SINGLE-STAGE-TO-ORBIT (VTO)

4142

4143

4150

4151

41 52

4160

4170

4200

4210

4220

4230

4240

4300

Communication

Innrumentation/Panels

Power Supply & Distribution

Electrical Powrr

5000 / DROP TANK FIRST UNIT COST

10.1

14.0

33.8

25.6

Hydraulic Power

Environmental Control & Life Support

Emeqency Recovery

PROPULSION

Rocket Eng~nes - Primary

Rocket Engines - Secondary

Air-Breathing Engines

Orientation Control Thrusters

INTEGRATION, ASSEMBLY, CHECKOUT, AND TEST

--

r i

- r -

o 2

-

8 . 2

19.5

-- 7 5 . 3

48 .0 -- -- 2 7 . 3

1 4 . 5

TABLE C-4

TWO-STAGE

(Subsonic Staging, Sing1 e-Booster)

~- --

I / Vehiclr Integration 1 106.3 57.4 : 158 .6

1000

1100

1110

1120

1130

1140

1 1211-4 / Other I I 7 a 1212 I Landing Gear F

1213 I Thermal Protaction System 294.6 1 I 1214 Avionics 547.9 1 140 .3 I

1240 ! Initial Tooling ' 325.2 501 .3 ! 826 .5 j

5432.6

4907.2

TOTAL ROT&E

CONCEPTUAL AN0 OEFlNTlON PHASE

Conceptual Studin (Contractor)

Program Oafinition Studies (Contractor)

Other Studv Support

S U T O Contractods)

1214-1 1 Guidanca and Navigation

1200 I ENGINEERING OEYELDPMENT PHASE

117.2 1 35.2

3159.1 1 797.3 / 9 0 2 2 . 6 ,

1210 Air Frame 1 2353.4 2842.3

-

1264.3 121 1

1211-1

121 1-2

I

I

i 3617.7 , I

1214-2

852.8 1 507.0 / 345.8 1

I

I I I

47 .2 1 4 7 . 2

3 .4 1

1211-3 1 Nonintwral Tanks

1

30.3

1 3 . 5

591.4 - - - - --

Structure

Aerodynamic Surface

BodylTank S t ~ c t u r e

Communications 1 144 .8

8340.9 -

947.4

31b. 4

633.0

20 .6 1 , 1 I . 84.5 1

I

1214-3 1 I nst~mentationiPanels 286.1 1215 / Power Supply and Distribution 250.8 , . 271.2 1 12111 1 Eiectricd Power I 199.5 i : 212.0 I I

I 1215-2 1 Hydraulic Powr 5 1 . 3 1 59 .2 1216 Environmental onn no^ L ~ i t e ~ u p p o n l 312.7 1217 / ~mergency

1 I

1218 / Orop Tanks I I 1 I I

I + 1 1220 ! Propulsion 1 242.6 1 90 .4 ' 333.0 1

I I I

1221 I Rocket Engines - Primary 1 1 2 6 . 2 :

1222 i Rocket Engines - Secondary 1 I I

I I 1 1223 1 Air-Sreathing Engines 90.4 / I 1

1224 I Orientation Control 116.k 1 I I

TABLE C-4 (Cont.)

TWO-STAGE

(Subsonic Staging, S i ngl e-Booster)

I

Ground Eauioment 58.2

COST ELEMENT NUMBER

. .

1260 Test Hardwan 968.0 1 507.3 1 1 1475.0 1

1 1271 1 Ground Test 1 137.8 1 115.9 1 I 1

COST ELEMENT OESIGNATlON 0R81TER EOOSTER

- -

1 8 7 I Proodlant Production Facilities I

1272

1272.1

1272-2

1273

1282 I Enpine T m Facilities

SYSTEM

68.2

68.2

Flight Test

Horizontal

Vertical

Wind Tunnel Test

59.9 1 59.9

EOS TOTAL

1280 1 Facilirias and Equipment

1281 I Vehicle Test Facilities I 58.3

-- - --

I -- - -

68.2

68.2

63.2 1 I

--

70.5 1

70.5 I

I 1 - 217.0

1283 1 Launch Facilitia I I

126.4

1286 I Wind Tunnel Facilities I I I 1 1

1284

1288 I Support Equipment 1 57.8 I 1

56.6

429.8 144.0

Oparaiond & Mainttnanca Facilities

700.2

I 152.5

I I 1

284.3 1 8

575.0 1

1289 I Actwanon 1 I I j 155.0 I

1290 I Training 1 77.4 i 40.6 1 34.5

1285 I Manufacturing Facilities 8-2 1 20.9

34.5 I

I 29.7

1291 / s lnonnd I

1320 / SEITD Cantracror(r) 1 1 I

1400 I TECHNOLOGY SUPPORT PHASE I I I

1 2 9 1 - 2 I Ground Crew I I 4.8

1 Simulators and Equipment [ 77.4 1 40.6 1 1292

1300 I SYSTEM INTEGRATION ENGINEERING / 177.7 i 100.2 i 6.4

1310 I Contractor Program Management 1 347.7 216.6 1 1.0.7

1291-1

I J

I 1

flight C r w

[ 1410 1 1 1 I I I Aerothermo Technolow I I

TABLE C-4 (Cant )

TWO-STAGE

(Subsonic Stag1 ng, Sing1 e-Booster)

COST \ I ELEMENT / COST ELEMENT OESIGNATION I BOOSTER I EOSTOTAL I : NUMBER 0 I

1440

1500

Othw Technology

GOVERNMENT PROGRAM MGMT.

-- - -- - - - - - - - - - - -

21 60

~4

I I

I I

I I I

I I

I

2140

2150

- --

I 57.8 1 57.8 I , ;

1 131.1 1 I 1 2230 1 Initial Suarr 68.7 1 199.8 1

1 I

3600.2

I I 2000 I TOTAL INVESTMENT

Pmpdlant Production Facilitia 1 Ground Equipment 1 112.9 48.8 1

I i hiupport Equipment

1 129.4 1 1 2 9 . 4 ,

2053.4 1 1117.0 1 3170.4

2170

221 0 I New Vehicle Manuhrturing

I 2240 I Sustaining Tooling 1 55.6 I 1 80.5 1 1 136.1 / g

2166.3

112.9 21W

21 10

I I

I Activation

FACILITIES AN0 EOUIPMENT

hunch F r i l i t i u

2200 I REUSABLEVEHICLE FLEET

L

2220 I R&0 Vh ic l r Modifications 1 116.2 1 60.8 1 177.0

1311.4

1165.8

48.8

2120 ( Oprmtiond & Mainnnancr Fa&litia

2130 I Mrnufacntring Fac l i t i r

- --

2250

268.1

187.2

686.9 1

Enginewing Suppon 1 296.7 1 137.4 1 1 434.1

1998.3 1

225.1 1 2 I I

I

1 ' 2260 1 Conmctur Program Management 1 142.4 1 82.7 1

- -- -- -

i - I - --

2320 (<am ~ u p p o n I 2330 Engin8rring suppon I I i

I 2340 ( Additional and Sustaining Tooling 1 I

-- --

1 I ( 3130 I

1 Command and Control I ! I

1 3140 I i / Replacemant Training I I

I I I

1 2310 / Hardwan Manufacturing I I 1 1 i

2270 I SEITO ~ontmctor(s) 1 I ! 2300 / EXPENOABLE HARDWARE

- -

-i j I

I I I

I ! - -- -

2350 / Contractor Pmgnm Management 1 I 1

I 1

1 2400 I GOVERNMENT PROGRAM MGMT.

I I I I

I I

80.9 I 80.9 ,

3000 1 TOTAL OPERATIONS I I I I

b

31 00 I I OPERATIONS 1 1 I

i !

1 3110 I Launch Operations I 1 1 I

/ 3120 I Recovery Operations 1 I I I !

