systematic review of the frog family hylidae, with special reference to ...

240
SYSTEMATIC REVIEW OF THE FROG FAMILY HYLIDAE, WITH SPECIAL REFERENCE TO HYLINAE: PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION JULIA ´ N FAIVOVICH Division of Vertebrate Zoology (Herpetology), American Museum of Natural History Department of Ecology, Evolution, and Environmental Biology (E3B) Columbia University, New York, NY ([email protected]) CE ´ LIO F.B. HADDAD Departamento de Zoologia, Instituto de Biocie ˆncias, Unversidade Estadual Paulista, C.P. 199 13506-900 Rio Claro, Sa ˜o Paulo, Brazil ([email protected]) PAULO C.A. GARCIA Universidade de Mogi das Cruzes, A ´ rea de Cie ˆncias da Sau ´de Curso de Biologia, Rua Ca ˆndido Xavier de Almeida e Souza 200 08780-911 Mogi das Cruzes, Sa ˜o Paulo, Brazil and Museu de Zoologia, Universidade de Sa ˜o Paulo, Sa ˜o Paulo, Brazil ([email protected]) DARREL R. FROST Division of Vertebrate Zoology (Herpetology), American Museum of Natural History ([email protected]) JONATHAN A. CAMPBELL Department of Biology, The University of Texas at Arlington Arlington, Texas 76019 ([email protected]) WARD C. WHEELER Division of Invertebrate Zoology, American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 294, 240 pp., 16 figures, 2 tables, 5 appendices Issued June 24, 2005 Copyright q American Museum of Natural History 2005 ISSN 0003-0090

Transcript of systematic review of the frog family hylidae, with special reference to ...

Page 1: systematic review of the frog family hylidae, with special reference to ...

SYSTEMATIC REVIEW OF THE FROG

FAMILY HYLIDAE, WITH SPECIAL

REFERENCE TO HYLINAE:

PHYLOGENETIC ANALYSIS AND

TAXONOMIC REVISION

JULIAN FAIVOVICHDivision of Vertebrate Zoology (Herpetology), American Museum of Natural History

Department of Ecology, Evolution, and Environmental Biology (E3B)Columbia University, New York, NY

([email protected])

CELIO F.B. HADDADDepartamento de Zoologia, Instituto de Biociencias, Unversidade Estadual Paulista, C.P. 199

13506-900 Rio Claro, Sao Paulo, Brazil([email protected])

PAULO C.A. GARCIAUniversidade de Mogi das Cruzes, Area de Ciencias da Saude

Curso de Biologia, Rua Candido Xavier de Almeida e Souza 20008780-911 Mogi das Cruzes, Sao Paulo, Brazil

and Museu de Zoologia, Universidade de Sao Paulo, Sao Paulo, Brazil([email protected])

DARREL R. FROSTDivision of Vertebrate Zoology (Herpetology), American Museum of Natural History

([email protected])

JONATHAN A. CAMPBELLDepartment of Biology, The University of Texas at Arlington

Arlington, Texas 76019([email protected])

WARD C. WHEELERDivision of Invertebrate Zoology, American Museum of Natural History

([email protected])

BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY

CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024

Number 294, 240 pp., 16 figures, 2 tables, 5 appendices

Issued June 24, 2005

Copyright q American Museum of Natural History 2005 ISSN 0003-0090

Page 2: systematic review of the frog family hylidae, with special reference to ...

2

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Taxon Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Outgroup Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Basal Neobatrachians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Ranoidea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Hyloidea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

The Ingroup: Hylidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Hemiphractinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Pelodryadinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Phyllomedusinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Hylinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Gladiator Frogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Andean Stream-Breeding Hyla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26The 30-Chromosome Hyla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Middle American/Holarctic Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Casque-Headed Frogs and Related Genera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Species and Species Groups of Hyla Not Associated with Other Clades . . . . . 40Other Genera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Character Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Gene Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43DNA Isolation and Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Da Silva’s (1998) Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Phylogenetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Major Patterns of Relationships of Hylidae and Outgroups . . . . . . . . . . . . . . . . . . . . . . . 49Pelodryadinae and Phyllomedusinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Pelodryadinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Phyllomedusinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Major Patterns of Relationships Within Hylinae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54South American I Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Andean Stream-Breeding Hyla and the Tepuian Clade . . . . . . . . . . . . . . . . . . . . . . . 57Gladiator Frogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Atlantic/Cerrado Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Green Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60True Gladiator Frog Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

South American II Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Relationships of Scinax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Lysapsus, Pseudis, and Scarthyla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Sphaenorhynchus, Xenohyla, and the 30-Chromosome Hyla . . . . . . . . . . . . . . . . . . 63

Middle American/Holarctic Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Lower Central American Lineage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Real Hyla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

South American/West Indian Casque-Headed Frogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Taxonomic Conclusions: A New Taxonomy of Hylinae and Phyllomedusinae . . . . . . . . . 74

Hylinae Rafinesque, 1815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Page 3: systematic review of the frog family hylidae, with special reference to ...

2005 3FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Cophomantini Hoffmann, 1878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Aplastodiscus A. Lutz in B. Lutz, 1950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Aplastodiscus albofrenatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Aplastodiscus albosignatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Aplastodiscus perviridis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bokermannohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Bokermannohyla circumdata Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Bokermannohyla claresignata Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Bokermannohyla martinsi Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Bokermannohyla pseudopseudis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Hyloscirtus Peters, 1882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Hyloscirtus armatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Hyloscirtus bogotensis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Hyloscirtus larinopygion Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Hypsiboas Wagler, 1830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Hypsiboas albopunctatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Hypsiboas benitezi Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Hypsiboas faber Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Hypsiboas pellucens Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Hypsiboas pulchellus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87Hypsiboas punctatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Hypsiboas semilineatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Species of Hypsiboas Unassigned to Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Myersiohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Dendropsophini Fitzinger, 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Dendropsophus Fitzinger, 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Dendropsophus columbianus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Dendropsophus garagoensis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Dendropsophus labialis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Dendropsophus leucophyllatus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Dendropsophus marmoratus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Dendropsophus microcephalus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Dendropsophus minimus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Dendropsophus minutus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Dendropsophus parviceps Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Species of Dendropsophus Unassigned to Group . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Lysapsus Cope, 1862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Pseudis Wagler, 1830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Scarthyla Duellman and de Sa, 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Scinax Wagler, 1830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Scinax catharinae Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Scinax ruber Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Sphaenorhynchus Tschudi, 1838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Xenohyla Izecksohn, 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Hylini Rafinesque, 1815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Acris Dumeril and Bibron, 1841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Anotheca Smith, 1939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Bromeliohyla new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Charadrahyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Duellmanohyla Campbell and Smith, 1992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Ecnomiohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Exerodonta Brocchi, 1879 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Exerodonta sumichrasti Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Page 4: systematic review of the frog family hylidae, with special reference to ...

4 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Species of Exerodonta Unassigned to Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Hyla Laurenti, 1768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Hyla arborea Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Hyla cinerea Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Hyla eximia Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Hyla versicolor Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Species of Hyla Unassigned to Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Isthmohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Isthmohyla pictipes Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Isthmohyla pseudopuma Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Megastomatohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Plectrohyla Brocchi, 1877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Plectrohyla bistincta Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Plectrohyla guatemalensis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Pseudacris Fitzinger, 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Pseudacris crucifer Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Pseudacris ornata Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Pseudacris nigrita Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Pseudacris regilla Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Ptychohyla Taylor, 1944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Smilisca Cope, 1865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Tlalocohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Triprion Cope, 1866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Lophiohylini Miranda-Ribeiro, 1926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Aparasphenodon Miranda-Ribeiro, 1920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Argenteohyla Trueb, 1970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Corythomantis Boulenger, 1896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Itapotihyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Nyctimantis Boulenger, 1882 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Osteocephalus Steindachner, 1862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Osteopilus Fitzinger, 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Phyllodytes Wagler, 1830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Phyllodytes auratus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Phyllodytes luteolus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Phyllodytes tuberculosus Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Species of Phyllodytes Unassigned to Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Tepuihyla Ayarzaguena and Senaris, ‘‘1992’’ [1993] . . . . . . . . . . . . . . . . . . . . . . . . 110Trachycephalus Tschudi, 1838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Incertae Sedis and Nomina Dubia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Phyllomedusinae Gunther, 1858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Agalychnis Cope, 1864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Cruziohyla, new genus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Hylomantis Peters, ‘‘1872’’ [1873] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Hylomantis aspera Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Hylomantis buckleyi Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Pachymedusa Duellman, 1968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Phasmahyla Cruz, 1990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Phrynomedusa Miranda-Ribeiro, 1923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Phyllomedusa Wagler, 1830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Phyllomedusa burmeisteri Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Phyllomedusa hypochondrialis Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Phyllomedusa perinesos Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Phyllomedusa tarsius Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Page 5: systematic review of the frog family hylidae, with special reference to ...

2005 5FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Species of Phyllomedusa Unassigned to Group . . . . . . . . . . . . . . . . . . . . . . . . . . 118Biogeographic Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Relationships Between Australia and South America . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118Relationships Between South and Middle America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118South America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Guayana Highlands–Andes–Atlantic Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Guayana Highlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Impact of the Andes in Hyline Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Atlantic Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Origin of West Indian Hylids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Middle America and the Holarctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124A Rough Temporal Framework: Clues from the Hylid Fossil Record . . . . . . . . . . . . . 125Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Appendix 1: Summary of Taxonomic Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152Appendix 2: Locality Data and GenBank Accessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174Appendix 3: Morphological Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200Appendix 4: Additional Comments on Some Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202Appendix 5: List of Molecular Synapomorphies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Note added in proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Page 6: systematic review of the frog family hylidae, with special reference to ...

6

ABSTRACT

Hylidae is a large family of American, Australopapuan, and temperate Eurasian treefrogsof approximately 870 known species, divided among four subfamilies. Although some groupsof Hylidae have been addressed phylogenetically, a comprehensive phylogenetic analysis hasnever been presented.

The first goal of this paper is to review the current state of hylid systematics. We focus onthe very large subfamily Hylinae (590 species), evaluate the monophyly of named taxa, andexamine the evidential basis of the existing taxonomy. The second objective is to perform aphylogenetic analysis using mostly DNA sequence data in order to (1) test the monophyly ofthe Hylidae; (2) determine its constituent taxa, with special attention to the genera and speciesgroups which form the subfamily Hylinae, and c) propose a new, monophyletic taxonomyconsistent with the hypothesized relationships.

We present a phylogenetic analysis of hylid frogs based on 276 terminals, including 228hylids and 48 outgroup taxa. Included are exemplars of all but 1 of the 41 genera of Hylidae(of all four nominal subfamilies) and 39 of the 41 currently recognized species groups of thespecies-rich genus Hyla. The included taxa allowed us to test the monophyly of 24 of the 35nonmonotypic genera and 25 species groups of Hyla. The phylogenetic analysis includesapproximately 5100 base pairs from four mitochondrial (12S, tRNA valine, 16S, and cyto-chrome b) and five nuclear genes (rhodopsin, tyrosinase, RAG-1, seventh in absentia, and28S), and a small data set from foot musculature.

Concurring with previous studies, the present analysis indicates that Hemiphractinae are notrelated to the other three hylid subfamilies. It is therefore removed from the family and ten-tatively considered a subfamily of the paraphyletic Leptodactylidae. Hylidae is now restrictedto Hylinae, Pelodryadinae, and Phyllomedusinae. Our results support a sister-group relation-ship between Pelodryadinae and Phyllomedusinae, which together form the sister taxon ofHylinae. Agalychnis, Phyllomedusa, Litoria, Hyla, Osteocephalus, Phrynohyas, Ptychohyla,Scinax, Smilisca, and Trachycephalus are not monophyletic. Within Hyla, the H. albomargin-ata, H. albopunctata, H. arborea, H. boans, H. cinerea, H. eximia, H. geographica, H. gra-nosa, H. microcephala, H. miotympanum, H. tuberculosa, and H. versicolor groups are alsodemonstrably nonmonophyletic. Hylinae is composed of four major clades. The first of theseincludes the Andean stream-breeding Hyla, Aplastodiscus, all Gladiator Frogs, and a Tepuianclade. The second clade is composed of the 30-chromosome Hyla, Lysapsus, Pseudis, Scar-thyla, Scinax (including the H. uruguaya group), Sphaenorhynchus, and Xenohyla. The thirdmajor clade is composed of Nyctimantis, Phrynohyas, Phyllodytes, and all South American/West Indian casque-headed frogs: Aparasphenodon, Argenteohyla, Corythomantis, Osteoce-phalus, Osteopilus, Tepuihyla, and Trachycephalus. The fourth major clade is composed ofmost of the Middle American/Holarctic species groups of Hyla and the genera Acris, Anotheca,Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca, and Triprion. Anew monophyletic taxonomy mirroring these results is presented where Hylinae is dividedinto four tribes. Of the species currently in ‘‘Hyla’’, 297 of the 353 species are placed in 15genera; of these, 4 are currently recognized, 4 are resurrected names, and 7 are new. Hyla isrestricted to H. femoralis and the H. arborea, H. cinerea, H. eximia, and H. versicolor groups,whose contents are redefined. Phrynohyas is placed in the synonymy of Trachycephalus, andPternohyla is placed in the synonymy of Smilisca. The genus Dendropsophus is resurrectedto include all former species of Hyla known or suspected to have 30 chromosomes. Exerodontais resurrected to include the former Hyla sumichrasti group and some members of the formerH. miotympanum group. Hyloscirtus is resurrected for the former Hyla armata, H. bogotensis,and H. larinopygion groups. Hypsiboas is resurrected to include several species groups—manyof them redefined here—of Gladiator Frogs. The former Hyla albofrenata and H. albosignatacomplexes of the H. albomarginata group are included in Aplastodiscus.

New generic names are erected for (1) Agalychnis calcarifer and A. craspedopus; (2) Os-teocephalus langsdorffii; the (3) Hyla aromatica, (4) H. bromeliacia, (5) H. godmani, (6) H.mixomaculata, (7) H. taeniopus, (8) and H. tuberculosa groups; (9) the clade composed ofthe H. pictipes and H. pseudopuma groups; and (10) a clade composed of the H. circumdata,H. claresignata, H. martinsi, and H. pseudopseudis groups.

Page 7: systematic review of the frog family hylidae, with special reference to ...

2005 7FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

RESUMO

A famılia Hylidae e constituıda por aproximadamente 870 especies, agrupadas em quatrosubfamılias e com distribuicao nas Americas, Australia/Papua-Nova Guine e Eurasia. Apesarde alguns grupos de Hylidae terem sido estudados separadamente, uma hipotese filogeneticacompreensiva para a famılia nunca foi proposta.

O objetivo inicial desse estudo e rever o atual estado sistematico da famılia Hylidae. Atencaoespecial e dada a subfamılia Hylinae (590 especies), para a qual nos avaliamos o monofiletismodos taxa atualmente reconhecidos e examinamos as bases do arranjo taxonomico aceito nopresente. O segundo objetivo e realizar uma analise filogenetica usando caracteres obtidos, emsua maioria, a partir de sequencias de ADN, a fim de (1) testar o monofiletismo da famıliaHylidae;(2) determinar sua constituicao taxonomica, dando enfase aos generos e grupos deespecies incluıdos na subfamılia Hylinae; e (3) propor uma nova taxonomia baseada em gruposmonofileticos e consistente com a hipotese filogenetica aqui apresentada.

Neste trabalho apresentamos, juntamente com uma revisao sistematica dos hilıdeos, umaanalise filogenetica baseada em 275 terminais, sendo 227 de hilıdeos, mais 48 taxas represen-tando grupos externos. Na analise filogenetica estao representados 40 dos 41 generos de Hy-lidae das quatro subfamılias reconhecidas e 39 dos 41 grupos atualmente reconhecidos para ogrande genero Hyla. Os taxons incluıdos permitem testar a monofilia de 24 dos generos naomonotıpicos e 25 grupos de especies de Hyla. A analise filogenetica inclui aproximadamente5100 pares de bases de quatro genes mitocondriais (12S, tval, 16S, citocromo b) e cinco genesnucleares (rodopsina, tirosinase, RAG-1, seventh in absentia e 28s), alem de um pequenoconjunto de dados sobre a musculatura do pe.

De forma similar ao que tem sido observado em outros estudos, a presente analise indicaque os Hemiphractinae nao sao relacionados as outras tres subfamılias de hilıdeos, portanto,sendo removidos desta famılia e tentativamente considerados como uma subfamılia dos par-afileticos Leptodactylidae. Hylidae e agora restrita a Hylinae, Pelodryadinae e Phyllomedusi-nae. Nossos resultados corroboram uma relacao de grupos irmaos entre estas duas ultimassubfamılias, que juntas correspondem ao taxon irmao de Hylinae. Phyllomedusa, Agalychnis,Litoria, Hyla, Osteocephalus, Phrynohyas, Pseudis, Ptychohyla, Scinax, Smilisca e Trachy-cephalus nao sao monofileticos. Dentro do genero Hyla, os grupos de H. albomarginata, H.albopunctata, H. arborea, H. boans, H. cinerea, H. eximia, H. geographica, H. granosa, H.microcephala, H. miotympanum, H. tuberculosa e H. versicolor nao sao monofileticos.

Em nossa analise, Hylinae aparece composta por quatro grandes clados. O primeiro delesincluindo todas as ras-gladiadoras, as especies andinas de Hyla que se reproduzem em ria-chos e um clado dos Tepuis. O segundo grande clado e composto por Scinax, Sphaenorhyn-chus, ‘‘pseudıdeos’’, Scarthyla e as especies de Hyla com 30 cromossomos. O terceiro gran-de clado e composto por Phyllodytes, Phrynohyas, Nyctimantis e todas as seguintes perer-ecas-de-capacete da America do Sul e Indias Ocidentais: Argenteohyla, Aparasphenodon,Corythomantis, Osteocephalus, Osteopilus, Tepuihyla e Trachycephalus. O quarto e ultimogrande clado e composto pela maioria dos grupos de especies de Hyla centro-americanos/holarticos e pelos generos Acris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Pty-chohyla, Pternohyla, Smilisca e Triprion. E apresentada uma nova taxonomia monofiletica,espelhando estes resultados, onde Hylinae e dividida em quatro tribos. Das especies corren-temente incluıdas em Hyla, 297 de 353 sao alocadas em 15 generos, dos quais quatro saocorrentemente reconhecidos, quatro sao nomes revalidados e seis sao novas descricoes. Ogenero Hyla fica restrito aos grupos de H. arborea, H. cinerea, H. eximia, H. femoralis eH. versicolor, sendo o conteudo de alguns destes grupos redefinido. Phrynohyas e sinon-imizada a Trachycephalus, Pternohyla e sinonimizada a Smilisca e Duellmanohyla e sinon-imizada a Ptychohyla. O genero Dendropsophus e revalidado para as especies de Hyla com,ou presumivelmente tendo, 30 cromossomos. Exerodonta e revalidado, passando a incluiros grupos de Hyla sumichrasti e H. pinorum. Hyloscirtus e revalidado para acomodar osgrupos de Hyla armata, H. bogotensis e H. larinopygion. Hypsiboas e revalidada para acom-odar diversos grupos de especies—muitos deles aqui redefinidos—de ras-gladiadoras. Oscomplexos de Hyla albofrenata e H. albosignata, do grupo de H. albomarginata, sao in-cluıdos no genero Aplastodiscus.

Nomes genericos novos sao apresentados para (1) Agalychnis calcarifer e A. craspedopus,(2) Osteocephalus langsdorffii e para os grupos de especies de (3) Hyla aromatica, (4) H.

Page 8: systematic review of the frog family hylidae, with special reference to ...

8 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

bromeliacia, (5) H. godmani, (6) H. mixomaculata, (7) H. taeniopus, (8) H. tuberculosa, epara o clado compostos pelos grupos de especies de (9) H. pictipes e H. pseudopuma e parao clado composto pelos grupos de especies de (10) H. circumdata, H. claresignata, H. martinsie H. pseudopseudis.

RESUMEN

Hylidae es una familia muy grande (aproximadamente 870 especies conocidas) de ranasarboricolas de America, Australia y Papua, y Eurasia, y esta dividida en cuatro subfamilias.Aunque existen algunos estudios que analizan las relaciones filogeneticas de algunos gruposaislados de Hylidae, no existe ningun analisis filogenetico de toda la familia.

Los objetivos de este trabajo son, primero, revisar el estado actual de la sistematica de lafamilia, haciendo enfasis en la subfamilia Hylinae, que es la mas grande (590 especies), yevaluando la evidencia existente para la monofilia de los distintos agrupamientos taxonomicos.El segundo objetivo es realizar un analisis filogenetico basado principalmente en secuenciasde ADN, con el proposito de a) testear la monofilia de la familia Hylidae, b) determinar quetaxa la constituyen, con especial atencion en los generos y grupos de especies de la subfamiliaHylinae, c) proponer una nueva taxonomia monofiletica, consistente con nuestra hipotesisfilogenetica.

Se presenta una revision completa del estado de conocimiento de la sistematica de la familiaHylidae, junto con un analisis filogenetico de 276 terminales, incluyendo 228 Hylidae y 48grupos externos. Se incluyen representantes de 40 de los 41 generos de de las cuatro subfam-ilias de Hylidae, y de 39 de los 41 grupos de especies del genero Hyla. Asimismo, los taxaincluidos permitieron testear la monofilia de 24 de los 35 generos no monotipicos, y 25 gruposde especies de Hyla. El analisis filogenetico incluye aproximadamente 5100 pares de bases decuatro genes mitocondriales (12S, tRNA valina, 16S, cytocromo b) y cinco genes nucleares(rhodopsina, RAG-1, seventh in absentia, tyrosinasa y 28S), y una matriz de 38 characteresde musculatura del pie.

En coincidencia con estudios anteriores, los resultados del analisis indican que los Hemi-phractinae no pertenecen a Hylidae, y por lo tanto se los excluye de la familia, que hora esrestringida a Hylinae, Pelodryadinae, y Phyllomedusinae. Nuestros resultados soportan la mo-nofilia de estas dos ultimas subfamilias, que a su vez son el taxon hermano de Hylinae.Phyllomedusa, Agalychnis, Litoria, Hyla, Osteocephalus, Phrynohyas, Trachycephalus, Smi-lisca, Ptychohyla, y Scinax no son monofleticos. Ademas, dentro de Hyla, los grupos de H.albomarginata, H. albopunctata, H. arborea, H. boans, H. cinerea, H. eximia, H. geographica,H. granosa, H. microcephala, H. miotympanum, H. tuberculosa, y H. versicolor tampoco sonmonofileticos. Hylinae resulta estar compuesto por cuatro clados principales. El primero deestos incluye a Aplastodiscus y todos los grupos de especies de Hyla incluidos en las ranasgladiadoras, las Hyla que se reproducen en arroyos de los Andes, y un clado de los TepuiesGuayaneses. El segundo clado principal esta compuesto por Scarthyla, Scinax, Sphaenorhyn-chus, ‘‘pseudidos’’, y las Hyla de 30 cromosomas. El tercer clado principal esta compuestopor Nyctimantis, Phyllodytes, Phrynohyas, y todas las ranas ‘‘cabeza de casco’’ sudamericanasy de las Indias Occidentales: Argenteohyla, Aparasphenodon, Corythomantis, Osteopilus, Os-teocephalus, Trachycephalus, y Tepuihyla. El cuarto clado principal esta compuesto por lamayoria de los grupos de especies de Hyla Centro Americanos y holarticos y los generosAcris, Anotheca, Duellmanohyla, Plectrohyla, Pseudacris, Ptychohyla, Pternohyla, Smilisca,y Triprion.

Con base en estos resultados, se presenta una nueva taxonomia monofiletica, adonde Hylinaees dividida en cuatro tribus. Ademas, 297 de las 353 especies hasta ahora incluidas en Hylason divididas en 15 generos, cuatro de los cuales son generos que ya estaban en uso, cuatroson nombres resucitados de la sinonimia de Hyla, y siete son nuevos. Hyla es restringido aH. femoralis y los grupos de H. arborea, H. cinera, H. eximia, e H. versicolor, cuyos conten-idos son en algunos casos redefinidos. Asi mismo, Phrynohyas es incluido en la sinonimia deTrachycephalus, y Pternohyla en la sinonimia de Smilisca. Dendropsophus es revalidado paraincluir todas las especies previamente incluidas en los grupos de especies de 30 cromosomas,o sospechadas de tener 30 cromosomas. Exerodonta es revalidado para incluir el grupo deHyla sumichrasti, y un fragmento de especies incluidas en el grupo de H. miotympanum.

Page 9: systematic review of the frog family hylidae, with special reference to ...

2005 9FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Hyloscirtus es revalidado para incluir los grupos de H. armata, H. bogotensis, e H. larino-pygion. Hypsiboas es revalidado para incluir muchos grupos de especies—varios de ellos aquiredefinidos—de ranas gladiadoras. Los complejos de Hyla albofrenata e H. albosignata delgrupo de H. albomarginata son incluidos en Aplastodiscus.

Nuevos nombres genericos son propuestos para (1) Agalychnis calcarifer y A. craspedopus,(2) Osteocephalus langsdorffii, los grupos de (3) Hyla aromatica, (4) H. bromeliacia, (5) H.godmani, (6) H. mixomaculata,(7) H. taeniopus, (8) H. tuberculosa, y para los clados com-puestos por los grupos de (9) H. pictipes y H. pseudopuma, y por los grupos de (10) H.circumdata, H. claresignata, H. martinsi, e H. pseudopseudis.

INTRODUCTIONHylidae is a large family of American,

Australopapuan, and temperate Eurasiantreefrogs of approximately 870 known spe-cies, composed of four subfamilies (Duell-man, 2001; Darst and Cannatella, 2004;Frost, 2004). Although some groups of Hy-lidae have been addressed phylogenetically(e.g., Campbell and Smith, 1992; Duellmanand Campbell, 1992; Mendelson et al., 2000;Faivovich, 2002; Haas, 2003; Moriarty andCannatella, 2004; Faivovich et al., 2004), acomprehensive phylogenetic analysis hasnever been presented.

The first goal of this paper is to review thestate of hylid systematics. We focus on thevery large subfamily Hylinae, evaluate themonophyly of named taxa, and examine theevidential basis of the existing taxonomy.The second objective is to perform a phylo-genetic analysis using four mitochondrial andfive nuclear genes in order to (1) test themonophyly of the family Hylidae; (2) deter-mine its constituent taxa, with special atten-tion to the genera and species groups whichform the subfamily Hylinae; and (3) proposea new, monophyletic taxonomy consistentwith the hypothesized relationships.

MATERIALS AND METHODSIn most revisionary studies involving ma-

jor taxonomic rearrangements and phyloge-netic analyses it is normal to have a sectionon the history of taxonomic changes. Thescale of this particular study makes that goalimpractical. A discussion of the state of thetaxonomy of hylid frogs is dealt with simul-taneously with discussions of the taxa chosenfor the purpose of phylogenetic analysis.

TAXON SAMPLING

Any phylogenetic analysis has an impor-tant component of experimental design as-

sociated with the selection of the terminaltaxa. In an ideal phylogenetic study, all ter-minal descendants of a given hypotheticalancestor should to be included in order toavoid ‘‘problems’’ due to taxon sampling.This ideal condition is unattainable, and allnotions of relationships among organisms areaffected to an unknown degree by incom-plete taxon sampling. Because there is noway of ever knowing all the hylid speciesthat have become extinct, we concentrate onthe diversity that we do know. Furthermore,due to the unavailability of samples we can-not include sequences of all of the nearly 860currently described species of Hylidae. What,therefore, is the best taxon sampling for thisstudy? Because our primary goal is to testthe monophyly of all available genera andspecies groups of Hylidae, the most appro-priate terminals to include are those that pro-vide the strongest test of previously hypoth-esized relations. By considering morpholog-ical divergence as a rough guide to DNA se-quence diversity, maximally diverse taxawithin a given group are likely to pose astronger test of its monophyly than do mor-phologically similar taxa (Prendini, 2001).Groups for which no apparent synapomor-phies are known are a priori more likely tobe nonmonophyletic, and therefore good rep-resentations of the morphological diversity ofthese groups are especially appropriate. Oursuccess varied in securing multiple represen-tatives of these groups.

The following discussion deals in partwith the state of knowledge of frog phylo-genetics. Included within the discussion is alist of terminals used in this analysis alongwith a justification and explanation for ourchoices. A summary of the species includedis presented in table 1. To conserve space,species authorships are not mentioned in the

Page 10: systematic review of the frog family hylidae, with special reference to ...

10 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

TABLE 1Species Included in this Analysis and Species Groups or Genera They Represent

Page 11: systematic review of the frog family hylidae, with special reference to ...

2005 11FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

TABLE 1(Continued)

Page 12: systematic review of the frog family hylidae, with special reference to ...

12 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

TABLE 1(Continued)

Page 13: systematic review of the frog family hylidae, with special reference to ...

2005 13FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

text but are given in the section ‘‘TaxonomicConclusions: A New Taxonomy of Hylinaeand Phyllomedusinae’’ and in appendix 1.For museum abbreviations used throughoutthis paper see appendix 2.

OUTGROUP SELECTION

Recent studies (Haas, 2003; Darst andCannatella, 2004) have suggested that theHylidae as traditionally understood is notmonophyletic, with the Hemiphractinae dis-placed phylogenetically from the Hylinae,Phyllomedusinae, and Pelodryadinae. Theaforementioned studies did not provide ex-tensive outgroup comparisons. In order toavail ourselves of a strong test of hylidmonophyly, we included 48 nonhylid out-group taxa representing 14 neobatrachianfamilies.

Basal Neobatrachians

Heleophrynidae, Sooglossidae, Limnodyn-astinae and Myobatrachinae1 have been re-lated to each other by several authors (Lynch,1973; Duellman and Trueb, 1986; Ford andCannatella, 1993; Hay et al., 1995; Ruvinskyand Maxson, 1996; Biju and Bossuyt, 2003;Darst and Cannatella, 2004). While in thepast they were considered part of Hyloidea,they were recently excluded by Darst andCannatella (2004). The evidence indicatesthat they are basal neobatrachians distantlyrelated to the apparently monophyletic Hy-loidea; however, their exact positions and in-terrelationships are still unclear (Darst andCannatella, 2004; Haas, 2003). We includeone heleophrynid (Heleophryne purcelli),one myobatrachine (Pseudophryne bibroni),and two limnodynastines (Limnodynastessalmini and Neobatrachus sudelli) in ourstudy. Furthermore, because some membersof the Australopapuan hylids have been pos-ited to be related to the Myobatrachidae(Lynch, 1971; Savage, 1973), their inclusionprovides a strong test of hylid monophyly.

1 We are referring to these two myobatrachid subfam-ilies separately; we are not aware of any putative syna-pomorphy supporting the monophyly of Myobatrachi-dae.

Ranoidea

Recent papers dealing with ranoid groups(Emerson et al., 2000; Vences et al., 2003a)or at least ranoid exemplars (Biju and Bos-suyt, 2003; Darst and Cannatella, 2004) havesuggested the existence of three majorclades, although this remains to be elucidat-ed. The three major clades are composed of(1) Arthroleptidae, Astylosternidae, Hemi-sotidae, and Hyperoliidae; (2) Microhylidae;and (3) the remaining ranoids (including Pe-tropedetidae, Mantellidae, Rhacophoridae,and the paraphyletic Ranidae). We includeexemplars of Astylosternidae, Hyperoliidae,Hemisotidae, Microhylidae, Ranidae, Man-tellidae, and Rhacophoridae.

Hyloidea

The Hylidae has long been considered tobe embedded within a poorly defined majorgroup of neobatrachians (Nicholls, 1916; No-ble, 1922; Lynch, 1971, 1973; Ford and Can-natella, 1993) for which no morphologicalevidence of monophyly exists, although mo-lecular evidence (Hay et al., 1995; Ruvinskyand Maxson, 1996; Darst and Cannatella,2004) does support its monophyly. As rede-fined by Darst and Cannatella (2004) Hylo-idea includes the nonmonophyletic Lepto-dactylidae (Ford and Cannatella, 1993; Haas,2003), Dendrobatidae, Hylidae, Bufonidae,Brachycephalidae, Centrolenidae, Rhinoder-matidae, and the monotypic Allophrynidae.In order to have a strong test of the mono-phyly of hylids, we include representativesof most of the nonhylid hyloid families.

The monophyly of Dendrobatidae is notcontroversial (see Grant et al., 1997), al-though recent phylogenetic analyses using ri-bosomal mitochondrial sequences (Vences etal., 2000; Santos et al., 2003; Vences et al.,2003b) show that there is a serious need toredefine most of the currently recognizedgenera. According to the results of Vences etal. (2003b), there are two major clades ofdendrobatids: (1) one composed of Dendro-bates, Phyllobates, Cryptophyllobates, Epi-pedobates (paraphyletic), Minyobates, andseveral groups of the rampantly polyphyleticColostethus; and (2) another clade composedof Mannophryne, Nephelobates, Allobates,and two separate clades of Colostethus (none

Page 14: systematic review of the frog family hylidae, with special reference to ...

14 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

of the aforementioned analyses included theapparently primitive genus Aromobates; seeMyers et al. 1991). We include as exemplarsof the first major clade Dendrobates auratusand Phyllobates bicolor, and as exemplar ofthe second clade, Colostethus talamancae.

Bufonidae is a monophyletic group (for alist of morphological synapomorphies, seeFord and Cannatella, 1993; Haas, 2003) forwhich no study addressing comprehensivelyits internal relationships has been published.Partial studies (Graybeal, 1997; Darst andCannatella, 2004; Haas, 2003) support theidea that Melanophryniscus is one of its mostbasal clades in the family. As a rough sampleof bufonid diversity we include representa-tives of Melanophryniscus, Dendropryniscus,Atelopus, Didynamipus, Schismaderma,Bufo, Pedostibes, and Osornophryne.

The notion that the presumably monophy-letic Centrolenidae (Ruiz-Carranza andLynch, 1991) is closely related to hylids(Lynch, 1973; Duellman and Trueb, 1986;Ford and Cannatella, 1993) was recentlychallenged by the phylogenetic analyses ofHaas (2003), who used larval morphology,and Darst and Cannatella (2004), who usedmitochondrial ribosomal genes. Austin et al.(2002) recently provided molecular evidencesupporting a relationship between Centrolen-idae and the monotypic Allophrynidae. Theinternal relationships of Centrolenidae re-main virtually unstudied. As a rough repre-sentation of centrolenid diversity, in thisstudy we include Centrolene prosoblepon,Cochranella bejaranoi, and Hyalinobatrach-ium eurygnathum. We also include Allophry-ne ruthveni.

Leptodactylid nonmonophyly has been ac-cepted for some time (Lynch, 1971) and wasconfirmed in an explicit cladistic frameworkby analyses using morphology (Haas, 2003)and DNA sequences (Ruvinsky and Maxson,1996; Darst and Cannatella, 2004; Vences etal., 2003b). In the analysis by Darst and Can-natella (2004), Leptodactylidae is rampantlyparaphyletic because all the other hyloid ex-emplars are nested within it.

From the five currently recognized sub-families of leptodactylids (Laurent, 1986)there is more or less convincing evidence ofmonophyly for two of them: Eleutherodac-tylinae (direct development, eggs relatively

large, few in number; Lynch, 19712) andLeptodactylinae (presence of a bony elementin the sternum; Lynch, 1971). The analysisof Darst and Cannatella (2004) corroboratedthe monophyly of these two groups, albeitwith limited taxon sampling. In the analysisby Haas (2003), the exemplars of Leptodac-tylinae were not monophyletic. No demon-strable synapomorphies are known for Cer-atophryinae, Cycloramphinae or Telmatobi-inae. Considering this situation, we includeseveral leptodactylid exemplars (see table 1);our poorest sampling is within Cycloramphi-nae, where we only have representation forone genus, Crossodactylus.

The single representative of Brachyce-phalidae included by Darst and Cannatella(2004) in their analysis was nested within theexemplars of the leptodactylid subfamilyEleutherodactylinae, as suggested earlier byIzecksohn (1988). We include Brachycephal-us ephippium in our analysis.

Of the hyloid families, only Rhinoderma-tidae is not represented in our analysis. Thisgroup was suggested to be nested in the sub-family Telmatobiinae by Barrio and Rinaldide Chieri (1971) based on a similar karyo-type and by Manzano and Lavilla (1995a)based on the presence of the m. pelvocuta-neus in Rhinoderma and Eupsophus. In theDNA sequences analyses by Ruvinsky andMaxson (1996) and Biju and Bossuyt (2003)Rhinoderma appears in different positionswithin Hyloidea.

THE INGROUP: HYLIDAE

Inasmuch as the hylids are the primary fo-cus of this study, our sampling is most densefor this taxon and requires substantially moredetailed discussion than does our outgroupselection.

Duellman (1970) arranged the family infour subfamilies: Amphignathodontinae,Hemiphractinae, Hylinae (including both theAustralian and American groups), and Phyl-lomedusinae. Trueb (1974) subsequently syn-onymized the Amphignathodontinae andHemiphractinae. On the basis of evidence

2 Note that Lynch (1971) presented an extensive def-inition of the group; it is unclear if any of the othercharacter states he mentioned could be considered syn-apomorphic.

Page 15: systematic review of the frog family hylidae, with special reference to ...

2005 15FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

presented by Tyler (1971), Duellman (1977)placed the Australian hylids in their own sub-family, Pelodryadinae, although Savage(1973) had previously regarded it as a dif-ferent family and suggested that it was de-rived from Myobatrachidae.

Duellman (2001), based mostly on da Sil-va’s results (1998), presented a phylogeneticanalysis where hylids, including the subfam-ily Pseudinae, were considered to be mono-phyletic. Synapomorphies suggested byDuellman (2001) as being common to histhree most parsimonious trees are the pos-session of claw-shaped terminal phalangesand the three articular surfaces on metacarpalIII. The possibility of hylid polyphyly hasnot been seriously considered by most frogsystematists, even after Ruvinsky and Max-son’s (1996) results (which showed their sin-gle Hemiphractinae exemplar not closely re-lated with the other hylid exemplars), untilthe idea was suggested on morphologicalgrounds by Haas (2003), followed by Darstand Cannatella (2004) on the basis of molec-ular evidence. These authors found no evi-dence of a relationship between Hemiphrac-tinae and the other hylid subfamilies, whichwere thought to form a monophyletic group.Beyond this result, Haas (2003) presentedevidence from larval morphology that sug-gested that Pelodryadinae is paraphyleticwith respect to Hylinae (Hylinae not beingdemonstrably monophyletic), with Pseudinaeand Phyllomedusinae possibly being imbed-ded within it.3

3 Burton (2004) presented a study of hylid foot my-ology, a valuable collection of observations on manyspecies, including the definition of numerous characters,and a phylogenetic analysis of the hylid subfamiliescombining his characters with those employed by Duell-man (2001). The list of synapomorphies provided(Burton 2004: 228) is the result of optimizing the dataset on his strict consensus tree. When only unambiguoussynapomorphies common to all the most parsimonioustrees are considered, the list is reduced considerably, andthere are no unambiguous transformations from footmusculature that support relationships among the sub-families (these are supported solely by the charactersfrom Duellman, 2001). Instead, some foot muscle char-acter states are autapomorphic for Allophrynidae, Hem-iphractinae, Phyllomedusinae, and Pseudinae (Burton’spaper was submitted before Darst and Cannatella’s paperwas published). Throughout the present paper, all thesynapomorphies reported from Burton’s (2004) study areonly those that occur in all equally parsimonious trees.

Hemiphractinae

Mendelson et al. (2000) and Duellman(2001) presented brief taxonomic histories ofthis taxon. The monophyly of Hemiphracti-nae is supported by the presence of bell-shaped gills in larvae and by female transportof eggs in a specialized depression or sac inthe dorsum (Noble, 1927). Burton (2004)added the broad m. abductor brevis plantaehallucis. In Duellman’s (2001) cladogram,Hemiphractinae is considered to be the sistergroup of Phyllomedusinae, with the evidenceof this relationship being the proximal headof metacarpal II not between prepollex anddistal prepollex, and the larval spiracle sinis-tral and ventrolateral.

Haas’s (2003) exemplar4 of the Hemi-phractinae was Gastrotheca riobambae. Hisresults suggested that Hemiphractinae are un-related to other hylids, although the positionof Hemiphractinae within Neobatrachia isstill unresolved. A similar result regardingHemiphractinae as being unrelated to hylidswas advanced by Ruvinsky and Maxson(1996) and corroborated by Darst and Can-natella (2004). These authors also did not re-cover the exemplars of Hemiphractinae thatthey used (Gastrotheca pseustes and Cryp-tobatrachus sp.) as forming a monophyleticgroup.5

Hemiphractinae includes five genera:Cryptobatrachus, Flectonotus, Gastrotheca,Hemiphractus, and Stefania. Mendelson etal. (2000) studied the relationships amongthese genera, performing a phylogeneticanalysis using morphological and life-historycharacters, arriving at the topology (Crypto-batrachus Flectonotus (Stefania (‘‘Gastro-theca’’ 1 Hemiphractus))). This analysis in-cluded five outgroups, all of which were rep-resentatives of the other hylid subfamilies.The results suggested that Cryptobatrachusand Flectonotus are each monophyletic, andthat Gastrotheca is paraphyletic with Hemi-phractus nested within it. As Hass (2003)

4 Haas (2003) noted that the larval morphology ofseveral species of Gastrotheca is quite similar, so pre-sumably his selection of G. riobambae as an exemplarwould have little effect on the analysis.

5 However, a reanalysis of their data using parsimonyand considering insertions/deletions as a fifth state didrecover a monophyletic Hemiphractinae (Faivovich, per-sonal obs.).

Page 16: systematic review of the frog family hylidae, with special reference to ...

16 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

noted, however, Mendelson et al.’s (2000)outgroup structure could not test the propo-sition of hylid diphyly.

Cryptobatrachus: In the analysis per-formed by Mendelson et al. (2000), themonophyly of the two representatives ofCryptobatrachus is supported by several os-teological characters, among them the pres-ence of an anteromedial process in the neo-palatine.6 In their analysis, the relationshipbetween Cryptobatrachus and the otherHemiphractinae is unresolved. This genuscomprises three described species; in thisstudy we include sequences of an unidenti-fied species available from GenBank.

Gastrotheca: Mendelson et al. (2000) sug-gested that Hemiphractus is nested withinGastrotheca, a result that contrasts with theopinions of previous workers (Noble, 1927;Trueb, 1974; Duellman and Hoogmoed,1984) who considered Hemiphractus basalamong marsupial frogs because they lack abrooding pouch. However, Mendelson et al.(2000) continued to recognize Hemiphractus(the older of both names) and Gastrothecapending a more complete phylogenetic study.Synapomorphies of the clade composed ofthese two genera are: cultriform process be-coming distinctly narrow anteriorly; anteriorprocess of vomer articulating only with max-illa; pre- and postchoanal process bifurcatingat the level of the dentigerous process; natureof occipital artery pathway (a groove);brooding pouch with posterior opening; andbell-shaped gills fused distally.

Most of the 49 currently recognized spe-cies of Gastrotheca are placed in four speciesgroups, the G. marsupiata, G. nicefori, G.plumbea, and G. ovifera groups (Duellmanet al., 1988a). These groups are generally de-fined on the basis of overall similarity. Theonly character-based test of their monophyly,the analysis of Mendelson et al. (2000), in-cluded 17 exemplars and suggested that noneof the three nonmonotypic groups is mono-phyletic.

Dubois (1987) placed the species withinthree subgenera: Gastrotheca, Duellmania

6 For the synapomorphy list, we copied the data setfrom the. pdf file of Mendelson et al. (2000) and eval-uated character distribution in TNT (Goloboff et al.,2000).

(part of the G. plumbea group), and Opistho-delphys (G. ovifera as well as parts of the G.marsupiata and G. plumbea groups). Duell-mania and Opisthodelphys were shown to beparaphyletic by Mendelson et al. (2000), al-though they did not test the monophyly ofthe subgenus Gastrotheca. In this study weinclude two species of the Gastrotheca mar-supiata group (G. cf. marsupiata and G.pseustes) and two of the G. ovifera group (G.cornuta and G. fissipes).

Hemiphractus: Relationships of this genuswere recently reviewed by Sheil et al. (2001),who provided a number of unambiguous syn-apomorphies to support its monophyly (suchas the cultriform process of the parasphenoidthat becomes distinctly narrow anteriorly, thepresence of a zygomatic ridge, and the pres-ence of a supraorbital ridge). Hemiphractushas six described species; we include Hemi-phractus helioi in our study.

Stefania: Duellman and Hoogmoed(1984), Senaris et al. (‘‘1996’’ [1997]), andMacCulloch and Lathrop (2002) reviewedthis genus. Senaris et al. (‘‘1996’’ [1997])suggested that the zygomatic ramus of thesquamosal being close to or in contact withthe maxilla was a diagnostic character stateof Stefania, ‘‘at least for the Venezuelan spe-cies’’ (translated from the Spanish). Mendel-son et al. (2000) did not test the monophylyof Stefania since they included only one ex-emplar (S. evansi). It is unclear if any of theautapomorphies of S. evansi in that study areactually synapomorphies of Stefania.

Stefania was divided by Rivero (1970)into two species groups based on head shape(‘‘as broad as long or longer than broad’’ inthe S. evansi group; ‘‘much broader thanlong’’ in the S. ginesi group). The only testof the monophyly of these two groups is thephylogenetic analysis of the seven speciesthen known, performed by Duellman andHoogmoed (1984). In that analysis, the S. gi-nesi group was monophyletic and nestedwithin the paraphyletic S. evansi group. Al-though Senaris et al. (‘‘1996’’ [1997]) sug-gested the origin of the S. ginesi group fromthe S. evansi group, they continued to rec-ognize of both groups.

Since the revision of Duellman and Hoog-moed (1984), another 11 species assigned toboth species groups of Stefania have been

Page 17: systematic review of the frog family hylidae, with special reference to ...

2005 17FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

named (see Barrio Amoros and Fuentes,2003; MacCullogh and Lathrop, 2002). Inour analysis we include one exemplar of theStefania evansi group (S. evansi) and one ofthe S. ginesi group (S. schuberti).

Flectonotus: Duellman and Gray (1983)reviewed these frogs as two genera, Flecto-notus and Fritziana, even though their phy-logenetic analysis indicated that Flectonotuswas paraphyletic with respect to Fritziana.Subsequently, Weygoldt and Carvalho e Sil-va (1991) placed Fritziana in the synonymyof Flectonotus to render a monophyletic tax-onomy. Flectonotus is composed of five de-scribed species.

In the analysis by Mendelson et al. (2000),the position of Flectonotus remained unre-solved with respect to Cryptobatrachus andthe clade composed of Stefania plus Gastro-theca. Synapomorphies of Flectonotus in thatanalysis are: quadratojugal that does not ar-ticulate with maxilla; brooding pouch formedby dorsolateral folds of skin; overlap be-tween m. intermandibularis and m. submen-talis; and absence of supplementary elementsof m. intermandibularis. Because of verylimited availability of species of Flectonotus,in this study we include only Flectonotus sp.,an unidentified species from southeasternBrazil, whose female has a brooding pouchwith a middorsal slit.

Pelodryadinae

The monophyly of this Australopapuangroup is supported by a single possible syn-apomorphy: presence of supplementary api-cal elements of m. intermandibularis (Tyler,1971). Although relationships between Aus-tralian and New World hylids were recog-nized very early (most species of Litoriawere named as Hyla), hypotheses regardingthe relationships of Pelodryadinae with othergroups have been rarely advanced. Trewavas(1933), Duellman (1970), and Bagnara andFerris (1975) suggested a relationship be-tween Pelodryadinae with Phyllomedusinae.Trewavas (1933) observed similarities in la-ryngeal structures in the limited data set ather disposal (only three pelodryadines andtwo phyllomedusines). Duellman (1970) re-ferred to ‘‘similarities in vertebral charac-ters’’ without further details and to identical

number of chromosomes. Bagnara and Ferris(1975) noticed the presence in some speciesof Litoria of large melanosomes containingthe red pigment rhodomelanochrome (lateridentified as pterorhodin; Misuraca et al.,1977), a character state previously knownonly for some species of Phyllomedusinae.Specifically, Bagnara and Ferris (1975) sug-gested that some species of Litoria could berelated to the Phyllomedusinae, an implicitsuggestion of Pelodryadinae paraphyly. Thisidea was discussed by Tyler and Davies(1978a), who rejected the possibility of pe-lodryadine paraphyly but did not address apossible sister-taxon relationship of Pelo-dryadinae and Phyllomedusinae. This alter-native was suggested again, based on chro-mosome morphology, by Kuramoto and Al-lison (1991). In the phylogenetic analysespresented by Duellman (2001), Pelodryadi-nae was placed as the sister of a clade com-posed of the remaining subfamilies, whichare united in having a distally bifid tendo su-perficialis. In this same cladogram, the onlysynapomorphy of Pelodryadinae is the ante-rior differentiation of the m. intermandibu-laris, although the monophyly of Pelodry-adinae was assumed and not tested in thatanalysis.

The phylogenetic analysis performed byHaas (2003) presents the most extensive testof Pelodryadinae monophyly so far pub-lished; his Pelodryadinae exemplars form aparaphyletic series with respect to his Neo-tropical hylid exemplars. More recently,Darst and Cannatella (2004) and Hoegg et al.(2004) presented evidence from the ribosom-al mitochondrial and nuclear genes support-ing the monophyly of their Pelodryadinaesample and the monophyly of Pelodryadinae1 Phyllomedusinae.

Litoria: The diagnosis and contents of Li-toria were reviewed by Tyler and Davies(1978b). It is unclear whether any of thecharacter states included in their extensivediagnosis are synapomorphic. However, con-sidering subsequent comments by several au-thors (King et al., 1979; Tyler, 1979; Tylerand Davies, 1979; Maxson et al., 1985; Haasand Richards, 1998), the available evidencesuggests that Litoria is paraphyletic with re-spect to the other genera of Pelodryadinae,

Page 18: systematic review of the frog family hylidae, with special reference to ...

18 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Nyctimystes and Cyclorana, with the latterbeing the sister taxon of the L. aurea group.

The 132 currently recognized species (up-dated from Frost, 2004) placed in 37 speciesgroups (Tyler and Davies, 1978b) make anexhaustive sampling of the group a goal be-yond the present analysis.7 Relationshipsamong some species groups of Litoria wereaddressed by means of albumin immunolog-ical distances as determined through micro-complement fixation (Maxson et al., 1982;Hutchinson and Maxson, 1986, 1987). Froma character-based (as opposed to a distance-based) perspective, relationships among thespecies groups of Litoria remain unknown,and the monophyly of most of those groupswith more than single species remains un-tested.

Tyler and Davies (1978b) tentatively di-vided the 37 species groups into three ‘‘Cat-egories’’, A (8 species groups), B (14 speciesgroups), and C (7 species groups). Tyler(1982) added a fourth category (D), wherehe included the Litoria nannotis group.These groupings were criticized by King(1980) on karyotypic grounds. Besides, themonophyly of these four categories remainlargely untested, with the only possible ex-ception being the work by Cunningham(2002) on the L. nannotis group; however,his lack of sufficient outgroup sampling pre-cluded a rigorous test.

In our analyses we include representativesof two species groups of category A, Litoriaaurea (the L. aurea group) and L. freycineti(the L. freycineti group); three representa-tives of category B, L. caerulea (the L. ca-erulea group), L. infrafrenata (the L. infraf-renata group), and L. meiriana (the L. mei-riana group); and one representative of cat-egory C, L. arfakiana (the L. arfakianagroup).

Nyctimystes: This genus was rediagnosedby Tyler and Davies (1979). Among the listof characters provided by them, the synapo-morphies of Nyctimystes seem to be the ver-tical pupil and the presence of palpebral ve-nation. Tyler and Davies (1979) suggested

7 A detailed analysis of Pelodryadinae is currently be-ing carried out by S. Donnellan. Taxon sampling here isprovided to optimize characters effectively to the baseof the Pelodryadinae and not to reevaluate the taxonomyof Litoria and its generic satellites.

that Nyctimystes was most closely related tosome species groups of Litoria from NewGuinea, implying that Nyctimystes is nestedwithin Litoria. Specifically, they referred tothe L. angiana, L. arfakiana, L. becki, L. dor-sivena, L. eucnemis, and L. infrafrenatagroups as the most likely to be related toNyctimystes, because they share with Nycti-mystes similarities in cranial structure (the L.infrafrenata and L. eucnemis groups) or thepresence of large unpigmented ova and lotictadpoles bearing large, ventral, suctorialmouths (the other groups). Nyctimystes cur-rently comprises 24 described species, 5 ofwhich (N. disruptus, N. oktediensis, N. trach-ydermis, N. tyleri, and N. papua) were in-cluded in the N. papua species group byZweifel (1983) and Richards and Johnston(1993). We could not locate tissues of anymembers of the N. papua group, so we can-not test its monophyly. Nevertheless, we in-clude the available species N. kubori, N. na-rinosus, and N. pulcher.

Cyclorana: This genus was thought to berelated to the Australian leptodactylids (nowMyobatrachidae) by Parker (1940), and wasconsidered as such by Lynch (1971). Tyler(1972) first proposed its relationship to Aus-tralian hylids on the basis of the presence ofa differentiated apical element of the m. in-termandibularis. Subsequently, Tyler (1978)transferred Cyclorana to Hylidae. Tyler(1979), King et al. (1979), and Tyler et al.(1981) considered it to be related to the Li-toria aurea group, a result that was coinci-dent with the analyses of albumin immuno-logical distances generated by microcomple-ment fixation (Hutchinson and Maxson,1987). Burton (1996) suggested that havingthe m. palmaris longus divided into two seg-ments (as opposed to three) is a synapomor-phy supporting the monophyly of Cyclorana,L. dahlii, and L. alboguttata (two species ofthe L. aurea group). Based on sperm mor-phology, Meyer et al. (1997) transferred L.alboguttata to Cyclorana. The only morpho-logical synapomorphy suggested for Cyclor-ana is the anterior ossification of the sphe-nethmoid to incorporate a portion of the tec-tum nasi (Tyler and Davies, 1993).

The 13 species of Cyclorana have beenseparated into different groups based on kar-yotypes, sperm morphology, and immuno-

Page 19: systematic review of the frog family hylidae, with special reference to ...

2005 19FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

logical distances (King et al., 1979; Maxsonet al., 1982; Maxson et al., 1985; Meyer etal., 1997). These are the C. brevipes, C. aus-tralis, and C. platicephala ‘‘lineages’’. In thepresent study, we include only C. australis.

Phyllomedusinae

Cruz (1990) and Duellman (2001) provid-ed taxonomic histories of this group, mostlyat the generic level. The monophyly of Phyl-lomedusinae has not been controversial; sev-eral character states have been advanced tosupport it. Some of the muscular characterstates include the supplementary posterolat-eral elements of the m. intermandibularis(Tyler, 1971); tendo superficialis pro digiti II(pes) arising from a deep, triangular muscle,which originates on the distal tarsal 2–3; ten-do superficialis pro digiti III arising entirelyfrom the aponeurosis plantaris; and m. exten-sor brevis superficialis digiti IV with a singleslip (Burton, 2004). There are also severallarval character states that support the mono-phyly of this group; for example, the arcussubocularis of larval chondrocranium withdistinct lateral processes (Fabrezi and Lavil-la; 1992, Haas, 2003); ultralow suspensorium(Haas, 2003); secondary fenestrae parietales(Haas, 2003); and absence of a passage be-tween ceratohyal and ceratobranchial I(Haas, 2003).

The subfamily is comprised of six nominalgenera: Agalychnis (8 species), Hylomantis(2 species), Pachymedusa (1 species), Phas-mahyla (4 species), Phrynomedusa (5 spe-cies), and Phyllomedusa (32 species). Cruz(1990) discussed the taxonomic distributionof several character states shared by subsetsof these genera. A cladistic analysis testingthe monophyly of each of these and their in-terrelationships remains to be completed.

Agalychnis: Duellman (2001) presented aphylogenetic analysis of Agalychnis and Pa-chymedusa, using a vector of character statespresent in the Phyllomedusa buckleyi groupas an outgroup (data taken from Cannatella,1980). His analysis suggested no synapo-morphies for Agalychnis. In our analysis weinclude all species available to us: A. calcar-ifer, A. callidryas, A. litodryas, and A. sal-tator (species not included are A. annae, A.craspedopus, A. moreletii, and A. spurrelli).

Hylomantis: This genus was resurrected byCruz (1990) for the species formerly placedin the Phyllomedusa aspera group (Cruz,‘‘1988’’ [1989]). From the extensive diag-nosis presented by Cruz (1990), the only ap-parent synapomorphy of Hylomantis seemsto be the lanceolate discs of fingers and toes.Cruz (1990: 725), however, considered likelythat Hylomantis was paraphyletic with re-spect to Phasmahyla. Hylomantis has twodescribed species, H. aspera and H. granu-losa. Only H. granulosa was available forthis study.

Pachymedusa: This monotypic genus wasrecognized by Duellman (1968a) to reflecthis view that a remnant of the ancestral stockgave rise to the other Phyllomedusinae.However, Duellman (2001) found no evi-dence supporting the monophyly of Agaly-chnis independent of Pachymedusa. The sin-gle species Pachymedusa dacnicolor is in-cluded in our analysis.

Phasmahyla: This genus was erected byCruz (1990) for the species formerly con-tained in the Phyllomedusa guttata group(Bokermann and Sazima, 1978; Cruz, 1982).Cruz (1990) provided an extensive definitionof the genus based on adult and larval mor-phology. Probable synapomorphies of Phas-mahyla are the lack of a vocal sac in adultmales and larval modifications presumablyassociated with surface film feeding, such asthe anterodorsal position of the oral disc, re-duction in number and size of labial toothrows, distribution and shape of submarginalpapillae, and the upper jaw sheath with a me-dial projection (see Cruz, 1982, 1990). Thegenus is composed of four species, P. coch-ranae, P. exilis, P. guttata, and P. jandaia.We include Phasmahyla cochranae and P.guttata in our study.

Phrynomedusa: This genus was resurrect-ed by Cruz (1990) for the species formerlyplaced in the Phyllomedusa fimbriata group(Izecksohn and Cruz, 1976; Cruz, 1982).From the extensive definition provided byCruz (1990), possible synapomorphies ofPhrynomedusa appear to be the presence ofa bicolored iris and the complete marginalpapillae in the oral disc of the larva. Phry-nomedusa contains five described species;unfortunately, we could not secure any rep-

Page 20: systematic review of the frog family hylidae, with special reference to ...

20 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

resentatives of this taxon for the presentstudy.

Phyllomedusa: No synapomorphies areknown to support the monophyly of the 32species of Phyllomedusa. This genus in-cludes simply those species that are not in-cluded in the other five genera of Phyllo-medusinae. There are currently five speciesgroups recognized within Phyllomedusa: theP. buckleyi group (Cannatella, 1980), P. bur-meisteri group (Lutz, 1950; Pombal andHaddad, 1992), P. hypochondrialis group(Bokermann, 1965a), P. perinesos group(Cannatella, 1982), and P. tarsius group (Dela Riva, 1999). The monophyly of thesegroups had not been tested, and relationshipsamong them remain unstudied. Furthermore,several species (e.g., P. bicolor, P. palliata,P. tomopterna, and P. vaillanti) have notbeen assigned to any species group. Someauthors (Funkhouser, 1957; Duellman,1968a, 1969; Cannatella, 1980; Jungfer andWeygoldt, 1994) have suggested that thePhyllomedusa buckleyi group deserves ge-neric recognition.

Duellman et al. (1988b) posited the exis-tence of a clade composed of most speciesof Phyllomedusa (excluding the P. buckleyigroup and the P. guttata group, now Phas-mahyla, but see below), implicitly includingthe species now placed in Hylomantis. Ap-parent synapomorphies of this clade are thewell-developed parotoid glands; the presenceof the slip of the m. depressor mandibulaethat originates from the dorsal fascia at thelevel of the m. dorsalis scapulae; first toe lon-ger than second; and the eggs wrapped inleaves. Duellman et al. (1988b) explicitly ex-cluded the species then included in the P.guttata group (now Phasmahyla) from thisapparent clade. However, Lutz (1954), Bok-ermann and Sazima (1978), Weygoldt(1984), and Haddad (personal obs.) reportedP. guttata, P. jandaia, P. exilis, and P. coch-ranae, respectively, to oviposit in foldedleaves, and Cruz (1990) reported in Hylo-mantis the presence of the slip of the m. de-pressor mandibulae that originates from thedorsal fascia at the level of the m. dorsalisscapulae. In this study we include represen-tatives of the Phyllomedusa buckleyi group(P. lemur), P. burmeisteri group (P. tetraplo-idea), P. hypochondrialis group (P. hypo-

chondrialis), and P. tarsius group (P. tar-sius). We include also P. bicolor, P. palliata,P. tomopterna, and P. vaillanti, four speciesunassigned to groups.

Hylinae

This taxon is the primary focus of thisstudy. Hyline monophyly is supported bytwo synapomorphies: the tendo superficialisdigiti V with an additional tendon that arisesventrally from m. palmaris longus (da Silva,1998, as cited by Duellman, 2001), and kar-yotype with 24 (or more) chromosomes(Duellman, 2001). The published molecularevidence is ambiguous regarding the issue.8

No comprehensive study of hyline system-atics has been published, although the resultsof one unpublished dissertation (da Silva,1998) have been widely circulated (e.g.,Duellman, 2001). Although the problems ofhylid systematics have been recognized forsome time, almost all work has been done atthe level of satellite genera (e.g., Duellma-nohyla, Plectrohyla, Ptychohyla, Scinax) orspecies groups of Hyla.

For the purpose of our analysis we includ-ed representatives of all 27 genera of Hyli-nae. Within the genus Hyla, we included ex-emplars of 39 of the 41 species groups thathad been recognized (we lack exemplars forthe H. claresignata and H. garagoensisgroups). We are not recognizing monotypicspecies group because (1) they do not rep-resent testable hypothesis, and (2) they are

8 In the analysis of Darst and Cannatella (2004), Hy-linae (including pseudids) is monophyletic only in theirmaximum likelihood analysis, not in their parsimonyanalysis. If, unlike Darst and Cannatella (2004), inser-tion/deletion events are considered as informative vari-ations, their results still show a paraphyletic Hylinae,having Leptodactylus pentadactylus 1 Lithodytes linea-tus nested within Hylinae. In the same analysis Hemi-phractinae is monophyletic. We do not think that thesedifferences in results reflect relative merits of the differ-ent approaches but instead represent problems in the tax-on sampling of the analysis of Darst and Cannatella(2003) (which was not designed to test the monophylyof Hylinae). Salducci et al. (2002) presented a molecularphylogenetic analysis using a fragment of 16S of a sam-pling restricted to sequences available in GenBank andHylidae of French Guyana. Rana palmipes and Hyali-nobatrachium taylori were the only outgroups. Consid-ering the restricted taxon sampling and the minimalnumber of outgroups, their results are difficult to inter-pret or to compare with other studies.

Page 21: systematic review of the frog family hylidae, with special reference to ...

2005 21FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

not a rank in the Linnean taxonomy andtherefore are not required for consistency andstability purposes.

Hyla is the most species-rich genus of hy-lid frogs. It is currently placed in 41 speciesgroups, plus other species that had not beenassociated with any group. In turn, majorclades composed of several of these speciesgroups have been suggested. Because nostudy has ever suggested Hyla to be mono-phyletic and several have suggested that it isparaphyletic with respect to other hyline gen-era (Duellman and Campbell, 1992; Cocroft,1994; Faivovich, 2002; Haas, 2003; Darstand Cannatella, 2004; Faivovich et al.,2004), we refer further discussion to theheadings for the various genera and speciesgroups. Comments about apparent majorclades and proposed relationships amongspecies groups are mostly reserved for thediscussion section of this paper.

Gladiator Frogs

Kluge (1979: 1) referred to the frogs thenplaced in the Hyla boans group as ‘‘gladiatorfrogs’’ ‘‘in view of their extremely pugna-cious behavior and the well developed pre-pollical spines that they use when fighting.’’Following Duellman (1970, 1977), Kluge(1979) included in the group H. boans, H.circumdata, H. crepitans, H. faber, H. par-dalis, and H. pugnax. Nevertheless, a pre-pollical spine has been reported for severalspecies groups. Furthermore, territorial fight-ing has been reported or suspected to occurin several of these species.9 Because of this,and due to the lack of a better term, we preferto use the term ‘‘Gladiator Frogs’’ to refercollectively to all the mostly South Americanspecies having a prepollical spine, as was

9 It remains to be studied if these territorial behaviorsare homologous. Species of this putative clade, otherthan some members of the H. boans group, where com-bat was observed or are suspected to occur, are Hylacircumdata (Haddad, personal obs.), H. cordobae (Fai-vovich, personal obs.), H. goiana (Menin et al., 2004),H. joaquini (Garcia et al., 2003), H. marginata (Garciaet al., 2001b), H. marianitae (Duellman et al., 1997), H.prasina (Haddad, personal obs.), H. melanopleura (Lehrand May, 2004), H. pulchella (Gallardo, 1970; Langone,‘‘1994’’ [1995]), H. punctata (Sehinkman and Faivov-ich, personal obs.), H. raniceps (Guimaraes et al., 2001),H. riojana (Blotto and Baldo, personal commun.), andH. semilineata (Haddad, personal obs.).

done by Faivovich et al. (2004), instead ofrestricting its use to the H. boans group. Thespecies groups that are currently referred tothe Gladiator Frog clade are the H. albom-arginata, H. albopunctata, H. boans, H. cir-cumdata, H. claresignata, H. geographica,H. granosa, H. martinsi, H. pseudopseudis,H. pulchella, and H. punctata10 groups (Bok-ermann, 1972, Hoogmoed, 1979, Duellmanet al., 1997, Eterovick and Brandao, 2001,Duellman, 2001, Faivovich et al., 2004).

Hyla albomarginata Group: The H. al-bomarginata group was first recognized for-mally by Cochran (1955) for a group of spe-cies (H. albomarginata, H. albosignata, H.albofrenata, H. musica) that Lutz (‘‘1948’’[1949]) referred to as the green species ofHyla of southeastern Brazil. Cochran (1955)included H. prasina (latter included in the H.pulchella group by Lutz, 1973) in this group.Duellman (1970) presented a definition ofthe group and included, besides the speciesconsidered by Cochran (1955), H. rufitela, H.pellucens, H. albopunctulata (now consid-ered a member of the H. bogotensis group;see below), and H. albolineata (now consid-ered a species of Gastrotheca; see Sachsse etal., 1999).

Cruz and Peixoto (‘‘1985’’ [1987]) dividedthe Hyla albomarginata group into three‘‘complexes’’: the H. albomarginata com-plex, containing H. albomarginata and H.rufitela; the H. albofrenata complex, con-taining H. albofrenata, H. arildae, H. ehr-hardti (as H. arianae; see Faivovich et al.,2002), H. musica, and H. weygoldti; and theH. albosignata complex, containing H. al-bosignata, H. callipygia, H. cavicola, H. flu-minea, and H. leucopygia. Hyla pellucensshould also be included in the albomarginatacomplex, because this species was includedby Duellman (1970) but was overlooked byCruz and Peixoto (‘‘1985’’ [1987]); verylikely the same applies for H. rubracyla, aspecies that was resurrected from the syn-onymy of H. pellucens by Duellman (1974)and included in the H. albomarginata group

10 Faivovich et al. (2004) mentioned that Duellman etal. (1997) did not include the Hyla punctata group with-in a putative clade of gladiator frogs, but overlooked thefact that Duellman (2001: 776) stated that ‘‘members ofthe . . . H. punctata group might be included’’ in thisclade.

Page 22: systematic review of the frog family hylidae, with special reference to ...

22 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

by Duellman in Frost (1985). The only pos-sible synapomorphies that were proposed forthese complexes were the red coloration ofthe webbing in the two species of the H. al-bomarginata complex studied by the authors,and presence of cloacal ornamentation in theH. albosignata complex (several instances ofhomoplasy within hylids). Haddad and Sa-waya (2000) and Hartmann et al. (2004) fur-ther suggested that the H. albofrenata and H.albosignata complexes share a reproductivemode where the male constructs a subterra-nean nest in the muddy side of streams andpools that is completely concealed afterspawning, a nest where larvae spend earlystages of development; subsequent to flood-ing, the exotrophic larvae live in ponds orstreams.

Cruz et al. (2003) added Hyla ibirapitangaand H. sibilata to the H. albosignata com-plex. Note that species included in both theH. albofrenata and H. albosignata complex-es do not posses a prepollical spine, as dospecies in the H. albomarginata complex. Onrecent occasions, some authors (Haddad andSawaya, 2000; Garcia et al., 2001a) referreddirectly to the H. albofrenata and H. albo-signata groups without further comment. Weinclude in the present analysis representa-tives of the three complexes: H. albosignata,H. callipygia, H. cavicola, and H. leucopygiaas representatives of the H. albosignata com-plex; H. arildae, H. weygoldti, and a Hylasp. 1, a new species similar to H. ehrhardti,as representatives of the H. albofrenata com-plex; and H. albomarginata, H. pellucens,and H. rufitela as exemplars of the H. albo-marginata complex.

Hyla albopunctata Group: Cochran (1955)recognized the H. albopunctata group on thebasis of the ‘‘more streamlined body shape,by lacking an outer metatarsal tubercle, andby having the fingers webbed only at thebase . . . ’’. She included in the group H. al-bopunctata, H. raniceps, and several speciesfrom southeastern Brazil that are now in theH. claresignata and H. pulchella groups.Cochran and Goin (1970) recognized a H.lanciformis group (on the basis of large size,a white margin on the upper lip, pointedheads, and reduced webbing between the fin-gers) in which they included H. lanciformis,H. multifasciata, and H. boans (name applied

incorrectly to H. albopunctata; see Duell-man, 1971a). Duellman (1971a) implicitlyunited these two groups and considered thelarger H. albopunctata group to be composedof H. albopunctata, H. lanciformis, H. mul-tifasciata, and H. raniceps. De Sa (1995,1996) stated that there was no evidence sup-porting the monophyly of the group. Cara-maschi and Niemeyer (2003) added H. leu-cocheila to the group and suggested that itwas monophyletic, but they presented no ev-idence to this effect. We include all speciesexcept H. leucocheila in our analysis.

Hyla boans Group: The constitution of theH. boans group as well as the definition ofthe group present a rather confusing history.Affinities between species of what is cur-rently called the H. boans group were firstrecognized by Cochran (1955), who includedin what she called the H. faber group thespecies H. crepitans, H. faber, H. langsdorffii(now a species of Osteocephalus, see Duell-man, 1974), and H. pardalis. Some of thediagnostic characters of this group were largesize and the presence of what she called aprominent spurlike prepollex in males. Coch-ran and Goin (1970) included H. faber, H.pardalis, H. rosenbergi, and H. maxima(now a junior synonym of H. boans; seeDuellman, 1971a) in the H. maxima group,and they excluded H. crepitans, placing it inits own group. Duellman (1970) presented aformal definition of the H. boans group, inwhich he included H. boans, H. circumdata(now in the H. circumdata group), H. cre-pitans, H. faber, H. langsdorffii, H. pardalis,and H. rosenbergi. Lutz (1973) included thespecies in three different groups,11 in one ofwhich she also included several species nowincluded in the H. circumdata, H. pseudop-seudis, and H. martinsi groups (the ‘‘specieswith long, sharp pollex rudiment’’). Kluge(1979) resurrected H. pugnax from the syn-onymy of H. crepitans, including it also inthe H. boans group. Martins and Haddad(1988) included in the group H. lundii (usingthe name H. biobeba, a junior synonym, seeCaramaschi and Napoli, 2004), based on ob-

11 The ‘‘species with long, sharp pollex rudiment’’, the‘‘species with undulated glandular outline’’, and the‘‘species with pattern on the transparent part of the lowereyelid’’.

Page 23: systematic review of the frog family hylidae, with special reference to ...

2005 23FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

servations of nest construction done by Jim(1980). Implicitly, they also removed H. cir-cumdata from the group. Hoogmoed (1990)resurrected H. wavrini from the synonymy ofH. boans and retained it in the group. Duell-man (2001) omitted H. lundii from the groupwithout comment. Caramaschi and Ro-drigues (2003) added H. exastis, suggestingthat it was related to H. lundii and H. par-dalis on the basis of its lichenous color pat-tern and the rugose skin texture. Caramaschiand Napoli (2004) presented a formal defi-nition of the group. In summary, and follow-ing Caramaschi and Napoli (2004), we re-gard the H. boans group to be composed ofH. boans, H. crepitans, H. exastis, H. faber,H. lundii, H. pardalis, H. pugnax, H. rosen-bergi, and H. wavrini. The only synapomor-phy that has ever been proposed for thisgroup is the nest-building behavior of males,which has been observed in most species(see Martins and Moreira, 1991 for a re-view). Early reports of H. crepitans indicatedthat males do not construct nests; this wasshown to be facultative by Caldwell (1992).This behavior is still unknown in H. pugnax.From this group we include in our analysisH. boans, H. crepitans, H. faber, H. lundii,and H. pardalis.

