TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE...

49

Transcript of TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE...

Page 1: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC
Page 2: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

TECHNICAL REPORT NO. 125

SACLANT ASW RESEARCH CENTRE

Viale San Bartolomeo 400

I 19026 - La Spezia, Italy

METEOROLOGICAL DATA OF THE MILOC-BALTIC 1967 CRUISE

By

R. Pesaresi

15 October 1968

APPROVED FOR DISTRIBUTION

Ir. M.W. van Batenburg Director

Page 3: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Manuscript Completed:

12 August 1968

Page 4: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

TABLE Of CONTENTS

Page

ABSTRACT 1

INTRODUCTION 2

1. DISPOSITION AND ACCURACIES OF THE SENSORS 5

1 . 1 Disposition 5 1.2 Instrument Accuracy 5

2. DATA REDUCTION AND PRESENTATION 10

3. METEOROLOGICAL PROFILES 12

4- FLUX CALCULATIONS 16

REFERENCES 20

APPENDIX A PROCESSED DATA? Plots and example of printout 21

APPENDIX B CALCULATED FLUXES: Data and plots 3 5

List of Figures

1. Location of measurements 3

2. Location of sensors on the ship and on the buoy 6

3. Shift in the calibration of the ship thermometers 8

4- Frequency response of the low-pass numerical filter 10

5. Profiles of potential temperature and wind speed measured at 2 m and 4 m on the buoy and at 8 m and 16 m on the ship 13

6. Heights at which the wind speed and the temperature sensed at 16 m on the ship, correspond to the profiles passing through the buoy measurement 15

7- Heights at which the wind speed and the temperature sensed at 8 m on the ship^ correspond to the profiles passing through the buoy measurement 15

Page 5: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

METEOROLOGICAL DATA OF THE MILOC-BALTIC 1967 CRUISE

By

R„ Pesaresi

ABSTRACT

The meteorological observations taken during a multi-ship

oceanographic survey conducted in the Baltic Sea in June 1967

are reported. Derived calculations of the fluxes of momentum,

sensible and latent heat, and the solar radiation are also shown.

Page 6: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

INTRODUCTION

In June 1967 a multi-ship oceanographic survey was held in the

Baltic Sea.

The SACLANTCEN Research Vessel MARIA PAOLINA G. took part in

this Survey. Routine oceanographic measurements were made,

together with meteorological observations from the ship and

from an automatic recording meteorological buoy designed and

constructed at SACLANTCEN.

The geographic positions during the three phases of the

cruise, together with the time schedule, are shown in Fig. 1.

During phases A and C the ship was anchored in the position

shown. During phase B she followed a drogue, keeping her bow

to the wind.

Four sets of meteorological observations were simultaneously

and continuously recorded, each set consisting of dry and wet

bulb temperatures and wind speed. To emphasize the sensitivity

and the precision of the measurements, the four heights at

which meteorological observations were taken were as usual

logarithmically spaced. These heights were chosen at 16 m and

8 m above sea level on the ship, and at 4 m and 2 m on the buoy.

At the same time the solar radiation, the net radiation, the

sea surface temperature, the sea temperature five metres below

the surface, the relative wind direction, the ship's heading, and

the radiation temperature of the sea surface were continuously

recorded on board the ship.

Page 7: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

0 0 0 0 K O »o ^r iO >o »o w->

^^•^ ~-~^m ̂ ^=-' ^•^•j - •^•••W ^••••F ^H|: rpMMHf"- -^••••K fMH^ —— ?—•• -----

o: o 1 (/) I ° <N I (N CN ti

^"'•';

"*<ii: •

(0 CN

o U- 1 0 o I O CN n

O *-

Q

Z

CN

Z

1- S> O N [: 1' <

"~ A O c fV1 \ —1 L-^\ 0

tf O X (B IF.

O Q.

o r 1 0 00 1 CO

D Z <

>- - Z

o •

^V •, ^^V^L^ *<±>. ,'.«'* '• * * 1 f'**-

CO < "> <

2 1 0 o I a • •;••. oc - 2 z '•"'"•§2tr*

/*- £ v W

HI I'o 0 z

K

LU X? £ ^XajjlyJ'

i (/) W\ ° t

• • •

••^%

1 0

3! O

1 2 0 O 0

K 0 «o ^* 10 v-> 10 m

•O -O -o OOO

UJ UJ III z z z 3 33 —> —> -* o> <o o

•— CN I I I

< U a)

III III 111

< << z zz a. a. a.

z LU T:

S 5? < LU

o z o h- < u o

o Ll_

Page 8: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

The primary aim of this complex set of observations was to

measure the meteorological elements relevant to the calculation

of the exchange of mechanical and thermal energy between the

atmosphere and the sea. These fluxes, together with the solar

radiation flux, directly influence the physical properties of

the sea water above the thermocline, and a knowledge of their

behaviour is essential to the study of that part of the ocean.

There are two main reasons why it is important to measure

meteorological profiles at sea. First, because these profiles

allow the evaluation of fluxes by using only the measurements

made in the atmospheric boundary layer away from the interfering

effects of the sea surface, the influence of which is not yet

completely known. Second, they allow the study of the mechanical

and thermal properties of the thin boundary layer near the sea

surface that directly affect the energy transfer process

through the interface. This can be done by applying the theory

that relates the profiles to the fluxes, or better by measuring

the fluxes by an independent method, such as the eddy

correlation technique.

This report on the meteorological measurements taken during the

MILOC BALTIC 1967 cruise publishes the plots, in function of time,

of the elements measured, together with the results of the flux

calculations and their plots.

The flux calculations are derived from the bulk properties of

the atmosphere between the 16 m level and the sea surface. These

calculations do not take account of the profiles that can possibly

be reconstructed from the observations made at four heights,

as the data measured on the buoy and on the ship do not

completely agree. As explained in Chapter 3 this discrepancy may be

due to instrument errors on the buoy, to the physical effect of the

ship's presence on the air flow past the ship sensors, or to a

combination of these causes. It would be interesting to isolate

the two, in order to study the latter.

Page 9: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

1. DISPOSITION AND ACCURACIES OF THE SENSORS

1.1 Disposition

Figure 2 shows the disposition of the sensors on the ship and

the buoy. Those on the buoy consist of two sets, each comprising

an aspirated thermistor psychrometer and a cup anemometer,

mounted 2 metres and 4 metres above sea level. The mountings

were at the ends of 1.5 m long arms extending from the buoy's

mast. The buoy was stabilized by a 400 kg weight rigidly

attached 8 m below it.

The ship carried two similar sets of instruments: one set at 8 m

above sea level being mounted at the end of an aluminium lattice

boom extending 17 m forward from the bow, and the other set

at 16 m above sea level being mounted on a boom 5 m forward of

the crow's nest on the foremast. The 8-m high installation also

included a radiation balance probe. A standard ship anemometer

of the propeller type, mounted on the foremast, sensed the

relative wind direction as well as the wind speed. A gimbal-

mounted Kipp solarimeter and a Barnes radiation thermometer

were mounted on top of the foremast. A small float towed from

the ship's bow boom supported two thermometers, one at the sea

surface and the other 5 m below.

1.2 Instrument Accuracy

The ship thermometers were calibrated before and after the cruise;

Fig. 3 shows the difference between these calibrations, over

Page 10: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

>- s 00 LU

Q Z < Q.

s UJ X h- z o a: 8 z uu CO

U- O z o I-

6 o

u.

Page 11: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

the range of temperatures encountered during the cruise. For

data reduction purposes the first calibration was used. During

the measurements reported the standard deviation of the readings

(referred to as twenty-minute average values) of a reference

channel on the recording system was calculated to be 0.001°C.

The accuracy of the recording system itself was estimated to

be within 0.019°C, both in the absolute and in the relative

measurements, not including the calibration shift.

As the buoy was lost at the end of the cruise, its thermometers

were only calibrated before the cruise. However, from past

experience they are estimated to be less stable than the

differences shown in Fig. 3, but generally by no more than a

factor of two; obviously individual sensors may shift much

more. During the tests on the recording and reading system

of the buoy, the standard deviation was calculated to be 0.007°C,

The accuracy of the temperature values reported cannot be firmly

assessed as the electronics and some standards within the buoy

could not be tested and checked after the cruise. However,

the accuracy can be estimated to be within 0.02°C for the

relative measurements, not including any calibration shift.

The anemometers were calibrated only before the cruise, as

those used on board the ship were damaged during removal, and

those on the buoy were lost. Their stability and accuracy are

estimated to be within 1% . The reading precision is, in both

cases, plus or minus one revolution of the anemometer shaft

in twenty minutes, that is 0.0014 m/s.

The radiation thermometer shows a difference between the two

calibrations of about 1°C, reflecting the poor quality of the

instrument. In view of this calibration shift its measurements

Page 12: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

cr

h- < cr

UJ

5 O cr LLI x h-

LU X I- u_ o

< cr CO

_J < u UJ X

o u_

Page 13: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

can be used only for short-term comparisons. During the data

reduction, the first calibration was used.

o The solarimeter was calibrated with a standard Angstrom

pyrheliometer before the cruise. The accuracy of its readings

is essentially determined by the contact potentials arising

in the junctions between the instrument and the recorder,

and was estimated to be within 0.01 cal/(cm2 . min), that is

0.6 cal/cm2 in the one-hour values of the fluxes.

The same considerations apply to the net radiation sensor,

but it must be remembered that the instrument was not always

horizontal and, moreover, its field of view was partly

obstructed by the ship.

Page 14: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

2. DATA REDUCTION AND PRESENTATION (See Appendix A)

Data from both the ship and the buoy were recorded once a

minute. They were first edited for large deviations and

then filtered by a low-pass numerical filter, the frequency

response characteristics of which are shown in Fig. 4•

0.15 0.2

FREQUENCY: Cycles per minute

FIG. 4 FREQUENCY RESPONSE OF THE LOW-PASS NUMERICAL FILTER

After filtering, every tenth value was extracted and plotted to

give the graphical presentation shown in App. A. (The values

themselves are available on punched paper tape for those who

are interested.) Examples of the printout are given in App. A.

~1 0.25

The temperatures plotted are approximate potential temperatures,

which have been obtained by adding the dry adiabatic lapse

rate of 0.0098°C/m to the actual temperature measured.

10

Page 15: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

3. METEOROLOGICAL PROFILES

Figure 5 shows a typical example (8 June 1967, 0120. See

printout in App. A) of actual values of potential temperature

and wind speed, measured at 2 m and 4 m on the buoy and

at 8 m and 16 m on the ship. The solid lines represent the

profiles of potential temperature and wind speed calculated

according to the aerodynamic theory of the turbulent transfer

of energy in the atmospheric boundary layer ("profile theory").

The dashed lines show, for comparison, the potential temperature

and wind speed profiles calculated according to the bulk

aerodynamic theory (with constant roughness parameter), using

the 16 m and sea-surface observations.("bulk theory").

It can be clearly seen that the profiles obtained from the meas-

urements from the ship and from the buoy do not completely

coincide. Even though the difference is not large, it is

larger than the measurement tolerance and appears consistently

over all the profiles. There may be two explanations for this

systematic difference. It could be caused by the instruments,

due to a shift in the calibration of all the buoy probes, or

to the electronics and the automatic recording system of the

buoy itself. (As the buoy was lost it was not possible to check

the calibration of the sensors and the electronics after the

cruise.) The second possible explanation is that the ship

disturbs and distorts the air flow passing above it. Therefore,

the ship sensors would be measuring in air that had been carried

to a height above its normal level.

12

Page 16: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

9.5 10 I

10.5 I

16—,

8 —

CO

LU

en

X

o LU

X

2—I

SHIP BUOY

PROFILE THEORY

BULK THEORY

O MEASURED VALUE

X EQUIVALENT HEIGHT ON BUOY PROFILE

1 1 1 1 1 1 1 1 1 1 1

9.5 10 10.5 POTENTIAL TEMPERATURE °C

i—16

6 i 5 6 7

WIND SPEED

I I 8 9

m/s

FIG. 5 PROFILES OF POTENTIAL TEMPERATURE AND WIND SPEED MEASURED AT 2 m AND 4 m ON THE BUOY AND AT 8 m AND 16 m ON THE SHIP. (8 JUNE 1967 0120)

13

Page 17: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

The lack of coincidence between ship and buoy measurements is

further illustrated in Figs. 6 and 7« These figures show, for

a 24 hour period (8 June), the heights at which the values

recorded on the ship,at 16 m and 8 m respectively, occur on

the profiles calculated from the buoy measurements. (An

example of these equivalent heights is given on Fig. 5 •) The

solid lines indicate the equivalent heights of the wind speed

values, the dashed lines those of the potential temperature.

Gaps are either because of missing data or because the

equivalent height is less than 2 m.

The wind speed curves on both Figs. 6 and 7 indicate that the

speeds recorded on the ship consistently occur at much lower

heights on the buoy data profile. This suggests that the

differences may be due entirely to the disturbance of the

ship.

The temperature curves on both Figs. 6 and 7 also show that

the temperatures recorded on the ship consistently occur

at lower heights on the buoy data profile. This could again

be explained by ship disturbance, but as the equivalent

heights for the temperatures are much lower than the

corresponding equivalent heights for the wind speeds —

especially in Fig. 6 — these differences could be due to

instrumental shifts and also, to a minor extent, to an inadequacy

of the profile theory in stable air. It might be possible to

isolate these effects by a careful analysis of the values

involved.

14

Page 18: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

10- 8

6 —

2 —

WIND SPEED

V».'.

^

rx ,'\'

•A Ws/

IV. i»> • /»»

POT. TEMP.

10 8

6

4

\—2

i—r "i r "i—i—r i r n r

12 18 24

FIG. 6 HEIGHTS AT WHICH THE WIND SPEED AND THE TEMPERATURE SENSED AT 16 m ON THE SHIP, CORRESPOND TO THE PROFILES PASSING THROUGH THE BUOY MEASUREMENT

10^ 8-

6 —

4 —

2 —

WIND SPEED

^fVyy^JW *t

10 -8

— 6

— 4

POT. TEMP.

i—i r i—r "i—i—r "i—r i—i—(—i—r

12 18 24

FIG. 7 HEIGHTS AT WHICH THE WIND SPEED AND THE TEMPERATURE SENSED AT 8 m ON THE SHIP, CORRESPOND TO THE PROFILES PASSING THROUGH THE BUOY MEASUREMENT

15

Page 19: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

4. FLUX CALCULATIONS (See Appendix B)

Since the measurements taken from the ship and those taken

from the buoy do not completely agree, as was explained in

Ch. 3j the meteorological profiles cannot be reconstructed

reliably. Therefore, the flux calculations reported here are

not derived by the profile method but by the bulk method,

that is by using the meteorological observations at 16 m

on the ship and the sea surface temperature.

The use of the bulk method implies a knowledge of the

thermal and mechanical properties of the boundary layers

adjacent to the sea surface, or, in a more simplified

formulation, of the roughness parameter (z0) °f tne sea

surface itself.