TABLE C-4 (Cont. )

TWO-STAGE

(Subsonic Staging, Sing1 e-Booster)

I I 2140 / Pmpdlant Production Facilitia 57.8 1 57.8 1 :

-

EOS TOTAL COST I

COST ELEMENT OESlriNATlON 1 ORBITER 1 8aOSTER NUMBER

- -

SYSTEM

1440 [ Othar Tachnology

1500 I GOVERNMENT PROGRAM MGMT.

2170 ( Activation I I 1 129.4 1 129.4 1 0

2166.3

112.9

2000

21 00

2110

- - ---

21 50 ( Ground Equipment 1 112.9 ( 48.8

I I 2160 I SUPPOR Equipment

2130 I Mmufaturina Facilitia

TOTAL INVESTMENT

FACILITIES AN0 EQUIPMENT

bunch F r i l i t i a

- - I

161.7 1 I I

I

I I

2120 I Opamtiond & Mainnnanca F acil it iu

u

-- - -- - - - - -- - Q

2200 1 REUSABLE VEHICLE FLEET 1 2053.4 I 676.5 I 7 2729.9 ; $

I I I

2340 I Additiond and Sumining Tooling 1 I I

1 I

I

f I I I I I

725.3

48.8

2210 I Naw Vahidl Manufacturing

1 2300 1 EXPENDABLE HAROWARE 1 I I / I

2350 I Contractor Pmgnm Manapnnmt I ! 1 j I

1311.4 1 373.2 1 1 1684.6 Y

2310 I Hardwan Manufacturing

2320 / soarm support

141.6

268.1

187.2

I I I

141.6

3159.7

348.9

I

. 1 2 ~ 2220 R&O Vehicla Modifications 1 116.2 1 60.8 1 1 177.0 13- 2230 1 Initial Spara 1 131.1 1 37.3 1 168.4 1 crr

1 2240 1 Sustaining Tooling 55.6 1 80.5 1 136.1 I, I 2

1 1 4 0 0 1 GOVERNMENT PROGRAM MGMT. 1 1 I 80.9 1 80.9 1 ;

- ,

I I I

/ 3000 j T OTAL OPERATIONS 1 9067.1 1 551.1 / 1736.4 I 1 3100 / OPERATIONS i I I 1594. 4

1 2250

2330

11,354.6 I 1594.4 !

296.7 1 74.6 Enginwring Support

Endnoring Suppon I

1 3110 ' Launch Operations I I 1 55.0 I -. I 3120 I

75.7 I ! I Recovery Opcntions I I I -

I j / 3130 ! Command and Control 1 148.6 I

. - I i 1 3140 1 Replacsrncnt Training I I 50.6 1

I 7 1 . 12 197.5 I r n 2260 Contmmr Program Managamant 1 142 4 1 50.1

2270 I I 12 SE/TO Contractor(sl 1

TABLE C-4 (Cont,)

TWO-STAGE

(Subsonic Staging, S i ngle-Booster)

COST ELEMENT OESIGNATION

I 1 4120 1 Landing Gear 1 0.2 ! 0.9 1 I

I 1.1 1 -- - --

j 4130 j Thermal Protection System 1 133.3 I 1 I 133.3 1 / 4140 i Avioni1,r 1 26.6 1 29.7 1 I 56.3 '

I

I / 4141 Gu~dance and Navigation I 1 . 1 18.3 ; I 30.5 ! I

m cO C

--

3180

1 3200

3210

- -- - --- -

I 1 168.5 1

- -- Prognm Integration and Managemant

SPARES AN0 PROPELLANT SUPPORT

Followor: Sparm

551.1

540.3

3216

9067.1

7543.9

3211 I Structure

1 9618.2

3212 I Thrmal Protection System

1 I

1523.2 1 10.8 , 5 7 2 - 4 . - 7 1 10.8

Other

745.4 -%

I

. 60.8 1 I

2797.2 1 280.7 1

I 261.5

3213

1

I I

t 3217

I I Transportation (Spa~bBased)

3220 1 Propallrntr and Gucr

3221 1 Basic Con (Gromd-Bated)

I Rocket Engines

I 3222 1 Trnspomtion Ci~a i:pac#,Bastdl I

3214 1 Air-Rreath~ng Englnts

3215 1 Subsynems

I I

3720.6 218.0 1

142.0

590.0 / 477.1

214.9 1 146.8 1

3300 / RANBEIBASE SUPPORT I 1 1 142.0

41 12 1 BodyRank Structure 1 45.1 1 I 68.0 ! - I I 1 I 41 13 1 N m i n t r g d Tanks

1

I

387.2 1 202.81

322.9 1 13.2

118.4 1 96.5 -

4000 j AIR VEHICLE FIRST UNIT COST

41 1 1 1 Aerody nemic Surfaces 1 73.3 / 73.l 1 23.0 1

4100 AIR FRAME

4110 , S t ~ ~ t ~ r 8

TABLE C-4 (Cont. )

TWO-STAGE

(Subsonic Staging, S ingle- Booster)

4142

4143 h

4150

4151

Communication

InrtrumcmdonlPandt

Pomr Supply & Distribution

Electrid P o w

41 52

4160

4170

4200

-

4300

5000

- - -

5 . 9

1 9 . 5

- - - - -- - - - - - - - -

Hydnulic Powr

Environmcntd Control & Lifc Support

Emcrptncy Rccovnry

PROPULSION

6 . 4

8 . 0

2 4 . 9

1 9 . 0

I

-

INTEGRATION, ASSEMBLY, CHECKOUT, A N 0 TEST

DROP TANK FIRST UXIT CCST

6 . 9

4210

4220

3 . 5

7 . 9

2 7 . 1

20 .2

1 2 . 8

1 9 . 5

Rockot Engines - Primary

Rockn Engines - brconbry

1 4 . 2

13 .6

21 .9

5 ? . 0

3 9 . 2

9 0 . 3

22 . S

5 0 . 1

2 2 . 8

r

Airhath ing Engines

Orinntation Control Thrusten

4 0 . 2

8 . 4

4 0 . 2

2 7 . 3 2 7 . 3

I %

4 0 . 2 1

2 2 . 6 -

TABLE C-5

TWO-STAGE

(Subsonic Staging, Twi n-Boas t e r ) i

1 E L 1 COST EISIENT OEIICIATICN NUMBES

1214-1 1 'hidmcr and Ndqatioq I I 1 1 I

I 12142 Communications I I 1

- -- - - - I

1211 I ~tructurr 4 8 3 . 5 1 I 1211-1 I Arrodynrmic Surfacr I i

I -

I 4

/ 1215 I Power Supp!~ and Distribution I 1 1 3 4 . 7 1 I I - 1 1 2 1 ~ I E l m r i d Pomr I I I I i I

ORBITER

1211.2

I 1218 I I Orop Tanks I I ! ! I

BPOSTER I I SYSTEM 1 IOSTOTAL

(one.) 1 I

Bodyflank S t ~ n u n 2 3 9 . 7 1 1 I

I

2 0 7 7 . 4 1 7 9 7 . 3 , 8 3 0 7 . 3

I

!

r

lo00 I TOTAL ROT&€

'1211-3 1 Nonmtqnl Tank

112114 1 Othrr

- - - - - - - - -

I I 1 1221 Rocka E n p m - Pnrnary I I 1 1222

5432.6

1200 I ENGINEERING OEVELOPMENT PHASE

1 f 1 I

I Rockrt E n q m - Secondary

i 2077 .4 / I I

I I

1100

Ill0

1120

I 1 1210 1 Air Fnmr I I 7 5 8 . 5 1 I 1

- 1212 1 landing Grrr I 1 1 1

CONCEPTUAL AN0 OEFINTION PHASE

Concuptud Studies (Contnctor)

Program Orfinition Studiir (L'ontmtorl -

1213 ( Thrnnd Pmtmion Systrm

- i / 1223 I Air-enrthtng Engma 1 I

-.

1130 1 Odln Study SUWOII

1140 I SElfO Contnctodl

i 1 I

i 1224 I Onentatron Control I

- 1214 I ,\nonics 1 1 1 4 0 . 3 1 1

I -7

1

I ! I

I 1 1230 I Vehlclr lnt:qnt~on 3 0 . 9

1 -

. . . . . . - " - L r * P I !

'TABLE C-5 (Cont. )

TWO-STAGE.

(Subsonic Staging, Twi n-Boos ter)

1250 Ground Equipmant 37.2 1 1 1260

1261

1262

-

Honzc ~tal 1 Venica

I 1 1286 I h~nd Tunnel %ilities i I I I I i

- -

95.9 1 I

I

I i;Aitier and Equipnent I 1 127.9 1 1

! 1287 ' Propellant Produrnon Facilities 1 1 1 I I

Test Hardwan

Ground Test

Flight Tan

Wind T u n d Test 1 1 I 1

Vehicle Tert Facilities

Engine f e n Facrlitia

1290 1 I I I I Trainmg I 24.6 ! I j t

1291 1 Personnel 1 1 1 I 1

1 63.2 1 I 1 I

I 60.0 1 1 I co

I I I 1291-1 1 Flight Crm I ! 1- 1291-2 I Ground Crew I I 1 I I

I I 24.6 1 I 1292 / Simulators and Equ~pment !

1300 / SYSTEM INTEGRATION ENGINEERING I 65.4 1 I I i I

1310 / Contractor Program Management 1 j 1 3 7 , 7 1 1 !

1270

352.8

368.7

245.8

1370 SElTD Contrac?or(s) 1 1 ! ! 1409 1 TECHNOLOGY SUPPORT PHASE f ! I I

i I I 1410 1 Aerotherma Technology I - I

1420 ! StrucrweiMarerial Technology I t I

L~ / Prooutsion Technolow I I 1 I

Test Oprrations

1

200.6

105.1

I I Launch Facilities

1284 1 Operational & Msinmnancr Facilities

A--

1271 I Ground Test

1272 I Flight Ten

I

1

I i cD ?

i

. ! I I

9 5 . 5 1 I

1285 ( " ~nufarnrrinp Fsci~ities 1 ! 4.7 ' I

TABLE C-5 (Cont. )

TWO-STAGE

(Subsonic Staging, Twin-Booster)

2000 1 TOTAL INVESTMENT 1 2166 .3 7 3 0 . 8 2 6 8 . 1 1 3165 .2

2100 FACILITIES AND EQUIPMENT 2 6 . 0

2110 Launch Facilities

2120 1 O~en t i ond & Maintens. cr Facilities

-- - -- - - -- -- -

2140 I Pmpellant Pmduaion Fac~l i t iu I

I 1

21 50 I Ground Equipment 2 6 . 0 1 21 60 Support Equipment 1 2170 Activation

I I

2200 I REUSABLE VEHICLE FLEET I 1 704.8 1 I I 221 0 1 New Vehicle Manufamring 1 I 1 416.3 1 I

I

2220 I R&D Vehicle Modifications 73 .7 1 1 2230 I ln~t ial S ~ a m I I 41.6 1 1 I

1 2240 ! Sustaining Tooling

-- - -- - -

2160 I Conrractor Program ~anagerner;t 52.2 1 I 1 2270 ( SE/TO Contranods, 1 1 I

I

i I 1 I 1

( 2300 / EXPENOABLE HAROWARE 1 I

-- -- -- - -

I -

2330 I I 1 Engineering Suppon I I

2340 I Additiond and Svminlng Tooling 1 I 2150

I I

I Contractor Pmgram Management , -----;

1 I I I 1 !

I 1 2400 I GOVERNMCNT PROGRAM MGMT. i 1 I I I

I ! 4

1 3000 I TOTAL OPERATIONS 1 9067.1 1 412.1 j 1 7 3 6 . 4 1 11215.6 i - - - -- - - -- -- -

i 3100 I OPERATIONS I I I I ; 3110 I I I 1 Launch Operat~ons I

1 3120 j Recovely Opet,oons 1 I I

3130 I Command and Control , I I

"- I i 1 3140

I

Replacement Traminq I I 1

TABLE C-5 (Cont.)

TWO-STAGE

(Subsonic Staging , Twi n-Boos ter)

COST COST ELEMENT OESlGNATlON / ORBITER I BOOSTER

(one)

- - - - - -

1 3162 1 ~pac+0ased Maintenance Operations 1

SYSTEM / I O I T O T A L I

Program Integration and Management 1 ! 1 SPARES AN0 PROPELLANT SUPPORT 1 1 I

I

3150 ( Facility & Equipment Mai~tenance

3151 ( Launch & Main?crnance Facilities

3210 1 FollowCn Spares I 1' 3 7 9 . 9 I i I

3152

3160

3213 1 Rocket Ensines 1 1 I 3214 Air-Breathing Engines 188.0 / I I ' - 3215 Subsystems 1 1 6 3 . 6 1 I

Ground & ; ;?art Equipment

Vehicle Mainten;. :e

3161 1 Ground-Based Maintenance Operations

1 3220 1 Propellants and Gases I 1 3 2 . 2 1 1 1

3216 1 Other

3217 1 Transportation (Space-Based) 1 I 1 I I

i~ - - - - - - I I 1 4140 1 Avionics 1 ' 29.7 1 I 1 - ! j f 4141 i Guidance and Navigation I - I

- - -- - -

( 3221 Basic Cost 1Ground-Based) 1 3 2 . 2 1 3222 Transportation Cost (Space-Based) I I 1

I 3300 / RANGEIBASE SUPPORT i I 1 2 2 . 9 / I 4000 / AIR VEHICLE FIRST UNIT COST 3 8 7 . 2

4100 I AIR FRAME

4110 Structure

I 8 8 . 2 1 1 45.0 1

1 i

41 1 1 1 Aerodynamic Sdrfxes I 35.2 1 I I

I I

I 4112 / BodklTank Structure i 9 . 8 1 I

r 1 4.113 ' I Nonintegal Tanks ! ! 1 t

I

4114; ottlY --- I I I I I i i I I I ! 3 9 . 8 I

I 4120 Landing Sear I I

1 4130 ; Thermal Protection System 1 \ I /

TABLE C-5 (Cont . )

TWO- STAGE

(Subsonic Staging, Twi n-Booster)

COST ELEMENT COST ELEMENT OESIGNATION SYSTEM EOS TOTAL / YUM8EI 1

4142 Communication

4143 InstnrmentationlPaneIs

4150 Power Supply & Oistribution 13.5

4151 Electri J Powr

41 52

4160

4170

4200

4210

4220

Hydraulic Power

Environmental Control & Life Suppon

Emergency Recovery

PROPULSION

Rocket Engines - Primary

Rocket Engines - Secondary

4230

4240

2 8 . 9

I I I I I

Air-Breathing Engines

Orientation Control Thrusters

4300 5 . 8

INTEGRATION, ASSEMBLY, CHECKOUT, AND TEST

L

P-

h F

TABLE C-6

TWO-STAGE (Supersonic Staging)

. \

COST ELEMENT COST ELEMENT OESlGNATlON ORBITER BOOSTER SYSTEM EOS TOTAL NUMBER

I 1000 I TOTAL ROT&E [ 4 7 6 3 . 7 1 3 3 8 6 . 4 1 7 6 0 . 3 1 8 9 1 0 . 4 1 !

1100 I CONCEPTUAL AN0 OEFINTION PHASE I 1110

1120

1130

1140

1 . 4 7 . 2 1 4 7 . 2

I Conceptual Studies (Contractor)

Program Oafinition Studies (Contractor)

other Study u p p o r t

SEnO Contractor(4

1200

- - - - - -- -- - - -- -- - - - 1211-2 1 Bodynank Structure I 6 4 0 . 9 / 3 8 6 . 3 1 - - - !

( 1213 1 Thermal Protection System 1 274 .9 1 1 1 !

3 . 4

3 0 . 3

1 3 . 5

4 2 7 9 . 0 ENGINEERING DEVELOPMENT PHASE

1211-3

1211-4 I Other

- -

I 1214 I Avionics

3 1 1 1 . 2 1 5 4 7 . 4 1 7 9 3 7 . 6

I I 1 IN

9 7 3 . 0 1 1 3 2 5 3 . 6

6 9 8 . 0 1 I

, 1210 I Air Frame 1 2280 .6

I Nonintegral Tanks

, 1212 f Landing Gear 1 1 1 I$

I I I 1 1222 Rocket Engines - Secondary I ! I

I

121 1 I Shuctura

I I 1 I

( 1223 I Air-Breathing Engines 1 ! 6 9 2 . 8 i

1 1224 1 Orientation Control 1 1 1 6 . 4 1 I 1 I I

( 1230 --- / Veh~cle Integration I 4 2 . 0 1 5 2 . 8 1 9 4 . 8

9 2 8 . 1

-

1 1

- - -- - -- -- - --- - -

1214-1 / Guidance and Navigation 1 1 1 7 . 2 / 3 5 . 2

1240 ! ln~t ial Tooling 1 3 7 1 . 0 i 3 6 0 . 6 I I

7 3 1 . 6

2 8 7 . 2 , I 511.7 / I 1 121 1-1

I 1214-2 1 Communications

Aerodynamic Surface

1 4 4 . 8 1 2 0 . 6

I 1214-3 - Inst~mentation/Panelr

1215 1 Power Supply and Oinribution

2 8 6 . 1 1 8 4 . 5 1 2 1 7 . 8

121 5-1 1 Electrical Power 1 1 7 6 . 7

134 .7 1 1 0 2 . 5 1 I 1

3 2 . 2 4 1 . 1

1216

1215-2 I I Environmental Control 8 Life SUPPOR~ 312.7 1

Hydraulic Powrr

J

1

1217 Eme lency 1 1218 1 Orop Tanks I

1 1220 I Propulsm 1 242 .6 1 6 9 2 . 8 1 1 9 3 5 . 4

i 1221 I I Rorket Ensines - Primarv ! 1 2 6 . 2 1 1 1 !

1 I I

TABLE C-6 (Cont. )

TWO-STAGE (Supersonic Staqi ng )

COST ELEMENT COST ELEMENT OESIGNATION ORBITER BOOSTER SYSTEM EOS TOTAL NUMBER (one>

. . 1

1260

1261

1262

1270

I

660.8 1 1 1497.8

- - - - 1271 / Gmund T a 10 9 T3

I I 1273 I Wind Tunnel Test

12b0 / Facilitie and Equipment 1 131.1 1 129.1

1288 I I support Equipment I 1 i I i

- - - -

95.9

68.2

74.6 1 368.2 1 628.6

' 1283 I Launch Facilities

1284 1 Oprrationd & Maintensnca Facilities

1285 I Manufacturing Facii it ir

1286 ( Wind Tunnel Facilities

I I I 1289 Activation ! I 136.2 1 1

Ten Hardware

486.3

283.2 1

- - - - - -

I 70.1 1 68.2

68.2

1272 I Flight Test

1 , -

1 1 - ! I 174.2 1

13.0 1 5.9 1 f I 1 1 1 1

I I

1290 I Training 1 67.0 1 37.8 1 34.5 1 I 139.3 i

837.0

377.6

164.1

68.2 1 1 i

I 70.1 1 1272-2 1 Vertical 1 1272-1

1287 I Propellant Producnon Facilities I I 1 57.8 1 t j

1291-1 Flight Crew 1 I 29.7 1 I

144.7

Horizontal

58.3 1 63.2 ( 1281

I

1282 1 Engine Ten Facihiln 1 60.0 1 60.0 1 1 1 - Vehicle Ten Facilities

- -- -- --

I SYSTEM INTEGRATION ENGINEERING 1 164.8 ' 92.6 I 9.0 1 266.4 I I

Ground T m

Flight Test

1291-2 / Ground Crew

-- - - - - - - - - - - - --

1310 I Contractor Program Management I 319.9 182.7 i 15.1 r 517.7 1 I I 1

1320 I SE/TO Contractorts) 1 I I 1 I

1

1400 / TECHNOLOGY SUPPORT PHASE 1 ! I I I r

502.2

334.8

I i 1 1410 1 Aerotharrno Technoloav I

Test Opemions 1 177.5

. I i

I 1292 i Simulaton and Equipment ' I 67.0 1 37.8 1 1 !

1 I 4.8 1

TABLE C-6 (Cont.)

TWO-STAGE

(Supersonic Staging )

COST ELEMENT NUMBER

1 2120 1 Onerational & Maintenance Facrlities 1 1 1 1 1 !

ORBITER COST ELEMENT OESIGNATION

- lh0 1 Othtr Technology

21 00 / FACILITIES AN0 EPUIPMFNT

1 141.6 1500

1 2170 -

1 Activation

9 0 OSTE R

141.6 GOVERNMENT PROGRAM MGMT.

149.7

2000 1 TOTAL INVESTMENT

I 2110 I Launch Fa:ilitiet

2130 1 Manufacturing Facilities 1 I 21 40 I Ropellant Production Facilities

I

2210 / New Vehicle Manufacturing 1 1186.5 1 668.61 I h Y h b

SYSTEM

1989.2

25.4

I I I I

1 I / I I

21 50 / Ground Equiement

1 , 2200 1 REUSABLE VEHICLE FLEET 1 1839.5 / 1103.0) / 2942.5

EOS TOTAL

1 4 1128.4 1 278.8 1 3396.4 1 1

I

1 57.8 1 25.4 1 i 149.7

6 2

- -

1 i240 - / Sustaining Tooling

I I

197.9 1 373.0

I I I I

2220 ! R&O Vehicln Modifica?ions

2230 1 Initial Soara

I

2260 1 Contractor Program Management 136.2 1 61.7 1 1 I ' I Lq : 2270 ( SEnO Contnctor(J I I I -

I 1

1 2300 I EXPENOABLE HAROWARE 1 1

j

105.1 / 118.4 / ! I?: 118.7 1 66.9 1 1 I

- - -- I

b i I 2310 1 hrdware Manufacturing i I I i f I I I I

I 2320 . ( Sparer Support I !

I I

2350 1 Contractor PI- .ram Management 1 I i I I

! I

I I

I 2400 1 GOVERNMENT PROGRAM MGMT. 1 I 80.9 1 80.9 i 1 4

1 2330 ( Engineering Support 1 1 1 I f

1 3000 I TOTAL OPERATIONS ! 1 1 1 I

I

--

I I I I 1 3100 i OPERATIONS I

I I I

1 i i 1 3110 / Launch Operations I 1 I

1 3120 i Recovery Operations

I

I 1 3130 1 Command and Control I !

!

[-3;0 I Replacmwnt Training 1 1 I I

2340 I Additional and Sustaining Tooling 1 !

TABLE C-6 (Cont. j

TWO- STAGE

(Supersonic Staging)

COST ELEMEhT OESlGNATlON

4

2000 TOTAL INVESTMENT 1989.2 ' 14i7.3 278.8 1 4185.3

' 2100 FACl LlTlES AN0 EOUIPNNT 149.7 25.4 . 197.9 373.0

2110 Launch Facilities

2120 Opemiond & Maintenance Facilitia I I -- - - - - - - -

- - 1 Manufacturing Facilities -

2130 -r I

I

-

2140 Propdlant Pmduct~on Facilities j 57.8 I

2150 / Ground Equipment 149.7 25.4 / 1 21 60 Support Equipment 1 2170 I Activation 1 140.1 /

i - I

I 2200 1 REusAeLE VEHICLE: FLEET I 1839.5 i 1891.9 i I 3731.4i -- - -- 1 2210 p - / New Vlhicl( Manufacturing - 7 1 1 8 6 . 5 1 1230.51

2220 R&D Vehicla Modificat~ons 105.1 1 118.4 1 1 I I

I

2230 , Initial Spares 1 1 1 8 . 7 , 123.1 1 I I

2240 I

Sustainmg Tooling 1 55.71 33.7 1 I I

1 2250 1 E qlnsenng Support 237.3 1 246.1 1 I I

2260 ( Contractor Program Management 136.2 1 140.1 ! 1 2270 SElTD Contrsctor(si I 1 I I

I

1 2300 1 EXPENDABLE HARDWARE 1 I I I

I 1 I

231 0 / Hardware Manuhctunng 1 I I

2320 j S ~ ~ ~ S U P P ~ ~ ~ I I *

I I

2330 Engnaanng Support 1 I I

I 1 2340 / Additional and Sustaining h o l i q I I 1 2350 1 Ccntractor Proslam Manaaament I 1 I 1 I

,

/ 2400 1 GOVERNMiNT PROGRAM MGMT. ! 1 1 80.9 1 80.9 I

3000 / TOTAL OPERATIO',S ( 7890.0 I , ..- - 769.8 1 1'29.1 / 10,389.8 1 I I 4

1 3100 1 OPERATIONS I I j 158?.1 ! 1587.1 ,

I ! I I I

1 3110 / Launch Operations I 55.0 1 ! -- ! 3120 ; Recovery Operations ! 35.7 1 I I i 1 3130 j Command and Control ! i I 148.6 ' - , 3160 I I ,

1 I Replacement Training 1126 .-

I . . . . . . .

TABLE C-6 (Cont. )

TWO-STAGE

(Supersonic Stag ing)

1 COST I I I I 1 I COST ELEMENT OESiGNATION I ORBITER I 8OOSTER I SYSTEM I EosToTAL I

~ - -~ -- -- - - - - - - -

3150 ( Facility & Equipment Maintenance 355.4 1 3151 1 Launch & Maintenance Facilities I 87.1

-

3180 / Program Integration and Management

3200 ! SPARES AND PROPELLANT SUPPORT

I 3210 1 FollovrOn S~ares

I i 1 41 12 j BodylTank Structure I 46.4 I 32.8 1

3152

3160

1 31 70 1 In-Plant Engineehp Support I I 1 269.6 1 1

-

Ground & Support Equipment

Vehicle Maintenance

- - - -

7890.9

3211 1 ~ t r u c t u n

3212 1 Thermal Protection System

268.3

53.3.7

513.7 3161 / Ground.Blud Maintenance Operations

3162 1 Space4as.d Maintenance Operations

628.9 1 46.6 / 2362.9

i

280.7 321 3

I I I 41 13 / Nonintegral Tanks I

4114 i Other I I I

1 414: I Guidance and Navigation I 12.2 1 18.1 1 1

6897.8 1' 1076.6 1 I

- - - - - -- -

769.8

'4 Rocket Engines

I

I 1

- - - - - - - --

1 4120 Landing Gear 1 0.3 1 0.3 1 I I 4130 I Thermal Protectioc System ! 114.3 I 1 I I

- --

168.5 ! I 8660.7

3222 Transportation Cost (Spacelasedl I

I

1 4140 i Avionics

3214

3215

142.0 3300 1 RANtiE/RASE SUPPORT

I

!-= I 1

I - I

Air-Breathing Engines

Subsystems

411.8

3599.8 1 166.6

--I 142.0 I 1 I

26.6 1 29.7 1 I

3216 / Other

3217 1 Transportation (SpaccBandl

~220 1 Propellants and Gases

3221 1 Basic Cost (Ground4ased)

1018.6

1018.6

I 4000 1 AIR VEHICLE FIRST UNIT COST

4100 / AIR FRAME

144.8

144.8

/ 4110 Structure

1 4111 Aerodynamic Surfaces

350.3 197.4 1 295.6 1 126.8 / 113.3

66.9 1 50.2 1 83.0 / 1

TABLE C-6 (Cont. )

TWO-STAGE (Supersonic Staging)

1

COST ELEMENT OESIGNATION

4142

4143

41 50

4151

41 52

4160 L

4170

4200

4210

4220 v

4230

4240

.k A 92% learning curve was used

Communication

IndrumentationlPandr

P o w Supply & Oisrribution

Electrial P o w r

5000 / OROP TANK FIRST UNIT COST I I

! I I

to determine venic le cost i n calculat ing total

-

Hydraulic Pomr

Environmental Control & Life Suppon

Emergency Recoveq

PROPULSION

Rocket Engines - Primary

Rocket Engines - Secondary

Air-Breathing Engines

Orientatioi~ Control Thrusters

-

6.4

8.0

21.6

16.9

4300 1 INTEGRATIONf ASSEMBLYf CHECKOUT, AND TEST

3.5

7.9

13.5

9.8 -

4.7

19.5

42.5

15.2

27.3

12.2 7.3

-

-

-

- - - 3.7

63.3

63.3

-

- -

TABLE C-7

TWO-STAGE

(Hypersonic Staging)

I

COST ELEMENT NUMBER

1000

1100

1110

1 l?O

1130

COST ELEMENT OESIGlVATlON

8700.7 TOTAL R ~ T & E 4179.8

CONCEPTUAL AND OEFINTION PHASE 1 Conceptud Studia (Contractor)

Program Ovfinition Studirr (Contractor)

Other Study Support

- --

649.7 12,366.4

4276.7

1

' 7928.2

2483.3

1776.8

737.0

1039.8

-

1 200 1 ENGINEERING OEVELOPMENT PHASE 7 3788.5

-- - --

I I I

2 I I"-

- - - - - - -- - -- 12114 1 Ottlrr

~ --

1213 I Thmnd Protection System ( 178.8 290.3 1 /

ORBITER BOOSTER I

1212

1214

1214-1

1214-2

1214-3

EOS TOTAL

' 728.8 / 13,242.9

1793.4

5b8.2

122 .6

445.6

I 1 ! I

1210

1211

121 1.3

I 1 lading Grar

47.2

3.4

30.3

13.5

Air Framr

Strt m r r

Nonintrgnl Tanks

47.2

.

1 1 I

I

Avionics 1 547.9 / 140.3

121 1.1

121 1-2

Inrt~mtntrtionlPanels I I 286.1 1 84.5 1 3

1

i

Guidano and Navigation

Communications

1215 I Powr Supply and Oinribution -- I 121s: 1 Elwried Power

Armdynamic Surfao

Bodyflank Strucrurr

117.2 1 35.2

144 .8 1 20.6

185 .8 1 275.9 1 1 5 2 . 6 1 205.8

1218 1 Orop Tanb I

1215-2

1216

I 1

I 1

Hydraulic Powr 13.2 / 70.1

1220 1 Propulsion 1 609.0 1 1817.2

Environnntd Control & Life Support

1217 I ~rnwgrncy

2059.8

312.7 1 I

1221 I Rockat Enpinr - Primary 1 1 2 6 . 2 1 I ! I I

I 1222 / Air4reathinp Engines - Secondary 1 1 6 9 2 . 8 1 1 !

1 1223 I Air-Breathing Engines I 1 1124.4 1 j 1 1 1224 Orientation Control 116.4 i i !

I I 1230 I

! Vehicl~ lntegratio~ -- .. 83.9 ! 135.7 / 219.6

1240 1 Initial Tooling 1 2 3 2 . 4 1 715 .6 1 1 948.0 ; I

TABLE C - 7 (Cont, )

TMO-STAGE

(Hypersoni c Staging)

COST COST ELEMEHT OESlGNATlON I ORBITER

I 1

BOOSTER

1250 Ground Equipment

SYSTEM I I EoSToTAL

1 202.6

1260 1 619 .0

1262

-- - - - - - - - -- -

1281 1 Vehiclr Ten Fac~lities 1 58 .3 / 1 2 6 . 3 1 1 1 1282 I Engine Ten Facilities ( 6 0 . 0 1 1 1 9 . 9 1 1 I Q,

1 9 5 6 . 3 1 1 2575 .3 J

-- - -

I-- - -

1283 iu..h= I PI 1 I L

1284 I Op@mond & Mamnnmce h c ~ l i t ~ e r / I i 1 191.8 - 1 1 I

1285 I Manufacturing Faerlitios 1 4 . 2 1 1 0 . 7 1 1 1286 i Wind Tunnd Fac~iitres 1 1 1 I

I

Ten Hardmn

Right Tat

6 8 . 2 68 .2 1 I i I

1287 I Propellutt Pmdurrion Facilities I I 1 5 7 . 8 1 I I - i

I

1261 I Ground Ten 1 371.4

1270 1 Ten Operations

1272- 1

I 1288 1 Support Equipment I I I I i

247.6

Horizontal

1272.2 1 Vertical 1

- I 1291.2 I

I Ground Crew

1173 .8 1 782.5 1

1 5 9 . 2

I 8 4 . 0 1 1

1 1292 1 Simulators and Equioment 1 49 .5 / 1 5 6 . 5 1 I

I I

- - -- -- - - - 1310 I Contrstor Prognm Management i 255.4 490 .8 1 2 0 . 0 1 7 6 6 . 2 -

1320 SERO Contractor(si I 1 I i

1400 1 TECHNOLOGY SUPPORT PHASE I 1 I I j

L -.

255.5 - 1 6 8 . 2 1 84 .0 1 I

1271

686 .4 323.7

I I

122 .5 1 411.7 / 7 9 1 . 1 1 1273 1 Wind T unnel Test

203.5

Ground Tat

1280

9 1 . 0

1272 i Fii#t T~

Facilitiu and Eauioment

68 .2

TABLE C-7 (~ o n t . j

TWO-STAGE

(Hypersonic Stag1 ng )

COST ELEMENT OESlGNATlON I ORBITER I BuOSTER 1 SY:?EM I EOSTOTAL I I

I 20OG TOTAL INVESTMENT 1379.1 2455.6 1 257.1 1 4091.8

I 2100 1 FACILITIES AN0 EQUIPM€NT I 83.7 6 4 . 3 1 176.2 1 324.;

1 SO0 ) GOVERNMENT PROGRAM MGMT. 1 I 1 1

- -

2130 1 M m u f m u r i q Fwilitict I 1 1 2 1 4 ( Pmpdlurt Production Flsditirr I 57 .8 1 I

I I

I 57.8 1

I 2150 ( Ground Equipment I 83.7 6 4 . 3 ! l i 8 . 0 (

I

1 2180 ( Support Equipment 1 I

1 2170 Activation 1 I 1 118.4 1 I

I 1 2200 1 REUSABLE VEHlCiE FLEET 1 1295.4 1 2391.3 1 1 3686.7 I

1 2210 ( New V d i e l t Manufacturing 838.6 1 1440.1 i 1 2278.7 2220 / R&O V & C ~ Uodif iadrns 1 7 4 . 3 1 234.6 / 1 3T;g.l - -4 -3

( 2230 ! initial s p u n 1 83 .9 I 1 4 4 . 0 i 1 2 2 7 : 1 --- a . ..- 1 2240 Sustaining T OG, ..cg I I I I

I 34.9 1 107 .3 . I I<.. -1- ..

1 2250 1 Enpincrrinp Suppon 1 167.7 1 288.0 1 I 1 'LO 1 Contnctor Program Maruqarnent 1 I

I --YL -.: 9 6 . 0 1 177 .1 1 , 27a: ,.-?

I L 2270 ) SWD ~ontnctods) 1 -- / 2300 I EXPENDABLE HARDWARE 1 I !

I

2310 I I ! i I H8rdwm Man@*racturinq I I I

I

a

-- -

2320 / &am ~ u p ~ a n -

2330 1 Enginnring Suppon 1 I

h 3 5 0 - -

I I I I I Cocnwtor Program Management I

/ 240U I ! I I I GOVERNMENT PROGRAM MGMT. I 80.9 1 8 0 . 9

I I I 3000 I TOTAl OPERATIONS I I I

s

1 3100 ' OPERATIONS 1 I I I I I

i 1 3110 I I I 1 / Launch Opent~ons I I I

I - 1 3120 I Recovacy Ouerat~onr 1 , I

1 I

I I I ! 1 j 3130 ! Command and Control I

TABLE C - 7 (Cont. )

TWO-STAGE

(Hypersonf c Stag i ng)

I 1500 1 SOVE RNMENT PROGAA4 MGMT. I ! / 1 4 1 . 6 1 1 4 1 . 6 1

COST ELEMENT COST ELEME3T DESIGNATION / NUMlER 1

'E / TOTAL INVESTNENT 1 1 3 7 9 . 1 4 1 5 4 . 8 1 2 5 7 . 1 1 5 7 9 1 . 0

kkCILI7IES AN0 EQUIP?;FENT 83 .7 6 4 . 3 1 1 7 6 . 2 324 .2

21 10 Launch F u i l i t i u ! ! I

I I Oprcltiond & Mabtat'ar, I Faeilitie

I

I -.. - i 1 I

1 2130 / M m u f m n n q Wi\,, I i I I

2140 / Pmpdlant Produa~an Frriittas 1 I 5 7 . 8 1 5 7 . 8 1 I 1

21 50 I Ground E q u ~ p w n t 83 .7 1 6 4 . 3 1 I 1 4 8 . 0 1 -- I 2160 1 Support Equipnwt i I i - i -

217C I Activation 1 I ' I 1 1 8 . 4 1 1 1 8 . 4 ; I

I I 2200 ! REUSABLE VEHICLE FLEET 1 1 2 9 5 . 4 i ' .090.5 I i j s 8 4

I

( 2220 I r LO Vlhicla Mod.iicmons I - 7 4 . 3 1 2 3 4 . 8 1 1 3 0 9 . 1 1

I 2230 .

I Initial S m r n I

I I

8 3 . 9 2 6 5 . 0 1 I 348 .9 1

ORBITER

j 2400 ! GOVERNMENT PROGRAM MGMT. 1 8 0 . 5 1 8 0 . 9 I - 4

1 3000 I TOTAI. OPERATIONS 5972 .4 ! 9941-.4 , 1 9 9 3 . 5 / 1 7 , 9 1 ? . 3 .. , I 3100 OPERAT IONS i 1 8 5 1 . 5 1 1 8 5 1 . 5 - - I 3110 : bunch O~aations I

I 5 5 . 0

I 3120 ) Racovtw O~antions 1 I 2 5 . 7 , - .- ) 3130 a 2nd ~d and Control I I -- 1 4 8 . 6 ' / 3140 I Rtplat rlnant Tram~ng

1 -- - ! ';C. 6

aOOSTEA SYSTEM EOS TOTAL !

- ~~

j-2310 / Hardware Manufactut~np I I I ! I

I__

I I_ I 2320 L

I Soarw h o p o n - . 1 I ! I 2330 Enqnnrinq Supoon ! i i , I

I

1 Add!tionJ and Sustaining Toolinq I 1 I - - 1 I I 1 I

I I I

TABLE C-7 (Cont.)

TWO-STAGE (Hypersonic Staging )

- - - -

COST ELEMEhT / NUMBER I COST ELEMENT DESiGNATlON ORBITER BOOSTER SYSTEM EOS TOTAL

1 3150 1 Facility & Equipment Maintena~ce I I 1 333.51 I

I I I I 1 3222 ! Transportation Cost (SpaceBased) I I

1 - 95.94

237.6

513.7

513.7

269.6 I

121.3 1

9946.4 1 / 15,919.8

-

5972.4 ,

( 3151 1 Launch & Maintenance Facilities -

- - -

3215 - j p ~ ~ & e n s 1 3527.9 I

3216 1 Other

3217 1 Transportation (Space-Based) 1

3152

h

3220 1 Propellants and Gases

3221 1 Basic Cost (Ground-Based)

882.1 1 I I

I 1

- - r 4140 I Avionics

Gr~und & Suppon Equipment

I 3210

274.4

274.4

1188.9

1188.9

142.0 / 1030.1

3300 1 RANGEIBASE SUPPORT 1 1 1 142.0

-- - - -- - - - - r 4141 I Guidance and Navigation -

I I 12.2 1 13.3 , I 30.5 I i

Followon Spares 5707.5 1. 8832.9 1 I

1 1 I

I

I

4000 1 AIR VEHICLE FIRST UNIT COST

703.2 1 356.7

212.3 1 144.4 /

I

/ 4100 / AIR FRAME 1 204.51 498.7 1

31E'/'jl. - Maintenance

3161 / Ground-Based Maintenance Operations

3162 , Space4aw.I Maintenance Operations

3170 1 In-Plant Engineering Su, ,on

370.8

1690.4

237.6 1 782.5 1

4110 1 Structure

3180

3200

1866.8 1 2977.5 1

3211 1 Structure - 3212 1 Thermal Protection System

3213 1 Rocket Engines

48.5 1 297.8 1

4120 1 Landing Gear

Program Integration and Management

SPARES AND PROPELLANTSUPPORT

32 1.t

0.2 1 0.9 1 i 1.1 I

108.9 / Air-Breathing Engines

I 41 11 1 Aerodynamic Surfaces 28.5 177.4 1 1 20.01 120.4 1 4112 1 BodylTank Structure

I I I 1 4130 1 Thermal Protection System 8 0 9 1 142.5 1 223.4 1

I C O 1 cy

1 4113 1 Nonintegral Tanks

1 834.6 / 1 I -

1 I ! 4114 1 other I I 1

TABLE C-7 (Cont , )

TWO-STAGE (Hypersonic Staging)

COST ELEMENT OESIGNATION I ORBITER I BOOSTER I SYSTEM I EOSTOTAL I 4142 Communication 6.4 3.5 9.9

4143 Instrummtation/Pands 8.0 7.9 15.9

4150 P o w Su~plv & Distribution 18.4 27.8 46.2

t""""

I

l- E l m r i u l Power

Hvdnulic Power

14.6

3.8

Environmrntll Control & Life Suppon

Emerpancy Recovery

Air-Bnathing Engines - Secondary 1 I 1 135.6 1 135.6

- - - - - -

PROPULSION

Rocket Engines - Primary

19.6

8.2

19.5

INTEGRATION, ASSEMBLY, CHECKOUT, Ah0 TEST

34.2

12.0 1 I 19.5

I

Air-Breathing Engines

Orientation Control Thrusten

DROP TANK FIRST UNIT COST

-

7 33.2

5.9

263.9 - -

27.3

297.1

5.9

128.3

I

128.3

27.3 I

fE ' - - -. . - - - . . - . . . - . . - ,--.- -... -./ ..".. . , - .. . . -

I ) , , , , 4 . 4 L A I--... : 1 .; . . . - - ; i - . . , . ..... .... ; i . . : a ' 1. il * . i " r

f-

TABLE C-8

I 1220 I Propulsion 242.6 1 I 1 242.6 1

TWO-STAGE

(Rocket-Powered HTO) \

I

1221 I Racket Engines - Primary 1 126.2 j i I I i

I 1222 Rocket Engines - Secondary 1 1 1 1 I

1130

1140

1200

- - - -- -- -- - - - -

I I ( 1223 I Air-Breathing Engines I 1 i I

I 1 1224 Orientstion Control i 116.4 I I i ! ! I 1 1230 I Vehicle Integration 1 83.9 1 68.6 1 ! 152.5

-

1240 1 ln~tial Tooling 1 232.4 465.0 ! i 697.0 1

13.5

I

Other Study Support I SE/TD Cantractor(s1

ENGINEERING DEVELOPMENT PHASE 3788.5

1793.4

568.2

122.6

445.6

3837.3 1 I 610.3

1716.0 1 1058.4 1 251.9 1

1210 / Air Frame

1211-3 1 Nonintegral Tanks

1211-4 / Cther

1212 I Landing Gear

8296.1

3509.4

1211

1211-1

1211-2

1 1 I

1 i

I I e I I

a ?-

806.5 1

Structure

Aeradynam~c Surface

Bodynank Structure

I I 1

I

1213 ( Thermal Protectm System 1 178.8 1 263.8

1214 I Av~on~cs 547.9 1 140.3

I

1 A

I -- I I

1214-1

, 1214.2 I Communications

1214-3 1 InstrumentationlPtneIs

17'5 I Power Supply and Oistribution

12151 ( Electrical Power I

Guidance and Nawgation 1 177.2 / 35.2

1216 I Environmental Control & b fe S U P P O ~ / 312. i I I I 1217 1 ~melpency

1218 I D r c ~ Tanks I I I

144.8 1 20.6 1

266.1 84.5 1

12152

185.8

Hydraulic Power

253.5 1 152.6 1 205.8 1 33.2 1 47.7 1

TABLE C-8 (Cont.)

TNO-STAGE (Rocket-Powered HTO)

1 250 Ground Equipment 1 119.6 ( 65.8 1 185.4 1 1260

1261

1262

1 1291-2 I I Ground Craw

- - - -- - -. -- - -- -

- -1 119.5 / - ~ -- - --

1 1273 I ~ i n ~ ~ u n n d ~ e n

i I I

1289 Activation 1 I 148.3 1 I

1290 1 f n in ing 1 49.5 / 82.4 1 34.5 1 166.4 I I

1 1292 I Simulators and Equipment 1 49.5 1 82.4 ] I I

1030.0 1 1 1649.0

618.0

412.0

Tea H d m n 1 619.0

- -- -~ --

1291

Ground Tm

Fl ight Test

1280 1 Fiicillties and Equ~ipmem

Psnonnd I 1 I 34.5

1 1410 I

I I I I Aerotherma Technolam I 1

371.4

247.6

159.2

91.0

1270 1 ~ l r t 0 p m i o m

122.5 ( 257.7 / 372.7 / 752.9

-- - --- - - - - - - - - - - -- --

1310 I Contractor Program Management i 255.4 3 0 2 0 1 2 0 . 0 5 7 3

1 1420 I ! StructurelMaterial Techncloav I

574.1 211.8

1271

1

1320 1 SEITD Contracror(d I 1

203.1

Grwnd Tcn 1

1272 Flight Test

1272-1 / Horizont3

1272-2 j Venia l

.

1

143.6

68.2

68.2

68.2

68.2

I

I 1

1291-1 1 Flight Qm I

1400 I TECHNOLOGY SUPPORT PHASE I I 1 I I I

r

I 83.6

I 29.7

i 83.6 I .

m aj P

1281 / Vehicla Test Facilittes / 5 8 . 3 126.3 1 I

I 1282 I Engine Ten F:tcilitim 60.0 1 119.9 (

,

1 I I 1284 Operational & Maintmmco Facilities 166.6 1 1 *

I

I 1283

1285

Launch Facilitia

1 Manufacturing Facilities r

1286 1 Wind Tunnd Facilities 1 1 I 1 I I

4.2 1 11.5 1

I !

1287 I Propellant Production Facilities I I I 57.8

1288 I S u p p o ~ Equipment I I

TABLE C-8 (Cont.) t

TWO-STAGE

(Roc ket-Powered HTO)

. . COST

ELEMENT COST ELEMENT DESIGNATION ORBITER BOOSTER SYSTEM NUMBER

I 1 2000 1 TOTAL INVESTMENT 1 1379.1 1 1329.8 1 265.4 1 2974.3 1

1440

1500 4

Other Technology

GOVERNMENT PROGRAM MGMT.

' 2100

2110

1 1 I 1

I 2400 1 GOVERNMENT PROGRAM MGMT. I 1 3000 1 TOTAL OPERATIONS

FACILITIES AN0 EOUIPIW€NT

Launch Facilities

I i I i 31 00 OPERATIONS ,

I I I 31 10 1 Launch Operations I

I

3120 ! Recovery Operations 1 ! I I I I

I I 3130 / Command and Control I I 1 !

I k 4 0 4

! Reo~acement Traming I I I i i

J

, S0.9

1

83.7

2120 I Opemticnd & Maintanmca Facilities

2130 I Manufacturing Facilitias

80.9 !- i I

83.7

2 1 4 I

57.8 1 57.8

56.5 I i 140.2 m

I 1 126.7 1 126.7 ,

56.5

Pmpdlent Production Facilities

2200 I REusArJLE VEHICLE FLEET 1 1295.4 i 1273.3 I I 2568.7

2150 I Ground Equipment

21 60 I SUP~OR Equipment

2170 1 Activation

184.5

838.6 1 758.2 ! 9144.2 , I

74.3 1 123.6 / 1 197.9 1 1 2210 I New Vahicll Manufamri y

324.7

2220 R&O Vehicle Modifications

2230

2240

I Initial Spares 1 83.9 1 75.8 I 1 159.7 1 Sustaining Tooling

1 2250 I Enginerring Support

2260 1 Contractor ~ q n m Managemam

i I

34.9 1 69.8 1 104.7 1

167.7 1 151.6 ' I 719.3 I I

96.0 I 94.3 t i 190.3 I 2270 I S V ~ D ~ontranodsl I 1 i

j 2300 I EXPENDABLE HAROWARE I I j I j

2310 i Hadwan Manufacturing I I i 2320 I ~ p a m supeon I 1 2330 / Enqinaering S u p p o ~ I 1 1 2340 I . Additional and Sustaining Tooling I I i I 2350 / Contractor Prognn Management I 1 1 I

TABLE C-8 (Cont. )

TWO-STAGE ( Rocket-Powered HTO)

1 COST I I 1 I i l , ELEMENT I COST ELEMENT OESIGNATION I JRBITER I BOOSTER / SYSTEM i €OSTOTAL I I I NUYIlER I

1 1500 I GOVERNMENT PROGRAM MGMT. I I 1 141.6 1 141.6 1 2000

2100

2110

TOTAL INVESTMENT

- -

1 2120 I Oontiond & M a i n n m a F r i i i t i o 1 21 30 1 Manufacturing Facilities .