Hyla circumdata Group: This group wasfirst mentioned by Bokermann (1967a,1972), without providing any diagnosis.Heyer (1985) provided the first formal defi-nition, diagnosing the group by the combi-nation of a well-developed prepollex and theposterior face of the thigh having dark ver-tical stripes. The group was further discussedand expanded by Caramaschi and Feio(1990), Pombal and Haddad (1993), Napoli(2000), Caramaschi et al. (2001), and Napoliand Pimenta (2003). Three other speciesgroups, the H. claresignata, H. martinsi, andH. pseudopseudis groups, as well as H. al-varengai, historically had been satellites ofthe H. circumdata group, with these speciesbeing alternatively included or excludedfrom the group. These groups and H. alvar-engai are treated separately. With the rec-ognition of these three groups being separatefrom the H. circumdata group, it is unclearwhich synapomorphies support its monophy-ly as currently defined.

Duellman et al. (1997) suggested that all

species of the Hyla circumdata group shouldbe transferred to the H. pulchella group. Fai-vovich et al. (2004) demonstrated by usingDNA sequences from four mitochondrialgenes that the two groups are not closely re-lated. In the analysis of Faivovich et al.(2004), the three exemplars of the H. circum-data group then available (H. astartea, H.circumdata, and H. hylax) formed a mono-phyletic group that is the sister taxon of theremaining Gladiator Frogs they included intheir analysis. Napoli and Pimenta (2003),Napoli and Caramaschi (2004), and Napoli(2005) recognized 15 species in the group:H. ahenea, H. astartea, H. caramaschii, H.carvalhoi, H. circumdata, H. feioi, H. gou-veai, H. hylax, H. ibitipoca, H. izecksohni,H. lucianae, H. luctuosa, H. nanuzae, H. rav-ida, and H. sazimai. We include five speciesin our analysis: H. astartea, H. circumdata,H. hylax, as well as Hyla sp. 3 and Hyla sp.4, two undescribed species from littoral areasof northern Sao Paulo (state) and southrn Riode Janeiro (state), Brazil, respectively.

Hyla claresignata Group: A close relation-ship between H. clepsydra and H. claresig-nata was suggested by Bokermann (1972),who noticed striking similarities in larval andadult morphology. Bokermann (1972) sug-gested a possible relationship of these specieswith the H. circumdata group; followinghim, Jim and Caramaschi (1979) included H.clepsydra and H. claresignata in the H. cir-cumdata group. However, subsequent work-ers (Caramaschi and Feio, 1990; Pombal andHaddad, 1993) who referred to the H. cir-cumdata group did not include them in thegroup. The H. claresignata group was rec-ognized in the restricted form by Duellmanet al. (1997). Possible synapomorphies of theH. claresignata group are character states as-sociated with the torrent-dwelling larvae ofthese species: oral disc completely surround-ed by marginal papillae, and 7/12–8/13 labialtooth rows. We were not able to secure sam-ples of either of the two species of thisgroup.

Hyla geographica Group: This group wasdelimited by Cochran (1955: 180) as beingcharacterized by its ‘‘extremely attenuatelimbs’’. Cochran and Goin (1970) character-ized the species of this group as ‘‘moderate-sized tree frogs with elongate dermal ap-

Page 24: systematic review of the frog family hylidae, with special reference to ...

24 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

pendages on the heels and reduced webbingbetween the fingers.’’ Duellman (1973a) pre-sented an extensive characterization of thegroup (including vomers large with angulardentigerous processes, each bearing as manyas 20 teeth; nuptial excrescences present inbreeding males; projecting prepollices absentin both sexes; calcars present; palpebralmembrane clear or reticulated). However, itis unclear from his account if any of thesecharacter states could be considered syna-pomorphic of the group.

Duellman (1973a) included in this groupHyla calcarata, H. fasciata, and H. geogra-phica. Later, Pyburn (1977, 1984) added H.microderma and H. hutchinsi. Goin andWoodley (1969) considered H. kanaima re-lated to the H. geographica group, and Py-burn (1984) included H. kanaima in thegroup. Lutz (1963, 1973) and Bokermann(1966a) stressed similarities between H. se-cedens and H. semilineata (as H. geographi-ca), but Caramaschi et al. (2004a) suggestedthat actually this species is closer to H. bis-choffi (of the H. pulchella group). Duellman(in Frost, 1985) and Duellman and Hoog-moed (1992), respectively, included H. pic-turata and H. roraima in the H. geographicagroup. D’Heursel and de Sa (1999) arguedfor the recognition of H. semilineata, a spe-cies that had previously been placed in thesynonymy of H. geographica. Lescure andMarty (2000) included H. dentei, a speciesthat Bokermann (1967b) considered to havecharacter states of both H. raniceps (H. al-bopunctata group) and the H. geographicagroup. Caramaschi et al. (2004a) added H.pombali to the group. In summary, the H.geographica group is currently composed of11 species: H. calcarata, H. dentei, H. fas-ciata, H. geographica, H. hutchinsi, H. kan-aima, H. microderma, H. picturata, H. pom-bali, H. roraima, and H. semilineata. We in-clude H. fasciata, H. calcarata, H. kanaima,H. microderma, H. picturata, H. roraima,and H. semilineata in our study.

Hyla granosa Group: This group was firstdefined by Cochran and Goin (1970) asgreen frogs that share the vomerine teeth be-ing in rather heavy, arched series, and withmales having a ‘‘protruding spine in the pre-pollex’’. These authors included H. granosa,H. rubracyla (now in the H. albomarginata

complex of the H. albomarginata group, seeabove), and H. guibei (now a junior synonymof H. pellucens; see Duellman, 1974). Pre-viously, Rivero (1964) stated that H. alemaniwas allied with H. granosa. Rivero (‘‘1971’’[1972]) considered H. sibleszi to be relatedto H. granosa. Hoogmoed (1979) mentioned,without any diagnosis, the H. granosa groupin the Guayanas, in which he included H.ornatissima. Mijares-Urrutia (1992a) consid-ered H. alemani, H. granosa, H. ornatissima,and H. sibleszi to be the members of thisgroup, and he provided a characterizationbased on larval features. We are not awareof any synapomorphies for this group. In thisanalysis we include H. granosa and H. sib-leszi.

Hyla martinsi Group: This group was rec-ognized by Bokermann (1965b) for two spe-cies, H. langei and H. martinsi, characterizedby the presence of an extensive hooklike hu-meral crest and by a bifid prepollex. Boker-mann (1964a) noticed ‘‘superficial similari-ties’’ of H. martinsi with H. circumdata. Car-amaschi and Feio (1990) and Cardoso (1983)included H. martinsi in the H. circumdatagroup for having the diagnostic charactersestablished by Heyer (1985). However, basedon the presence of bifid prepollex and a hu-meral spine, Caramaschi et al. (2001) pre-ferred to keep it as a separate species group.As a representative of this group we includeH. martinsi in the analysis.

Hyla pseudopseudis Group: This groupwas recognized by Pombal and Caramaschi(1995) as closely related to the H. circum-data group, from which it was differentiatedmostly by its color pattern. Eterovick andBrandao (2001) further differentiated bothgroups based on the presence of short, lateralirregular tooth rows and for having addition-al posterior tooth rows (6–8 rows) in the oraldiscs of the larvae of the H. pseudopseudisgroup (a maximum of 5 posterior rows in theH. circumdata group). Caramaschi et al.(2001) transferred H. ibitiguara from the H.circumdata group to the H. pseudopseudisgroup on the basis of its similar externalmorphology, color pattern, and habits. Thegroup currently comprises three species, H.ibitiguara, H. pseudopseudis and H. saxico-la, plus Hyla sp. 6 (aff. H. pseudopseudis), anew species from Bahia, Brazil, that is being

Page 25: systematic review of the frog family hylidae, with special reference to ...

2005 25FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

described by Lugli and Haddad (in prep.).Only tissues of this new species were avail-able for this study.

Hyla pulchella Group: The history of thisgroup was recently reviewed by Faivovich etal. (2004). These authors also presented aphylogenetic analysis based on mitochondri-al DNA sequences of four genes, and includ-ed 10 of the then 14 species included in thegroup, plus exemplars of the former H. po-lytaenia group and several outgroups. Theirresults indicate that the H. polytaenia group,as defined by Cruz and Caramaschi (1998),is nested within the H. pulchella group. Con-sequently, species included in the H. poly-taenia group were transferred to the H. pul-chella group, where they are recognized asthe polytaenia clade. Considering this actionand the species status given to H. cordobaeand H. riojana, Faivovich et al. (2004) raisedthe number of species included in the H. pul-chella group to 25. Carnaval and Peixoto(2004) recently added H. freicanecae to thegroup. Caramaschi et al. (2004a) suggestedthat H. secedens is related to H. bischoffi,therefore adding implicitly the species to theH. pulchella group. Caramaschi and Cruz(2004) added H. beckeri and H. latistriata tothe H. polytaenia clade, adding two morespecies to the H. pulchella group. Faivovichet al. (2004) had doubts regarding the rec-ognition of H. callipleura. Duellman et al.(1997) included this name as a junior syno-nym of H. balzani, but Kohler (2000) res-urrected it using the combination H. cf. cal-lipleura for some populations in Bolivia. Wetentatively recognize H. callipleura as valid,but stress the necessity of further studies toclarify its status.

While the monophyly of this redefinedHyla pulchella group is supported by molec-ular evidence, no morphological synapomor-phies have been proposed so far (see alsocomments for the H. circumdata and H. lar-inopygion groups). In summary, there are 30species included in this group: H. albonigra;H. andina; H. balzani; H. beckeri; H. bis-choffi; H. buriti; H. caingua; H. callipleura;H. cipoensis; H. cordobae; H. cymbalum; H.ericae; H. freicanecae; H. goiana; H. guen-theri; H. joaquini; H. latistriata; H. leptoli-neata; H. marginata; H. marianitae; H. me-lanopleura; H. palaestes; H. phaeopleura; H.

polytaenia; H. prasina; H. pulchella; H. rio-jana; H. secedens; H. semiguttata; and H.stenocephala. In this analysis we include thesame species that were available to Faivovichet al. (2004) (H. andina; H. balzani; H. bis-choffi; H. caingua; H. cordobae; H. ericae;H. guentheri; H. joaquini; H. leptolineata; H.marginata; H. marianitae; H. prasina; H.pulchella; H. riojana; H. semiguttata, and anundescribed species), plus H. polytaenia. Thespecies that Faivovich et al. (2004) calledHyla sp. 2 corresponds to what Caramaschiand Cruz (2004) recently described as H. la-tistriata, and so is included under that name.

Hyla punctata Group: This group was firstrecognized by Cochran and Goin (1970),who included H. punctata, H. rhodoporus,and H. rubeola (these last two were subse-quently considered to be synonyms of H.punctata by Duellman, 1974). They charac-terized the group as ‘‘moderately small greentree frogs with small vomerine tooth patches,reduced webbing between the fingers, with-out spines on the pollex, and without ulnaror tarsal ridges.’’ Hoogmoed (1979) men-tioned this group without defining it. No syn-apomorphies have been proposed for thisgroup. Besides H. punctata, two other spe-cies could be included on this poorly definedgroup: H. hobbsi, a species resurrected fromthe synonymy of H. punctata by Pyburn(1978), and H. atlantica, a name recently ap-plied by Caramaschi and Velosa (1996) forthe populations on eastern Brazil previouslyconsidered as H. punctata. In this analysiswe include H. punctata.

Species of Probable Gladiator Frogs Un-assigned to Species Group: Hyla alvarengai:This bizarre species was said by Bokermann(1964a) to share some character states withH. martinsi and H. saxicola (now placed inthe H. martinsi and H. pseudopseudisgroups, respectively), such as the notable de-velopment of the prepollex and the shape ofthe sacral diapophyses. Lutz (1973) includedit in the group of the ‘‘species with long,sharp pollex rudiment’’, together with H.crepitans, H. faber, and species now includ-ed in the H. circumdata and H. martinsigroups. She referred to it as Hyla (Plectro-hyla?) alvarengai and stated that it was ‘‘de-void of affinities with the very large speciesof Hyla’’, suggesting instead a possible re-

Page 26: systematic review of the frog family hylidae, with special reference to ...

26 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

lationship with Plectrohyla. A similar opin-ion was presented by Sazima and Bokermann(1977), who noticed ‘‘superficial similari-ties’’ with Plectrohyla, but they argued thatthey differed in larval morphology, spawn,and vocalizations. Duellman et al. (1997) in-cluded H. alvarengai in the H. circumdatagroup, presumably because it shares the di-agnostic characters of the group. Eterovickand Brandao (2001) and Caramaschi et al.(2001) did not consider it as a member of theH. circumdata group. Unfortunately, wecould not secure this species for our analysis,although we include a new species similar toH. alvarengai that is in the process of beingdescribed by Lugli and Haddad (in prep.).

Hyla fuentei: This species was describedby Goin and Goin (1968) based on a singleadult female from Surinam. Hoogmoed(1979) mentioned the existence of two ad-ditional specimens collected close to the typelocality. Since then, no author has referred tothis species. From the original description,there are few characters that allow the asso-ciation of this species with any other groupof Hyla. The angulate dentigerous process ofthe vomer suggests that this species could beassociated with certain Gladiator Frogs, assome species currently placed in the H. al-bopunctata, H. boans, and H. geographicagroups have this character state. A study ofthe holotype and discovery of male speci-mens should clarify the matter.

Hyla heilprini: This West Indian hylid wasassociated with the H. albomarginata groupby Duellman (1970) based on the presenceof a ‘‘green’’ peritoneum (actually it is whiteparietal peritoneum, like in species of the H.albomarginata, H. bogotensis, H. granosa,and H. punctata groups; Lynch and Ruiz-Carranza [1991: 4]; Faivovich, personal obs.)and external pigmentation. This was fol-lowed by Trueb and Tyler (1974), who no-ticed that its morphology was ‘‘highly rem-iniscent’’ of those from that species group.While it seems clear that H. heilprini is aGladiator Frog, we are not aware of any syn-apomorphy relating it to the H. albomargin-ata group. This species was included in theanalysis.

Three species of Hyla from the Venezue-lan Tepuis: There are three species of Hylafrom the Venezuelan Tepuis that have not

been posited to be related to any other spe-cies or group of species: H. benitezi, H. le-mai, and H. rhythmicus. The presence of aprepollical spine (Rivero, ‘‘1971’’ [1972];Donnelly and Myers, 1991; Senaris and Ay-arzaguena, 2002) associates these specieswith Gladiator Frogs. Hyla benitezi and H.lemai were included in the analysis.

Hyla varelae: Carrizo (1992) describedthis species based on a single adult male. Itwas suggested to be related to H. raniceps inthe description. No additional specimenshave been collected since the description,and it was not included in this analysis.

Andean Stream-Breeding Hyla

Duellman et al. (1997) presented a phy-logenetic analysis restricted to wholly or par-tially Andean species groups of Hyla. Ontheir most parsimonious tree, the H. armata,H. bogotensis, and H. larinopygion groupstogether form a monophyletic group sup-ported by three transformations in larvalmorphology: the enlarged, ventrally orientedoral disc; the complete marginal papillae;and labial tooth rows formula 4/6 or more.

Hyla armata Group: The H. armata groupwas first recognized by Duellman et al.(1997) for its single species, H. armata. Koh-ler (2000) and De la Riva et al. (2000) sub-sequently reported that H. charazani was asecond member of the H. armata group.Duellman et al. (1997) described four syna-pomorphies for the H. armata group: thepresence in males of keratin-covered bonyspines on the proximal ventral surface of thehumerus, on the expanded distal element ofthe prepollex, and on the first metacarpal;tadpole tail long with low fins and bluntlyrounded tip; forearms hypertrophied; and thepresence of a ‘‘shelf’’ on the larval upper jawsheath. We include both species in our anal-ysis.

Hyla bogotensis Group: This group wasreviewed by Duellman (1970, 1972b, 1989)and Duellman et al. (1997). The only syna-pomorphy that has been suggested for thisgroup is the presence in males of a mentalgland.12 Hyla albopunctulata was redescribed

12 See Duellman (2001) and La Marca (1985) for com-ments on taxonomic distribution and morphological var-iation of this gland, and Romero de Perez and Ruiz-Carranza (1996) for its histological structure.

Page 27: systematic review of the frog family hylidae, with special reference to ...

2005 27FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

by Duellman and Mendelson (1995), who re-jected a possible relationship with the H. bo-gotensis group, as suggested by Goin in Riv-ero (1969) and Duellman (in Frost, 1985),and they simply stated that its relationshipswere unclear. Faivovich et al. (in prep.) stud-ied two male syntypes (BMNH 1880.12.5159 and 1880.12.5160), which posses a no-ticeable mental gland. For this reason, we as-sociate this species with the H. bogotensisgroup. The Hyla bogotensis group is thencomposed of 15 species: H. albopunctulata,H. alytolylax, H. bogotensis, H. callipeza, H.colymba, H. denticulenta, H. jahni, H. las-cinia, H. lynchi, H. palmeri, H. phyllognata,H. piceigularis, H. platydactyla, H. simmon-si, and H. torrenticola. In this analysis wewere able to include only H. colymba and H.palmeri.

Hyla larinopygion Group: Duellman andHillis (1990) and Duellman and Coloma(1993) reviewed this group, and Duellmanand Hillis (1990) and Duellman et al. (1997)provided a formal definition, although it isunclear whether any of the morphologicalcharacter states employed in these character-izations is synapomorphic for the group.Duellman and Hillis (1990) performed a phy-logenetic analysis using isozymes of fivespecies of the group. In the phylogeneticanalysis of Duellman et al. (1997), the au-thors did not identify any synapomorphy forthe H. larinopygion group; it merely lacksthe apparent synapomorphies of the H. ar-mata and H. bogotensis groups. Because ofproblems with the limits of the H. larinopy-gion group, Kizirian et al. (2003) were un-certain about the placement of H. tapichal-aca, a species that they considered most sim-ilar to the H. larinopygion, H. armata, andH. pulchella groups.13 Faivovich et al. (2004)showed that H. tapichalaca and H. armata(the only exemplars of Andean stream-breed-ing Hyla they included) were sister taxa, andonly very distantly related to the H. pulchellagroup. The H. larinopygion group currentlycomprises nine species: H. caucana, H. lar-inopygion, H. lindae, H. pacha, H. pantos-

13 The only character state that led Kizirian et al.(2003) to consider Hyla tapichalaca similar to the H.pulchella group is the presence of an enlarged, pointed,recurved prepollex.

ticta, H. psarolaima, H. ptychodactyla, H.sarampiona, and H. staufferorum. In thisanalysis, we include H. pacha, H. pantostic-ta, and H. tapichalaca.

The 30-Chromosome Hyla

Only the species of the Hyla microcephalagroup were initially reported to have 30 chro-mosomes (Duellman and Cole, 1965; Duell-man, 1967). However, as species of othergroups were reported to have 30 chromo-somes (Duellman, 1970; Bogart, 1973), it be-came evident that this was a characteristic ofseveral species groups. Currently, the H. co-lumbiana, H. decipiens, H. garagoensis, H.labialis, H. leucophyllata, H. marmorata, H.microcephala, H. minima, H. minuta, H.parviceps, and H. rubicundula groups, plusseveral species unassigned to any group arebelieved to conform to a monophyletic groupsupported by this character state (Duellman,1970; Duellman and Trueb; 1983; Duellmanet al., 1997; Napoli and Caramaschi, 1998;Carvalho e Silva et al., 2003).

Hyla columbiana Group: This group wasfirst proposed by Duellman and Trueb (1983)for three species: H. carnifex, H. columbi-ana, and H. praestans. Kaplan (1991, 1999)found no evidence of monophyly for thegroup. Kaplan (1997) resurrected H. bogertifrom the synonymy of H. carnifex, adding afourth species to the group. Kaplan (1999)suggested that ‘‘the presence of two close,triangular lateral spaces between the cricoidand arytenoids at the posterior part of thelarynx’’ is a synapomorphy of the H. colum-biana group excluding H. praestans, whichhe considered to be closely related to the H.garagoensis group. The group therefore iscomposed of H. bogerti, H. carnifex, and H.columbiana. In the present analysis, we in-clude H. carnifex.

Hyla decipiens Group: While describingthe tadpoles of H. oliveirai and H. decipiens,Pugliese et al. (2000) noticed that they havemarginal papillae (unlike other known larvaeof the H. microcephala group), and theypointed out that they may not be members ofthe H. microcephala group as considered byBastos and Pombal (1996). Pugliese et al.(2000) noticed similarities in tadpole mor-phology with H. berthalutzae, with which

Page 28: systematic review of the frog family hylidae, with special reference to ...

28 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

these two species also share oviposition onleaves outside the water. Pugliese et al.(2000) also associated H. haddadi with thesethree species based on external similarity.

Carvalho e Silva et al. (2003) suggestedthe recognition of the Hyla decipiens groupfor these species. The group was defined bylarval features that include one row of mar-ginal papillae, an ovoid body in lateral view,eyes in the anterior third of the body, dorsalfin arising at the end of the body, tail withtransverse dark stripes on a light background,and pointed tip without a flagellum. It is un-clear which of these character states could beconsidered to be possible synapomorphies.Perhaps one apparent synapomorphy of thegroup, not mentioned by the authors, couldbe the oviposition on leaves outside the wa-ter. The group is composed of H. berthalut-zae, H. decipiens, H. haddadi, and H. oliv-eirai. In our analysis, we include H. ber-thalutzae.

Hyla garagoensis Group: This speciesgroup was first recognized by Kaplan andRuiz-Carranza (1997), who diagnosed it bythe presence of alternated pigmented and un-pigmented longitudinal stripes on the hind-limbs of larvae. The H. garagoensis group iscurrently composed of three species, H. gar-agoensis, H. padreluna, and H. virolinensis.Unfortunately, no species of this group wasavailable for our analysis.

Hyla labialis Group: This group was firstrecognized by Cochran and Goin (1970) forH. labialis (including what is now H. platy-dactyla, a species of the H. bogotensisgroup). They characterized the group by thevomerine teeth being in two rounded patchesand by the presence of a well-developed ax-illary membrane (referred to as a patagium)that is bright blue in life. Duellman (1989)presented a more extensive definition of thegroup, noting that the axillary membrane wasabsent, a point with which we agree. A sim-ilar definition was presented by Duellman etal. (1997). No synapomorphies were sug-gested for this species group. The group cur-rently comprises three species, H. labialis, H.meridensis, and H. pelidna. In this study weinclude H. labialis.

Hyla leucophyllata Group: This group wasdefined and later partly reviewed by Duell-man (1970, 1974). From Duellman’s (1970)

extensive definition, the only possible syna-pomorphy seems to be the presence of twoglandular patches in the pectoral region (thischaracter state, however, was ignored in ev-ery subsequent paper dealing with phyloge-netic relationships of 30-chromosome Hyla).In the phylogenetic analysis presented byDuellman and Trueb (1983), the only syna-pomorphy they proposed for the group wasviolin larval body shape. This character stateseems problematic in that it is present in lar-vae of some species associated with the H.microcephala and H. rubicundula groups(see Lavilla, 1990; Pugliese et al., 2001), andtherefore the level of inclusiveness of theclade that is supported by this transformationis unclear. From the perspective of adult mor-phology, we suggest that glandular patchesin the pectoral region is a synapomorphy ofthe H. leucophyllata group; we observed itclearly on specimens of both sexes in all spe-cies of the group. Another character state thatis either a likely synapomorphy of the H. leu-cophyllata group or of a more inclusive cladeis the oviposition on leaves hanging over wa-ter (this oviposition mode occurs also in oth-er 30-chromosome species; see comments inthe H. microcephala and H. parvicepsgroups).

The Hyla leucophyllata group is com-posed of seven species: H. bifurca, H. ebrac-cata, H. elegans, H. leucophyllata, H. trian-gulum, H. rossalleni, and H. sarayacuensis.In our analysis, we include H. ebraccata, H.sarayacuensis, and H. triangulum.

Hyla marmorata Group: This group wasrecognized by Cochran (1955) for H. mar-morata, H. microps, and H. giesleri based onthe presence of an axillary membrane, wartyskin around the margin of the lower lip, shortsnout, crenulated margin of limbs, shorthindlimbs, developed finger and toe web-bing, dorsal marbled pattern, and orange col-oration in thighs and webbings. Bokermann(1964b) further diagnosed the group by itspossession of a very large vocal sac. Severalof these character states are possible syna-pomorphies for the group (such as the wartyskin around the margin of the lower lip, thecrenulated margin of limbs, the dorsal mar-bled pattern). Duellman and Trueb (1983)suggested that this group could be diagnosed

Page 29: systematic review of the frog family hylidae, with special reference to ...

2005 29FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

by the presence of a row of small marginalpapillae in the larval oral disc.

