Talk1: Wavefunctionanalysistoolsforenergyandelectron transfer · F. Plasser Wavefunction analysis...

46
Intro Density Matrices DNA Conj. Poly. Talk 1: Wavefunction analysis tools for energy and electron transfer Felix Plasser Institute for Theoretical Chemistry, University of Vienna Helsinki, 18 December 2017 F. Plasser Wavefunction analysis tools 1 / 50

Transcript of Talk1: Wavefunctionanalysistoolsforenergyandelectron transfer · F. Plasser Wavefunction analysis...

  • Intro Density Matrices DNA Conj. Poly.

    Talk 1:Wavefunction analysis tools for energy and electron

    transfer

    Felix Plasser

    Institute for Theoretical Chemistry, University of Vienna

    Helsinki, 18 December 2017

    F. Plasser Wavefunction analysis tools 1 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Introduction

    I Excitation energy transfer? Where is the excitation- Localization on which chromophore- Delocalization

    I Electron transfer- Charge transfer excited-states- Partial charge transfer

    I Formal and practical questions

    F. Plasser Wavefunction analysis tools 2 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Goals

    GoalsI Formal definition of excited-state localization and charge transfer using- Ground-state wavefunction Ψ0- Excited-state wavefunction ΨI

    I Development of practical analysis methods

    F. Plasser Wavefunction analysis tools 3 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Outline

    1 Introduction

    2 Density Matrices

    3 DNA

    4 Conjugated Polymers

    F. Plasser Wavefunction analysis tools 4 / 50

  • Intro Density Matrices DNA Conj. Poly.

    DNA

    Photophysics of interacting nucleobases? What happens after DNA is excited by

    UV lightI Energy transfer1

    I Electron transfer and exciplex formation2

    Starting point: UV absorptionI Localized/delocalized excitationsI Charge transfer states

    1 D. Onidas, T. Gustavsson, E. Lazzarotto, D. Markovitsi PCCP 2007, 9, 5143.2 T. Takaya, C. Su, K. De La Harpe, C. E. Crespo-H., B. Kohler PNAS 2008, 105, 10285.

    F. Plasser Wavefunction analysis tools 6 / 50

  • Intro Density Matrices DNA Conj. Poly.

    DNA

    Polyadenine (single stranded)I Time-dependent density functional theory→ Excitation energiesI Multiscale QM/MM calculation- 8 nuclebases in the QM regionI GPU-based Terachem codeI 100 MD snapshots × 60 excited states

    / How do we analyze 6000 excited states?

    1 J. J. Nogueira, FP, L. González Chem. Sci. 2017, 8, 5682.F. Plasser Wavefunction analysis tools 7 / 50

  • Intro Density Matrices DNA Conj. Poly.

    DNA

    Leading configurationsI S1 state

    H-2 → L+1 (-0.70)H-2 → L (-0.47)H-2 → L+10 (0.29)

    I S2 stateH-2 → L+10 (-0.45)H-2 → L+1 (-0.40)H-2 → L+2 (0.35)

    / Tedious work/ Possible ambiguities

    Canonical orbitals

    HOMO L (LUMO)

    H-2 L+1

    L+2

    L+10

    F. Plasser Wavefunction analysis tools 8 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Motivation

    I Description of electronic excitations- Kohn-Sham orbitals- TDDFT response vector

    ? Physical meaning

    F. Plasser Wavefunction analysis tools 9 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Many-electron wavefunctions

    Starting point:

    Time-independent Schrödinger Equation

    ĤΨ0(x1, x2, . . .) = E0Ψ0(x1, x2, . . .)

    ĤΨI(x1, x2, . . .) = EIΨI(x1, x2, . . .)

    I How to describe the many-electron function Ψ0(x1, x2, . . .)?I How to discuss changes between Ψ0(x1, x2, . . .) and ΨI(x1, x2, . . .)?

    , Complexity reduction through reduced density matrices

    F. Plasser Wavefunction analysis tools 11 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Density Matrices

    Integrate out all the coordinates except for one

    1-Electron reduced density matrix (1DM)

    γ(x, x′) = n

    ∫. . .

