TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a)...

40
TECHNISCHE UNIVERSITÄT ILMENAU Integrated Hard- and Software Systems http://www.tu-ilmenau.de/ihs WLAN Security WLAN Security Standards WEP IEEE 802.1x Wi-Fi Protected Access (WPA) 802.11i Layered Security for Wireless Networks

Transcript of TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a)...

Page 1: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

TECHNISCHE UNIVERSITÄTILMENAU

Inte

grat

edH

ard-

and

Softw

are

Syst

ems

http

://w

ww

.tu-il

men

au.d

e/ih

s

WLAN Security

WLAN Security Standards

WEP

IEEE 802.1x

Wi-Fi Protected Access (WPA)

802.11i

Layered Security for Wireless Networks

Page 2: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 2Andreas Mitschele-Thiel 6-Apr-06

Network Architecture

Channel 1

Channel 6

Channel 11

Channel 1

Channel 6

Channel 11

Channel 1

Channel 6

ESSID: Wavelan ESSID: Wavelan

Multiple Base Station and Multiple Channel Network

Page 3: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 3Andreas Mitschele-Thiel 6-Apr-06

War Driving

Page 4: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 4Andreas Mitschele-Thiel 6-Apr-06

WLAN Security Standards

Pre ShareKEY 802.1x 802.11i

AESTKIP

RADIUS(AAA)

Trust Relation

CMS

RADIUS(Auth.)

EAPWEP

DynamicKey

WEPStaticKey

802.11fSLP

SecureRoaming

: IEEE standard : IETF standard

CMS : Cryptographic Message Syntax TKIP : Temporal Key Integrity Protocol

AAA : Authentication, Authorization, Accounting SLP : Service Location Protocol

EAP : Extensible Authentication Protocol RADIUS : Remote Authentication Dial In User Service

TimeWPA WPA v.2

WLAN Security Standards

WEP

Page 5: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 5Andreas Mitschele-Thiel 6-Apr-06

WEP (Wired Equivalent Privacy) – WEP Encryption

Plaintext Message ICV

Secret Key IV

Ciphertext IV

Transfer Message

PRNG

Steps:

a) Use CRC-32 to calculate the ICV (Integrity Check Value) over the plaintext message (for packet authentication)

b) Concatenate the ICV to the plaintext

c) Choose a random IV (Initialization Vector, 3 bytes, selected for each packet) and concatenate it to the secret key (13 bytes)

d) Input the secret key + IV into the PRNG (Pseudo Random Number Generator) to produce a pseudo-random key sequence

e) Encrypt the plaintext + ICV by doing a bitwise XOR with the pseudo random key sequence under RC4 to produce the cipher text

f) Communicate the IV to the peer by placing it in front of the cipher text

13 + 3 byte(128 bits)

Page 6: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 6Andreas Mitschele-Thiel 6-Apr-06

WEP (Wired Equivalent Privacy) – WEP Decryption

Ciphertext IV

Secret Key IV

Plaintext message ICV

PRNG

Plaintext Message ICV’

Steps:a) Concatenate the IV of the incoming message to the secret key. b) Generate the key sequence (same as for sender) using the pseudo-random noise

generator.c) Decrypt the incoming message. Combining the cipher text with the proper key sequence

yields the original plaintext and ICV. d) Verify the decryption by performing the integrity check algorithm on the recovered

plaintext and comparing the output ICV' e) If ICV' is not equal to ICV, the received message is in error, and an error indication is

sent to the MAC management and back to the sending station.