Bokermann (1964b), like Cochran (1955),included in the Hyla marmorata group otherspecies as well: H. parviceps, H. microps, H.schubarti, and H. moraviensis (now consid-ered a synonym of H. lancasteri; see Duell-man, 1966). Subsequent authors transferredthese species to other groups. This group isnow composed of eight species: H. acreana,H. dutrai, H. marmorata, H. melanargyrea,H. nahdereri, H. novaisi, H. senicula, and H.soaresi. In our analysis we include H. mar-morata and H. senicula.

Hyla microcephala Group: This group wasdefined by Duellman and Fouquette (1968)and Duellman (1970). Despite their extensivecharacterization, the only character statementioned by these authors that subsequentlyhas been considered a possible synapomor-phy of this group is the lack of marginal pa-pillae in the oral disc. Later, Duellman andTrueb (1983) added the depressed bodyshape of the larvae, another likely synapo-morphy.

While the study of Duellman and Fou-quette (1968) was focused on Middle Amer-ican species, Duellman (1970) referred anumber of South American species to theHyla microcephala group. Overall, he in-cluded in the group H. elongata (a juniorsynonym of H. rubicundula; see Napoli andCaramaschi, 1999), H. microcephala, H.minuta, H. nana, H. phlebodes, H. robert-mertensi, H. sartori, and H. werneri. Duell-man (1972a) also included H. mathiassoniand H. rhodopepla in the group, and he ex-cluded H. minuta. Cochran and Goin (1970)also had excluded H. minuta by placing it intheir H. minuta group. Duellman (1973b) in-cluded H. gryllata, and Langone and Basso(1987) added H. minuscula, H. sanborni, andH. walfordi.

Cruz and Dias (1991) placed Hyla bipunc-tata in the group on the basis of larval char-acters.14 Marquez et al. (1993) included H.leali in the H. microcephala group, withoutmentioning that it was included by Duellman

14 Duellman (2001) stated that the relationships ofHyla bipunctata were uncertain. Presumably he was notaware of the description of its tadpole by Cruz and Dias(1991).

(1982) in the H. minima group. Furthermore,Marquez et al. (1993) noticed that H. lealiand H. rhodopepla share vocalizations withshort, pulsatile notes with extremely lowdominant frequencies. Because of these sim-ilarities in vocalizations of H. leali with aspecies of the H. microcephala group, in theabsence of other evidence we prefer to keepH. leali in this group.

Bastos and Pombal (1996) suggested thatHyla branneri, H. decipiens, H. haddadi, andH. oliveirai were closely related species thatcould be tentatively associated with the H.microcephala group based on overall simi-larity of adult morphology, but this wasquestioned by Pugliese et al. (2000) and Car-valho e Silva et al. (2003), who excludedthese species from the group (see commentsfor the H. decipiens group). Pombal and Bas-tos (1998) also added H. berthalutzae, H.cruzi, and H. meridiana. Cruz et al. (2000)added H. pseudomeridiana. Kohler and Lot-ters (2001a) tentatively included H. joannae,based on its similarities in vocalization andadult morphology with H. leali (but see com-ments regarding H. leali above). Carvalho eSilva et al. (2003) added H. studerae and ex-cluded H. berthalutzae (see comments for theH. decipiens group).

Of the 20 species currently included in theHyla microcephala group, tadpoles are onlyknown for 9 species: H. bipunctata, H. mer-idiana, H. microcephala, H. nana, H. phle-bodes, H. pseudomeridiana, H. rhodopepla,H. sanborni, and H. studerae (Bokermann,1963, Duellman, 1970, 1972a, Lavilla, 1990,Cruz and Dias, 1991, Cruz et al., 2000, Pug-liese et al., 2000, Carvalho e Silva et al.,2003). All of these species have the two ap-parent synapomorphies of the H. microce-phala group (see comments for the H. rubi-cundula group).

The 20 species currently included in theHyla microcephala group are H. bipunctata,H. branneri, H. cruzi, H. gryllata, H. joan-nae, H. leali, H. mathiassoni, H. meridiana,H. microcephala, H. minuscula, H. nana, H.phlebodes, H. pseudomeridiana, H. rhodo-pepla, H. robertmertensi, H. sanborni, H.sartori, H. studerae, H. walfordi, and H. wer-neri. In this analysis we include H. bipunc-tata, H. microcephala, H. nana, H. rhodo-pepla, H. sanborni, and H. walfordi.

Page 30: systematic review of the frog family hylidae, with special reference to ...

30 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hyla minima Group: Duellman (1982) ten-tatively grouped together five species fromthe Upper and Middle Amazon Basin andeastern Andes for which data on larval mor-phology, vocalizations, and osteology weremostly absent. He based the grouping ofthese species on small body size and distri-bution. The species he included were H.aperomea, H. leali, H. minima, H. riveroi,and H. rossalleni. The group as such was notnamed until Duellman in Frost (1985) re-ferred to it as the H. minima group. Vigleand Goberdhan-Vigle (1990) added H. mi-yatai to this group; Marquez et al. (1993)implicitly transferred H. leali to the H. mi-crocephala group (see comments for the H.microcephala group above); De la Riva andDuellman (1997) redescribed H. rossalleniand placed it in the H. leucophyllata group.

Small size is a difficult criterion to applyfor the Hyla minima group, considering thatits constituent species are not smaller thanseveral species of the H. microcephalagroup. Duellman (2001) suggested that theH. minima group should be associated withthe H. parviceps group. Unfortunately, thisdoes not improve the systematics of thesefrogs, because no synapomorphies are knownfor either of these two groups (see the H.parviceps group for more comments). In thepresent analysis, we could include only H.miyatai.

Hyla minuta Group: This group was firstdefined by Cochran (1955); most of the spe-cies then included subsequently were trans-ferred by several authors to the H. leuco-phyllata, H. microcephala, or H. rubicundulagroups. The character state Cochran (1955)used to distinguish the H. minuta group wasthe immaculate anterior and posterior surfac-es of the thigh, a character state that is sharedby several 30-chromosome Hyla.

Martins and Cardoso (1987) describedHyla xapuriensis and referred it to the H.minuta group without providing any defini-tion. Kohler and Lotters (2001b) describedH. delarivai and tentatively suggested that itis close to H. minuta. Duellman and Trueb(1983) stated that the H. minuta group con-tained two species, but they did not statewhich one was the second species, and theyprovided no evidence for its monophyly. Thegroup is currently composed of H. minuta

and H. xapuriensis, and, following Kohlerand Lotters (2001b), we tentatively includeH. delarivai. For the purpose of our analysis,only H. minuta was available.

Hyla parviceps Group: This group wasfirst defined by Duellman (1970), and byDuellman and Crump (1974), who also re-viewed it. According to Duellman andCrump (1974), the species in the H. parvi-ceps group differ from other 30-chromosomeHyla species by having: (1) a pronouncedsexual dimorphism in size; (2) shorter snout;(3) tympanic ring indistinct or absent; (5)small (or reduced) axillary membrane; (9)sexual dimorphism in width of dorsolateralstripes; (10) suborbital bars; (11) thighsmarked with spots; (13) iris pale gray withred ring around pupil; (15) more perichon-dral ossification in the tectum nasi and solumnasi; and (17) squamosal articulating withprootics. Duellman and Crump (1974) char-acterized the tadpoles as having ovoid bodiesand xiphicercal tails with moderately deepfins not extending into body; anteroventraloral disc, large marginal papillae, robust ser-rated jaw sheaths, and no more than one rowof labial teeth. It is unclear which of thesecharacter states could be synapomorphies ofthe group. Duellman and Trueb (1983) didnot provide any synapomorphy for the group.

Duellman and Crump (1974) included inthe Hyla parviceps group H. bokermanni, H.brevifrons, H. luteoocellata, H. microps, H.parviceps, and H. subocularis. Heyer (1977)added H. pauiniensis. Heyer (1980) resur-rected H. giesleri from the synonymy of H.microps. Weygoldt and Peixoto (1987) ten-tatively included H. ruschii in the group.Martins and Cardoso (1987) added H. tim-beba. Duellman and Trueb (1989) addedH. allenorum and H. koechlini. Duellman(2001) added H. grandisonae and H. schu-barti. Lescure and Marty (2000) referred H.luteoocellata to a separate group, the H. lu-teoocellata group, which they characterizedby the presence of a cream-colored suborbit-al stripe. Because they did not discuss dif-ferences with the H. parviceps group, we stillconsider H. luteoocellata a member of the H.parviceps group. However, the species theydescribed, H. gaucheri, does not seem tohave this stripe.

The Hyla parviceps group is currently

Page 31: systematic review of the frog family hylidae, with special reference to ...

2005 31FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

composed of 15 species: H. allenorum, H.bokermanni, H. brevifrons, H. gaucheri, H.giesleri, H. grandisonae, H. koechlini, H. lu-teoocellata, H. microps, H. parviceps, H.pauiniensis, H. ruschii, H. schubarti, H. su-bocularis, and H. timbeba. In our analysis weinclude H. brevifrons, H. giesleri, and H.parviceps.

Hyla rubicundula Group: This group wasrecently defined by Napoli and Caramaschi(1998) and was diagnosed by small body size,patternless thighs, and green dorsum in lifethat changes to pinkish or violet when pre-served. Bogart (1970), Rabello (1970) andGruber (2002) reported a 30-chromosomekaryotype in H. rubicundula and H. elianeae.Historically, species of this group were asso-ciated with species now placed in the H. mi-crocephala group, such as H. nana and H.sanborni (Lutz, 1973). The group is currentlycomposed of H. anataliasiasi, H. araguaya,H. cachimbo, H. cerradensis, H. elianeae, H.jimi, H. rhea, H. rubicundula, and H. tritaen-iata. In our analysis, we include H. rubicun-dula.

Species Known or Presumed to Have 30Chromosomes Not Assigned to Any Group:Hyla anceps: Lutz (1948, 1973) associatedH. anceps with H. leucophyllata based on ithaving an axillary membrane, tadpoles withxiphicercal tail, and vivid flash colors. Coch-ran (1955) considered this species to have noknown close relatives and placed it on itsown species group. Bogart (1973) reported a30-chromosome karyotype for this species,and he tentatively associated it with H. mi-crocephala, H. bipunctata, H. elongata (a ju-nior synonym of H. rubicundula), and H.rhodopepla for sharing a single pair of telo-centric chromosomes. Regardless of havingbeen reported to have 30 chromosomes, Hylaanceps has been ignored in all subsequentliterature dealing with phylogenetic relationsof 30-chromosome species of Hyla. Wogel etal. (2000) redescribed the tadpole of H. an-ceps and stated that its morphology support-ed the idea of this species belonging to itsown species group, without giving furtherdetails. We include this species in the anal-ysis.

Hyla amicorum: This species was consid-ered to be similar to H. battersbyi and H.minuta (Mijares-Urrutia, 1998). On this basis

we consider it a 30-chromosome species. Wecould not include this species in the analysis.

Hyla battersbyi: Since its original descrip-tion (Rivero, 1961) this species has beenscarcely mentioned in the literature. We con-sider it tentatively as a 30-chromosome spe-cies based on the association made by Mi-jares-Urrutia (1998) of this species with H.minuta based on overall similarity. We couldnot include this species in the analysis.

Hyla haraldschultzi: Bokermann (1962)stated that the relationships of this specieswere uncertain. Lutz (1973), while treatingthe ‘‘small to minute forms’’, where she in-cluded most of the 30-chromosome Hyla,considered H. haraldschultzi to be insuffi-ciently known. We could not include thisspecies in the analysis.

Hyla limai: In the original description,Bokermann (1962) associated this specieswith H. minuta and H. werneri. Apart froma brief comment by Lutz (1973), it has notbeen referred to again in the literature. Had-dad (unpubl. data), based on morphologicalvariation in populations of H. minuta, findsthat H. limai could be a junior synonym ofthis species. We could not include this nom-inal species in the analysis.

Hyla praestans: Duellman and Trueb(1983) originally placed this species in theH. columbiana group. Kaplan (1999), basedon the presence of a small medial depressionin the internal surface of each arytenoid, sug-gested that H. praestans was related to theH. garagoensis group and possibly its sistertaxon. We could not secure samples for theanalysis.

Hyla stingi: This species, externally simi-lar to H. minuta, has been suggested to bethe sister group of a clade composed of theH. minuta, H. marmorata, H. parviceps, H.leucophyllata, and H. microcephala groups(this being supported by the reduction in thelabial tooth row formula from 1/2 to 0/1;Kaplan, 1994). The apparent synapomorphyuniting H. stingi with this clade is the ante-rior position of the oral disc. This speciescould not be included in the analysis.

Hyla tintinnabulum: This species was as-sociated with H. branneri and H. rubicun-dula by Lutz (1973). This fact and our studyof one of the syntypes (NHMG 473; adultmale) suggest that it is a 30-chromosome

Page 32: systematic review of the frog family hylidae, with special reference to ...

32 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hyla. We could not include this species inthe analysis.

Hyla yaracuyana: This species was asso-ciated with the 30-chromosome Hyla by Mi-jares-Urrutia and Rivero (2000), but it wasnot included in any species group. We couldnot include this species in the analysis.

Middle American/Holarctic Clade

The monophyly of most Middle Americanand Holarctic Hylinae was suggested byDuellman (1970, 2001) based on biogeo-graphic grounds. This clade would includemost Middle American and Holarctic speciesgroups of Hyla plus the genera Acris, Anoth-eca, Duellmanohyla, Plectrohyla, Pseuda-cris, Pternohyla, Ptychohyla, Smilisca, andTriprion.

Acris: This very distinctive taxon was re-viewed by Duellman (1970) and was includ-ed in several studies of Holarctic hylids(Gaudin, 1974; Hedges, 1986; Cocroft, 1994;da Silva, 1997). In the strict consensus of theanalysis by Cocroft (1994), the position ofAcris was unresolved with respect of the oth-er Holarctic hylids. In the reanalysis done byda Silva (1997), it is sister to a clade com-posed of the species of the Hyla cinerea andH. versicolor groups. The two species A. cre-pitans and A. gryllus are included in ouranalysis.

Anotheca: This monotypic genus was re-viewed by Duellman (1970, 2001). Autapo-morphies of this taxon include the uniqueskull ornamentation composed of sharp, dor-sally pointed spines in the margins of fron-toparietal, maxilla, nasal (including canthalridge), and squamosal, and character statesthat result in its reproductive mode, includingthe female feeding tadpoles with trophic eggs(see Jungfer, 1996). We include the singlespecies Anotheca spinosa in this analysis.

Duellmanohyla: This genus was reviewedby Duellman (2001). Duellmanohyla wasproposed by Campbell and Smith (1992),based on four suggested synapomorphies in-volving larval morphology: a greatly en-larged, pendant oral disc (referred to as fun-nel-shaped mouth by Duellman, 2001); longand pointed serrations on the jaw sheaths;upper jaw sheath lacking lateral processes;and greatly shortened tooth rows. Duellman

(2001) added the bright red iris and the labialstripe expanded below the orbit. Duellma-nohyla contains the following eight species:D. chamulae, D. ignicolor, D. lythrodes, D.rufioculis, D. salvavida, D. schmidtorum, D.soralia, and D. uranochroa. In our analysis,we include D. rufioculis and D. soralia.

Hyla arborea Group: All of the species ofHyla of Europe, North Africa, and Asia havelong been recognized as composing a singlespecies group (Stejneger, 1907; Pope, 1931).Probably because species of this group havegenerally been discussed in isolation of otherhylids, we are not aware of any author hav-ing provided a diagnosis of this group thatcould differentiate them, at least phenotypi-cally, from the Nearctic species placed in theH. cinerea and H. eximia groups. No syna-pomorphy has ever been suggested; themonophyly of the group has apparently beenassumed based on geography and the exter-nal similarity of most species (9 of the 16currently recognized species have been con-sidered at some point of it taxonomic historyto be subspecies or varieties of H. arborea).

Various authors considered the Hyla ar-borea group to be closely related with someNorth American species. Based on similari-ties in advertisement calls, Kuramoto (1980)suggested that the H. arborea group is close-ly related to the H. eximia group of temperateMexico and southwestern United States.

The assumed monophyly of the Hyla ar-borea group was challenged by Anderson(1991) on karyotypic grounds, and this wassupported by Borkin (1999). These authorssuggested the presence of at least two line-ages resulting from two independent inva-sions to Eurasia. According to Anderson(1991), at least H. japonica and H. suweo-nensis (she did not include other easternAsian species) share the presence of a NORin chromosome 6 with the representativesshe studied of the H. eximia group (H. ar-enicolor, H. euphorbiacea, H. eximia), someof the H. versicolor group (H. avivoca, H.chrysoscelis, H. versicolor; H. femoralis),and with H. andersonii. Hyla arborea, H.chinensis, H. meridionalis, and H. savignyishare with most Nearctic species of Hyla, aswell as several of the outgroups that Ander-son (1991) included, the NOR located inchromosomes 10/11 (she considered the

Page 33: systematic review of the frog family hylidae, with special reference to ...

2005 33FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

chromosome pairs to be homologous in thesespecies, with the shift in NOR position pre-sumably corresponding to modulation of het-erochromatin material and not to a translo-cation event; Anderson 1991: 323).

The Hyla arborea group as currently un-derstood is composed of the following 16species: H. annectans, H. arborea, H. chi-nensis, H. hallowellii, H. immaculata, H. in-termedia, H. japonica, H. meridionalis, H.sanchiangensis, H. sarda, H. savignyi, H.simplex, H. suweonensis, H. tsinlingensis, H.ussuriensis, and H. zhaopingensis. In thisanalysis we include H. arborea, H. annec-tans, H. japonica, and H. savignyi.

Hyla bistincta Group: This group was re-viewed by Duellman (2001). The lack of ev-idence supporting the monophyly of the H.bistincta group, together with the possibilitythat Plectrohyla is nested within it, has beenrepeatedly noted (Duellman and Campbell:1992; Toal, 1994; Wilson et al., 1994a; Men-delson and Toal, 1995; Ustach et al., 2000;Canseco-Marquez et al., 2002).

Duellman (2001) presented a cladisticanalysis of the Hyla bistincta group that in-cluded the 17 species known at that time,using a vector of character states of Plectro-hyla and H. miotympanum as the root. Hereported that the analysis resulted in 89 mostparsimonious trees, from which he chose onethat is presented in his figure 400 (Duellman2001: 952). In this tree, the H. bistinctagroup is monophyletic, being supported by asingle transformation, the loss of vocal slits.A reanalysis of his data set15 indicates thatPlectrohyla is nested within the H. bistinctagroup on several of the most parsimonioustrees, and that the strict consensus tree is al-most entirely collapsed. Therefore, Duell-man’s analysis provides no evidence for themonophyly of the H. bistincta group.

The Hyla bistincta group currently com-prises the following 18 described species: H.ameibothalame, H. bistincta, H, calthula, H.calvicollina, H. celata, H. cembra, H. cha-

15 This reanalysis, like that attempted by Canseco-Marquez et al. (2002), could not reproduce the resultspresented by Duellman (2001). The present discussionis based on the results that were obtained using the ad-ditivities specified by Duellman. It resulted in 45 mostparsimonious trees of 56 steps, with CI 5 0.57 and RI5 0.52.

radricola, H. chryses, H. crassa, H. cyanom-ma, H. labedactyla, H. mykter, H. pachyder-ma, H. pentheter, H. psarosema, H. robert-sorum, H. sabrina, and H. siopela. In thisanalysis we include H. bistincta and H. cal-thula.

Hyla bromeliacia Group: The taxonomy,composition, and history of this group werereviewed by Duellman (1970, 2001). Possi-ble synapomorphies suggested by Duellman(2001) are those modifications of the phyto-telmic larvae, mostly the depressed body andthe elongated tail. The other characters heused to separate this group from the brome-liad-dwelling species of the H. pictipes groupare likely plesiomorphic, such as the lack ofmassive temporal musculature (present onlyin H. zeteki and H. picadoi), the presence ofmore than one tooth row (only one in H. pi-cadoi and H. zeteki), and the oral disc notentirely bordered by a single row of papillae(as in H. zeteki and H. picadoi). The groupcomprises two species, H. bromeliacia andH. dendroscarta. In this study we includeonly H. bromeliacia.

Hyla cinerea Group: This group was firstrecognized by Blair (1958) based on adver-tisement call structure. For a review of itshistory see Anderson (1991). The group iscurrently composed of four species, H. ci-nerea, H. femoralis, H. gratiosa, and H. squi-rella, and the group is monophyletic in theanalyses of Hedges (1986), Cocroft (1994),and da Silva (1998), being supported by al-lozyme data (taken in the last two studiesfrom Hedges, 1986). We included all fourspecies of the group in the present analysis.

Hyla eximia Group: The taxonomy, com-position, and history of this group were thor-oughly reviewed by Duellman (1970, 2001).Duellman (2001) presented an extensive def-inition; however, it is unclear which of thecharacter states could be taken as evidenceof monophyly of the group. Hedges (1986)and Cocroft (1994) included two species, H.arenicolor and H. eximia, in their analyses.While in Hedges’s (1986) results these twospecies form a monophyletic group, on thestrict consensus of Cocroft’s (1994) mostparsimonious trees, both species are notmonophyletic and form a basal polytomywith several other species of Hyla. da Silva’s(1997) reanalysis of Cocroft’s (1994) data set

Page 34: systematic review of the frog family hylidae, with special reference to ...

34 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

yielded on its strict consensus H. arenicolorand H. eximia as a monophyletic group,which appears to be supported by the allo-zyme data of Hedges (1986). Besides theseven species included by Duellman (2001)in the group, Eliosa Leon (2002) resurrectedH. arboricola from the synonymy of H. ex-imia, adding an eigth species to the group.See the H. arborea group for additional com-ments. The H. eximia group is currently com-posed of eight species: Hyla arboricola, H.arenicolor, H. bocourti, H. euphorbiacea, H.eximia, H. plicata, H. walkeri, and H. wrigh-torum. In this analysis we include H. areni-color, H. euphorbiacea, H. eximia, and H.walkeri.

Hyla godmani Group: The taxonomy,composition, and history of this group werereviewed by Duellman (1970, 2001). Duell-man (2001) included in this group the onlylowland pond-breeders from Middle Americathat do not have 30 chromosomes. He sug-gested as tentative evidence of monophylythe weakly ossified skulls and the presenceof an axillary membrane. This group cur-rently comprises four species: H. godmani,H. loquax, H. picta, and H. smithii. We in-clude H. picta and H. smithii in our analysis.

Hyla miotympanum Group: The taxonomy,composition, and history of this group werethoroughly reviewed by Duellman (1970,2001). Duellman (2001), using a hypotheti-cal outgroup, suggested eight synapomor-phies for the group16: abbreviated axillarymembrane; indistinct fold on wrist; fingersless than one-half webbed; tarsal fold presentthrough the entire length of the tarsus; cloa-cal opening directed posteroventrally; nuptialexcrescences present; medial ramus of pter-ygoid short, not in contact with prootic; andlarval oral disc in ventral position. It seemsunlikely that any of these character transfor-mations will hold as synapomorphies of thegroup in the context of a more inclusive anal-ysis. The group currently contains 11 spe-cies: H. abdivita, H. arborescandens, H. biv-ocata, H. catracha, H. cyclada, H. hazelae,H. juanitae, H. melanomma, H. miotympan-

16 Note that in ‘‘the preferred’’ cladogram, there is acharacter 27 as one of the synapomorpies of the Hylamiotympanum group; presumably this is an error for 17,since the data set has 22 characters, and character 17 isinclusive of the ingroup.

um, H. perkinsi, and H. pinorum. Our anal-ysis includes H. arborescandens, H. cyclada,H. melanomma, H. miotympanum, and H.perkinsi.

Hyla mixomaculata Group: Duellman(1970) reviewed the group and listed severalcharacter states that define it. Some of theseare probably synapomorphies, such as(known) larvae with an enlarged oral discwith 7/10 or 11 labial tooth rows (the largestnumber of posterior tooth rows known for aMiddle American hylid group); the taxonom-ic distribution of other character states indi-cate that they are likely synapomorphies ofa more inclusive clade, such as the largefrontoparietal fontanelle and the absence (orreduction, unclear on fig. 211 of Duellman,1970) of the quadratojugal. The group is cur-rently composed of four species, H. mixe, H.mixomaculata, H. nubicola, and H. pellita.Only H. mixe was available for this analysis.

Hyla pictipes Group: The taxonomy, com-position, and history of this group were re-viewed by Duellman (1970, 2001). Duellman(2001) provided a phylogenetic analysis17 ofthe montane species of Hyla of lower CentralAmerica, where he included the H. pseudop-uma and H. pictipes groups.

Duellman (2001) suggested six synapo-morphies for the group: slender nasals inadults; tadpoles with stream-dwelling habits;oral disc ventral; complete marginal papillae;only one row of marginal papillae; and pres-ence of submarginal papillae. Note that withthe possible exception of slender nasals inadults, the other three character states as de-fined by Duellman (2001) are also present inseveral other groups of Middle Americanstream-breeding frogs (i.e., the Hyla bistinctagroup, H. mixomaculata group, H. sumi-chrasti group, and Plectrohyla).

The Hyla pictipes group includes 11 spe-cies: H. calypsa, H. debilis, H. insolita, H.lancasteri, H. picadoi, H. pictipes, H. rivu-

17 We could not reproduce the results of Duellman(2001) using his data matrix under the same additivities.This is most probably due to an editorial problem withthe data matrix; the scores for Hyla debilis are all 0.Evidently the data set as printed is different from thatused to choose the trees shown, where H. debilis is thesister species of H. rivularis. Because of this situation,we discuss the synapomorphies shown in the book, notthose from our reanalysis.

Page 35: systematic review of the frog family hylidae, with special reference to ...

2005 35FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

laris, H. thorectes, H. tica, H. xanthosticta,and H. zeteki. Considering the uncertaintiesregarding the monophyly of this group, anappropriate taxon sampling should ideally in-clude representatives of the four former spe-cies groups currently combined into the H.pictipes group. Unfortunately, the only rep-resentatives available are H. rivularis andHyla sp. 5 (aff. H. thorectes), an undescribedspecies from Mexico similar to H. thorectes.

Hyla pseudopuma Group: The taxonomy,composition, and history of this group werereviewed by Duellman (1970, 2001), whocould not provide a synapomorphy for it. Inhis phylogenetic analysis of the H. pseudop-uma and H. pictipes groups, the H. pseudop-uma group appears as a basal unresolvedgrade, although this is a consequence of con-straining the nonmonophyly of the H. pseu-dopuma group by using H. angustilineata asthe root. The H. pseudopuma group includesfour species: H. angustilineata, H. graceae,H. infucata, and H. pseudopuma. In thisstudy we include only H. pseudopuma.

Hyla sumichrasti Group: The taxonomy,composition, and history of this group werereviewed by Duellman (1970, 2001). Possi-ble synapomorphies for the group (Duell-man, 2001) are the presence of massive na-sals, and tadpoles with immense oral discs,with 3/6 to 3/7 labial tooth rows instead ofthe 2/3 to 2/6 of the H. miotympanum group.The group currently includes four species: H.chimalapa, H. smaragdina, H. sumichrasti,and H. xera. In this study we include H. chi-malapa and H. xera.

Hyla taeniopus Group: This group was re-viewed by Duellman (1970, 2001), who de-fined it as having well-ossified quadratoju-gals in contact with maxillaries, and tadpolesthat have ventral mouths with two or threeanterior rows of teeth and three or four pos-terior rows. While the presence of enlargedtestes is a possible synapomorphy of a sub-group composed of H. altipotens, H. trux,and H. taeniopus, there is no evidence for themonophyly of the entire group (Mendelsonand Campbell, 1999; Duellman, 2001). Fivespecies are currently included in this group:H. altipotens, H. chaneque, H. nephila, H.taeniopus, and H. trux. In this analysis, weinclude H. nephila and H. taeniopus.

Hyla tuberculosa Group: Affinities among

species of fringe-limbed treefrogs were firstsuggested by Dunn (1943) and by Taylor(1948, 1952) based on their overall appear-ance. Firschein and Smith (1956) suggestedthat the presence of a ‘‘prepollex’’ (presum-ably referring to an enlarged prepollex) andsimilarity of external habitus, size, skin tex-ture, and fringed limbs were indicative of acommon origin. Duellman (1970, 2001) pre-sented a formal definition of the group, as-serting that these frogs be placed in the samegroup based on their large size, presence ofdermal fringes on the limbs (although absentin H. dendrophasma), extensive webbing onhand and feet, and modified prepollices. (Im-portantly, note that apparently the modifiedprepollices involve three different morphol-ogies: modification into a projecting spine ora spadelike blade or a clump of spines;Duellman, 1970.) Duellman (2001) addedthat there is no compelling evidence that thegroup is monophyletic, an opinion that weshare. Furthermore, he tentatively suggestedthat this group could be related with theGladiator Frogs rather than with the MiddleAmerican/ Holarctic clade. The Hyla tuber-culosa group has been referred to as the H.miliaria group (Campbell et al., 2000; Duell-man, 1970, 2001; Savage and Heyer, ‘‘1968’’[1969]) and is composed of H. dendrophas-ma, H. echinata, H. fimbrimembra, H. mili-aria, H. minera, H. phantasmagoria, H. sal-vaje, H. thysanota, H. tuberculosa, and H.valancifer. In this analysis, we include H.dendrophasma and H. miliaria.

Hyla versicolor Group: This group wasfirst recognized by Blair (1958) on the basisof advertisement call structure. See Duellman(1970) and Anderson (1991) for a brief tax-onomic history. Both Blair (1958) and Duell-man (1970) included H. arenicolor in thegroup until Hedges (1986), Cocroft (1994),and da Silva (1997) showed on successiveanalyses that this species was more closelyrelated to H. eximia (see the H. eximia groupfor further comments), always on the basisof the allozyme data collected by Hedges(1986).

Although placed originally in the Hyla ci-nerea group by Blair (1958), H. andersoniiwas transferred to the H. versicolor group byWiley (1982), with this being supported byHedges (1986), Cocroft (1994), and da Silva

Page 36: systematic review of the frog family hylidae, with special reference to ...

36 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

(1997) on the basis of the allozyme data col-lected by Hedges (1986). Similarly, H. fe-moralis was considered a member of the H.versicolor group until Hedges (1986) trans-ferred it to the H. cinerea group, an assign-ment also corroborated by da Silva (1997).The group currently comprises four species:H. andersonii, Hyla avivoca, H. chrysoscelis,and H. versicolor. In this study we includeall but H. chrysoscelis.

Pseudacris: The phylogenetic relation-ships of this genus were reviewed by Hedges(1986), Cocroft (1994), da Silva (1997), andMoriarty and Cannatella (2004). Hedges(1986) presented an electrophoretic analysisof 33 presumed genetic loci, where all spe-cies of Pseudacris were monophyletic, andwhich provided evidence to include the for-mer Hyla cadaverina, H. crucifer, and H. re-gilla in Pseudacris. Cocroft (1994) per-formed a phylogenetic analysis of Pseuda-cris, including several Holarctic hylids asoutgroups, with characters from varioussources (osteology, vocalizations, karyo-types, allozymes, sperm morphology) andprevious analyses (Hedges, 1986). The strictconsensus of his most parsimonious treesshows P. crucifer as the sister taxon of theremaining species of Pseudacris; the twoclassically recognized species groups (the P.ornata and the P. nigrita groups) each beingmonophyletic; and P. ocularis being the sis-ter taxon of the P. nigrita group. However,Hedges (1986) found no evidence supportingthe inclusion of P. cadaverina and P. regillain Pseudacris, and for this reason he treatedthem as Hyla. Furthermore, the relationshipsof the remaining, monophyletic species ofPseudacris with the other Holarctic hylineare unresolved. In the modified reanalysisperformed by da Silva (1997), the strict con-sensus shows that the clade composed of H.regilla and H. cadaverina is sister to Pseu-dacris and is supported apparently by allo-zyme data. Because of this, these two speciesare considered again to be within Pseudacris(da Silva, 1997).

Moriarty and Cannatella (2004) presenteda phylogenetic analysis of the mitochondrialribosomal genes 12S, tRNA valine, and 16Sthat included all species of Pseudacris andthree outgroups, Hyla andersonii, H. chry-soscelis, and H. eximia. The analysis identi-

fied four major clades: (1) the P. regillaclade (P. cadaverina and P. regilla; Moriartyand Cannatella referred to it as the WestCoast clade); (2) the Pseudacris ornata clade(P. ornata, P. streckeri, and P. illinoiensis;Moriarty and Cannatella called it fat frogsclade); (3) the P. crucifer clade (P. cruciferand P. ocularis); and (4) the P. nigrita clade(including P. brimleyi, P. brachyphona, P.clarkii, P. feriarum, P. maculata, and P. tris-eriata; Moriarty and Cannatella called itTrilling Frogs clade). In our study we includePseudacris cadaverina, P. crucifer, P. ocu-laris, P. regilla, and P. triseriata.

Pternohyla: This Mexican casque-headedfrog genus was reviewed by Trueb (1969)and Duellman (1970, 2001). In Duellman’s(2001) phylogenetic analysis of Pternohyla,Smilisca, and Triprion, the monophyly ofPternohyla is supported by four synapomor-phies: small discs on fingers; supernumerarytubercles diffuse or absent; large inner meta-tarsal tubercle18; and large marginal papillaein the larval oral disc. Unfortunately, smalldiscs on fingers are a synapomorphy only un-der an accelerated optimization (ACCT-RAN), and therefore they have no evidentialvalue for the clade.

In Duellman’s (2001) analysis, Triprionplus Pternohyla forms a monophyletic groupnested within Smilisca. The synapomorphiessupporting Triprion plus Pternohyla are19:nasals with broad medial contact; median ra-mus of pterygoid not in contact with prootic;maxilla moderately expanded laterally; cra-nial-integumentary co-ossification present;webbing between fingers absent; and innermetatarsal tubercle small. Pternohyla is com-posed of two similar species, P. dentata, and

18 For the character ‘‘inner metatarsal tubercle’’,Duellman (2001) defined four character states: moderate(0), small (1), large (2), and spadelike (3). He stated thathe considered this character as additive in the order0→1→2→3; unless there is an editorial mistake, thisseems a rather peculiar and unjustified ordering.

19 Duellman maps on his preferred tree character states4.1, 7.2, 8.1, 9.1, 13.1, 16.1, and 19.1. However, an ex-amination of the character list and matrix shows thatthere is no state 2 defined for character 7, and that char-acter 13 is actually an autapomorphy of Triprion spa-tulatus; it is very likely that 13 is a typographical errorfor character 14, which according to the data set is asynapomorphy for the group; in the synapomorphy listgiven above, we assume that these problems were fixed,and so we ignore character state 7.2.

Page 37: systematic review of the frog family hylidae, with special reference to ...

2005 37FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

P. fodiens. In this analysis we include P. fod-iens.

Plectrohyla: This genus was reviewed byDuellman (2001) and discussed by McCranieand Wilson (2002). Its phylogenetic relation-ships were addressed by Duellman andCampbell (1992), Wilson et al. (1994a), andDuellman (2001). The monophyly of Plec-trohyla does not appear to be controversial.Duellman and Campbell (1992) listed sixsynapomorphies: bifurcated alary process ofpremaxilla; sphenethmoid ossified anteriorly,incorporating the septum nasi and projectingforward to the leading margins of the nasals;frontoparietals abutting broadly anteriorlyand posteriorly, exposing a small area of thefrontoparietal fontanelle; hypertrophied fore-arms; and absence of lateral folds in the oraldisc. Wilson et al. (1994a) added ‘‘prepollexenlarged, elongated, ossified, flat, terminallyblunt.’’ Duellman (2001) interpreted that thisdefinition corresponded to more than onecharacter, and so he divided it into two char-acters, the derived state of the first one being‘‘enlarged and ossified prepollex in both sex-es’’, and the derived state of the second onebeing ‘‘enlarged and truncate prepollex.’’ Seecomments under the Hyla bistincta group.

Plectrohyla currently contains 18 species:P. acanthodes, P. avia, P. chrysopleura, P.dasypus, P. exquisitia, P. glandulosa, P. gua-temalensis, P. hartwegi, P. ixil, P. lacertosa,P. matudai, P. pokomchi, P. psiloderma, P.pycnochila, P. quecchi, P. sagorum, P. te-cunumani, and P. teuchestes. In this analysiswe include P. guatemalensis, P. glandulosa,and P. matudai.

Ptychohyla: This group was reviewed byDuellman (2001). Campbell and Smith(1992) suggested three synapomorphies forPtychohyla: the presence of two rows of mar-ginal papillae, an increased number of toothrows in larvae (from 3/5 to 6/9), and astrongly developed lingual flange of the parspalatina of the premaxilla. Duellman (2001)also suggested as synapomorphies the pres-ence of ventrolateral glands in breedingmales, and the coalescence of tubercles toform a distinct ridge on the ventrolateraledge of the forearm. The increase in thenumber of tooth rows could actually be asynapomorphy not of Ptychohyla but for amore inclusive clade containing Ptychohyla

plus other species of stream-breeding hylidsthat also have a tooth row formula largerthan 2/3. Similarly, ventrolateral glands arepresent also in some species of Duellmano-hyla (Campbell and Smith, 1992; Duellman,2001).

For an unstated reason, Savage (2002a)excluded Ptychohyla legleri and P. salvador-ensis from Ptychohyla, placing them back inHyla. These two species were originally inHyla (former H. salvadorensis group; seeDuellman, 1970) until Campbell and Smith(1992) transferred them to Ptychohyla. Be-cause we are not aware of any evidence sup-porting Savage’s action, we consider them tobe members of Ptychohyla.

Ptychohyla is composed of 12 species: P.acrochorda, P. erythromma, P. euthysanota,P. hypomykter, P. legleri, P. leonhard-schultzei, P. macrotympanum, P. panchoi, P.salvadorensis, P. sanctaecrucis, P. spinipol-lex, and P. zophodes. In this analysis weinclude P. euthysanota, P. hypomykter, P.leonhardschultzei, P. spinipollex, P. zopho-des, and Ptychohyla sp., an undescribed spe-cies from Oaxaca, Mexico.

Smilisca: This genus was reviewed byDuellman and Trueb (1966) and Duellman(1970, 2001). Duellman (2001) could ad-vance no evidence for the monophyly ofSmilisca. He presented a phylogenetic anal-ysis rooted with a hypothetical ancestor,whose strict consensus showed Pternohylaplus Triprion nested within Smilisca, beingmore closely related to S. baudinii and S.phaeota. The synapomorphies supportingPternohyla 1 Triprion 1 ‘‘Smilisca’’ are thepresence of lateral flanges on the frontopari-etals, and the unexposed frontoparietal fon-tanelle. The species of Smilisca have beendivided (Duellman and Trueb, 1966) into theS. sordida group (S. puma and S. sordida),the S. baudinii group (S. baudinii, S. cy-anosticta, and S. phaeota), and S. sila, a formconsidered intermediate between these twogroups. In Duellman’s (2001) phylogeneticanalysis, S. sila plus the S. sordida group ismonophyletic, with its synapomorphy beingthe short maxillary process of the nasal. Smi-lisca contains six species: S. baudinii, S. cy-anosticta, S. phaeota, S. puma, S. sila, andS. sordida. In this analysis we include thethree species in the S. baudinii group, S. bau-

Page 38: systematic review of the frog family hylidae, with special reference to ...

38 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

dinii, S. cyanosticta, S. phaeota, and one spe-cies of the S. sordida group, S. puma.

Triprion: This genus was reviewed byTrueb (1969) and Duellman (1970, 2001). InDuellman’s (2001) phylogenetic analysis ofPternohyla, Smilisca, and Triprion, themonophyly of Triprion is supported by threesynapomorphies20: maxilla greatly expandedlaterally, prenasal bone present, and presenceof parasphenoid odontoids. See commentsfor Smilisca and Pternohyla. Triprion iscomposed of two species, T. petasatus andT. spatulatus. In the analysis we include T.petasatus.

Casque-Headed Frogs and Related Genera

Duellman’s (2001) suggestion of MiddleAmerican/Holarctic frogs being monophylet-ic clearly separates the Middle Americancasque-headed frogs (Triprion, Pternohyla)from the South American and West Indiancasque-headed frogs. This is not surprisingconsidering that traditionally the groupknown as the casque-headed frogs was con-sidered to be nonmonophyletic (Trueb,1970a, 1970b). However, the position of theSouth American and West Indian casque-headed frogs remains controversial, and noauthor has presented evidence indicatingwhether they form a monophyletic group.

Aparasphenodon: This genus of casque-headed frogs was reviewed and characterizedby Trueb (1970a) and Pombal (1993). Thepresence of a prenasal bone is a likely syn-apomorphy of Aparasphenodon (with aknown homoplastic occurrence in Triprion,as reported by Trueb, 1970a). This genus cur-rently comprises three species, A. bokerman-ni, A. brunoi, and A. venezolanus. We includeA. brunoi in the analysis.

Argenteohyla: This monotypic genus wasdescribed and reviewed by Trueb (1970b),who segregated it from Trachycephalus,where it had been placed by Klappenbach(1961). Motives for this segregation were theabsence in Argenteohyla of several characterstates of Trachycephalus as redefined byTrueb (1970a), such as the dermal spheneth-

20 On his preferred tree (his fig. 410), one of the char-acter transformations is numbered 18; this is a typo-graphical error for 12, the only other character that sup-ports this clade but not shown in the tree.

moid, the poorer development of ossificationand cranial sculpturing, and vocal sacs thatwhen inflated protrude posteroventrally tothe angles of the jaw. Possible autapomor-phies of this taxon include the fusion of thezygomatic ramus of the squamosal with thepars facialis of the maxilla. The genus com-prises a single species, A. siemersi, for whicha northern subspecies, A. s. pederseni, wasdescribed by Williams and Bosso (1994). Inthis analysis we included a specimen thatcorresponds to the northern form.

Corythomantis: This monotypic genus wasreviewed by Trueb (1970a). Autapomorphiesof this genus include the absence of pala-tines, and nasals that conceal the allaryprocesses of premaxillaries (Trueb, 1970a).We include the single species Corythomantisgreeningi in this analysis.

Osteocephalus: This genus was diagnosedby Goin (1961) and Trueb (1970a) and stud-ied in detail by Trueb and Duellman (1971).These authors recognized five species: Osteo-cephalus verruciger, O. taurinus, O. buckleyi,O. leprieurii, and O. pearsoni. In the last 20years, several new species were described,adding to a total of 18 currently recognizedspecies (see Jungfer and Hodl, 2002; Lynch,2002). Trueb and Duellman (1971) employed20 character states to characterize Osteoce-phalus. Jungfer and Hodl (2002) modifiedsome of these characters to take into accountsubsequently discovered species. As stated byRon and Pramuk (1999), referring to the di-agnostic states employed earlier by Trueb andDuellman (1971), it is unclear which, if any,of the character states are synapomorphic forthe genus. Trueb (1970a) and Trueb andDuellman (1971) suggested, based on thepresence of paired lateral vocal sacs in thefive species then recognized, that Osteoce-phalus was related to a group composed ofArgenteohyla, Trachycephalus, and Phryno-hyas.

Martins and Cardoso (1987) described Os-tecephalus subtilis that, unlike the other spe-cies known at that time, is characterized bya single, subgular vocal sac that expands lat-erally; a similar morphology was describedby Smith and Noonan (2001) in O. exoph-thalmus. Jungfer and Schiesari (1995) de-scribed O. oophagus, a species with a single,median vocal sac, a reproductive mode in-

Page 39: systematic review of the frog family hylidae, with special reference to ...

2005 39FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

volving oviposition in bromeliads, and phy-totelmous oophagous larvae. Jungfer et al.(2000), Jungfer and Lehr (2001), and Lynch(2002) described four species, O. deridens,O. fuscifacies, O. leoniae, and O. heyeri,which also have a single, median vocal sac.According to Lynch (2002), O. cabrerai alsoshares this characteristic. Reproductivemodes are unknown for O. cabrerai, O. ex-ophthalmus, O. heyeri, O. leoniae, and O.subtilis; spawning in bromeliads is suspectedfor O. deridens and O. fuscifacies (Jungfer etal., 2000). Note that Lynch (2002) doubted apossible relationship between O. heyeri andwhat he called the ‘‘presumed clade of oop-hagous species’’ (where he included O. der-idens, O. fuscifacies, and O. oophagus), sug-gesting instead that it could be related towhat he called O. rodriguezi (at that time al-ready transferred to the new genus Tepuihylaby Ayarzaguena et al., ‘‘1992’’ [1993b]).While the species known or suspected tospawn in bromeliads could be monophyletic,we are not aware of any synapomorphy sup-porting the monophyly of all remaining spe-cies of Osteocephalus.

The species currently included in Osteo-cephalus are O. buckleyi, O. cabrerai, O.deridens, O. elkejungingerae, O. exophthal-mus, O. fuscifacies, O. heyeri, O. langsdorf-fii, O. leoniae, O. leprieurii, O. mutabor, O.oophagus, O. pearsoni, O. planiceps, O. sub-tilis, O. taurinus, O. verruciger, and O. ya-suni. Considering the uncertainties regardingOsteocephalus, we attempted to include rep-resentatives of the morphological and repro-ductive diversity within the genus: O. ca-brerai, O. langsdorffii, O. leprieurii, O. oop-hagus, and O. taurinus.

Osteopilus: The genus Osteopilus was res-urrected by Trueb and Tyler (1974) for threeapparently related species that were often re-ferred to collectively as the Hyla septentrion-alis group (see Dunn, 1926; Trueb, 1970a).Trueb and Tyler (1974) provided a diagnosticdefinition of the genus; a possible synapo-morphy is the differentiation of the m. inter-mandibularis to form supplementary apicalelements. Trueb and Tyler (1974) also main-tained, due to the impressive morphologicaldivergence, that Osteopilus, the other Antil-lean groups then considered to be in Hyla (H.heilprini, H. marianae, H. pulchrilineata, H.

vasta, H. wilderi), and the new genus theyerected, Calyptahyla, represented several in-dependent invasions from the mainland.

Maxson (1992) and Hass et al. (2001), us-ing albumin immunological distances, sug-gested that Osteopilus is paraphyletic withrespect to most other West Indian hylids(with the exception of Hyla heilprini, a Glad-iator Frog). Hedges (1996) mentioned thatunpublished DNA sequence data confirmedthese findings. Anderson (1996) presented akaryological study of the three species of Os-teopilus, indicating that her data were com-patible with a monophyletic Osteopilus.Based on the comments by Hedges (1996),and immunological results of Hass et al.(2001), Franz (2003), Powell and Henderson(2003a, 2003b), and Stewart (2003) trans-ferred Calyptahyla crucialis, H. marianae,H. pulchrilineata, H. vasta, and H. wilderi toOsteopilus that now includes eight species.Osteopilus is grouped together only on thebasis of the immunological distance results,as no discrete character data set supportingits monophyly has yet been published. Thespecies of Osteopilus available for our studywere O. crucialis, O. dominicensis, O. sep-tentrionalis, and O. vastus.

Phrynohyas: This genus was reviewed byDuellman (1971b). Although very distinctiveexternally, the only seeming synapomorphyin the diagnostic definition of Phrynohyasprovided by Duellman (1971b) is the exten-sively developed parotoid glands in the oc-cipital and scapular regions. Likely related tothis character state, the viscous, milky secre-tions of the species of this genus could alsobe considered synapomorphic. Lescure andMarty (2000) transferred Hyla hadroceps tothis genus; this was confirmed in a phylo-genetic analysis using the mitochondrial ri-bosomal gene 12S by Guillaume et al.(2001). Pombal et al. (2003) described P.lepida. See Osteocephalus for further com-ments. Phrynohyas currently contains sevenspecies: P. coriacea, P. hadroceps, P. imi-tatrix, P. lepida, P. mesophaea, P. resinific-trix, and P. venulosa. In our analysis we in-clude P. hadroceps, P. mesophaea, P. resi-nifictrix, and P. venulosa.

Tepuihyla: This genus was defined by Ay-arzaguena et al. (‘‘1992’’ [1993b]) for fivespecies of Osteocephalus previously consid-

Page 40: systematic review of the frog family hylidae, with special reference to ...

40 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

ered to constitute the O. rodriguezi speciesgroup (Duellman and Hoogmoed, 1992; Ay-arzaguena et al., ‘‘1992’’ [1993a]). Ayarza-guena et al. (‘‘1992’’ [1993b]) differentiatedTepuihyla from Osteocephalus using the fol-lowing character states present in Tepuihyla:subgular vocal sac, absence or extreme re-duction of hand webbing, more reduced toewebbing, smaller size, absence of cranial co-ossification, large frontoparietal fontanelle,shorter nasals, and shorter frontoparietals. Itis unclear which, if any, of these characterstates are apparent synapomorphies of Te-puihyla. There are eight species currently in-cluded in this genus: T. aecii, T. celsae, T.edelcae, T. galani, T. luteolabris, T. rima-rum, T. talbergae, and T. rodriguezi. In thisanalysis we include only T. edelcae.