    ∫Ψ(x, x2, . . . , xn)Ψ(x

    ′, x2, . . . , xn)dx2 . . . dxn

    1DM in second quantization

    Dµν = 〈Ψ| ↵âν |Ψ〉

    γ(x, x′) =∑µν

    Dµνχµ(x)χν(x′)

    γ(x, x′) Coordinate representation of the 1DMDpq Matrix representation of the 1DM

    χµ, χν Atomic orbitals↵, âν Creation and annihilation operators

    F. Plasser Wavefunction analysis tools 12 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Density Matrix

    Physical meaning

    Expectation value of a 1-electron operator

    〈Ψ| Ô1 |Ψ〉 = n∫. . .

    ∫Ψ(x1, x2, . . . , xn)Ô1Ψ(x1, x2, . . . , xn)dx1dx2 . . . dxn

    Dipole moment, angular momentum, kinetic energy, ...

    Using the 1DM

    〈Ψ| Ô1 |Ψ〉 =∑µν

    Dµν

    ∫χµ(x1)Ô1χν(x1)dx1

    I Many-electron integral reduced to a summation over 1-electron integralsI All wavefunction-specific information contained in the 1DM→ Logical starting point for wavefunction analysis

    F. Plasser Wavefunction analysis tools 13 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Electron Density

    Electron Density

    ρ(x) = γ(x, x)

    ρ(x) = n

    ∫. . .

    ∫Ψ(x, x2, . . . , xn)

    2dx2 . . . dxn

    I Description of the overall electron distribution

    Adenine

    Ground state nπ∗ state ππ∗(Lb) state ππ∗(La) state

    / Not really helpful ...

    F. Plasser Wavefunction analysis tools 14 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Difference Density Matrices

    Subtract the density matrices of the ground state and excited state

    1-Electron difference density matrix (1DDM)

    ∆0I = DII −D00

    Adenine

    nπ∗ state ππ∗(Lb) state ππ∗(La) state

    I Physical meaning: changes in one-electron properties during theexcitation

    / Still not very intuitive

    F. Plasser Wavefunction analysis tools 15 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Attachment/detachment analysis

    Natural difference orbitals

    DII −D00 = W × diag (κ1, κ2, . . .)×WT

    W Natural difference orbital coefficientsκi < 0 Detachment eigenvalues, diκi > 0 Attachment eigenvalues, ai

    I Weighted sum over all positive (negative) eigenvalues leads to theattachment (detachment) densities1

    1 M. Head-Gordon, A. M. Grana, D. Maurice, C. A. White J. Chem. Phys. 1995, 99, 14261.F. Plasser Wavefunction analysis tools 16 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Attachment/Detachment Densities

    Adenine, ADC(2)/cc-pVDZ

    ↑ ↑ ↑

    nπ∗ state ππ∗(Lb) state ππ∗(La) state

    F. Plasser Wavefunction analysis tools 17 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Transition Density Matrices

    Comparison of two wavefunctions Ψ0 and ΨI

    1-Electron transition density matrix (1TDM)

    γ0I(xh, xe) = n

    ∫. . .

    ∫Ψ0(xh, x2, . . . , xn)ΨI(xe, x2, . . . , xn)dx2 . . . dxn

    1TDM in second quantization

    D0Iµν = 〈Ψ0| ↵âν |ΨI〉

    γ0I(xh, xe) =∑µν

    D0Iµνχµ(xh)χν(xe)

    γ0I(xh, xe) Coordinate representation of the 1TDMD0Iµν Matrix representation of the 1TDM

    xh, xe Coordinates of the excitation hole and excited electron

    F. Plasser Wavefunction analysis tools 18 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Transition Density Matrices

    Electron/hole picture

    Ψ0(x1, x2, . . . , xn) ΨI(x1, x2, . . . , xn)

    I “Subtract” the ground state Ψ0(x1, x2, . . . , xn)

    Fermi vacuum γ0I(xh, xe)

    ! Still two effective particlesF. Plasser Wavefunction analysis tools 19 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Transition Density Matrix

    Physical meaning

    Transition property of a 1-electron operator

    〈Ψ0| Ô1 |ΨI〉 =∑µν

    D0Iµν 〈χµ| Ô1 |χν〉

    I Transition moments, oscillator strengthI Spin-orbit coupling (mean field approximation)

    I Interaction with lightI Coulomb coupling with other chromophores

    F. Plasser Wavefunction analysis tools 20 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Transition Density Matrix

    TDDFTI No wavefunctions → no 1TDMs→ Assignment problem of TDDFTI But: 1TDM can be reconstructed from the oscillator strength1

    → Use the following form in terms of the excitation Xia and de-excitation Yiaamplitudes2

    1TDM

    γ0I(xh, xe) =

    occ∑i

    virt∑a

    [Xiaφi(xh)φa(xe) + Yiaφa(xh)φi(xe)]

    1M. E. Casida (1995). In D. P. Chong (Ed.), Recent advances in density functional methods,Part I (pp. 155–192).

    2 S. A. Mewes, F. Plasser, A. Dreuw JCP 2015, 143, 171101.F. Plasser Wavefunction analysis tools 21 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Transition Density

    Transition Density

    ρ0I(x) = γ0I(x, x)

    Adenine

    nπ∗ state ππ∗(Lb) state ππ∗(La) stateI Physical meaning: transition moments→ Interaction with light→ Coulomb coupling for energy transfer/ No intuitive interpretation/ Disappears for charge transfer states

    F. Plasser Wavefunction analysis tools 22 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Natural Transition Orbitals

    Singular value decomposition of the 1TDM

    Natural transition orbitals

    D0I = U× diag(√

    λ1,√λ2, . . .

    )×VT

    U Hole orbital coefficientsλi Transition amplitudesV Electron orbital coefficients

    I Compact representation of the excitationI Independent description of hole and electronI Important for large systems, large basis sets etc.

    1 R. L. Martin J. Chem. Phys. 2003, 11, 4775.F. Plasser Wavefunction analysis tools 23 / 50

  • Intro Density Matrices DNA Conj. Poly.

    DNA

    Leading configurationsI S1 state

    H-2 → L+1 (-0.70)H-2 → L (-0.47)H-2 → L+10 (0.29)

    I S2 stateH-2 → L+10 (-0.45)H-2 → L+1 (-0.40)H-2 → L+2 (0.35)

    ? Are all these basesinvolved

    ? Are all these orbitalsinvolved

    Canonical orbitals

    HOMO L (LUMO)

    H-2 L+1

    L+2

    L+10

    F. Plasser Wavefunction analysis tools 25 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Natural Transition Orbitals

    I S1 state- Locally excited state (La)- Only one important configuration

    Hole Electron

    90%

    F. Plasser Wavefunction analysis tools 26 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Natural Transition Orbitals

    I S2 state- Locally excited state (Lb)- Two important configurations

    77%

    17%

    F. Plasser Wavefunction analysis tools 27 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Natural Transition Orbitals

    I S5 state- Delocalized state- One configuration for every involved base

    39%

    23%

    23%

    F. Plasser Wavefunction analysis tools 28 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Natural Transition Orbitals

    I S10 state- Charge transfer state

    77%

    10%

    F. Plasser Wavefunction analysis tools 29 / 50

  • Intro Density Matrices DNA Conj. Poly.

    DNA

    I Excited states in multichromophoric systems

    Locally excited

    state

    Charge-transfer

    stateFrenkel exciton

    (coupled local

    excitations)

    Where the excitation comes from - "hole"

    Where the excitation goes to - "electron"

    Charge resonance

    state

    (coupled CT states)

    I Connection between electron and hole decisive! 2-dimensional picture

    F. Plasser Wavefunction analysis tools 30 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Quantitative Description

    I 2-dimensional population analysis of the1TDM

    I Consider individual adenine moleculesA1, A2, A3, A4, ...

    I Locally excited contributions (diagonal)I CT contributions (off-diagonal)

    I Charge transfer numbers

    Transition density matrix

    A1

    A1

    A2 A3 A4

    A2

    A3

    A4

    Hole

    Electron

    CT

    CT

    1 FP, H. Lischka JCTC 2012, 8, 2777.2 FP, M. Wormit, A. Dreuw JCP 2014, 141, 024106.

    F. Plasser Wavefunction analysis tools 31 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Charge Transfer Numbers

    I Summation over squared 1TDM elements- For two nucleobases A and BI Correction for non-orthogonality of the AOs

    Charge transfer numbers

    ΩAB =1

    2

    ∑µ∈A

    ∑ν∈B

    [(D0IS

    )µν

    (SD0I

    )µν

    +D0Iµν(SD0IS

    )µν

    ]

    ΩAA Weight of local excitations on nucleobase AΩAB , A 6= B Amount of charge transfer from A to B

    I Result: small matrix- All local and CT contributions

    1 FP, H. Lischka JCTC 2012, 8, 2777.2 FP, M. Wormit, A. Dreuw JCP 2014, 141, 024106.

    F. Plasser Wavefunction analysis tools 32 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Charge Transfer Numbers

    S1 S2 S5 S10

    1 2 3 4 5 6 7 812345678

    1 2 3 4 5 6 7 812345678

    1 2 3 4 5 6 7 812345678

    1 2 3 4 5 6 7 812345678

    localized localized delocalized charge transferA4 A4 A1-A4 A4→ A3

    , Information about localization and CT encoded in a small matrix→ Use for statistical analysis

    F. Plasser Wavefunction analysis tools 33 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Statistical Analysis

    Charge transfer character

    CT = Ω−1∑B 6=A

    ΩAB Ω =∑A,B

    ΩAB

    CT=0 Locally excited state or Frenkel excitonCT=1 Charge transfer or charge resonance state

    F. Plasser Wavefunction analysis tools 34 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Statistical Analysis

    I Delocalization length? How many fragments contribute to the excitation→ Count the number of non-vanishing ΩAB values

    F. Plasser Wavefunction analysis tools 35 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Statistical Analysis

    I Counting non-vanishing values

    {ni} = {1

    k,

    1

    k, . . . ,

    1

    k︸ ︷︷ ︸k

    , 0 . . . , 0}∑i

    ni = 1

    ? What is k

    Participation ratio

    PR =1∑i n

    2i

    I Insert

    PR =1∑ki=1

    1k2

    =1

    k 1k2= k

    F. Plasser Wavefunction analysis tools 36 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Statistical Analysis

    Delocalization Length

    DL =Ω2∑

    A

    (∑B

    ΩAB+ΩBA2

    )2DL=1 Locally excited state (only one molecule involved)DL>1 Delocalized exciton or charge transfer state

    F. Plasser Wavefunction analysis tools 37 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Charge Transfer Numbers

    S1 S2 S5 S10

    1 2 3 4 5 6 7 812345678

    1 2 3 4 5 6 7 812345678

    1 2 3 4 5 6 7 812345678

    1 2 3 4 5 6 7 812345678

    localized localized delocalized charge transferA4 A4 A1-A4 A4→ A3

    CT = 0.13 CT = 0.16 CT = 0.05 CT = 0.65DL = 1.27 DL = 1.31 DL = 3.46 DL = 2.30

    I Always mixed character- Qualitative analysis does not tell the whole truth

    F. Plasser Wavefunction analysis tools 38 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Polyadenine

    Delocalization length (DL)

    I Decomposition of the spectrum- Analysis of 6000 excited states

    I Main contribution: DL=2- Nearest neighbor interactionsI Additionally: DL=1, DL=3I No significant contributions > 4

    1 J. J. Nogueira, FP, L. González Chem. Sci. 2017, 8, 5682.F. Plasser Wavefunction analysis tools 39 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Polyadenine

    Charge transfer (CT)

    I Local and Frenkel exciton states(CT< 0.1)

    → 51% of the spectral intensity→ CT admixture for remaining

    states

    I States with significant CTcharacter (CT> 0.3)

    → Low intensity, high energies

    1 J. J. Nogueira, FP, L. González Chem. Sci. 2017, 8, 5682.F. Plasser Wavefunction analysis tools 40 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Conjugated Polymers

    I Poly(para phenylene vinylene)I ADC(2)/SV(P)I Cut into pieces (formally)

    → Same analysis as before

    1 A. Panda, FP, A. J. A. Aquino, I. Burghardt, H. Lischka JPCA 2013, 117, 2181.2 S. A. Mewes, J.-M. Mewes, A. Dreuw, FP PCCP 2016, 18,2548.

