Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii [email protected] Boston...

38
Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii [email protected] Boston University reprints at: http://www.bu.edu/cab

Transcript of Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii [email protected] Boston...

Page 1: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Targeting duplex DNA:

strategies and applications

Maxim [email protected]

Boston Universityreprints at:

http://www.bu.edu/cab

Page 2: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .
Page 3: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

How can we sequence-

specifically target

the DNA duplex?

Page 4: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

H DNATriplex

Triplex Displaced strand

Displaced strand

1985

Page 5: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

base triads

Hoogsteen pairing

Watson-Crick pairing

Hoogsteen pairing

Watson-Crick pairing

Page 6: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

The DNA double helix

minor groove

major groove

Page 7: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Old-fashioned single-molecule experiment

JMB 1993 JMB 1993

Page 8: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PNA as a tool

for targeting duplex DNA

Page 9: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Peptide Nucleic Acid carries is the same bases as DNA (red), but

has a totally different protein-like backbone (blue)

PNA – A DNA Mimic with Unique Properties

N

N

N

N

NH2

N

N

O

NH2

OO

O

P

O

O O

O

O

P OO

DNA

N

O

NH

O NH

N

N

O

NH2

N

O

O

N

N

N

N

NH2

PNA

Nielsen et al. 1991

Page 10: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PNA features

Neutral backbone

Stronger and faster binding to nucleic acids

Strand invasion into duplex DNA

High sequence-specificity

No peptide no degradation by protease

No nucleic acid no degradation by nucleases

Page 11: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PNA/DNA duplexes are more stable than DNA/DNA duplexes

Page 12: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Peter Lansdorp (University of British Columbia, Canada)

FISH of telomeres using PNA

Page 13: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PNA FISH for bacterial detection

AdvanDx Inc. , Woburn, MA

Staphylococcus aureus (green)

Page 14: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PNA openersTriplex

InvasionDouble Duplex

Invasion

Pseudocomplementary

pcPNA any base

composition

Homopyrimidine PNA

Page 15: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

base triads

Hoogsteen pairing

Watson-Crick pairing

Hoogsteen pairing

Watson-Crick pairing

Page 16: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

A pair of pseudocomplementary PNAs (pcPNAs) invade into the DNA double helix in a

strictly sequence-specific manner

PNAS 2004

Page 17: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Triplex Invasion into Duplex DNA by PNA “Openers”

PNA “opener”: Two homopyrimidine PNA oligomers connected by a flexible linker (bis-

PNA)

Homopurine site within dsDNAdsDNA

Triplex Invasion Complex

“ P-loop “ H-Lys2-JJTJTJTT

H2N-Lys -CCTCTCTTlinker

Example:

Hoogsteen

pairingWatson-Crick

pairing

J bases eliminate pH dependence of triplex invasion

G

CJ

HN

O

N N

NN

R

H

N N

N

R

O

HH

H

H

HH

N

O

NN

R

H

H

H

J*G:C (pH7)C*G:C (pH5)

Hoogsteen

pairing

CC+

G

H

N

O

N

N+

R

HH

HN

O

N N

NN

R

H

N N

N

R

O

HH

H

H

H

H

H

Watson-Crick

pairing

+

++

Page 18: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Targeting duplex DNA through PD-loop

N=4-10

5' 3'

3' 5'

NH2COOH

PNA openers = 6-10

Two PNA openers are able to sequence-specifically hybridize to complementary target sites in duplex DNA DNA probe can hybridize to the displaced strand forming a stable complex

5' 3'

PD-loop

PNAS 1998

Page 19: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Capturing duplex DNA using PD-loop

Capturing a fragment from the entire yeast

genomePD-loop

PNAS 1998

Page 20: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Applications of PNA openers

Page 21: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

............... ............... ............... ..

............

................... ...............

PNA openers and some of their applications

dsDNA

bis-PNA openers

Locally open dsDNA

Hybridization of DNA or PNA beacon

.........

........... ............... ....

Q F

DNA detection

....

.... ........

.........

........... ............... ....

“Earring Probe”

Assembly of novel DNAstructures, DNA diagnostics

Hybridization/circularization of oligonucleotide

....

.... ........

DNA sequencing, Ligand Mapping

............

...................

... .. . ...“Artificial primosome”

Hybridization/extension of primer

... .. . ... ... .. . ...

homopyrimidine sequence

Page 22: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Molecular beacons

JACS 2002

Page 23: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

DNA polymerase pausing due to drug binding to dsDNA

Nascent DNA strand

PNA openers

DNA polymerase

ligand

JMB 2003

Page 24: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Mapping drug’s binding sites on dsDNA via artificial primosome

PNA I

PNA II

Page 25: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

DNA detection

using PNA openers

Page 26: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PD-loop as a tool

for detection of short signature sites

Page 27: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

New methods of DNA-based detection

AEM 2007

BMC 2007

Page 28: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Proof-of-principle studies on bacterial cells

chosen signature sites:

21-nt-target site in E.coli cold shock protein gene

GGAGAGAGACTCAAAAGAAGG

23-nt-target site in B.subtilis the phosphoglycerate dehydrogenase gene

GAAAAGAAACCCTTCAGAGGAAG

22-nt-target site in S.mutans the wall-associated protein gene

AAAAGAGGTATTTTAAGAGGAA

(PNA binding sites are underlined)

These sites are unique for each of the bacteria throughout the Bacterial Genomes Database

E.coli

B.subtilis

S.mutans

AEM 2007

Page 29: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Potential Application:Viral DNA Detection

Clinical specim entaken

DNA isolated & labeled

Barcode generated& analyzed

HSV-1HSV-2

VZV

Page 30: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Solid-state nanopore

NanoLetters 2010

Page 31: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

NanoLetters 2010

Page 32: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Duplex DNA labeling using nicking enzymes

NAR 2008

Page 33: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

PNA openersTriplex

InvasionDouble Duplex

Invasion

Pseudocomplementary

pcPNA any base

composition

Homopyrimidine PNA

Page 34: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

-PNA

ArtDNA 2010

Page 35: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Capturing duplex DNA using PD-loop

Capturing a fragment from the entire yeast

genomePD-loop

PNAS 1998

Page 36: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Affinity capture using -PNA:linear dsDNA

ArtDNA 2010

Page 37: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Affinity capture using -PNA:supercoiled DNA (scDNA)

ArtDNA 2010

Page 38: Targeting duplex DNA: strategies and applications Maxim Frank-Kamenetskii mfk@bu.edu Boston University reprints at: .

Acknowledgements• Boston University

• Irina Smolina

• Heiko Kuhn

• Nancy Miller

• Amit Meller and his group

• Harvard Medical School• Charles Lee

• US Genomics• Katya Protozanova

• Gary Jaworski

• Rhea Mahabir

• Copenhagen University• Peter Nielsen

• Carnegie Mellon University• Danith Ly

• Funding:

• Wallace H. Coulter Foundation.

• NIH