Taming the Electromagnetic Solenoid: Building a System That Achieves a Soft Landing Gary Bergstrom...

38
Taming the Electromagnetic Solenoid: Building a System That Achieves a Soft Landing Gary Bergstrom Magnesense

Transcript of Taming the Electromagnetic Solenoid: Building a System That Achieves a Soft Landing Gary Bergstrom...

Taming the Electromagnetic Solenoid: Building a System That Achieves a Soft Landing

Gary Bergstrom

Magnesense

Gary Bergstrom, Magnesense

Simplified valve

Gary Bergstrom, Magnesense

Flux in an E-core

Gary Bergstrom, Magnesense

Electrical

• Rtotal=Rdrive+Rsolenoid

• L is inductance of solenoid

• Rsolenoid is a function of temperature

• Inductance is a strong function of position

+

-Drive

Solenoid

L

Rsolenoid

Rdrive

Gary Bergstrom, Magnesense

Inductance vs. Position

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

meters

Hen

ries

Inductance

Gary Bergstrom, Magnesense

Mass, spring damper – mechanical model

x

m mass, Kgc damping coeffk spring coeff, N MF force, Nx displacement, Mx velocity, M/Sx acceleration, M/S^2

m is all moving mass, including part of springs

k is the net restoring force from all springsF is the net electromagnetic force from both stators

c is damping from mechanical friction and gas flow

x is displacement, symbolized by a pointer moving along scale

m x + c x + k x = Fk c

m

F

Gary Bergstrom, Magnesense

Force vs. Position, various flux densities

0

200

400

600

800

1000

1200

0.00000 0.00100 0.00200 0.00300 0.00400 0.00500 0.00600 0.00700 0.00800

gap in meters

forc

e in

N

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1.9

1.7

1.5

Gary Bergstrom, Magnesense

Force vs. Flux density, various gaps

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Flux density in T

Fo

rce

in N 0.00000

0.00117

0.00218

0.00400

gap

0.00000

0.00117

0.00218

0.00400

Gary Bergstrom, Magnesense

Flux summary

• Flux resists changes

• V=L*dI/dt only when:– x doesn’t change– no eddy current– no saturation

• Flux is the integral of inductive voltage

• Force goes as the square of flux and is a non-linear function of position

Gary Bergstrom, Magnesense

Excel spreadsheet of simulation

Gary Bergstrom, Magnesense

Voltage drive

• I=V/Rtotal

• if V=40V and Rtotal=.25 then I=160 Amps

• This can occur at saturation

• Power lost is I^2 * Rtotal so we want to minimize R

42V

Solenoid

Gary Bergstrom, Magnesense

Position, voltage and current

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00100 0.00200 0.00300 0.00400

0

5

10

15

20

25

30

35

40

45

position - x

voltage

I

Gary Bergstrom, Magnesense

Flux density and force

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

200

400

600

800

1000

1200

flux density

mag force

Gary Bergstrom, Magnesense

Voltage drive details

• Time is in seconds

• Position 4.5 mm to 0 mm (plot starts near “middle”)

• Voltage 0 to 40 volts

• Flux density in Teslas

• Force is in Newtons

• Flux must = ~1.65 T to hold in this example

• “bounce” was set to 70% of the incoming velocity (or ½ the energy)

• Flux goes as integral of applied inductive voltage

• Force is function of position and square of flux

Gary Bergstrom, Magnesense

Position, voltage and current

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00100 0.00200 0.00300 0.00400

0

5

10

15

20

25

30

35

40

45

position - x

voltage

I

Gary Bergstrom, Magnesense

Flux density and force

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

200

400

600

800

1000

1200

flux density

mag force

Gary Bergstrom, Magnesense

Position, voltage and current

85% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

0.00300

0.00350

0.00400

0

5

10

15

20

25

30

35

40

45

position - x

voltage

I

Gary Bergstrom, Magnesense

Position, voltage and current

75% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

position - x

voltage

I

Gary Bergstrom, Magnesense

Position, voltage and current 30V supply

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

position - x

voltage

I

Gary Bergstrom, Magnesense

Voltage drive summary

• Sensitive to changes in power supply

• Very prone to saturating core, but need to run close to saturation due to size considerations

• No good correlation between applied voltage and resulting force

• Cannot always achieve soft landing and holding flux level at same time with simple drive

• Landing time very sensitive to changes in initial energy

Gary Bergstrom, Magnesense

Current drive

• Rs (current sense) should be small (more I^2 * R loss)

• R1/R2 gain circuit is to reduce noise

• Diode must include both Solenoid and Rs in loop

R2R1

Solenoid

42V

Rs.01

Gary Bergstrom, Magnesense

Position, voltage and current

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Flux density and force

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350

0

200

400

600

800

1000

1200

B

mag force

Gary Bergstrom, Magnesense

Position, voltage and current

84% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Position, voltage and current

76% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Position, voltage and current 30V supply

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Current drive summary

• Not very sensitive to power supply changes

• Saturation is not as big a problem (current is limited, saturation still occurs)

• Unstable – the current changes in the opposite direction from what is needed for a soft landing

• Back EMF forces the current around in counter-intuitive ways

Gary Bergstrom, Magnesense

Flux drive

• Flux sensor needed

• This design uses full bridge drive

• More parts, more performance

Driver

OutIn Flux

Sensor

Flux

Solenoid

42V

Gary Bergstrom, Magnesense

Position, voltage and current

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Flux density and force

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

100

200

300

400

500

600

700

800

900

1000

B

mag force

Gary Bergstrom, Magnesense

Position, voltage and current

85% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Position, voltage and current

75% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Position, voltage and current 30V supply

80% energy

0.00000

0.00100

0.00200

0.00300

0.00400

0.00500

0.00600

0.00700

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400

0

5

10

15

20

25

30

35

40

45

X

voltage

I

Gary Bergstrom, Magnesense

Flux drive summary

• Less sensitive than voltage drive to changes in power supply

• Stable like voltage drive but without the saturation problem

• Flux, therefore force is known (if position is known)

• Allows position to be calculated since:x ~ current / flux

• Position PID loop can now be closed giving us closed loop position drive, with a well behaved open loop system

Gary Bergstrom, Magnesense

So how do we sense flux?

• Hall effect sensor

• Sense coil

• “Sensorless”

Gary Bergstrom, Magnesense

Hall effect sensor

Good points:

• Simple

• DC response

• Low cost

• Small

Bad points:

• Temperature (reliability)

• Some cost

• Extra wires

• Measurement position

Flux

5VHall

Gary Bergstrom, Magnesense

Sense coil

Good points:

• Simple circuit

• Rugged

• Low cost

• No temperature problems

Bad points:

• More parts

• Higher cost

• Takes up core area

• Extra wires

Flux

INT

Gary Bergstrom, Magnesense

“Sensorless”

Good points:

• No wires

• Reliable

• No size (at valve)

• Can be done in software

Bad points:

• Small temperature sensitivity

• Even more parts

• Difficult to develop

• Difficult to understand

Fluxexistingdrive

Rtotal

MULT

Rsense

INT