Trachycephalus: The relationships of thiscasque-headed taxon were discussedby Trueb (1970a) and Trueb and Duellman(1971). They diagnosed Trachycephalus fromArgenteohyla, Osteocephalus, and Phrynoh-yas for having heavily casqued and co-ossi-fied skulls, a medial ramus of pterygoid thatdoes not articulate with the prootic, and a par-asphenoid having odontoids. A likely syna-pomorphy of Trachycephalus is the presenceof exostosis on the alary process of the pre-maxillae (Trueb, 1970a). Trachycephalus con-tains three species: T. atlas, T. jordani, and T.nigromaculatus. In this analysis we include T.jordani and T. nigromaculatus.

Species and Species Groups of Hyla NotAssociated with Any Major Clade

Hyla aromatica Group: This group wasproposed by Ayarzaguena and Senaris(‘‘1993’’ [1994]) for two species from theVenezuelan Tepuis, H. aromatica and H. in-parquesi, which they could not associatewith any of the species groups known fromthe Guayanas. Ayarzaguena and Senaris(‘‘1993’’ [1994]) noticed that the H. aroma-tica group shares some characters with theH. larinopygion group; however, they pre-ferred to retain it as a separate group. Theyjustified this decision based on the smallersize of members of the H. aromatica group,different coloration pattern, supraorbital car-tilaginous process, vomerine odontophoressmoothly S-shaped and with more odonto-

phores, small nasals, and large prepollex.They included as well other character states,that actually, like some of these just men-tioned, are either shared with several neo-tropical groups (supraorbital cartilaginousprocess; Faivovich, personal obs.), or somespecies of the H. larinopygion group (vo-merine odontophores smoothly S-shaped;Duellman and Hillis, 1990: 5), or with the H.armata group (labial tooth row formula; seeCadle and Altig, 1991), or they support themonophyly of the H. aromatica group(adults with strong odor). Considering thelack of evidence of monophyly for the H.larinopygion group, Ayarzaguena and Sena-ris (‘‘1993’’ [1994]) cannot be questioned forrecognizing a separate species group.

Ongoing research by Faivovich andMcDiarmid suggests that Hyla loveridgeishould also be considered part of the H. aro-matica group. For this analysis, we includeH. inparquesi.

Hyla uruguaya Group: This group hasnever been mentioned as such in the litera-ture. However, clear similarities had beenshown by Langone (1990) between H. uru-guaya and H. pinima (these species being al-most undistinguishable). Possible synapo-morphies of the H. uruguaya group are thebicolored iris (also shared with Aplastodis-cus; see Garcia et al., 2001a), the presencein tadpoles of two small, keratinized platesbelow the lower jaw sheath, and a reductionin the size of the marginal papillae of theposterior margin of the oral disc relative tothe other papillae (Kolenc et al., ‘‘2003’’[2004]). From this apparent clade we includeH. uruguaya in our analysis.

Hyla chlorostea: Duellman at al. (1997)proposed the recognition of a species groupto include the enigmatic Hyla chlorostea, aspecies known only from its holotype (a sub-adult male), which could not be associatedwith any known group of Hyla after its de-scription (Reynolds and Foster, 1992). Un-fortunately, we were unable to include thistaxon in our analysis.

Hyla vigilans: Different perspectives con-cerning this enigmatic species were summa-rized by Suarez-Mayorga and Lynch(2001a). These authors rejected the possibil-ity of a relationship with Scinax (as suggest-ed by La Marca in Frost, 1985). Instead, they

Page 41: systematic review of the frog family hylidae, with special reference to ...

2005 41FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

asserted that they suspected a possible rela-tionship with Sphaenorhynchus or with H.picta (from the H. godmani species group)based on ‘‘oral disc and mouth position’’ ofthe tadpoles. We could not obtain samples ofthis species for our analysis.

Hyla warreni: This species, known onlyfrom two adult females, was described byDuellman and Hoogmoed (1992), who didnot associate it with any other species or spe-cies group. Unfortunately, we could not ob-tain samples of this species for our analysis.

Other Genera

Aplastodiscus: The taxonomy and historyof this genus was recently reviewed thor-oughly by Garcia et al. (2001a). Accordingto these authors the monophyly of the genusis supported by four putative synapomor-phies: (1) the absence of webbing betweentoes I and II and basal webbing between theother toes; (2) bicolored iris; (3) females withunpigmented eggs; and (4) great develop-ment of internal metacarpal and metatarsaltubercles. Based on overall morphologicaland advertisement call similarities B. Lutz(1950) suggested a close relationship of thisgenus with Hyla albosignata. Garcia et al.(2001a) suggest that Aplastodiscus could berelated with the H. albofrenata and H. al-bosignata complexes of the H. albomargin-ata group, as defined by Cruz and Peixoto(1984), based on the presence of enlarged in-ternal metacarpal and metatarsal tubercles,and unpigmented eggs. Haddad et al. (2005)described the reproductive mode of A. per-viridis and noticed that it was the same asthat described by Haddad and Sawaya (2000)and Hartmann et al. (2004) in species in-cluded in H. albofrenata and H. albosignatacomplexes. Based on this, Haddad et al.(2005) suggested a possible relationship be-tween these two species complexes andAplastodiscus. Aplastodiscus is composed oftwo species, Aplastodiscus cochranae and A.perviridis; we include both in our analysis.

Nyctimantis: This monotypic Neotropicalgenus was considered a member of the Hem-iphractinae by Duellman (1970) and Trueb(1974). Duellman and Trueb (1976) reviewedthe taxon and placed it in Hylinae. Duellmanand Trueb (1976) considered Nyctimantis to

be related with Anotheca spinosa becauseboth share the medial ramus of the pterygoidthat is juxtaposed squarely against the an-terolateral corner of the ventral ledge of theotic capsule. Also, frogs of both genera areknown (Anotheca; Taylor, 1954; Jungfer,1996) or suspected (Nyctimantis; Duellmanand Trueb, 1976) to deposit their eggs in wa-ter-filled tree cavities. However, Duellman(2001) latter placed Anotheca in the MiddleAmerican/Holarctic clade, implicitly sug-gesting no relationship with Nyctimantis.Considering the uncertainty of the positionof Nyctimantis within hylines, at this stage itis difficult to interpret which character statesare autapomorphic. We include the singlespecies Nyctimantis rugiceps in this analysis.

Phyllodytes: The history of this genus wasreviewed by Bokermann (1966b). Possiblesynapomorphies of the taxon are the pres-ence of odontoids on the mandible and onthe cultriform process of the parasphenoid(Peters, ‘‘1872’’ [1873]), something uniquewithin the Hylinae. Peixoto and Cruz (1988)noticed that among the six species recog-nized at that time, four species (P. acumi-natus, P. brevirostris, P. luteolus, and P. tub-erculosus) share the presence of series of en-larged tubercles on the venter and an en-larged tubercle on each side at the origin ofthe thigh (Bokermann, 1966b: fig. 6). Theother two species, P. auratus and P. kautskyi,have uniform granulation on the venter andlack enlarged tubercles on the thighs, as alsoseems to be the case in P. melanomystax, aspecies described later (see Caramaschi et al.,1992). Peixoto et al. (2003) described twoadditional species, P. edelmoi and P. gyri-naethes; both have a tubercle on each side atthe origin of the thigh. Phyllodytes edelmoihas a series of indistinct tubercles on the ven-ter; in P. gyrinaethes they do not form series.Caramaschi and Peixoto (2004) added P.punctatus, which has two medial, poorly dis-tinct rows of tubercles. Caramaschi et al.(2004a) resurrected P. wuchereri. Peixoto etal. (2003) suggested three different speciesgroups based on color pattern, and Caramas-chi et al. (2004) further expanded the defi-nitions. The P. luteolus group is character-ized by a plain pattern with a variably de-fined dorsolateral dark brown to black lineon canthus rostralis and/or behind the corner

Page 42: systematic review of the frog family hylidae, with special reference to ...

42 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

of eye. This group includes P. acuminatus,P. brevirostris, P. edelmoi, P. kautskyi, P.luteolus, and P. melanomystax. The P. tub-erculosus group has a pale brown dorsumwith scattered dark brown dots and includesP. punctatus and P. tuberculosus. The P. au-ratus group has a dorsal pattern of two dor-solateral, longitudinal white or yellowishstripes, with each stripe being bordered by adark brown or black line from posterior cor-ner of eye to groin. This group includes P.auratus and P. wuchereri. Finally, P. gyri-naethes is placed in its own group for havingred color on hidden surfaces of thighs and ahighly modified tadpole. It is unclear if anyof these groups is monophyletic. Tissueswere available for P. luteolus and an uniden-tified species, Phyllodytes sp., from Bahia,Brazil.

Lysapsus and Pseudis: The monophyly ofthe former subfamily Pseudinae has not beenhistorically controversial; it is supported bythe presence of a long, ossified intercalaryelement between the ultimate and penulti-mate phalanges. Haas (2003) added severalsynapomorphies from larval morphology,based on the study of larvae of two speciesof Pseudis. The limits and definitions ofPseudis and Lysapsus were reviewed by Sav-age and Carvalho (1953) and by Klappen-bach (1985). From their observations it is un-clear which character states support themonophyly of either genus. Savage and Car-valho (1953: 199) implicitly proposed theparaphyly of Pseudis, when they suggestedthat Lysapsus ‘‘seems to have arisen fromPseudis.’’ Garda et al. (2004) recently distin-guished both genera on the basis of spermmorphology. In Lysapsus laevis (the onlyspecies of Lysapsus available to them) thesubacrosomal cone is nearly absent, but it isclearly present in the four species of Pseudisthey studied. Regardless, the monophyly ofeither genus has not been satisfactorily doc-umented.

Morphological diversity within Pseudis in-cludes large species, several of which wereincluded in the past in the synonymy of P.paradoxa and were recently resurrected (Car-amaschi and Cruz, 1998), and smaller spe-cies with a double vocal sac, P. cardosoi andP. minuta (Klappenbach, 1985; Kwet, 2000).Lysapsus includes three species, L. caraya,

L. laevis and L. limellum; we include in ouranalysis the last two. Pseudis is composed ofsix species: P. bolbodactyla, P. cardosoi, P.fusca, P. minuta, P. paradoxa, and P. tocan-tins, of which we include in our analysis P.minuta and P. paradoxa.

Scarthyla: Duellman and de Sa (1988) andDuellman and Wiens (1992) suggested thatthis monotypic genus was sister to Scinax,but more recently, Darst and Cannatella(2003) presented evidence supporting a sistergroup relationship between Scarthyla and‘‘pseudids’’. The single species, Scarthylagoinorum, is included in our analysis.

Scinax: With roughly 86 recognized spe-cies, Scinax is the second largest genus with-in Hylinae. This genus includes the speciesformerly placed in the Hyla catharinae andH. rubra groups; a taxonomic history waspresented by Faivovich (2002). The relation-ships among the species of Scinax were re-cently addressed by Faivovich (2002), whoperformed a phylogenetic analysis using 38species representing the five species groupsthen recognized. Although he employedeight outgroups, the analysis is not a strongtest of the monophyly of Scinax nor of therelationships of Scinax with other hylines.Duellman and Wiens (1992) suggested thatScinax is the sister group of Scarthyla andthat this clade is sister to Sphaenorhynchus.Faivovich (2002) did not test this assertionbecause his selection of outgroups washeavily influenced by da Silva’s results(1998), which did not suggest a close rela-tionship between Scinax and these two gen-era. Taxon choice in the present study willtest more appropriately the hypothesis of(Scinax 1 Scarthyla) 1 Sphaenorhynchus.

Faivovich’s (2002) results suggested thatScinax contains two major clades: (1) a S.ruber clade composed of species that hadbeen previously grouped into the S. rostra-tus, S. ruber, and S. staufferi groups; and (2)a S. catharinae clade composed of the spe-cies that were included in the S. catharinaeand S. perpusillus groups. Faivovich (2002)continued recognition of these two speciesgroups within the S. catharinae clade, as wellas the S. rostratus group within the S. ruberclade, as the individual monophyly of the S.catharinae and S. rostratus groups were cor-roborated by his analysis. The S. perpusillus

Page 43: systematic review of the frog family hylidae, with special reference to ...

2005 43FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

group is recognized because its monophylycould not be tested, and it still awaits a rig-orous test. All species previously included inthe nonmonophyletic groups of S. ruber andS. staufferi are included in the larger S. ruberclade, without being assigned to any group.For a list of the species currently included inScinax, see page 95.

In anticipation of a forthcoming study ofthe phylogeny of Scinax by Faivovich andassociates, we include only S. berthae and S.catharinae as exemplars of the S. catharinaeclade, and S. acuminatus, S. boulengeri, S.elaeochrous, S. staufferi, S. fuscovarius, S.ruber, S. squalirostris, and S. nasicus as ex-emplars of the S. ruber clade.

Sphaenorhynchus: More has been writtenabout nomenclatural confusion surroundingSphaenorhynchus than about its systematics(see Frost, 2004). This genus has been re-viewed by Caramaschi (1989). Duellman andWiens (1992) proposed the following syna-pomorphies for Sphaenorhynchus: posteriorramus of pterygoid absent; zygomatic ramusof squamosal absent or reduced to a smallknob; pars facialis of maxilla and alary pro-cess of premaxilla reduced; postorbital pro-cess of maxilla reduced, not in contact withquadratojugal; neopalatine reduced to a sliveror absent; pars externa plectri entering tym-panic ring posteriorly (rather than dorsally);pars externa plectri round; hyale curved me-dially; coracoids and clavicle elongated;transverse process of presacral vertebra IVelongate, oriented posteriorly; and prepollexossified, bladelike. The genus is composed of11 species: S. bromelicola, S. carneus, S.dorisae, S. lacteus, S. orophilus, S. palustris,S. pauloalvini, S. planicola, S. prasinus, S.platycephalus, and S. surdus. In our analysiswe include S. dorisae and S. lacteus.

Xenohyla: This genus was named by Iz-ecksohn (1996) for the bizarre frog Hylatruncata, which had previously been sug-gested to be related to Sphaenorhynchus byIzecksohn (1959, 1996) and Lutz (1973). Ac-cording to Izecksohn (1996), Xenohylashares with Sphaenorhynchus the reducednumber of maxillary teeth, a relatively shorturostyle, and the development of the trans-verse processes of presacral vertebra IV; fur-thermore, Xenohyla shares with Sphaenor-hynchus the quadratojugal not in contact with

the maxilla. Izecksohn (1996) suggested alsoa close relationship with Scinax based on thepresence in Xenohyla of a coracoid ridge andan internal, subgular vocal sac. While thecoracoid ridge is present in Scinax, it is alsopresent in several other hylines (e.g., see Fai-vovich, 2002). The internal, subgular vocalsac is not a synapomorphy of all Scinax, butonly of the S. catharinae clade. Caramaschi(1998) added X. eugenioi, a second speciesfor the genus. We include X. truncata in ourstudy.

CHARACTER SAMPLING

GENE SELECTION

Because this study involves the simulta-neous analysis of taxa of disparate levels ofdivergence, we assembled a large data set,including four mitochondrial and five nucleargenes, spanning a broad range of variation,from the fast-evolving cytochrome b (Gray-beal, 1993) to the much conserved nucleargenes such as 28S (Hillis and Dixon, 1991).

Ribosomal mitochondrial genes and cyto-chrome b have been employed recently inseveral phylogenetic studies of various an-uran groups at various levels of divergence(Read et al., 2001; Vences and Glaw, 2001;Cunningham, 2002; Salducci et al., 2002).Nuclear genes have been poorly explored fortheir use in anuran phylogenetics. The 28Sribosomal nuclear gene has been used in am-phibians by Hillis et al. (1993). The protein-coding genes rhodopsin, tyrosinase, RAG-1,and RAG-2 were used to study problems atdifferent levels by Bossuyt and Milinkovitch(2000), Biju and Bossuyt (2003), and Hoegget al. (2004). In this study we include 12S,tRNA valine, 16S, and fragments of cyto-chrome b, rhodopsin, tyrosinase, 28S, RAG-1, and seventh in absentia. The last gene isused here for the first time in amphibians.

DNA ISOLATION AND SEQUENCING

Whole cellular DNA was extracted fromfrozen and ethanol-preserved tissues (usuallyliver or muscle) using either phenol-chloro-form extraction methods or the DNeasy(QIAGEN) isolation kit. See table 2 for a listand sources of the primers employed.

Amplification was carried out in a 25-ml-

Page 44: systematic review of the frog family hylidae, with special reference to ...

44 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

TABLE 2Primers Used in this Study

Primer Sequence Reference

MVZ59 59-ATAGCACTGAAAAYGCTDAGATG-39 Graybeal (1997)12L1 59-AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT-39 Feller and Hedges (1998)12SM 59-GGCAAGTCGTAACATGGTAAG-39 Darst and Cannatella (2004)MVZ50 59-TYTCGGTGTAAGYGARAKGCTT-39 Graybeal (1997)12sL13 59-TTAGAAGAGGCAAGTCGTAACATGGTA-39 Feller and Hedges (1998)16sTitus I 59-GGTGGCTGCTTTTAGGCC-39 Titus and Larson (1996)16sL2A 59-CCAAACGAGCCTAGTGATAGCTGGTT-39 Hedges (1994)16sH10 59-TGATTACGCTACCTTTGCACGGT-39 Hedges (1994)16sAR 59-CGCCTGTTTATCAAAAACAT-39 Palumbi et al. (1991)16sBR 59-CCGGTCTGAACTCAGATCACGT-39 Palumbi et al. (1991)16sWilk2 59-GACCTGGATTACTCCGGTCTGA-39 Wilkinson et al. (1996)MVZ15 59-GAACTAATGGCCCACACWWTACGNAA-39 Moritz et al. (1992)H15149(H) 59-AAACTGCAGCCCCTCAGAAATGATATTTGTCCTCA-39 Kocher at al. (1989)Rhod1A 59-ACCATGAACGGAACAGAAGGYCC-39 Bossuyt and Milinkovitch (2000)Rhod1C 59-CCAAGGGTAGCGAAGAARCCTTC-39 Bossuyt and Milinkovitch (2000)Rhod1Da 59-GTAGCGAAGAARCCTTCAAMGTA-39 Bossuyt and Milinkovitch (2000)R1-GFF 59-GAGAAGTCTACAAAAAVGGCAAAG-39 Taran Grant and Julian FaivovichR1-GFR 59-GAAGCGCCTGAACAGTTTATTAC-39 Taran Grant and Julian FaivovichTyr 1C 59-GGCAGAGGAWCRTGCCAAGATGT-39 Bossuyt and Milinkovitch (2000)Tyr 1G 59-TGCTGGGCRTCTCTCCARTCCCA-39 Bossuyt and Milinkovitch (2000)sia1b 59-TCGAGTGCCCCGTGTGYTTYGAYTA-39 Bonacum et al. (2001)sia2 59-GAAGTGGAAGCCGAAGCAGSWYTGCATCAT-39 Bonacum et al. (2001)28SV 59-AAGGTAGCCAAATGCCTCGTCATC-39 Hillis and Dixon (1991)28SJJ 59-AGTAGGGTAAAACTAACCT-39 Hillis and Dixon (1991)

a This primer, instead of Rhod1C, was used to amplify this gene in the 30-chromosome Hyla.b The primer pair sia1-2 was used together with the universal primers T3 and T7, as done by Bonacum et al. (2001).

volume reaction using either puRe TaqReady-To-Go PCR beads (Amersham Bio-sciences, Piscataway, NJ) or InvitrogenePCR SuperMix. For all the amplifications,the PCR program included an initial dena-turing step of 30 seconds at 948C, followedby 35 or 38 cycles of amplification (948C for30 seconds, 48–608C for 60 seconds, 728Cfor 60 seconds), with a final extension stepat 728C for 6 min.

Polymerase chain reaction (PCR)-ampli-fied products were cleaned either with aQIAquick PCR purification kit (QIAGEN,Valencia, CA) or with ARRAY-IT (Tele-Chem International, Sunnyvale, CA) and la-beled with fluorescent-dye labels terminators(ABI Prism Big Dye Terminators v. 3.0 cyclesequencing kits; Applied Biosystems, FosterCity, CA). Depending on whether thecleaned product was purified with QIAquickor Array-It, the sequencing reaction was car-ried out in either 10 ml or 8 ml volume re-action following standard protocols. The la-

beled PCR products were isopropanol-pre-cipitated following the manufacturer’s pro-tocol. The products were sequenced eitherwith an ABI 3700 or with an ABI Prism 377sequencer. Most samples were sequenced inboth directions.

Chromatograms obtained from the auto-mated sequencer were read and contigs madeusing the sequence editing software Se-quencher 3.0. (Gene Codes, Ann Arbor, MI).Complete sequences were edited with Bio-Edit (Hall, 1999).

MORPHOLOGY

Because the present study is mostly basedon molecular data, the failure to include athorough morphological data set doubtless isits weakest point. As trained morphologists,most of the authors of this paper think that aphylogenetic hypothesis that explains all theavailable data is the best hypothesis that wecan aspire to, and that no class of data is

Page 45: systematic review of the frog family hylidae, with special reference to ...

2005 45FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

better than any other. Apart from da Silva’sunpublished dissertation, which is comment-ed upon below, published comparative stud-ies involving a diversity of hylid exemplarsare rare. Major exceptions are the thoroughosteological studies by Trueb (1970a) andthose on hand muscles of Pelodryadinae(Burton, 1996), distal extensor muscles ofanurans (Burton, 1998a), and foot muscles ofHylidae (Burton, 2004). Explicit characterdescriptions in the context of phylogeneticcomparisons include those by Duellman andTrueb (1983), Campbell and Smith (1992),Duellman and Campbell (1992), Duellmanand Wiens (1992), Fabrezi and Lavilla(1992), Kaplan (1994, 1999), Cocroft (1994),Burton (1996, 1998a, 2004), Haas (1996,2003), da Silva (1997), Duellman et al.(1997), Kaplan and Ruiz-Carranza (1997),Mendelson et al. (2000), Sheil et al. (2001),Faivovich (2002), and Alcalde and Rosset(‘‘2003’’ [2004]). Most of these studies weretargeted in general to very specific apparentclades or to very large clades using very fewterminals, which leaves particular sets ofcharacters known for very few terminals.Unfortunately, for the inclusion of the char-acters employed in these studies to be infor-mative, detailed anatomic work would be re-quired on a very large number of terminals(besides the potentially serious need to re-define several characters), a task that we findimpossible to pursue at this time. Much toour regret, we find that there are almost nopublished studies from which we could de-rive character scorings to enrich our data setwithout extensive work. The only data setthat we thought could be included, due to itsrelatively dense taxon sampling, is the oneresulting from the collection of observationspresented by Burton (2004). Although itssampling of nonhylid taxa that match oursampled taxa is particularly sparse, we con-sider Burton’s study to be an important ad-dition to this analysis. Characters are listedand discussed in appendix 3.

da Silva’s (1998) Dissertation

da Silva (1998) presented his Ph.D. dis-sertation on phylogeny of hylids with em-phasis on Hylinae. Although da Silva’s dis-sertation has not been published, some of its

results and conclusions were described andcommented in detail by Duellman (2001).Because the present paper deals specificallywith the phylogeny of Hylinae, we cannotavoid a few comments dealing with da Sil-va’s work. Considering the mostly coincidentscope of both da Silva’s dissertation and thispaper, it is evident that a thorough discussionand comparison of his results with ourswould almost amount to the publication ofhis chapter on Hylinae relationships. This isa situation with which we feel most uncom-fortable, because we think that this is a re-sponsibility that rests on Helio R. da Silva.

From a purely practical perspective, at thispoint the integration of da Silva’s data setwith ours is impracticable for two reasons:(1) The data matrix as printed in the disser-tation distributed by the University of Mich-igan is incomplete, as it lacks the scoringsfor 10 characters (chars. 110–120) for alltaxa. This is also the situation with the thesisthat is deposited at the Department of Her-petology library of the University of Kansas,Natural History Museum (Faivovich, person-al obs.). (2) A few scorings for groups thatwe are familiar with are not coincident withour observations on the same species, some-thing suggestive either of polymorphism inthose characters or mistaken scorings.21 Ifthis were the case, it would not be surprising,as scoring mistakes are to be expected insuch an impressive data set. The problemwith them is that once detected, they have tobe corrected and the analysis has to be re-done. It is evident that a revision of the dataset is necessary before any integration cantake place.