Page 7: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 7Andreas Mitschele-Thiel 6-Apr-06

Weaknesses of WEP

WEP has well known flaws in the encryption algorithms

For details see: Using the Fluhrer, Mantin, and Shamir Attack to Break WEP. http://www.cs.rice.edu/~astubble/wep/wep_attack.pdf

Page 8: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key
Page 9: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 9Andreas Mitschele-Thiel 6-Apr-06

IEEE 802.1x – Basic Concepts

Supplicant - responds to Authenticator for information that will establish its credentials

Authenticator - communication with Supplicant, submits information received from Supplicant to Authentication Server

Authentication Server- provides authentication services to Authenticator to determine whether Supplicant is authorized to access services provided by the Authenticator

Port Access Entity (PAE) operates algorithms and protocols associated with authentication mechanisms for device port

Page 10: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 10Andreas Mitschele-Thiel 6-Apr-06

802.1x – Network Structure

Authenticator accepts EAPOL packets from Supplicant, forwards EAP packets to Authentication Server over higher layer protocol like RADIUSAuthenticator forwards Authentication Server EAP packets over EAPOL to Supplicant

Authenticator, Supplicant, and Authenticator Server roles

Page 11: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 11Andreas Mitschele-Thiel 6-Apr-06

802.1x in WLAN System

Supplicant

(WLAN Client)

Authenticator

(WLAN AP)

Authentication Server

• RADIUS

• Diameter

The controlled port is opened after authentication

EAPOL (EAP Over LAN) EAP in RADIUS(Ethernet, Token Ring, 802.11) (Encapsulated EAP messages, typically on RADIUS)

802.1x Architecture in WLAN System

Page 12: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 12Andreas Mitschele-Thiel 6-Apr-06

802.1x – Controlled Port and Uncontrolled Port

Protocol exchanges between Authenticator and Authentication Server conducted via Controlled or Uncontrolled Port

Controlled Port accepts packets from authenticated devices

Uncontrolled Port only accepts 802.1x packets

Uncontrolled Port used for exchanging Extensible Authentication Protocol (EAP) over LAN packets, EAPOL, with Supplicant

Uncontrolled Port and Controlled Port considered same point of attachment to the LAN

Page 13: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 13Andreas Mitschele-Thiel 6-Apr-06

802.1x – EAP Authentication Types

EAP-MD5 ChallengeEarliest authentication type, CHAP (Challenge-Handshake Authentication Protocol) password protection on a WLANBase-level EAP support among 802.1x devices, one-way authentication (MD5 not generally used anymore)

MD5

challenge

128 bit

SRES*

MD5

challenge key

128 bit

SRES* =? SRES

challenge

SRES

AP mobile stationRADIUS server

username

SRES

AccessAuthenticated

user name(plain)key

Page 14: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 14Andreas Mitschele-Thiel 6-Apr-06

EAP-TLS (Transport Layer Security)Certificate-based, mutual authentication of client and network (PKI)Client-side and server-side certificates to perform authenticationDynamically generated user- and session-based WEP keys Certified by WPA and WPA2

802.1x – EAP Authentication Types

PrK: Private Key PuK: Public KeyCertificate (s)/(r): The certificate of supplicant/RADIUS server

PrK(s) {random(r)}

Certificate verifiedRetrieve PuK(s) from certificate

Certificate(s), PrK(s) {random (s)}

Certificate(r), PuK(s) {session key}PrK(r) {random(r), random(s)}Verify certificate

of receiver(retrieve PuK

from certificate)

Supplicant (s) RADIUS server (r)

Page 15: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 15Andreas Mitschele-Thiel 6-Apr-06

802.1x – EAP Authentication Types

EAP-LEAP (Lightweight Extensible Authentication Protocol)Cisco’s proprietary EAP authentication typeMutual authenticationProvides security during credential exchange, credentials include username and passwordEncrypts data transmission using dynamically generated WEP keys

EAP-TTLS (Tunneled TLS)Extension to EAP-TLSCertificates to authenticate server side Legacy methods to authenticate client side (no client certificates needed)Option of using simple authentication protocols

clear text passwords or challenge-response passwords authentication

TTLS ‘packs’ this authentication protocol inside of TLS tunnel (hence the term ‘tunneled’)Similar security properties as EAP-TLS, i.e. mutual authentication and a shared secret for WEP session key