As some of the problems of the influence of the meteorological

and oceanographic parameters on the physical properties of

the sea surface still remain unsolved, the fluxes were

calculated by taking a constant roughness parameter, the

value of which was derived from the work of Brocks in the

Baltic Sea [Ref. l].

The only correction made to the standard bulk method was to

take into account the stability of the air. This was done

according to a working model based on the most recent published

experimental work on the influence of atmospheric stability

16

Page 20: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

on the transfer coefficients. Similar models are described by

Deardorff[Ref. 2] and Paulson [Ref. 3].

The three formulae used for calculating the momentum flux

(or shear stress) j, the sensible heat flux H, and the

latent heat flux due to evaporation E, according to the bulk

aerodynamic theory with constant roughness parameter (z0),

are respectively as follows:

pv K u2 H ' m z

H - PCD V\ (6Z - 9o) U;

= o L (p) K. (e - ej u p v\Be/hvz 0' ;

where

P

V

-3 1 : density of the air = 1.26 x 10 g/cm^

_3 : drag coefficient = 1.65 X 10

The drag coefficient is expressed as

where

k

z

k/(lc)g~ z/:

Von Karman constant = 0.41

height of the observations = 8 X 10s cm

roughness parameter = 3-3 X 10 -2

cm

17

Page 21: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c : specific heat of the air at constant P

pressure = 0.24 cal/(g • °C)

L : latent heat of vaporization of water =591-7 cal/g

(jSJ : rate of change of specific humidity with vapour p pressure at constant pressure = 6.12 x 10 (g/g)/mb

u : wind speed in m/s

9 '• potential temperature in °C

e : water vapour pressure in mb

Suffixes z and o refer respectively to the heights

of observation z and the sea surface.

K and K, are correction coefficients, dependent on m h ' r

stability parameters and calculated according to the

bulk aerodynamic theory.

The constants were calculated at 10°C mean air temperature,

102 5 mb mean air pressure.

Using the above-listed values for the constants, the bulk

formulae become:

Momentum Flux: T = 2.074 X 10~ K u2 dyn/cm2 m z

Sensible Heat Flux: H = 2.987 X 10~3 K, (6 - Q.) u cal/(cm3-min) n z u z

Latent Heat Flux: E = 4 . 507 X 10~3 Kh( e^ - eQ) \x^ cal/( cm2-min)

IS

Page 22: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

The Solar Radiation Flux (S) was measured directly. The fluxes

are taken to be positive when the flow of energy is towards

the sea surface.

Fluxes were calculated from the filtered values recorded on

the ship every tenth minute. The six values per hour were

totalled to give the hourly flux per square centimetre,

which are then expressed in g/(cm°s) for the flux of momentum

and in cal/cm2 for the other fluxes. These hourly fluxes

are presented in tables and graphs in App. B.

The accuracy of these calculations depends entirely on the

accuracy of the value of roughness length that is used. More

precisely it depends on how validly the empirical theory

from which the roughness length is derived represents the

physical processes involved in the transfer of energy at the

air-sea interface. This subject is still highly controversial

[Refs. 4? 5} 6, 7 and 8] and reported values of the roughness

length vary by several orders of magnitude. For these

reasons the calculated fluxes may be inaccurate by more than

a factor of two.

This inaccuracy, implicit in the "bulk" aerodynamic method,

with its constant roughness length, supports the efforts spent

in endeavouring to measure the meteorological profiles, which

can give much more accurate values of the fluxes.

l'»

Page 23: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

REFERENCES

1. K. Brocks, Probleme der Maritimen Greuzschicht der

Atmosphare Deutscher Wetterdienst Berichte, Vol. 12

No. 91, 1963, pp.34-46.

2. J.W. Deardorff,Dependence of Air-sea Transfer

Coefficients on Bulk Stability. J. Geophysical Res.,

Vol. 73, 1968, pp.2549-57-

3. C.A. Paulson, Profiles of Wind Speed, Temperature and

Humidity over the Sea. Sci. Rept. N.S.F., G.P. 2418,

Dept. of Atm. Sci. Univ. of Washington, 1967.

4. S.A. Kitaigorodsky and YU. A. Volkov, On the Roughness

Parameter of the Sea Surface, and the Calculation of

Momentum Flux in the Near Water Layer of the Atmosphere.

Izv. Acad. Sci. USSR,Atmospheric and Oceanic Physics.

(English Transl.) Vol. 1, 1965, pp.566-574-

5. S.A. Kitaigorodsky and YU. A. Volkov, Calculation of

Turbulent Heat and Humidity Fluxes in an Atmospheric

Layer Near a Water Surface. Izv, Acad. Sci. USSR,

Atmospheric and Oceanic Physics, (English Transl.)

Vol. 1, 1965, pp.774-783.

6. E.B. Kraus, Aerodynamic Roughness Over the Sea Surface.

J. Atmospheric Sci., Vol. 23, 1966, pp.443-445.

7. E.B. Kraus, Wind Stress Along the Sea Surface. Advances

in Geophysics, Vol. 12, pp.213-255, Academic Press Inc. 1967

8. H.U. Roll, Physics of the Marine Atmosphere. Academic

Press Inc., 1965.

20

Page 24: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

APPENDIX A

PROCESSED DATA

The plots of processed data for 6-9, 13-20 June record the

following:

Solar Radiation (solo)

Water Vapour Pressure (e) at 16 m, 8 m, 4 m, and 2 m

Potential Temperature (t) at 16 m, 8 m, 4 m, 2 m, 0 m, and -5 m

Radiation Temperature (rdt) at 0 m

Wind Speed (w) at 16 m, 8 m, 4 in, and 2 m

(the plot wL, is that of the propellor anenometer)

The plots of each set of data have been staggered to avoid overlaps.

The scale shown for each set refers to the lowest plot; reference

positions for the other plots are indicated alongside.

An example of the computer printout of the processed data

(0000 to 0550 on 8 June 1967) is given after the plots.

21

Page 25: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

cal/cm per min

10-,

<

< O

.5

mb C/5 w LU

a. e»J

a; e$J

§10- *4J

cc UJ 1- "l < 5 5- L«o

15-i

10

< cc

°C 15

'KM >4 J

•t,»

"to

•t.

m/s 10-

J"4

O-'-Wj H 1 r— 00 02 04

6 June 1967

06 —i—

08 10 12

TIME

14 16 18 -+

22 24 GMT

22

Page 26: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm2

per min 10n

<

< O

.5

oJ

"C 15-

5

toH <

5-1

m/s 10 n

o * 5 5

O1* 00

I 02 04 06 08 10

-r-

-ti.

7 June 1967

12 14

TIME

16 18 22 24 GMT

23

Page 27: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm per min

10n

<

< O in

•5H

0J

mb

a: a. a. 310

I 5-l.o

«4J

'e,

^«4

«0

°c 15n

5

u>H Q < cr

5^

•c 15

a: 2

10

5-H

•4J "

JIn

00 02 04

8 June 1967

22 24GMT

TIME

24

Page 28: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm per min

10n

<

a: < O to

.5

oJ

mb

a.

§10 <r LU

l5

«4J

°C 15-

a; 5

10 Q < a.

5^

lO-i

"i.J

0 ? 5-

J"4

0J L"J •( 1 I—

00 02 04

9 June 1967

06 08 10 12 14

TIME

16 18 —1 r- 22 24 GMT

25

Page 29: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

cal/cnv1

per min 1.0n

<

< O in

mb

a. O.

