tcu11_01ad

2
Cha pter 1 Additi ona l and Advanced Exe rci ses 71 Chapter 1 Additional and Advanced Exercises Functions and Graphs 1. The graph of ƒ is shown. Dra w the graph of each function. a. b. c. d. 2. A portion of the graph of a function defined on is shown. Complete the graph assuming that the function is a. even. b. odd. 3. Are the re two fu nctio ns ƒ and  g such that Give reasons for your answer. 4. Are there two functions ƒ and  g with the following property? The grap hs of ƒ and  g are not straight lines but the graph of is a straight line. Give reasons for your answer. 5. If ƒ(  x) is odd, can anything be said of What if ƒ is even instead? Gi ve reasons for your answe r. 6. If  g (  x) is an odd functi on defined for all val ues of  x, can anything  be said about  g (0)? Give reasons for your answer . 7. Graph the equation 8. Graph the equation Trigonometry In Exercises 9–14, ABC is an arbitrary triangle with sides a, b, and c opposite angles A, B, and C , respectively. 9. Find b if 10. Find sin B if 11. Find cos A if 12. Find c if a = 2, b = 3, C = p>4 . a = 2, b = 2, c = 3 . a = 4, b = 3, A = p>4 . a = 2 3, A = p>3, B = p>4 .  y + ƒ  y ƒ = x + ƒ  x ƒ . ƒ  x ƒ + ƒ  y ƒ = 1 + x .  g s  xd = ƒs  xd - 2? ƒ ؠ g ƒ ؠ g = g  ؠƒ ? –1  x  y 3 2 1 2 1 (1, –1) (3, 2) 0 [ - 3, 3]  x 1 –1  y  y = s  x - 2d - 2  y = - s  x + 1d + 1  y = - ƒs  xd  y = ƒs -  xd 13. Find sin B if 14. Find sin C if Derivations and Proofs 15. Prove the following identities. a. b. 16. Explain the following “proof without words” of the law of cosines. (Source: “Proof without Words: The Law of Cosines,” Sidney H. Kung,  Mathematics Magazine , Vol. 63, No. 5, Dec. 1990, p. 342.) 17. Show that the area of triangle ABC is given by 18. Show that the area of triangle ABC is given by where is the semiperimeter of the triangle. 19. Propertie s of inequalitie s If a and b are real numbers, we say that a is less than b and write if (and only if ) is  positive. Use this definition to prove the following prop erties of inequalities. If a, b, and c are real numbers, then: 1. 2. 3. and 4. and (Special case: ) a 6 b Q - b 6 - a c 6 0 Q bc 6 ac a 6 b c 7 0 Q ac 6 bc a 6 b a 6 b Q a - c 6 b - c a 6 b Q a + c 6 b + c b - a a 6 b  s = sa + b + cd>2 2  ss  s - ads  s - bds  s - cd  B  A C a b c s1>2dab sin C = s1>2dbc sin  A = s 1>2dca sin  B . a a a c b a Ϫ c 2a cos  Ϫ b 1 - cos  x 1 + cos  x = tan 2   x 2 1 - cos  x sin  x = sin  x 1 + cos  x a = 2, b = 4, c = 5 . a = 2, b = 3, c = 4 . Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

Transcript of tcu11_01ad

7/27/2019 tcu11_01ad

http://slidepdf.com/reader/full/tcu1101ad 1/2

Chapter 1 Additional and Advanced Exercises 71

Chapter 1 Additional and Advanced Exercises

Functions and Graphs1. The graph of ƒ is shown. Draw the graph of each function.

a. b.

c. d.

2. A portion of the graph of a function defined on is shown.

Complete the graph assuming that the function is

a. even. b. odd.

3. Are there two functions ƒ and  g such that Give

reasons for your answer.

4. Are there two functions ƒ and  g with the following property? The

graphs of ƒ and  g are not straight lines but the graph of is a

straight line. Give reasons for your answer.

5. If ƒ( x) is odd, can anything be said of What if 

ƒ is even instead? Give reasons for your answer.

6. If  g ( x) is an odd function defined for all values of  x, can anything be said about g (0)? Give reasons for your answer.

7. Graph the equation

8. Graph the equation

TrigonometryIn Exercises 9–14, ABC is an arbitrary triangle with sides a, b, and c

opposite angles A, B, and C , respectively.

9. Find b if 

10. Find sin B if 

11. Find cos A if 

12. Find c if a = 2, b = 3, C  = p>4.

a = 2, b = 2, c = 3.

a = 4, b = 3, A = p>4.

a = 2 3, A = p>3, B = p>4.

 y + ƒ y ƒ = x + ƒ x ƒ .

ƒ x ƒ + ƒ y ƒ = 1 + x .

 g s xd = ƒs xd - 2?

ƒ  g 

ƒ  g  = g  ƒ ?

–1

 x 

 y

321

2

1

(1, –1)

(3, 2)

0

[-3, 3]

 x 

1

–1

 y

 y = 3ƒs x - 2d - 2 y = -2ƒs x + 1d + 1

 y = -ƒs xd y = ƒs - xd

13. Find sin B if 

14. Find sin C if 

Derivations and Proofs15. Prove the following identities.

a.

b.