2140 1 Propellant Productton Facrlities !

- - -

- -

56.5 21 50 I Ground Equipment

- - - - -

I 1 2400 / GOVERNMENT PROGRAM MOMT, i I 1 8 0 . 9 8 0 . 9 ; 1 -- / 3000 i TOTAL OPERATIONS ) 5572.4 j 9329.0 1 1993.3 117,294.7 1 I - I 3100 1 OPERATIONS 1 I 1 1851.3 1 1851.3 i

I 1 3110 1 1 55.0 ! I

1379.1

83.7

21 60 I support Equipmant

/ Launch Operations

FACI LlTlES AND EOUIPkENT 1 83.7

Launch Facilities - r - pp

I I

2230 / ln~tial spares 83.9 1 139.5 1 223.4 1

I I

2224.5

57.8

2240 I Sustaining Tooling I 34.9 1 69.8

- 3120 i Recovery Operations 1 I I

I i 25.7 I I

I I 3130 j C~mmand and Control 1 1 148.6 / - 1 3140

I

i Reolacamtnt Training I i I ! 50 .6 1

56.5

57.8

2170 ( Activation I I 1 126.7 / 126.7 : 2200 / REUSABLE VEHICLE FLEET 1 1295.4 / 2168.0 / / 3463.4

, 104.7 1

265.4

i 140.2 1

2210 / New Vehicll Manufacturing

3869.0 1 184.5

2250 I I Engineering Support

2260 1 Contractor Program Muyrment

324.7

4

2220 I R&O Vehicle Modifications ! 74.3 1 123.6 1 1 197.9 1 838.6 1 1395.4 1

167.7 1 279.1 ! . ! 446.8

96.0 1 169.e I 2 5 6 . 6 1

2234.0

I I

2270 I SE/TD ~ontractor(s) I I

I I 2300 I EXPENDABLE HARnWAflE I 1

231 0 I Hardwere Manufactunng I 2320 3 2330 I Engineering Support

I _3

I I I I 7 I

2340 I Additiond 8 6 Sustaining Tooling 1 1 2350 1 Contractor Pmsram Management 1 1 I

i I

I - I

., 1 5 TABLE C-8 (Cont. )

TWO-STAGE (Rocket-Powered HTO)

\

COST ELEMENT OESIGNATION

9.3

19.5

83.9

29.3

41 52

4160

41 70

4200

4210

4220

3.8

19.5

33.2

5.9

Hydraulic Power

Environmental Control & Life Support

Emergency Rocovery

PROPULSION

Rocket Engines - Primary

Rocket Engines - Secondary

4230

4240

4300

*

5000

5 . 5

- -..

50.7

23.4

Air-Breathing Engines

Orientation Control Thrusters

INTEGRATION, ASSEMBLY, CHECKOUT, AND TEST

OROPTANK FIRST UNIT COST

I I I

I

I 1 I I

I

!

I 1

I

I I

27.3

9.9

27.3

12.4

54.6

22.3 c3 CO ,--

REFE

RENC

ES

1.

A

Fu

lly

R

eu

sab

le,

Ho

riz

on

tal

Tak

eoff

S

pa

ce

Tra

nsp

ort

Co

nce

pt

wit

h T

wo

Sm

all

Tu

rbo

jet

Bo

ost

ers

, N

ASA

T

M-7

4087

, L

. R

ob

ert

Ja

ck

son

, J.

Ma

rtin

, W

. S

ma

ll,

Oc

tob

er

19

77

.

2.

Ou

tlo

ok

fo

r S

pa

ce

, re

po

rt t

o t

he

NA

SA

Ad

min

istr

ato

r b

y

the

Ou

tlo

ok

fo

r S

pa

ce

Stu

dy

Cro

up

, N

ASA

S

P-3

86,

Jan

ua

ry 1

97

6.

3.

OA

ST

Sp

ac

e S

yst

ems

Tec

hn

olo

gy

Mo

del

, D

raft

No.

1,

NA

SA

He

ad

qu

art

ers

, C

od

e RX,

Ju

ly 1

97

7.

4.

Lon

g-T

erm

P

rosp

ec

ts f

or

Dev

elo

pm

ents

in

Sp

ac

e

(A

Sc

en

ari

o A

pp

roac

h),

W

. M

. B

row

n a

nd

Her

man

K

ahn

, H

ud

son

In

sti

tute

, H

I-26

38-R

R,

Oc

tob

er

30

, 1

97

7.

5.

-

Ad

van

ced

S

pa

ce

Sy

stem

s C

on

ce

pts

an

d T

he

ir O

rbit

al

Su

pp

ort

Nee

ds

(19

80

-20

00

),

Tn

e A

ero

spa

ce

C

orp

ora

tio

n,

Re

po

rt N

o.

AT

R-7

6(73

65)-

1,

Ap

ril

19

76

.

6.

Tec

hn

olo

gy

Re

qu

ire

me

nts

fo

r A

dv

ance

d

Ea

rth

Orb

ita

l T

ran

spo

rta

tio

n S

yst

ems,

M

id-T

erm

B

rie

fin

g,

Ma

rtin

Ma

rie

tta

Co

rpo

rati

on

, D

ecem

ber

1

97

5.

7.

Tec

hn

olo

gy

R

eq

uir

em

en

ts

for

Ad

van

ced

E

art

h O

rbit

al

Tra

nsp

ort

ati

on

Sy

ste

ms,

F

ina

l B

rie

fin

g,

Ma

rtin

Mari

ett

a

Co

rpo

rati

on

, A

pri

l 1

97

6.

8.

Tec

hn

ola

gy

R

equ

irem

ents

fo

r A

dv

ance

d

Ea

rth

Orb

ita

l T

ran

spo

rta

tio

n,

NA

SA

CR

-286

6,

R.

Ha

efe

li,

Jun

e 1

97

7.

9.

Tec

hn

olo

gy

Re

qu

ire

me

nts

fo

r A

dv

ance

d

Ea

rth

Orb

ita

l T

ran

spo

rta

tio

n S

yst

ems,

M

id-T

erm

B

rie

fin

g,

Bo

ein

g A

ero

spa

ce

Com

pany

, D

ecem

ber

1

97

5.

10

. T

ech

no

log

y

Re

qu

ire

me

nts

fo

r A

dv

ance

d

Ea

rth

Orb

ita

l T

ran

spo

rta

tio

n S

yst

ems,

F

ina

l B

rie

fin

g,

Bo

ein

g A

ero

spa

ce

Com

pany

, A

pri

l 1

97

6.

11.

So

lar

Sa

il - S

ola

r E

lec

tric

Tec

hn

olo

gy

Re

ad

ine

ss a

nd

Tra

nsf

er

Ass

ess

me

nt,

G

en

era

l R

ese

arc

h

Co

rpo

rati

on

, F

ina

l R

ep

ort

No.

70

9-01

-CR

, R

amon

L

. C

has

e,

Au

gu

st

19

77

.

12

. S

TS

Co

st M

eth

od

olo

gy

, V

olum

e I:

E

art

h O

rbit

Sh

utt

le C

ost

Met

ho

do

log

y,

Th

e A

ero

spa

ce

Co

rpo

ra-

tio

n,

Re

po

rt N

o.

TO

R-0

059

(67

59

-04

)-l,

31 A

ug

ust

1

97

0.

13.

A Demonstration of An Economic Figure of Merit and Techno-Economic Sensitivities of An

Advanced Single-Stage-to-Orbit Vehicle, NASA TMX-72808, D. Eide and T. Rau, July 1976.

14.

Space Transportation System User Handbook, NASA, June 1977.