§10

<r UJ (- I 5

°c 15-

5

ioH a <

5^

•c 15n W

CL 5

10

O Q- J'o *t0

m/s 10-

Q ? 31

O-Lw, +• —I— 02 00

13 June 1967

-i— 04 06

—i— 08 10 12

TIME

u 16 18 -+

22 24 GMT

26

Page 30: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm per min

1.0 n

<

< O to

.5-

•C 15-1

10-

<

•t,«

•«4 r

m/t

101 w

o ? 5

'«, 0- L*j -I 1 r—

00 02 04

U June 1967

06 08 io 12

TIME

14 16 18 22 24 GMT

27

Page 31: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm per min

l.On

<

< O 10

.5-

0J

r

mb

Q.

CC

§10-

UJ

I, •o

2*5=7^

°c 15n

a: 5

10-

<

5J

•c 15

a. 5

"10

o a.

V *4J

m/s 10-

o ? 5 5

s

r^

•\ 1 r— 00 02 04

15 June 1967

06 08 10 12

TIME

14 16 18 -r-

22 24 GMT

28

Page 32: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm per min

l-O-i

< a:

< O

.5-

mb

0.

a: §10

< ? 5-l»o

"e2

°C 15n

a; 5

10-

< a:

5J

•c 15-,

a; 5

10

o a.

m/s 10-

? 5-

QJ-wj +•

A'\ , *•

-H

-«v 1.

00 02 04 06 08 10 12

16 June 1967

14

TIME

16 18 —i 1- Lw, 22 24 GMT

29

Page 33: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm2

per min 10-.

< cr

EC

< O to

.5

mb

a.

a:

I 5-l.o

>«4

°c 15i

Q-

5

10 Q < a.

•c 15-,

10

Jto

>tM

-'.

m/s 10-

Q

I'1

"16-

"14 J

O1^ 00

—I— 02 04 06 08 10

17 June 1967

1 12

TIME

u 16 18 22 24 GMT

30

Page 34: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

°c \5-

a: 5

10

<

cal/cm' per min

1.0

L<.

5^

m/s 10

o ? 5

"14 "

"16 J

|W,J

O-^Wj

00 02 04

18 June 1967

06 08 -i 1 r- 10 12 14

TIME

16 18 22 24 GMT

31

Page 35: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm per min

l.On a < IT

< O

mb CO " LU oc e a.

a: •• § lO-

»4J

ci: UJ J e K < ? 5^ «o

m/s 101

"i«J

0 ? 5

J"4

0J L"J

00 02 o7 19 June 1967

06 08 10 -r- 12 14

TIME

16 18

"*i.

—1 (-

22 24 GMT

32

Page 36: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

c a l/cm par min

10n

<

a: < O 1/5

M

oJ

e0

°c 15T

Q-

5

ioH <

5^

*C 15

a; 2

ioH c a.

t.

-1

''a

•'4 r

16

•U

m/s 101

a

5

O-1"! •\ 1 1—

00 02 04

20 June 1967

06 08 10 12

TIME

14 16 18 —1 1- 22 24 GMT

33

Page 37: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

ui g qo 's/ui 'paads puxu\ cnr-i»ininoii-(»T)'nooifmt-MI-onf-n«)oi,<oiiih-oiicift-i-^l»oii) nr>r>rnapi»A«oi(t>NNnnpitii>np«nNioitnNa«M«VpB TrNNMvnapoonnbTtiiiianHociioiONnnoinnsvooaa iniointnininifitnioinw^^^^yVTi'iniom^Tfvmininintpioiotoiotoinc)

2 3B 'qui 'QjriBBnjcl jnodu/\

in 2 IB 'jBnqjjA '30 '"dura:} 'poj

ui 2 3° 'qtnq-^ni* '30 ''duia^ "qoj

oVrOrUihnntiiroiifiTnioaiDNNifonmfioaii'iniaMonnn ci o c> r- io in m \t PI CM i- o in o o> i- «i ij r I- •* n n o M* o oi I- IO »i u t- t- M ID O) C) (11 (ft O Ol t)l O) O) O) W W h N UI to U) m to ID 111 ID I/) « \|" ^ V n (0 p) (1 Cl M W r I-

c— ii5 1- T- 10 O Gl 10 01 p* 1- o CM 10 P O CM •I> n CO 10 (11 10 ID CO 1- Cl Cf) Cl Cl 01 •r CO 01 T (•) f; ca IM CM • c O U) CM <•) I- M' to CO 01 C) t- r— Cl CO CO ri V cn CO CM V •1' i~ Cl m M' PI C) M (<) CO ci CM u i - r- i— r- CI C O O C) O Ol 0) 01 01 Cl Ol C) co O o Cl o G) 01 Ol Ol

P" i• i - CO a O Cl CO c o »- T-* t— r- 1— o o Ci o

M o c T« in CM oi OO T- (0 0) Cl I- 00 CO M CO *f 01 CO CO t- CO Cl CO CO 01 V CO co CO cf Cl in cl cl V* 1- cn i - 00 II) T ("1 1- ci <1 t- M »- C:l CO •>r CO 1- CO co o C71 Cl en o CO C) 1- IO cr OJ CO l- 1- DO 1- t- 1- P> ID UI U> U) V Cf cr V P) eo CO CO P) CO Cl Cl Cl CO Cl c-i Cl f- r- f—

O) O) C) O) 0) 01 O) O O) 00 (.1 C) O) OO 01 O) O O) 01 01 CD 0) 01 01 O) O O 01 01 0) C) 0) C) Cl O) O)

« 2 qe 'qinq-Xjp 'o„ «IOH010nMO»COOOCOII)(0«i(»MrNII)0(.ilir-IOO«l«COOHlClt-(Or

• I...,- .,„ H'MO(1vfll)n^TlHfC)l-rfinrii-IOIOc-V(OM01(Of.lOl»Oi-rOIOI-M«) "UUId^ ^OJ rfr000001tliOlOiaoi01(0(OMt-c-M"c>MIIIOI-l-h(l)10MCOhl»l-(.

ooooooooiaicncnoioioioioKiioioffiiDOOioiQOiDoioiciOKiicniiiaioi

ui t> :JE 's/ui 'poads puj^ nciot'rinamoic-t-rini-oioinnooiniDrCOrM-corioioi-iooinr II' Cl r !• O T« M m h T]i ^ CO fll N r- ^ (O (11 ql o to en r- ^ 1" in 01 0) N o »- u> ^r w co m oc)Cii-coMinr.[-(o«iooNciin']|n«ico«ifr-ni»Bo»oiofioioionco

itiuiiDmiouciioioininiiiioin^in^uiinmviinuiinmuiiocoioh^hioiocoio

ui t? ^B 'qui 'ajnssojd JfiodtiA

t> ^B 'iBnqjTA '3„ ''ciujo^ -qod

ui f ^B 'qxnq-^a« '£)„ •duioq 'qnj

hiDMNMNiiciioiiK. noi«o<iho«icinnnNrrpnou'i<llnoii>r m in ui N co ci »- cn CM o r- co to co po cn co co cj co in CM o t- co t- co M" cj to oo co c ci »- CM Wt)WCOO)(iltl)C001CIICOrlOlOlOinuimin'ltU,VTI,^PlP)NNNCli-r-rOOO 1- i—

Ci u)

CO

in

co CO l!)

G)

Ml

CO (/. •r 0) •1-

If) CO V

0) o 'j'

C) co to

Cl c; cr

p IO ro

01 Oi

c- Cl CO

C) Cl CO CI

CO

Cl Cl

CD IO

C^ 01 CM Cl

CO Ci) r"

i— c- o

•f •1' e

Cl

CO

r- Cl r-

01 C) r"

Cl CO 1—

CO CO r-

1/1 CO

co Ol o

C i—

T— o r"

CO o

P- p— i- i— r— 1-

1- 11) c;i

CO •r 00

(0 CO CO

01 CO (1)

C 1 CO

1- e 0 Cl

o o en

m o Ci)

i— o ai

t- i - t-

10 •j' CO

r- 10

m

U)

t- IO in

CO CO in

Cl o ui

Cl t- <J1

'i' Cl Cl <*

1— 01 C)

CO CO CO

CO in C)

CO C) CO

I- o CO

c- Cl

1- 1- Cl

r- CO Cl

m Cl

01 CO Cl

IO C) C 1

Cl Ol r-

r- in

00 c 1—

c- c:i a

Cl O) Cl

o; oi ci <ji c: <Ji oj o» CTJ OI oi OI Ci ci ci cn en oi ci cn oi ci OI oi ci oi ci o o oi oi ci oi oi oi oi

< H < a p w t^ (/) IO CO o w i-H

u o u ai 55 a. t>

•-D u. o CO

H s; & o O H o ^•,

>-o H to

od O a.

O Di H w H O ti O

1 O O

o o £

o u- oi o •a, u 1-1 1 <: X w

ui t ^B 'qxnq-Xap 'o0 '•ilui.i^ *:|t)j

saajBop 'DI.IT|IBBL( d[M9

saajBop 'uo^qoajxP pu^w anj^Biaij

soBjjns oq *XSJ &/ui 'pands iJTMG

'^nd^no aqojd aouEqeq uoT^ETfifcH

(uxui. uio)/xB3 '^rid^no JcquiuTJiaxnc;

otoooci c Mtnoiciwiiirciininonixooi'ciinriocoomww^Nhioio C) 0) CO O i- f t) W 0) H I- 11 I- » C) O) t- r- O r Ol 0) CO V Cl IO o PI "1 in IO If O r r l> Cl Cl cl C4 Cl Cl r- i- O t- CO O O O O O) 0) O) O) 0) CO CO O) OJ CO CO 0) Cl C) Cl O) C) 00 0) O) CO

c c; ^.: o c; ci o c o c (: o o o m oi oi a oi en oi en en oi K co m oi oi c» o: ci oi oi oi oi

co o in n Mn i co i' co no *!• <r ii* -., ci c^i ci co CN ci eg ci

IlOBt-rVflPICHiltOnoOflrt- i- PI 10 cf S HO CO ftcicpc!)inincoin(!)iniO(9t-t-r-i«cohi-r-l-iSr-l- M CM N Cl M CJ CJ Cl CJ O CM CO CM N CJ M CM N CM M CN N CJ Cl

Ol C) CJ 10 CO «1 CM V 01 O O r- r- i- 0) CM O I- t- CN CM W o oi o o m o en o co o o oi o oi oi oi o oi en oi en o> fli-CINi-MrNrNMr-Hr-rfMi-rrl-i-

O O CTl Cl VJi CO CO CO Cl to in 00 r- O CO co ro M m TT CO CO uO en cr in «o( *r «r" r) PinvcnrOViNiNrrOOOO O C) O CO O CO CO O O O O O O O O CO o O o o o o

r- CO CM r- to CO r- CO CO r- CM CJ CM CM Cl

<*uo,-roa)Ooi-o>incj)oo en e; en ci co oi cn to co co r- t-

c-P\««cocoMr-oiiMtllo r-VCNCMi-t-mVCMCOi-PO oooooooooooo

? ? S' ? ? CF TV CP ? ? c. ???????? ° ° m oo o ci- co eo

o o

oooooooooo ? ? t- Cl CM CM i- CJ

?c,• ? s CO

C/

CO Cl *1> CO o o

M< «* (O CO o o

oi r- n-i eo

IO ci o <o co co r- m to COCOi-OOOCOOOUO ooocoooooo

ocnr-POI-r-coiovTfcocj COOI-COtOCNr-CncOCOCMCO O i- O r Cl tl (J N n PI V rp

O 0.1 o to CO CO

Cl CO

o o

ocotpoooocpocy ooooooooooooooooo

CM CM

O CO

CN CO r- r- o a

O r- r- o o o

incJoiMpii-incom OrrrillllOIOOtO OOOOOOOr-O

rOTflOr-OCOtOcnoUlr-CJ Ninpicoiiincociooi-i'u) i-rr-NPlMMPlumnjiJi

fja^auiduiauB ;»iA^-ju-[\Mia.ui\ s/ui 'uigi ^B poaiJS pu|./},

? ? ? ? V ? ? V V ? oooooocooooooooooooooo

I- o ••>• cr; CO CO

in CO

V cn CO O) Oi 01

cn m 01 o V in

m oi •y C) O l>

CO o to IO 0) CO

CO CO to T N P) » Cl

rl* C OP r D co a O t- CM t- >J V CO PI Ol i-

OPOCOIOr-M'COtOr-t-PlPl CO O !•> P> r- O) CM IO 0) Ol to r- in ID CO CM p- r- CO I- 10 V 01 M

co co co co i- IN co co co co co m in io to co co to co co to to to to to to t- i~ P- I* I- r- p- co t-

M* if) c;i Gi eooioominrjvTi'iiOr-oooM'iO'J'OOPOcMOioicocOr-oiinp-p-Mcoin M'CMCOl^tnCOCMClCOPlr-POCjmO'J'Clr-inp-inr-Clr-P-CMlOOlCI co in co co to to to oo m co t- co cl* in f~ 3o ' -duia^ uoxquFPBj aDBjjns 0.15 li "'. -. ". -. -". ". '°. "J ". ". ,D. » w. "". w. •*. » *. "i w. °. -. **. ">. w. w. » M. *". °. ^ ". "". ®. ».

• co c: ci co co c) o c: o 0 01 oi 01 oi 00 01 01 co t- 1- I- 00 co p- l* p- P- p- co co to p. p- t* p- p-

30 'aoBjjns ivioxaq ui g ajn^ejtidiuoq BUCJ

soBjjns Bas :)B 'qiu 'aanetiUJd jntoclL'/\

aoBjjns Bas qB 'sa 'ajn^BJaduiin |anqjx/\

aoBjjns Bas ^B '30 'ajn^Bjaduia^

tu g qe 's/ui 'paads pu;/A

c J m c- co 1^ co co to co ci ** 1- cn co to 10 in 01 r~ to 10 ci ,- p- o o: 'I ir IT <P C|i V V IP rf V HI if PI n PI PI P) PI M M PI PI PI r- r c

p. « to p 10 co 0 cn cn co i- i- o o o

cn Oi oi GI 01 01 eii 01 01 oi oi oi 00 oi 00 cn 01 oi oi ci 01 01 01 01 01 Q 01 01 01 01 01 01 01 01 01 oi

ci oo ci ci ci 1- P- c 01 10 in ci m ro co ci o 1- 00 o 00 t- co 10 ci co co to 00 m co pi o to CM co If) II) If) in If) IO M( IO Ml TT \J< T1 V V T1 Ml cl" rf PI *r 01 CO CO 0) CO PI CM CM Cl Cl CM Cl CM r- r- O ui ui m m m 10 in m in in m 10 in m m tn co to m 10 10 in 10 to m cn m m m in in uo 10 uo 10 m

,'" p- p-

r-

Cl Cl Pl Cl 0 10 01 t- Cl CM Ol Cl 0 O) c/i CO 1- •f 10 CO 0 CO to (0 in CD UO 03 M- Cl 0) p" CO Ol 111 til 0) 01 0) (. 1 01 C'l CO CO 1- CO CO I- 1- 1- 1- 1' l- (- 1- t- CO IO CD U) U) ID in in V cr cr CO CO P) 01 PI PI 10 CO Cl to CO 0 CO CO 0) C) C) CO n to 10 n CO 0 CO to p) CO CO 0) 0 0) 10 CO CO 0 C) CO

O t) O O CJ O f O <"! O f) o o c: o o o o o o o o o o c c c o o o o o o o c c

M Ul B W (0 IO fI IO «# Ol 01 cO ft b (D in PI V M ffl O to C3 IP N P5 h V h V »- O) t- r N fl v)1 ^ <• V 'J1 'J «P TM, n I*) PI O JO (O (O f) (1 M P3 (O N N tN M N r r r r r O O O ft O'I i-.-r*,— t-r-r-r— 1— r- 1— 1— r-r-i— ?— »— »— r-r*r— »— r-r-r*f— r-t— r-r-r-r-r-f-OO

(I, 01 0) O) 01 01 CJ1 OJ 0) 01 OJ O) ft Oi Oi Ol Ol 01 Ol Ol Ol C) Ol Ci 0) ft Ol Ol ft Oi ft 0» ft ft 01 ft

iri^uTTfftinxfofjfttnncONhninftntfcowftcNVNowinftr'i*^^^ CJ l- *C* fO CO C» WJ 0) 1- 00 Cl (D «J* I- N IO ^ M< W ft ^ (M CO t£) «1 Ol r- ^ 00 ^ 00 CO 00 ft H CO wpJcicOVrOoeopinwiowftNinn^pjnNoorWWOjnNcxjiiowjoioor

inininifnnwwtowinin^^^^wininiOcOiniori'inininintcwiOcOw

Ui g :JB 'qiu 'ajnssBJd jnode/\

u Q }o 'xen^j^A 'Q0 ''tJiua^ *^o^

UJ g ^B 'q^nq-^aM *30 '"cJiua^ '^oj

^ CJ CO m »- CJ CM ft t- CO M 01 M* r* CO r- fO 10 IO O »0 Tf* CM r- W ft ft r- CJ ft tO I*- CJ ^ Tf O |- CJ ft W O W r O tO ft 't1 lO h P) P) O r« tf> N » 'J1 W r O W W W PI 01 r W ft tfl tO ID W CO O CO CO Cl CTJ Ol ft 0) CO CO *" co to co to m in in •* TJ« -^ *$ if CO CM Cl CJ T- Cl r- O O ft ft ft

r- - 0 0 c;

Cl O 10

(0 Cl < p

PI CO II)

0 C) cr

CM 01 to

CD

•7 0 CO Cl

co CO C)

CO cf CO

0 CO CO

10 Cl

0) 0 CJ

Cl 10 Cl

cf 00 CJ

0 0)

00 CO P"

01 p-

CO 00 0

CO in 0

CD uo 0

cr 0

CM 0

p> 0 0

uo in 01

c:

Cl in 01

0

Cl O) 01

0

CD c 0

cr CO 0

CO CO CO

UO C:

CO cf c

CD in 0

r~ CM c

cf

0

01 Cl 01

CO

cf m 01

CO

10 CJ CO

CO Cl OJ

CO M' CO

0 0 CO

tn l-

Cl Cl to

I- 00

1- CO t^

p> 01 1-

8 1-

0) 01 to

Cl Cl CD

t— 01 in

CO p- in

CO CO UI

CJ r~ in

0 01 cr

t- cf M-

CO CO cf

in t- co

CO cf C)

CO Cl CO

CO CO CO

G)

Cl

CD c- Cl

CO Cl Cl

p-

01-

UO c CJ

CJ c CJ

01 0 Cl

CO to P"

0 P) 0)

0

p- PO CO

p- 1—

0

1- 0 0

00 Oi O 01 01 OO CO O) Cl Ol Cl 00 0) 01 00 00 01 too 01 Cl 01 Ol O) C) C) O) 01 01 00 01 00 0 01 01 01 01

ui g :}B 'qxnq-Ajp 'Q0 ''diua^ •rjcy

cfl^ClOt-MiCOM'COOP-MitOCMcnOCOCnM'CMCCMtOCnCJCOcfeDlOMP-POr-COOl' CJt-ClU)^POI~lO(OCNNM'OClCOCtfOMit-CMi-CnP-CMPlp-0)CMP-inM"toc<lplCMP- CMCIClr-r-r-OOOO0101OO0101C)C0C0tOC0p-p-p-P*t^P-C0e000C0C000C0C0p-

c-ocoooooococioioooioioioooioioioioicicncioiooioioioioicici

ui gi ^B 'E/UI 'paads pux«

ui gi ^B 'qui 'ajnssajd jnodB/\

ui gi ^o 'xBrqjxA *30 ' •diuai '^oj

ui gi -JB 'qxnq-^aM '30 '•dtuaq -qtij

i^lOClr-cJioP-CMCOCOtoOlCMIOCOinCMtDOtOCOlOOOP-OPOtOCOCOr-CMr-P-COCMOl pit'CiPotooiinr-inocrcDeopii-cjoinpinooit-pmMPicooiNtiicotomto cocoocoiociOT-cniocfcnP-cociPiinciM,M*PicMcociintooicMtooocTiP-incor-oi

to" toi-cotDt-p-p-cocDcoinuoininoiototococotou)totototxil--p-p-P-P-p-p-toto

r_r_Cl»-P-r-0010COM,01tOC)l0 01p-p-M,tDCOr-CMc^ t-Plr-POmMllOinCJlOP-OltOMIr^COtOCMOOlOCMOOtOCOM^inoOP^OOOr- GoioienoicntftoitiicoPtiieococi>inioincf*'fpicfp)nc<)oip.ciPiMr.o GO Cl 01

toorrcip-CMtOM'P-o P- O) O O r- O p-

O O

(-1 0) O) O CO CO C. O) p" O CM CJ PI O Cl 1- CN CO r- CO CM f- r- tD OO r- CM M* O r- »- »- CM p- m O COininOllOt-r-P-CntOi-P-CJCOCMCI'r-OI-'P-tOM'CMP-tOt-PlM'COP-CDlOCMOCOCl' tOUllOWliOlOin^trtfilipinilfPlPHOPlrT-ri-r-OCrrrrrrrrrOO

(-;Clr-P0UlCMi-M*p-t0«0IOOPlu0OClCOP-CMCOOC0MlM,0JM,p-C0 01t0inin01int0 Pl^P10)eOr-l-t0t-P)t'OC0tOOCltO01inC0C0 00M,PlOCMMl0M,01OM,lDC)00tD oioioio)ei)o;w)«coeoppwi5ij)ininy,cfcfTji(op]pip)copicjNwricjT-ooo

cn co 0 o 01 00 cn 01 01 01 01 co Ci 00 01 00 01 o 01 01 en 01 en 00 oi cn 01 en 01 o» 01 01 01 01 01 00

91 3B 'qxnq-Xjp »30 '^1113-4 -qod

OCOCMUOCOi-inplcnr-UlllOCOM'tOi-IOCMt-OOPltDClt-OrOCMM'tOCOininoOCMp-tD P^bs^Qn,|Sl*no''^bSSSS2&£22SSr!!!!!5SSSS!Sn M* CO OO C) Cl CJ CM r- CM o o o 01 01 01 01 cn co 00 co co 01 oi 01 01 o cn 01 cn

OCOCOCOOOOOCOOOOOOOOtnOlOlOOOlOOOOlCTlOlClOOOlOlOlOlOlCl

B^nuxn

jmH

oooocoooooooo § in

cooooooooooopoooooooo orMntrioor-nnifBorCifi'jinornBijinoreipiiiiinortip)

OC)OOOCr-r-r-I-r-r-tNCMCMPlCMCMCOCOCOPlCOCOM«M'M"M,M'M'inininininin OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

cocococococococococDcotococococococoaitococooocoooeooicocooooocoooixocooo 0000000000000000000000 o- 0000000000000

Page 38: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

APPENDIX B

CALCULATED FLUXES

Time GMT

7/6/67

13

14

15

16

17

18

19

20

21

22

23

8/6/67

00

01

02

03

04

05

06

07

08

09

Sensible Latent Solar Momentum Heat Heat Radiation

Flux FluX Flux Flux

T H E S

g/(cm.s) cal/cm3 cal/cm2 cal/cm2

5380 4.3 2.9 35.4 6620 4.8 3.3 30.9 2630 2.0 1.3 25.2

1150 1.2 0.7 21.7

1460 1.2 0.6 12„0

1190 0.9 0.5 6.2

1350 0.8 0.6 1.2

2150 1.1 0.6 0.0

2980 1.4 0.5 0.0

4040 1.5 0.6 0.0

3420 1.4 0.5 0.0

3000 1.1 0.6 0.0

2970 1.0 0.5 0=0

2450 0.8 0. 1 0.8

2660 0.7 -0. 1 4.6

3580 0.8 -0.4 13-4

3820 0.9 -0.7 24.3

4330 0.8 -1.3 32.7

3950 0.8 -1.0 38.7

3770 1.0 -0.7 45-4

3940 1.1 -0.7 48.9

35

Page 39: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Sensible Latent Solar Time Momentum Heat Heat Radiation GMT Flux Flux Flux Flux

T H E S

• g/(cm.s) cal/cm2 cal/cm3 cal/cm2

8/6/67

10 5480 1.5 -0.9 47-6

11 6220 1.7 -1. 1 49-9

12 6660 1.9 -1.3 48.1

13 7330 2.3 -1.6 43.4

14 8350 2.6 -1.9 37.4

15 7300 2.4 -1.8 27.2

16 6550 2.2 -1.5 19.9

17 6390 2.5 -1.2 14-6

18 5730 2.3 -0.7 6.2

19 5710 2.2 -0.6 1. 1

20 4270 1.8 -0.4 0.0

21 4040 2.0 -0.7 0.0

22 3780 1-7 -0.5 0.0

23 3750 1.5 -0.6 0.0

9/6/67

00 3890 1.4 -0.7 0.0

01 4940 1.5 -0.6 0.0

02 5220 1.2 -0.9 1.8

03 4610 1.0 -0.8 7-1

04 4760 0.8 -0.9 16.3

05 4730 0.7 -0.9 24.8

06 3630 0.6 -0.8 32.5

07 3260 0.4 -1.2 39.6

08 3300 0.3 -1.6 42.0

09 3660 0.3 -1.9 46.6

10 4430 0.4 -2.5 50.9

11 3900 0.3 -3.0 50.7

12 4040 0.3 -2.6 48.2

13 4660 0.6 -2.3 43-3

14 5470 0.9 -2.6 37.7

15 7010 1.4 -3.0 32.3

36

Page 40: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Sensible Latent Solar Time Momentum Heat Heat Radiation GMT Flux Flux Flux Flux

T H E S

13/6/67 g/(cm•s) cal/cm2 cal/cm3 cal/cm3

06 1750 -0.2 -1.5 12.2

07 990 -0. 1 -1.2 17-8

08 610 -0. 1 -1.0 21.0

09 650 -0. 1 -1.0 32.7

10 450 -0.2 -0.8 27.4

11 430 -0. 1 -0.9 31.1

12 1340 -0.3 -1.2 27-9

13 1410 -0.4 -1.2 27. 1

H 980 -0.2 -0.9 21.4

15 1410 -0.3 -1. 1 16.3

16 1060 -0.2 -1. 1 9-1

17 750 -0. 1 -0.9 5.9

18 860 -0. 1 -1.0 3.6

19 810 -0. 1 -1.3 0.4

20 880 -0. 1 -1.6 0.2

21 1130 -0.2 -1.7 0.0

22 1290 -0.3 -1.8 0.0

23 1190 -0.3 -1.4 0.0

14/6/67

00 1120 -0.4 -1.3 0.0

01 710 -0.4 -1.0 0.0

02 580 -0.3 -0.8 0.6

03 630 -0.3 -0.7 3-7

04 970 -0.3 -0.8 11.7

05 870 -0.2 -1.0 22.6

06 730 -0.3 -1.0 27.4

07 710 -0.5 -1.3 35.7

08 1010 -0.6 -1-7 45-7

09 600 -0.6 -1.4 47-0

10 790 -0.8 -1.9 43.1

37

Page 41: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Time GMT

U/6/67

11

12

13

14

15

16

17

18

19

20

21

22

23

15/6/67

00

01

02

03

04

05

06

07

08

09

10

11

12

Sensible Latent Solar Momentum Heat Heat Radiation

Flux Flux Flux Flux

T H E S

g/(cm-s) cal/cm3 cal/cm2 cal/cm8

2470 -1.3 -1.8 19.7

2780 -0.4 -1.3 14.2

3080 -0.3 -1.3 5.7

3450 -0.3 -2.0 0.0

3320 -0.2 -2.8 0.0

3720 -0.3 -3.1 0.0

3400 -0.4 -3.0 0.0

3380 -0.4 -3.1 0.0

4200 -0.8 -2.8 0.0

4960 -0.9 -3.2 0.0

5740 -1.1 -3.6 0.9

4700 -0.9 -3.6 2.9

5260 -0.8 -3.3 6.0

(8980) (-1-1) (-3.9) (30.5)*

(5030) (-0.8) (-2.9) (36.3)*

Doubtful values

38

Page 42: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Time GMT

Momentum Flux

Sensible Heat Flux

Latent Heat Flux

Solar Radiation Flux

T H E S

15/6/67 g/(cm-s) cal/cm3 cal/cm8 cal/cm8

13 2930 -0.5 -2. 1 54.5

14 3200 -0.4 -2.0 43.2

15 4310 -0.5 -2.2 33.7

16 3560 -0.2 -1.9 23-5

17 3760 0.1 -1.8 16.8

18 4000 0.5 -1.7 4.2

19 3140 0.4 -1.2 0.3

20 1920 0.3 -0.6 0.2

21 2190 0.5 -0.5 0-0

22 1830 0.6 -0.4 0.0

23 2090 0.6 -0.4 0.0

16/6/67

00 2000 0.6 -0.4 0.0

01 1580 0.5 -0.3 0.1

02 1750 0.6 -0.2 1.8

03 2050 0.8 -0. 1 7.6

04 1870 0.6 -0.2 16.9

05 1710 0.5 -0.2 28.2

06 1990 0.5 -0.4 40.2

07 2140 0.5 -0.5 44-0

08 1920 0.6 -0.8 53.7

09 2260 0.6 -1. 1 58.2

10 1890 0.4 -1.1 60. 1

11 1610 0.3 -1.1 59.2

12 1920 0.4 -1.2 56.2

13 1760 0.5 -1.3 50.5

14 1900 0.5 -1.4 45-2

39

Page 43: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Time GMT

17/6/67

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

18/6/67

00

01

02

03

04

05

06

Sensible Latent Solar Momentum Heat Heat Radiation

Flux Flux Flux Flux

T H E S

g/(cm.s) cal/cm3 cal/cm2 cal/cm2

820 0.5 -0.7 28.7

1280 0.9 -0.6 48.2

1220 1.0 -0.9 53.7

1140 0.9 -0.7 53-5

1180 0.9 -0.4 56.3

1210 1.3 -0.2 40.8

1890 1.4 -0.4 35.5

1400 1. 1 -0. 1 28.9

1330 1. 1 -0.2 18.1

1930 1.6 -0. 1 11.1

I960 1.6 -0.2 6.6

1920 1.3 0.0 3.0

1930 0.8 0.0 0.7

1340 0.4 -0.2 0. 1

1040 0.1 -0.4 0.0

1160 0.0 -0.6 0.0

1030 0.0 -0.5 0.0

930 -0.4 -0.8 0.0

1740 -0.6 -0.6 0.0

2300 -0.8 -0.3 0.4

2180 -0.9 0.2 1.4

(5200) (0.3) (-2.7) (33.1)'!