16. Explain the following “proof without words” of the law of 

cosines. (Source: “Proof without Words: The Law of Cosines,”

Sidney H. Kung,  Mathematics Magazine, Vol. 63, No. 5, Dec.

1990, p. 342.)

17. Show that the area of triangle ABC is given by

18. Show that the area of triangle ABC is given by

where is the

semiperimeter of the triangle.

19. Properties of inequalities If a and b are real numbers, we say

that a is less than b and write if (and only if ) is

 positive. Use this definition to prove the following properties of 

inequalities.

If a, b, and c are real numbers, then:

1.

2.

3. and 

4. and 

(Special case: )a 6 b Q  -b 6 -a

c 6 0 Q  bc 6 aca 6 b

c 7 0 Q  ac 6 bca 6 b

a 6 b Q  a - c 6 b - c

a 6 b Q  a + c 6 b + c

b - aa 6 b

 s = sa + b + cd>22  ss s - ads s - bds s - cd

 B A

ab

c

s1>2dab sin C  = s1>2dbc sin  A = s1>2dca sin  B .

a a

a

c b

aϪ c

2a cos  Ϫ b

1 - cos  x1 + cos  x = tan2  x

2

1 - cos  x

sin  x=

sin  x

1 + cos  x

a = 2, b = 4, c = 5.

a = 2, b = 3, c = 4.

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

7/27/2019 tcu11_01ad

http://slidepdf.com/reader/full/tcu1101ad 2/2

5.

6.

7.

20. Prove that the following inequalities hold for any real numbers a

and b.

a.

b.

Generalizing the triangle inequality Prove by mathematical in-

duction that the inequalities in Exercises 21 and 22 hold for any n realnumbers (Mathematical induction is reviewed in Ap-

 pendix 1.)

21.

22.

23. Show that if ƒ is both even and odd, then for every x in

the domain of ƒ.

24. a. Even-odd decompositions Let ƒ be a function whose do-

main is symmetric about the origin, that is, belongs to the

domain whenever  x does. Show that ƒ is the sum of an even

function and an odd function:

where E is an even function and O is an odd function. ( Hint:

Let Show that so

that E is even. Then show that is odd.)

b. Uniqueness Show that there is only one way to write ƒ as

the sum of an even and an odd function. ( Hint: One way is

given in part (a). If also where is

even and is odd, show that Then use

Exercise 23 to show that and )

Grapher Explorations—Effects of Parameters25. What happens to the graph of as

a. a changes while b and c remain fixed?

b. b changes (a and c fixed, )?

c. c changes (a and b fixed, )?

26. What happens to the graph of as

a. a changes while b and c remain fixed?

 y = as x + bd3 + c

a Z 0

a Z 0

 y = ax2 + bx + c

O = O1 . E  = E 1

 E  - E 1 = O1 - O .O1

 E 1

ƒs xd = E 1s xd + O

1s xd

O s xd = ƒs xd - E s xd

 E s - xd = E s xd , E s xd = sƒs xd + ƒs - xdd>2.

ƒs xd = E s xd + Os xd ,

- x

ƒs xd = 0

ƒ a1 + a2 + Á + an ƒ Ú ƒ a1 ƒ - ƒ a2 ƒ - Á - ƒ an ƒ

ƒ a1 + a2 + Á + an ƒ … ƒ a1 ƒ + ƒ a2 ƒ + Á + ƒ an ƒ

an .a2 , Á ,a1,

ƒ a - b ƒ Ú ƒ ƒ a ƒ -  ƒ b ƒ ƒ

ƒ a ƒ 6 ƒ b ƒ  if and only if a2 6 b2

a 6 b 6 0 Q  1

b6

1a

0 6 a 6 b Q  

1

b 6

1

a

a 7 0 Q  1a 7 0

b. b changes (a and c fixed, )?

c. c changes (a and b fixed, )?

27. Find all values of the slope of the line for which the x-intercept exceeds .

Geometry28. An object’s center of mass moves at a constant velocity along a

straight line past the origin. The accompanying figure shows the

coordinate system and the line of motion. The dots show positions

that are 1 sec apart. Why are the areas in the figure

all equal? As in Kepler’s equal area law (see Section 13.6), the

line that joins the object’s center of mass to the origin sweeps out

equal areas in equal times.

29. a. Find the slope of the line from the origin to the midpoint P , of 

side AB in the triangle in the accompanying figure

b. When is OP  perpendicular to AB?

 x 

 y

P

 B(0, b)

 A(a, 0)O

sa, b 7 0d .

 x 

 y

0 5 10 15

Kilometers

5

10

     K

     i     l    o    m    e    t    e    r    s

 A5

 A4

 A3

 A2

 A1

t  ϭ 6

t  ϭ 5

t  ϭ 1

t  ϭ 2

y⌬t 

y⌬t 

 A5 A2 , Á , A1,

y

1>2 y = mx + 2

a Z 0

a Z 0

72 Chapter 1: Preliminaries

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley