T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P...

21
Semiconductor photonic-crystal structures: Optical spectra and carrier dynamics T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material Sciences Center, Philipps-University Marburg, Germany

Transcript of T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P...

Page 1: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Semiconductor photonic-crystal structures: Optical spectra and carrier dynamics

T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P. Thomas, and S.W. Koch

Department of Physics and Material Sciences Center,Philipps-University Marburg, Germany

Page 2: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Photonic crystals and semiconductorsPhotonic crystals

• 1D, 2D, 3D

• photonic bandstructure

• light propagation,nonlinearities, …

• interaction with atomicoptical resonances= level systems

Semiconductors and heterostructures

• bulk and quantum wells, wires, dots

• electronic bandstructure andconfinement

• Coulomb interaction important for optical properties (excitons, etc.)

• level systems not adequate,instead many-body theory required

quantum well

Page 3: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Outline

Theoretical description of semiconductor optics

Influence of modified transverse fields

• consequences of inhibited spontaneous emission

• changes of exciton statistics and photoluminescence

Influence of modified longitudinal fields

• spatially inhomogeneous band gap, exciton binding energy,and carrier occupations

• wave packet dynamics

• lasing of spatially inhomogeneous structure

Page 4: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

-

--

Interband-Polarisation

k

E c

v

++

Lichtfeld

- - -

light field

Interband polarization

Electron-hole attraction⇒ hydrogenic series of

exciton resonancesbelow band gap

Photoexcited semiconductors

energy

Page 5: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Theoretical description of semiconductor optics

many-particleinteraction

Vq

interband excitationk

E c

v

minimal Hamiltonian

single-particle states

Coulomb interaction introduces many-body problem⇒ Consistent approximations required: Hartree-Fock,

second Born, cluster expansion, ...

cv

.

Page 6: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Equations of motion and light-matter interaction

• Maxwell equation

• semiclassical equations of motion for material excitations(density matrix): semiconductor Bloch equations

• material response described by

and similar equations for carrier occupations and

=Coulomb renormalization scattering

andcorrelations

phase space filling

Page 7: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Theoretical description of semiconductor optics

• classical light field:

semiconductor Bloch equations + Maxwell’s equations

• quantized light field (required for consistent description of luminescence):

semiconductor luminescence equations= coupled dynamics of material and light-field modes

including photon-assisted density matrices

⇒ Consistent solution of coupled dynamics of light and material system

Page 8: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Influence of transverse fields on semiconductor optics

Exciton resonance lies in a photonic band gap

Tra

nsm

issi

on Absorption

Energy

Model study of exciton formation after injection ofthermal electrons and holes in the bands:

Quantum wire in a photonic crystal.

Lowest exciton level lies inside photonic band gap (modeled by reduced recombination).

Solution of semiconductor luminescence equations.

Page 9: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Exciton distribution in quantum wire

• T = 10 K, strong vs. weak recombination(free space) (1/100 due to photonic band-gap)

• strong depletion of q = 0 excitons in free space• overall shape NOT Bose-Einstein distribution• resulting influence on photoluminescence

Phys. Rev. Lett. 87, 176401 (2001)

Page 10: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Influence of longitudinal fields on semiconductor optics

generalized Coulomb gauge generalized Poisson equation

generalized Coulomb potential VC

solution for piecewise constant ε(r)

J. Opt. Soc. Am. B 19, 2292 (2002)

⇒ near a periodically structured dielectricthe Coulomb potential varies periodically in space

Page 11: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

• 2D photonic crystal (air cylinderssurrounded by dielectric medium)

• cap layer• semiconductor quantum well

Model system

• ellipsoidal shape ofcylinder bottom

Page 12: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

• position-dependent band gap:biggest increase underneath center of the air cylinders

Corrections due to generalized Coulomb potential

• position-dependent electron-hole attraction: strongest underneathcenter of the air cylinders

Page 13: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Spectrally selective excitation

-4 -2 0 2 40.0

0.2

0.4

0.6

Im χ

(arb

.uni

ts)

E-Egap

(EB)

phys. stat. sol. (b) 238, 439 (2003)

⇒ spatially-inhomogeneous carrier occupations excited by spectrally-narrow andspatially-homogeneous pulses

Page 14: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Coherent wave packet dynamics

Spectrally selective excitation of quantum wire

-10 -5 0 5 10

15

10

5

0

position (a )

time

(ps)

position (a ) position (a ) -10 -5 0 5 10 -10 -5 0 5 10

B B B

⇒ spatially inhomogeneous carrier occupations evolve in timedue to wave packet dynamics

lowest intermediate highest exciton

Page 15: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Incoherent processes: Dephasing and relaxation

Excitation at highest exciton. Carrier relaxation modeled by thermalization time T1. (T=50K)

coherent dynamics T1 = 4ps T1 = 2ps

⇒ in quasi equilibrium carriers accumulate in between the air cylinders

-10 -5 0 5 10

15

10

5

0

position (a )

time

(ps)

position (a ) position (a ) -10 -5 0 5 10 -10 -5 0 5 10

B B B

Page 16: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Semiconductor lasers

⇒ gain spectra of semiconductorheterostructures, e.g., quantumwells, can be quantitativelydescribed using many-body theory

⇒ hybrid semiconductor photonic-crystals laser structures have been fabricated

Noda, et al., Science 293, 1123 (2001)

see, e.g., J. Optics B 3, 29 (2001)

• photonic crystal next to quantum well

• injection pumped laser structure

Page 17: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Quasi-equilibrium carrier occupations

carrier ocupations for quantum wire close to photonic crystal at T=20K

electron distribution hole distribution

⇒ electrons and holes avoid positions underneath air cylinders

-10 -5 0 5 100.00

0.01

0.02

0.03

-10 -5 0 5 100.00

0.01

0.02

0.03

position (aB)

n = 0.06 0.12 0.18 0.24

position (aB)

Page 18: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Influence of spatial inhomogeneity on absorption/gain spectra

bare quantum wire quantum wire close to photonic crystal

⇒ characteristic changes of lineshapeand gain at slightly lower total density due to spatially-inhomogeneous carrier occupations

quasi-equilibrium absorption for different carrier densities at T=20K

-6 -4 -2 0

0

30

60

90

120

-6 -4 -2 0

0

30

60

90

120

Im χ

(arb

. uni

ts)

E-Egap

(EB)

n = 0 n = 0.10 n

0

n = 0.20 n0

n = 0.23 n0

n = 0.24 n0

E-Egap

(EB)

Page 19: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Spatially-resolved absorption/gain spectra

underneath air cylinder (low density) in between air cylinders (high density)

⇒ due to the space-dependent densitysome regions are absorbingwhereas others show gain

-6 -4 -2 0

-2

0

2

4

6

-6 -4 -2 0

-2

0

2

4

6

E-Egap

(EB)

n=0 0.04 n

0

0.08 n0

0.12 n0

Im χ

(ar

b. u

nits

)

E-Egap

(EB)

Page 20: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Summary

Due to inhibited spontaneous emission a photonic band gap strongly influences material properties

• exciton formation and statistics, and photoluminescence

Coulomb interaction is altered near a photonic crystal

• spatially-varying band gap and exciton binding energy

• wave packet dynamics

• spatially-inhomogeneous quasi-equilibrium carrier occupations

• lasing of spatially-inhomogeneous structure

Page 21: T. Meier, B. Pasenow, R. Eichmann, T. Stroucken, P ...groups.uni-paderborn.de/wehrspohn/phocs/projekte/main/...T. Stroucken, P. Thomas, and S.W. Koch Department of Physics and Material

Acknowledgments

Schwerpunktprogramm “Photonische Kristalle”

Heisenberg fellowship (TM)

cpu-time on parallelsupercomputer

Interdisciplinary Research Center Optodynamics