Doubtful values

40

Page 44: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Sensible Latent Solar Time Momentum Heat Heat Radiation GMT Flux Flux Flux Flux

T H E S

18/6/67 g/(cm-s) cal/cm2 cal/cm3 cal/cm2

07

08 3780 -0. 1 1.0 53.1

09 4060 -0. 1 -2.6 56.0

10 3460 -0. 1 -3.9 59-0

11 2980 -0. 1 -3-9 59-1

12 2470 -0.3 -3.7 56.4

13 1830 -0. 1 -2.8 51.9

14 2130 -0.9 -4-5 44.9

15 2190 -1. 1 -4.5 36.4

16 2180 -1.4 -4.6 26.7

17 1280 -1.3 -4.3 16.6

18 920 -0.4 -2. 1 8.0

19 760 0.0 -1.4 1.6

20 660 0.3 -1.0 0.2

21 2600 0.5 -1.9 0-0

22 970 0.3 -0.9 0.0

23 1040 0.3 -1.0 0.0

19/6/67

00 420 0.2 -0.6 0.0

01 360 0.2 -0.5 0.0

02 580 0. 1 -0.5 1.2

03 1110 -0.3 -2.2 7-0

04 1000 -1.0 -3.9 16.2

05 750 -1.3 -4.7 26.4

06 720 -1.4 -4.8 36.4

07 920 -1.7 -6.0 45-5

08 560 -0.3 -2.6 52.9

09 840 0.2 -2.8 58.4

41

Page 45: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

Sensible Latent Solar Time Momentum Heat Heat Radiation GMT Flux Flux Flux Flux

T H E S

19/6/67 g/(cm.s) cal/cm2 cal/cm3 cal/cm3

10 630 0.0 -2.7 60.5

11 490 0.0 -2.5 60. 1

12 390 0.0 -2.4 57.1

13 430 0.0 -2.2 54-1

14 400 -0.2 -2.7 43.4

15 230 -0.2 -2.3 35.6

16 290 -0.4 -2.7 25.6

17 300 -0.4 -2.6 15.5

18 330 -0.4 -2.7 6.5

19 360 -0.4 -2.7 0.5

20 450 -0.4 -3.1 0-0

21 490 -0.3 -3.1 0.0

22 680 -0.4 -3.1 0.0

23 790 -0.4 -3.1 0.0

20/6/67

00 850 -0.5 -2.4 0.0

01 720 -0.4 -l.fi 0.0

02 1080 -0.4 -1.6 0. 2

03 930 -0.2 -1.4 6.5

04 680 -0. 1 -1.6 15.6

05 720 -0.2 -1.7 25 = 7 06 670 -0. 1 -1.4 35.6

07 550 0.0 -1.0 44.6

08 780 -0.3 -2. 1 52.0

09 790 -0.4 -3.0 57.2

10 960 -0.4 -3.7 59.6

11 880 -0.2 -3.6 59.8

12 770 -0.3 -3.9 55.3

13 500 -0.2 -3.3 51.5

14 420 -0.2 -2.8 44.2

15 160 -0. 1 -1.4 35.1

16 110 -0. 1 -1 .2 25.7

4.2

Page 46: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

SOLAR RADIATION FLUX (S)

10,000 g/(cm-s)

5000-

MOMENTUM FLUX (T)

-4

-6

cal/cm2

SENSIBLE HEAT FLUX (H)

LATENT HEAT FLUX (E)

-1 June 1967

0 4 8 12 16 20 0 4 8 12 '6 20 0 4 8 12 16 20 24 GMT

Time

43

Page 47: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

60

40

20-

cal/c SOLAR RADIATION FLUX (S)

\ y

10,000

.5,000

g/(cms)

MOMENTUM FLUX (T)

6

2

-4

/<= cal/c

SENSIBLE HEAT FLUX (H)

LATENT HEAT FLUX (E)

13 14 15 16 June 1967 1 • ' 1 ' ' 1 ' • 1 ' ' 1 ' ' 1 ' ' 1 ' ' 1 ' ' 1 0 4 8 12 16 20 0 4 8 12 '6 20 0 4 8 12 '<* 20 0 * 8 12 16 20 24 GMT

Time

44

Page 48: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

SOLAR RADIATION FLUX (S)

60 H

40

20-1

cal/cm2

10,000

5000

g/(cm-s)

MOMENTUM FLUX (T)

r^-^f

6- cal/cm2

4-

2-

^A . | SENSIBLE HEAT FLUX (H)

2-

V / . *-' i

'. A •

r » l

K "V^\ / \ j 4- \ \ ^

v^..

\\ LATENT HEAT FLUX (E) 6H

y

17 18 19 20 June 1967 -| 1 1 1 1 r 1 i 1 1 T 1 1 r 1 1 1 1 ! 1 1 1 i i [—

0 4 8 12 16 20 0 * 8 |2 I* 20 0 < 8 12 16 20 0 4 8 12 16 20 24 GMT

Time

45

Page 49: TECHNICAL REPORT NO. 125 · 2018-11-08 · TECHNICAL REPORT NO. 125 SACLANT ASW RESEARCH CENTRE Viale San Bartolomeo 400 I 19026 - La Spezia, Italy METEOROLOGICAL DATA OF THE MILOC-BALTIC

DISTRIBUTION

MINISTRIES OF DEFENCE

Copies Copies

SCNR for SACLANTCEN

MOD Belgium 5 MOD Canada 10 MOD Denmark 10 MOD France 8 MOD Germany 13 MOD Greece 11 MOD Italy 10 MOD Netherlands 10 MOD Norway 10 MOD Portugal 5 MOD Turkey 3 MOD U.K. 20 SECDEF U.S. 71

SCNR Belgium SCNR Canada SCNR Denmark SCNR Germany SCNR Greece SCNR Italy SCNR Netherlands SCNR Norway SCNR Turkey SCNR U.K. SCNR U.S.

NATIONAL LIAISON OFFICERS

NATO AUTHORITIES

SECGEN NATO 3 NATO Military Committee 2 SACLANT 3 SACEUR 3 CINCHAN SACLANTREPEUR COMNAVSOUTH CINCWESTLANT COMSUBEASTLANT COMCANLANT COMOCEANLANT COMEDCENT COMSUBACLANT COMSUBMED CDR Task Force 442

(via COMSTRIKFORSOUTH) COMMARAIRMED

NLO Italy NLO Portugal NLO U.K. NLO U.S.

NLR to SACLANT

NLR Belgium NLR Canada NLR Denmark NLR Germany NLR Greece NLR Italy NLR Norway NLR Portugal NLR Turkey NLR U.K.