Page 16: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 16Andreas Mitschele-Thiel 6-Apr-06

802.1x – Example of Session Authentication

Page 17: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 17Andreas Mitschele-Thiel 6-Apr-06

EAP - Summary

yesyesyesnoDynamic WEP

Identity exposed

Password Hash

Password Hash

supported

EAP – LEAP

MitM attack

Identity exposed, Dictionary

attack

Identity exposed, Dictionary attack, Man-in-the-Middle

(MitM) attack, Session hijacking

Security Risks

Password Hash

Public Key (Certificate)Password HashSupplicant

Authentication

Public Key (Certificate)

Public Key (Certificate)noneServer

Authentication

supportedsupportednoMutual Authentication

EAP – TTLSEAP – TLSEAP – MD5EAP

Authentication Type

Page 18: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 18Andreas Mitschele-Thiel 6-Apr-06

802.1x – MAC Layer Key

802.1x used to direct encryption keys down to MAC layer on both Authenticator and SupplicantTwo sets of encryption keys are generated during authentication:

– Pairwise Master Key (PMK, session key) (256 bits, shared secret)PMK is unique to association between individual Supplicant and Authenticator

– Groupwise Key (Group Key)Group Key is shared among all Supplicants connected to same Authenticator

MAC layer encryption keys generated as part of authentication process (EAP) between Supplicant and Authentication Server (different from authentication key!)

Encryption keys will be used by chosen data encryption algorithm, e.g. RC4 for WEP, Rijndael for AES

Page 19: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 19Andreas Mitschele-Thiel 6-Apr-06

802.1x – Summary

Intended to provide strong authentication, access control and key managementWireless terminal is Supplicant and Access Point is Authenticator

Authentication initiated by Supplicant or AuthenticatorAuthentication occurs at system initialization time EAP to exchange authentication messagesRADIUS as authentication serverDifferent authentication methods

PasswordMAC addressCertificate-based authentication (TLS, etc.)

Access Point

ControlledPort

UncontrolledPort

Wireless LAN

Port Based Network Access Control

Page 20: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 20Andreas Mitschele-Thiel 6-Apr-06

Wi-Fi Protected Access (WPA)

Flaws in WEP: weak encryption, static encryption keys, lack of key distribution method

IEEE 802.11i: standard for enhanced wireless security addresses weak data encryption and user authentication within existing 802.11 standard

WPA: joint effort between Wi-Fi Alliance and IEEEsubset of 802.11i (draft 3.0, without AES)

WPA2: full 802.11i

WPA = 802.1x + Temporal Key Integrity Protocol (TKIP)

802.1x employs EAP for authenticationTKIP is used for encryption

Page 21: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 21Andreas Mitschele-Thiel 6-Apr-06

WPA – Data Encryption

WPAuses Temporal Key Integrity Protocol (TKIP)

=> stronger data encryption

addresses known vulnerabilities in WEP

TKIPbased on RC4 stream cipher algorithm supplements WEP cipher engine with 4 new algorithms:

extended 48-bit Initialization Vector (IV) and IV sequencing rules (compared to the shorter 24-bit WEP IV)new per-packet key mixing functionderivation and distribution method – re-keyingMessage Integrity Check (MIC) ensures messages haven’t been tampered with during transmission

Page 22: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 22Andreas Mitschele-Thiel 6-Apr-06

Temporal Key Integrity Protocol (TKIP) – Encryption

DA – Destination Address

ICV– Integrity Check Value

MPDU – Message Protocol Data Unit

MSDU – MAC Service Data Unit

MIC - Message Integrity Check

SA – Source Address

TA – Transmitter Address

MIC Key

TSC

SA + DA +

Plaintext MSDU Data

Ciphertext MPDU(s)

WEP Encapsulation

Michael

TTAK Key

Plaintext MSDU +

MIC Fragment(s)

Phase 2 key mixing

Plaintext MPDU(s)

WEP seed(s) (represented as WEP IV + RC4

key)