    F. Plasser Wavefunction analysis tools 42 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Exciton Analysis

    Wannier excitonsI Hydrogen atom in a boxI Particle-in-a-box statesI Hydrogenic states

    F. Plasser Wavefunction analysis tools 43 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Exciton Analysis

    Wannier excitons - singlet

    11Bu - W(1,1) 21Ag - W(1,2) 2

    1Bu - W(1,3) 31Ag - W(1,4) 7

    1Bu - W(1,5) 101Ag - W(1,6)

    41Ag - W(2,1) 31Bu - W(2,2) 8

    1Ag - W(2,3) 91Bu - W(2,4) 11

    1Ag - W(2,5)

    101Bu - W(3,1)

    Singlet

    13Bu - W(1,1) 33Ag - W(1,6)

    43Bu - W(1,7)

    93Bu - W(2,2)

    Triplet

    13Ag - W(1,2)

    43Ag - W(1,8)

    23Ag - W(1,4) 33Bu - W(1,5) 2

    3Bu - W(1,3)

    53Ag - W(2,1)

    63Ag - W(1,10) 53Bu - W(1,9)

    F. Plasser Wavefunction analysis tools 44 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Exciton Analysis

    Wannier excitons - triplet

    11Bu - W(1,1) 21Ag - W(1,2) 2

    1Bu - W(1,3) 31Ag - W(1,4) 7

    1Bu - W(1,5) 101Ag - W(1,6)

    41Ag - W(2,1) 31Bu - W(2,2) 8

    1Ag - W(2,3) 91Bu - W(2,4) 11

    1Ag - W(2,5)

    101Bu - W(3,1)

    Singlet

    13Bu - W(1,1) 33Ag - W(1,6)

    43Bu - W(1,7)

    93Bu - W(2,2)

    Triplet

    13Ag - W(1,2)

    43Ag - W(1,8)

    23Ag - W(1,4) 33Bu - W(1,5) 2

    3Bu - W(1,3)

    53Ag - W(2,1)

    63Ag - W(1,10) 53Bu - W(1,9)

    F. Plasser Wavefunction analysis tools 45 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Conjugated Polymers

    Problems with this analysis

    I Results depend on fragmentation scheme chosen

    I Plots have to be inspected manuallyI Can we do better?

    F. Plasser Wavefunction analysis tools 46 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Transition Density Matrix

    I Coordinate representation of the 1TDM

    1-Electron transition density matrix (1TDM)

    γ0I(xh, xe) = n

    ∫. . .

    ∫Ψ0(xh, x2, . . . , xn)ΨI(xe, x2, . . . , xn)dx2 . . . dxn

    γ0I(xh, xe) Coordinate representation of the 1TDMxh, xe Coordinates of the excitation hole and excited electron

    1TDM in second quantization

    γ0I(xh, xe) =∑µν

    D0Iµνχµ(xh)χν(xe)

    D0Iµν Matrix representation of the 1TDM

    F. Plasser Wavefunction analysis tools 47 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Exciton Analysis

    Exciton analysisI Interpret the 1TDM as the wavefunction χexc of the electron-hole pairI Use as a basis for analysis

    Exciton wavefunction

    χexc(xh, xe) =∑µν

    D0Iµνχµ(xh)χν(xe)

    Operator expectation value 〈Ô〉

    =〈χexc| Ô |χexc〉〈χexc|χexc〉

    → Evaluate using analytic integration techniques.

    1 S. A. Bäppler, FP, M. Wormit, A. Dreuw Phys. Rev. A 2014, 90, 052521.F. Plasser Wavefunction analysis tools 48 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Exciton Analysis

    Exciton size

    Exciton size

    dexc2 =

    〈(re − rh)2

    〉I Average separation of the electron and hole quasi-particlesI Static and dynamic charge transfer effectsI No fragment definition requiredI Evaluation through multipole AO integrals

    1 S. A. Bäppler, FP, M. Wormit, A. Dreuw Phys. Rev. A 2014, 90, 052521.F. Plasser Wavefunction analysis tools 49 / 50

  • Intro Density Matrices DNA Conj. Poly.

    Conjugated Polymers

    I Exciton size / excitation energy- 20 singlet and 20 triplet statescompressed into one plot

    I Formation of different Wannierexciton bands

    I Clustered Frenkel excitonsI Comparison with size of the

    molecule

    F. Plasser Wavefunction analysis tools 50 / 50

    IntroductionDensity MatricesDNAConjugated Polymers