Phase 1 key mixingTA

Temporal Key(from EAP)

TKIP – Temporal Key Integrity Protocol

TSC – TKIP Sequence Counter

TTAK – Result of phase 1 key mixing of Temporal Key and Transmitter Address

WEP – Wired Equivalent Privacy

WEP IV – Wired Equivalent Privacy Initialization VectorMichael: Message Integrity Code for the Temporal Key Integrity Protocol

Priority +

Page 23: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 23Andreas Mitschele-Thiel 6-Apr-06

MSDU with failed TKIP MIC

MIC

MIC'

Plaintext MPDU

In-sequenceMPDU

TKIP TSC TSC

TA

TTAKPhase 1

key mixing

Unmix TSC

Ciphertext MPDU

Phase 2 key mixing

WEP Decapsulation

Out-of-sequenceMPDU

WEP Seed

Reassemble

Michael DA + SA + Priority + Plaintext MSDU

MIC Key

MIC = MIC'?

Countermeasures

TK

TKIP – Decryption

Page 24: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 24Andreas Mitschele-Thiel 6-Apr-06

WPA – User Authentication

WPA supports two authentication methods:

802.1x and EAP authenticationenterprise environments

centralized authentication server

mutual authentication required to prevent user from joining rogue network

Pre-Shared Key authentication (PSK) home or office environment

no centralized authentication server (RADIUS) or EAP framework needed

easy configuration

Page 25: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 25Andreas Mitschele-Thiel 6-Apr-06

WPA – Pre-Shared Key Authentication (PSK)

Pre-shared key

requires home or office user to manually enter password (Master Key) in Access Point or Wireless Gateway and same password in each PC

devices with matching password join the wireless network

manually configured WPA password used as temporal key for TKIP

Page 26: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 26Andreas Mitschele-Thiel 6-Apr-06

WPA - Summary

Wi-Fi Protected Access effectively addresses WLAN security requirements and provides immediate and strong encryption and authentication solution

forward compatible with the full 802.11i standard

replaces WEP as standard Wi-Fi security mechanism

initial release of WPA (WPAv1) addresses

infrastructure-based 802.11 networks

no support of AES

final WPA standard (WPAv2 = IEEE 802.11i)

support for ad-hoc (peer-to-peer) networks

full adoption of 802.11i standard, including AES

Page 27: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 27Andreas Mitschele-Thiel 6-Apr-06

IEEE 802.11i – Robust Security Network (RSN)

802.11i:

enhanced wireless security standard

known as Robust Security Network (RSN)developed by IEEE Taskgroup i (TGi)

addresses weaknesses of WEP based wireless security => replaces WEPsecurity solution for legacy 802.11 hardware and new hardware (AES support, already making it’s way into the market)addresses infrastructure-based and ad-hoc (peer-to-peer) based 802.11 wireless security requirements

802.11i is fully supported by WPA2

Page 28: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 28Andreas Mitschele-Thiel 6-Apr-06

802.11i (RSN) – Encryption Protocols

Counter Mode with CBC-MAC Protocol (CCMP) based on Advanced Encryption Standard (AES)

counter mode: use of counter to periodically change keyCBC: Cipher Block Chain, i.e. ciphering of current block (16 bytes) is based on previous blocks in addition to key

TKIP targeted at legacy 802.11 hardwareCCMP targeted at future 802.11 hardwareTransitional Network: RSN supporting simultaneous use of TKIP and CCMP=> temporary solution till all hardware supports CCMP

802.11i specifies both TKIP and CCMPtrue RSN uses only CCMPCCMP mandatory for 802.11i (RSN)TKIP optional

Page 29: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 29Andreas Mitschele-Thiel 6-Apr-06

AES Encryption Protocol

Latest encryption technology, replaces Data Encryption Standard (DES) and Triple Data Encryption Standard (3DES)

for all government transactionsUses fixed 128-bit encryption key length and uses same key for encryption and decryption (for 802.11)

Same temporal encryption key, AES(K), used in AES encryption blocks for both MIC calculation and packet encryption

Like TKIP, AES temporal encryption key derived from PairwiseMaster Key (PMK)

Disadvantage

AES-ready hardware is not compatible with WEP=> Legacy hardware can not be used for AES

Page 30: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 30Andreas Mitschele-Thiel 6-Apr-06

CCMP Header8 octets

Data (PDU)>= 1 octets

MIC8 octets

Encrypted

PN0

b4 b5 b6 b7b0

PN1 Rsvd PN5PN4PN3PN2KeyIDRsvd Ext

IV

MAC Header

CCMP processing expands the original MPDU size by 16 octets: • 8 octets for the CCMP Header and • 8 octets for the Message Integrity Code (MIC).

The CCMP Header is constructed from the PN, ExtIV and Key ID fields. PN is a 48 bit sequence counter represented as an array of 6 octets. PN5 is the most significant octet of the PN and PN0 is the least significant. Note that CCMP does not use the WEP ICV.The ExtIV field, bit 5, of the Key ID octet signals that the CCMP Header extends the MPDU by an additional 4 octets to the 4 octets added by the WEP format. The ExtIV bit (Extended IV) is always set to 1 for CCMP.Rsvd denotes reserved fields.

CCMP MPDU Format

Page 31: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 31Andreas Mitschele-Thiel 6-Apr-06

Construct AAD

Construct Nonce

CCM encryption

||

Increment PN Construct

CCMP header

Plaintext MPDU

MAC header

A2, Priority

DataTK

PN

KeyId

Encrypted MPDUEncrypted Data

MIC

CCMP Encapsulation Process

CCMP encrypts the payload of a plaintext MPDU and encapsulates the resulting ciphertext using the following steps:(1) Increment the Packet Number (PN), to obtain a fresh PN for each MPDU where the Packet Number shall never repeat for

the same temporal key (TK). Note that retransmitted packets are not modified on retransmission.(2) The fields in the MAC header are used to construct the Additional Authentication Data (AAD) for the CCM mode. The

CCM algorithm provides integrity protection for the fields included in the AAD. MAC Header fields that may change when retransmitted are muted by being masked to 0 in the AAD.

(3) Construct the CCM Nonce block (pseudo random number) from the PN, A2 and the Priority of the MPDU where A2 is MPDU Address2.

(4) Construct the CCMP Header encoding the new PN and the Key ID into the 8 octet.(5) CCM originator processing uses the temporal key (TK), AAD, Nonce and MPDU data to form the ciphertext and MIC.(6) The Encrypted MPDU is formed by combining the original MAC Header, the CCMP header, the encrypted Data and the MIC.

(1)

(2)

(3)

(4)

(5)

(6)

Page 32: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 32Andreas Mitschele-Thiel 6-Apr-06

Construct AAD

Construct Nonce

CCM decryption

||Encrypted MPDU

MAC header

A2, Priority

TK

Plaintext data

Replay check

Plaintext MPDU

MIC

Data

PN

PN’

CCMP Decapsulation Process

Steps of the decapsulation process:(1) The Encrypted MPDU is parsed to construct the AAD and Nonce values. The MIC is extracted for use in the CCM

integrity checking.(2) The AAD is formed from the MAC Header of the Encrypted MPDU.(3) The Nonce value is constructed from A2, the PN, and Priority.(4) The CCM recipient processing uses the temporal key (TK), AAD, Nonce, MIC and MPDU ciphertext data to recover

the MPDU plaintext data as well as check the integrity of the AAD and MPDU plaintext data. (5) The received MAC Header and the MPDU plaintext data from the CCM recipient processing may be concatenated to

form a Plaintext MPDU.(6) The decryption processing prevents replay of MPDUs by validating that the PN in the MPDU is greater than the replay

counter (PN‘) maintained for the session.

(1)

(2)

(3)

(4)

(5)

(6)

Page 33: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 33Andreas Mitschele-Thiel 6-Apr-06

802.11i (RSN) – Summary

802.11i (RSN) addresses security concerns for legacy hardware and new hardwareSecurity solution providing robust data encryption and user authenticationAddresses security requirements of infrastructure-based and ad-hoc-based 802.11 systems

802.11i

WPA

(AES)

802.1x(TKIP)

WPA2

Page 34: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 34Andreas Mitschele-Thiel 6-Apr-06

WiFi Protected Access (WPA) – Overview

PSK: Pre-shared key

Page 35: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 35Andreas Mitschele-Thiel 6-Apr-06

Layered Security for Wireless Networks

4. Application

Security

3. PerimeterSecurity

2. WirelessAccesscontrol

1. Wireless deployment and policies

Page 36: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 36Andreas Mitschele-Thiel 6-Apr-06

Level 1: Wireless deployment and policyThe foundation on which a secure environment is created Deploy the minimum number of APs needed for adequate coverageSet AP transmit power to the lowest practical levelVerify broadcast coverage in and around facility

Level 2: Wireless access control (device access control)Configure WEP for highest level of encryptionDo not broadcast SSIDVerify MAC address upon device connection

Layered Security for Wireless Networks

Page 37: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 37Andreas Mitschele-Thiel 6-Apr-06

Level 3: Perimeter SecurityUser authenticationInstall an Intrusion Prevention System (IPS) and wireless firewall on WLANEncrypt WLAN traffic using VPN (layer 2 or 3)Direct all traffic through VPN server and configure clients appropriatelyMaintain and enforce VPN routing and access policies

Level 4: Application Security (end-to-end security)Implement application-level user-authentication system (above layer 4)Maintain and enforce permissions and password policiesInstall vendor patches as they become available

Layered Security for Wireless Networks

Page 38: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 38Andreas Mitschele-Thiel 6-Apr-06

Layered Security for Wireless Networks – Summary

Level 1. Wireless deployment and policyLevel 2. Wireless access controlLevel 3. Perimeter securityLevel 4. Application security

Each level contributes to the security of the network, the more levels incorporated into a WLAN, the more secure the WLAN will be

√√DoS attacks√√replay attacks

√√man-in-the-middle attacks

√√MAC spoofing√√unauthorized devices

√√√unauthorized user

Level 4Application

security

Level 3Perimetersecurity

Level 2Wirelessaccesscontrol

Level 1Wireless

deploymentand policies

common wireless threat

Page 39: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Wireless Internet 39Andreas Mitschele-Thiel 6-Apr-06

NoneNonePre-Shared (Plain Text)APOne-way

AuthenticationESSID

EAP

EAP

EAP

Pre-Shared (Challenge)

Pre-Shared(Plain Text)

Authentication Type/Protocol

AESCCMPRADIUSMutual Authentication

802.11i (WPA2)

RC4Dynamic WEP KeyRADIUSMutual

Authentication802.1x

NoneNoneAP/RADIUSOne-way Authentication

MAC Filter

RC4TKIPRADIUSMutual AuthenticationWPA

RC4Static WEP KeyAPOne-way

AuthenticationWEP

Encryption Algorithm

Encryption Key/ProtocolAuthenticatorAuthentication

Method

Summary

Page 40: TECHNISCHE ILMENAU WLAN Security · Plaintext message ICV PRNG Plaintext Message ICV’ Steps: a) Concatenate the IV of the incoming message to the secret key. b) Generate the key

Links

The Unofficial 802.11 Security Web Pagehttp://www.drizzle.com/~aboba/IEEE/

IEEE Std 802.1x Standardhttp://standards.ieee.org/getieee802/download/802.1X-2001.pdf

WiFi Protected Access http://www.wifialliance.com/OpenSection/protected_access.asp

IEEE Std 802.11i/D10.0http://grouper.ieee.org/groups/802/11/private/Draft_Standards/11i/P802.11i-D10.0.pdf