PHYLOGENETIC ANALYSIS

Our optimality criterion to choose amongtrees is parsimony. The logical basis of par-simony as an optimality criterion has beenpresented by Farris (1983). However, parsi-

21 For example, character 60 (anterior process of thehyale) is scored 0 (absent) in Aplastodiscus, where it ispresent in the material available to us (Faivovich, 2002;Garcia, personal obs.). Character 61 (anterolateral pro-cess of the hyoid plate) is scored 0 (absent) in Hylaalbofrenata, H. albomarginata, H. albopunctata, H. al-bosignata, H. faber, and H. multifasciata, whereas it ispresent in the specimens available to us (Garcia and Fai-vovich, personal obs.)

Page 46: systematic review of the frog family hylidae, with special reference to ...

46 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

mony has repeatedly been attacked from dif-ferent perspectives, all of which tend to por-tray parsimony as inferior to such model-based approaches as maximum likelihood.Criticisms of parsimony have centered ontwo main topics: statistical inconsistency andthe notion that parsimony is an overpara-meterized likelihood model. As stated by Go-loboff (2003), the emphasis on statisticalconsistency decreased following severalstudies showing that: (1) maximum likeli-hood can be inconsistent even with minor vi-olations of the model when they were gen-erated with a mix of models (Chang, 1996);(2) given some evolutionary models, maxi-mum likelihood estimators could be incon-sistent (Steel et al., 1994; Farris, 1999); (3)parsimony can be consistent (Steel et al.,1993); (4) assuming likelihood as a more ac-curate method, inferences based on trees sub-optimal under the maximum likelihood couldbe less reliable than inferences made on treesoptimal under otherwise inferior but fastercriteria (Sanderson and Kim, 2000); and (5)at least under some conditions, parsimonymay be more likely than maximum likeli-hood to find the correct tree, given finiteamounts of data (Yang, 1997; Siddall; 1998;Pol and Siddall, 2001). Tuffley and Steel(1997) demonstrated that parsimony is amaximum likelihood estimator when eachsite has its own branch length. Farris (1999,2000) and Siddall and Kluge (1999) sug-gested that the results of Tuffley and Steel(1997) were an indication that the model im-plied by parsimony (‘‘no special model ofevolution’’ or ‘‘no common mechanism mod-el’’) was indeed more realistic. However,likelihood advocates (Steel and Penny, 2000;Lewis, 2001; Steel, 2002) countered thatmodels that assume constant probabilities ofchange across all sites are to be preferred onthe grounds of simplicity (i.e., as having few-er parameters to estimate). Goloboff (2003)demonstrated that parsimony could actuallybe derived from models that require evenfewer parameters than the commonly usedlikelihood models.

The use of Bayesian Markov chain MonteCarlo (BMCMC) techniques has becomequite popular among evolutionary biologists.However, for reasons outlined by Simmonset al. (2004), the posterior probability values

of the clades cannot be interpreted as valuesof truth or support. Furthermore, Kola-czkowski and Thornton (2004) demonstrat-ed, by using simulations in the presence ofheterogeneous data, that parsimony performsbetter than both maximum likelihood andBMCMC over a wide range of conditions.

We contend that all serious criticisms ofparsimony have been rebutted. We considerthat while the first point mentioned (incon-sistency of likelihood when the data are gen-erated with different models) could certainlyoccur in any analysis, it is particularly prob-lematic in the present one, because we arecombining morphology with both mitochon-drial and nuclear coding and non-codinggenes. Furthermore, for a data set of this size,maximum likelihood is quite impractical toapply for computational reasons.

For the phylogenetic analyses of the DNAsequence data, we used the method of DirectOptimization (Wheeler, 1996, 1998, 2002),as implemented in the program POY (Wheel-er et al., 2002), a heuristic approximation tothe optimal tree alignment methods of San-koff (1975) and Sankoff and Cedergren(1983). Sequence alignment and tree search-ing have traditionally been treated as two in-dependent steps in phylogenetic analyses: se-quences are first aligned, and a fixed or staticmultiple alignment is then treated as a stan-dard character matrix that is the basis for treesearching in the test of character congruence.However, there may be other equally defen-sible multiple sequence alignments thatwould require fewer hypothesized transfor-mations to explain the observed sequencevariation; an explanation that requires fewertransformations is more parsimonious and istherefore objectively preferred over expla-nations that require a greater number oftransformations (see De Laet [2005] for amuch more sophisticated approach to theproblems of constructing multiple alignmentsprior to tree searching). Direct Optimizationseeks the cladogram-alignment combination(i.e., the optimal tree alignment) that mini-mizes the total number of hypothesizedtransformation events required to explain theobservations. Within this framework, inser-tion/deletion events (indels, gaps) are histor-ical evidence that is taken into account whenhypothesizing common ancestry.

Page 47: systematic review of the frog family hylidae, with special reference to ...

2005 47FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

The simplest minimization of transforma-tions is obtained when tree searches are con-ducted under equal weights for indels and allsubstitutions (1:1:1, this is the ratio of thecost of opening gap:extension gap:substitu-tions) (Frost et al., 2001). This weightingscheme implies that indels are as costly asthe number of nucleotides they span. This isnot a situation with which we are comfort-able, inasmuch as a single deletion eventcould entail more than a single nucleotideand hence necessarily require a lower costthan if all the nucleotides it includes werelost independently of each other. However,theoretical justifications for the selection ofdifferential costs for gap opening and gap ex-tension are not evident.

De Laet and Smets (1998) suggested thatparsimony analysis searches for the trees onwhich the highest number of compatible in-dependent pairwise similarities can be ac-commodated; that is, they described parsi-mony as a two-taxon analysis. When dealingwith static data sets, this approach and theminimization of transformations give thesame rank of tress. However, De Laet (2005)showed that when considering parsimony asa two-taxon analysis in the presence of in-applicable character states (e.g., unequal-length sequences), the minimization of trans-formations (as obtained under 1:1:1) does notmaximize the number of accommodatedcompatible independent pairwise a priorisimilarities. De Laet (2005) suggested thatsequence homology has two components, ho-mology of subsequences (the fragments ofsequences that are comparable across abranch) and base-to-base homology withinhomologous subsequences. When maximi-zation of homology is transformed into aproblem of minimization of changes, the op-timization of the two components that max-imizes the accommodated independent pair-wise similarities is obtained by summing upthe cost regimes that are involved for eachcomponent. The number of subsequences isquantified by counting the number of inser-tion/deletion events (independent of theirlength, and therefore represented each as awhole by a unit opening gap). Base-to-basehomology within homologous subsequencesis maximized when substitutions are weight-ed twice as much as unit gaps (Smith et al.,

1981). These result in a substitution cost of2, a gap opening cost of 2 1 1 (the samecost of a substitution plus the cost of the firstunit gap), and a gap extension cost of 1. Allthis development rests on the perspective ofparsimony as a two-taxon analysis (De Laetand Smets, 1998). The most immediately ap-pealing aspect of De Laet’s perspective isthat it offers a rationale for the use of gap-extension costs different from substitutioncosts, thus avoiding giving an insertion/de-letion event of n nucleotides the same weightof n substitutions.

We conducted our searches using equalweights for minimizing transformations. Inorder to examine the effect of the gap treat-ment in our results, and following De Laet’sdevelopment (2005), we also submitted ourfinal tree to a round of tree-bisection and re-connection branch swapping (TBR) by usinga weighting scheme of 2 for substitutions andmorphological transformations, 3 for a gapopening, and 1 for a gap extension.

This study is guided by the idea that a si-multaneous analysis of all available evidencemaximizes explanatory power (Kluge, 1989;Nixon and Carpenter, 1996). Consequently,we analyzed all molecular and available mor-phological evidence simultaneously. Theanalysis was performed using subclusters of60–100 processors of the American Museumof Natural History parallel computer cluster.

Heuristic algorithms applied to both treesearching and length calculation (i.e., align-ment cost) were employed throughout theanalysis. As with any heuristic solution, theoptimal solution from these analyses underDirect Optimization represents the upperbound, and more exhaustive searching couldresult in an improved solution. Consideringthe large size of our data set, we tried twodifferent approaches. The first strategy triesto collect many locally optimal trees frommany replications to input them into a finalround of tree fusing (Goloboff, 1999). Forthe second strategy, quick concensus esti-mates (Goloboff and Farris, 2001) are usedas constraints for additional tree searching,following the suggestion of Pablo Goloboff(personal commun.).

For maximizing the number of trees fortree fusing, we employed two different rou-tines:

Page 48: systematic review of the frog family hylidae, with special reference to ...

48 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

1. Three hundred fifty random addition se-quences were done in groups of 5 or 10,followed by a round of tree fusing, sendingthe best tree to 10–25 parsimony ratchet cy-cles (Nixon, 1999a) using TBR, reweightingbetween 15 and 35% of the fragments, keep-ing one tree per cycle, and by setting thecharacter weight multiplier between two andfive in different replicates, with a final roundof TBR branch swapping. Tree fusing wasalways done fusing sectors of at least threetaxa with two successive rounds of fusing.

2. One hundred fifty random addition sequenc-es were built in groups of 5, 7, or 10 bysubmitting the best of each group to 10–25ratchet cycles using TBR.

The 40 best trees resulting from theseanalyses where submitted to tree fusing ingroups of five, and the resulting eight treeswere subsequently fused. This final tree wassubmitted to 30 replicates of Ratchet usingthe same settings as above, with the resultingtrees being submitted to a final round of TBRbranch swapping.

Alternatively, we did 50 random additionsequences followed by a round of TBR andmade an 85% majority rule consensus, assuggested by Goloboff and Farris (2001) toquickly estimate the groups actually presentin the consensus of large data sets withouthaving to do intensive searches. The ap-proach of Goloboff and Farris (2001) as-sumes that groups that are present in all ormost independent searches are more likely tobe actually supported by the data. To speedup the searches for the estimation of thequick consensus, we treated the partial se-quences of the RAG-1, rhodopsin, SIA, andtyrosinase genes as prealigned. Once thequick consensus was estimated, it was input-ted in POY as a constraint file, with whichwe built 100 Wagner trees, each followed by10 ratchet replicates. All trees resulting fromthese constrained searches were fused ingroups of different size, and the final treeswere submitted to a round of TBR. The orig-inal constraint file was not used during thefusing and final TBR steps.

While all searches were done using stan-dard direct optimization, all were submittedto final rounds of TBR under the command‘‘iterative pass’’ (Wheeler, 2003a). This rou-tine does a three-dimensional optimization,taking into account the states of the three ad-

jacent nodes of the internal node of interest.Because any change in the reconstructed se-quence could potentially affect adjacentnodes, the procedure is done iteratively untilstabilization is achieved.

The large size of the data set imposes aheavy burden in computer times to estimatesupport measures. Bremer supports (Bremer,1988) were calculated using POY, withoutusing ‘‘iterative pass’’. Parsimony Jackknifevalues (Farris et al., 1996) were calculatedusing the implied alignment (Wheeler,2003b) of the best topology. In turn, this im-plies that the parsimony jackknife valuescould be overestimated. Parsimony Jackknifewas calculated in TNT (Goloboff et al.,2000); 1000 pseudoreplicates were per-formed. For each pseudoreplicate the best to-pology was searched for by using sectorialsearches and tree fusing, starting with twoWagner trees generated through random ad-dition sequences.

Final tree lengths under the 1:1:1 weight-ing scheme were checked with TNT. Lists ofsynapomorphies were generated with TNT;only unambiguous transformations commonto all most parsimonious trees were consid-ered.

For the analysis, the complete 12S-tRNAvaline-16S sequence was cut into 14 frag-ments and the partial 28S sequence was cutinto 4 fragments coincident with conservedregions (Giribet, 2001). Although this con-strains homology assessment, the universe ofalternative ancestral sequences that has to beexplored is a more tractable problem than us-ing long single fragments. The sequence filesas they were input into POY are availablefrom http://research.amnh.org/users/julian.Tree editing was done using WinClada (Nix-on, 1999b).

RESULTS

In total, we sequenced 256 terminals. Thecontiguous 12S, tRNA valine, and 16S geneswere sequenced for all but seven terminals.For these terminals we were unable to am-plify or sequence one or two of the overlap-ping PCR fragments. The partial cytochromeb fragment was sequenced for all but 12 ter-minals. The success with the nuclear locivaried from 232 terminals sequenced for the

Page 49: systematic review of the frog family hylidae, with special reference to ...

2005 49FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

first exon of rhodopsin to as few as 166 se-quenced for 28S. See appendix 2 for a com-plete list of the loci sequenced for each tax-on, voucher specimens, locality data, andGenBank accessions. All sequences wereproduced for this project and for that of Fai-vovich et al. (2004) with the exception of 21sequences taken from GenBank that wereproduced by Bijou and Bossuyt (2003) andby Darst and Cannatella (2004). The fact thatthe morphological characters are not scoredfor 70% of the terminals led to several am-biguous optimizations. A list of nonambigu-ous morphological synapomorphies is pro-vided in appendix 3, many of which are men-tioned throughout the discussion and in thesection ‘‘Taxonomic Conclusions: A New Tax-onomy of Hylinae and Phyllomedusinae’’.

The phylogenetic analysis resulted in fourmost parsimonious trees of 65,717 steps. Oneof these trees resulted from one of the roundsof tree fusing of the trees resulting from theconstrained search, and the other three treeswere obtained after a round of TBR swap-ping of the first one. Parsimony Jackknifeand Bremer support values are generallyhigh. Most of the 272 nodes of the strict con-sensus (figs. 1–5) are well supported, with226 nodes having a Bremer support of $10and 162 nodes with a Bremer support of$20; additionally, 255 nodes have a jack-knife value of $75% and 245 nodes have ajackknife value of $90%.

All conflict among the trees is restricted totwo points: (1) the relationships among Hylacircumdata, H. hylax, and the undescribedspecies Hyla sp. 4 (fig. 3); and (2) the rela-tionships of H. femoralis with the H. versi-color and H. eximia groups (fig. 5).

When the best trees were submitted to around of TBR using a weighting scheme of3:1:2 as suggested by De Laet (in press) andmentioned earlier, the resulting tree differsfrom the original ones only in that (1) theclade composed of Cryptobatrachus and Ste-fania moves to be the sister group of Flec-tonotus and Gastrotheca (fig. 2), and (2) theclade composed of Lysapsus, Pseudis, andScarthyla moves from the sister taxon of Sci-nax to the sister taxon of the 30-chromosomeHyla groups, Sphaenorhynchus, and Xeno-hyla (fig. 4).

DISCUSSION

MAJOR PATTERNS OF RELATIONSHIPS OF

HYLIDAE AND OUTGROUPS

As in previous analyses (Ruvinsky andMaxson, 1996; Haas, 2003; Darst and Can-natella, 2004), our results do not recover Hy-lidae as a monophyletic taxon (figs. 1, 2).Hemiphractinae appears as only distantly re-lated to the Hylinae, Pelodryadinae, andPhyllomedusinae, each of which is mono-phyletic. For this reason, we exclude Hemi-phractinae from Hylidae, being thereby re-stricted to Hylinae, Pelodryadinae, and Phyl-lomedusinae. In the same way, Centroleni-dae, for a long time suspected to be relatedwith hylids, appears as a distantly relatedclade, as suggested by previous studies(Haas, 2003; Darst and Cannatella, 2004).

Hylidae, as understood here, excludes theHemiphractinae. Otherwise, the major cladeswithin the Hylidae are coincident with theremaining subfamilies currently recognized.The Pelodryadinae is the sister taxon ofPhyllomedusinae, corroborating the results ofDarst and Cannatella (2004); in turn, Pelo-dryadinae 1 Phyllomedusinae is the sistertaxon of Hylinae (figs. 1, 2).

Ranoids appear as monophyletic, with thetwo microhylid exemplars being the sistertaxon of the Astylosternidae 1 remainingranoids (fig. 2). Ranidae forms a paraphyleticmelange, with the exemplars of Hemisotidae,Mantellidae, and Rhacophoridae being nest-ed among the few ranid exemplars. Ranoidsare the sister taxon of all remaining terminals(fig. 2).

Within hyloids, as expected, Leptodacty-lidae is rampantly paraphyletic, with all otherincluded families nested within it (figs. 1, 2).Ceratophryinae, Eleutherodactylinae, Lepto-dactylinae, and Telmatobiinae are not mono-phyletic (fig. 2).

At the base of hyloids, the two exemplarsof Eleutherodactylus are the sister taxon of aclade composed of Hemiphractus helioi,Brachycephalus ephippium, and Phrynopussp. This situation renders Eleutherodactyli-nae and Hemiphractinae nonmonophyletic(fig. 2). The nonmonophyly of Hemiphrac-tinae is further given by the fact that in the1:1:1 analysis, Stefania 1 Cryptobatrachusand Gastrotheca 1 Flectonotus are not

Page 50: systematic review of the frog family hylidae, with special reference to ...

50 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 1. A reduced image of the strict consensus of the four most parsimonious trees showing themajor patterns of relationships of the outgroups, hylid subfamilies, and the four major clades of Hylinaerecovered in the analysis.

monophyletic but occur as a grade leading tothe other hyloids (fig. 2); however, the groupis monophyletic in the 3:1:2 analysis. Mov-ing upward in the tree finds two large clades:one composed of Hylidae in the sense usedhere (i.e., excluding Hemiphractinae), andthe other composed of the remaining hyloidfamilies and subfamilies of Leptodactylidae.Leptodactylinae as defined by Laurent(1986) is not monophyletic in that Limno-medusa is only distantly related to the re-maining ‘‘Leptodactylinae’’, being the sistertaxon of Odontophrynus. Note that this ar-rangement is congruent with Leptodactylinaeas defined by Lynch (1971). Centrolenidaeobtains as monophyletic and as the sister tax-on of Allophrynidae. The only cycloram-phine exemplar, Crossodactylus schmidti, isthe sister taxon of the dendrobatid exemplars.

Telmatobiinae is not monophyletic forhaving one of the Ceratophryinae exemplars,Ceratophrys cranwelli, nested within it. Fur-thermore, the other two Telmatobiinae ex-emplars, Alsodes gargola and Euspsophuscalcaratus, form a clade with the Leptodac-tylinae exemplar Limnomedusa macroglossaand the other Ceratophryinae exemplarOdontophrynus americanus. This clade isalso the sister taxon of all Bufonidae exem-plars (fig. 2).

In general, most results concerning the re-lationships among outgroup taxa should beconsidered cautiously, because the taxonsampling of this analysis was not designedto address those specific questions. Some re-sults are nonetheless expected or at least sug-gestive. In the former group we include, forexample, the monophyly of Bufonidae, Den-drobatidae, Centrolenidae, and Ranoidea.The relationship between Crossodactylus anddendrobatids is consistent with the results ofHaas (2003).

The fact that hemiphractines are not relat-ed to the Hylidae, and are likely nonmono-phyletic, requires a change in how study ofthis group is approached. For instance, rela-tionships of Hemiphractinae as recovered

here are quite different from the results ofthe cladistic analysis based on morphologyand life-history data presented by Mendelsonet al. (2000). These authors found Hemi-phractus to be nested within Gastrotheca, aresult that Duellman (2001) considered im-plausible. Although we did not incorporatetheir data set into our analysis, the fact thatthey employed only hylid outgroups couldhave affected their results. With the impor-tant difference that we do not recover amonophyletic Hemipractinae, our results cor-roborate the sister taxon relationship betweenthe northern Andean Cryptobatrachus andthe Guayanan Stefania, as well as the sistergroup relationship between Flectonotus andGastrotheca, as suggested by Duellman andHoogmoed (1984) and Wassersug and Duell-man (1984). Regarding the monophyly andactual position of Hemiphractinae withinNeobatrachia, our results are inconclusive(similar to those of Darst and Cannatella,2004) most likely because of a lack of theappropriate taxon sampling to address theproblem. Their positions in the tree suggestthat a much denser taxon sampling of ‘‘Lep-todactylidae’’ and perhaps Eleutherodactyli-nae will be necessary to better understandtheir relationships.

PELODRYADINAE AND PHYLLOMEDUSINAE

Our results of a monophyletic Pelodryadi-nae 1 Phyllomedusinae corroborate earlysuggestions by Trewavas (1933), Duellman(1970), Bagnara and Ferris (1975), and morerecent results by Darst and Cannatella (2004)and Hoegg et al. (2004). The monophyly ofPelodryadinae and Phyllomedusinae was notrecovered in the analyses by Duellman(2001), Burton (2004), and Haas (2003). Dis-crepancies between the analyses of Burton(2004) and Haas (2003) and our’s may be theresult of different taxon sampling and as-sumptions. Duellman (2001) assumed thatHylidae, in the classical sense (includingHemiphractinae), was monophyletic, and

Page 51: systematic review of the frog family hylidae, with special reference to ...

2005 51FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Page 52: systematic review of the frog family hylidae, with special reference to ...

52 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Page 53: systematic review of the frog family hylidae, with special reference to ...

2005 53FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 2. A partial view of the strict consensus showing the relationships of the outgroups, Pelodry-adinae, and Phyllomedusinae. Numbers above nodes are Bremer support values. Numbers below nodesare Parsimony Jackknife absolute frequencies; those with an asterisk (*) have a 100% frequency. Num-bers in boldfaced italic are node numbers for the list of morphological synapomorphies (see appendix3). Black circles denote nodes that are present in the quick consensus estimation. The arrow showsalternative placement of the (Cryptobatrachus 1 Stefania) clade when using the 3:1:2 weighting scheme(see text).

Burton (2004) assumed that Hylidae, Centro-lenidae, and Allophrynidae formed a mono-phyletic group. Our analysis did not includethe morphological characters employed byHaas (2003) in his analysis, nor does our pe-lodryadine taxon sampling match his. Forthis reason, our results are not directly com-parable to his, and we do not consider themonophyly of the Pelodryadinae a settled is-sue.

In our analysis, the presence of a tendonof the m. flexor ossis metatarsi II arising onlyfrom distal tarsal 2–3 is a synapomorphy ofPelodryadinae plus Phyllomedusinae. Fur-thermore, the presence of the pigment pter-orhodin (Bagnara and Ferris, 1975) may bea synapomorphy of this clade, although thedistribution of this character state requiresfurther elucidation. Both Pelodryadinae andPhyllomedusinae share the presence of sup-plementary elements of the m. intermandi-bularis. These elements are apical in Pelod-ryadinae and posterolateral in Phyllomedu-sinae (Tyler, 1971). Both character stateshave previously been considered nonhomo-logs (Tyler and Davies, 1978a) that separate-ly support the monophyly of each of thesegroups (Duellman, 2001). In the context ofour analysis, however, the sole presence ofsupplementary elements is more parsimoni-ously interpreted as a putative synapomorphyof this clade, while it is ambiguous which ofthe positions of the elements (apical or pos-terolateral) is the plesiomorphic state. Notethat this ambiguity is a potential challenge tothe only known morphological synapomor-phy of Pelodryadinae. Future anatomicalwork will corroborate whether these twomorphologies could be considered as statesof the same transformation series, as is ten-tatively being done here.

PELODRYADINAE

As stated previously, our analysis does notinclude enough of a comprehensive taxonsampling of Pelodryadinae to address its in-ternal relationships in a meaningful way.Nonetheless, our results corroborate thelong-held idea (see previous discussions) thatCyclorana and Nyctimystes are nested withinLitoria. For the reasons detailed earlier, ouranalysis is not an overly strong test of thepositions of the former two genera within Li-toria. Nevertheless, the single exemplar ofCyclorana is the sister taxon of L. aurea, anexemplar of the L. aurea group with whichCyclorana is supposed to be related based onvarious sources of evidence (King et al.,1979; Tyler, 1979; Tyler et al., 1981). Nyc-timystes is the sister taxon of L. infrafrenata,one of the groups of Litoria that Tyler andDavies (1979) considered as possibly relatedto Nyctimystes based on morphological sim-ilarities of its skull with that of N. zweifeli.The other groups they considered are mostlythe montane species of Litoria; from thesewe included a single exemplar, L. arfakiana,that is quite distant from Nyctimystes, beingthe sister taxon of L. meiriana (with which,incidentally, it also shares the presence of aflange in the medial surface of metacarpalIII; Tyler and Davies, 1978b). In our analy-sis, the fibrous origin of the m. extensorbrevis superficialis digiti III on the distal endof the fibulare is a synapomorphy of Pelod-ryadinae; we are skeptical, however, that thisoptimization will hold with better sampledoutgroups for muscular characters, becauseBurton (2004) found the same character statein several leptodactylids, none of which isincluded in our outgroup sample.

PHYLLOMEDUSINAE

Several authors (Funkhouser, 1957; Duell-man, 1970; Donnelly et al., 1987; Hoogmoed

Page 54: systematic review of the frog family hylidae, with special reference to ...

54 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

and Cadle, 1991) noticed the distinctivenessof Agalychnis calcarifer and its presumedsister taxon, A. craspedopus, from the otherspecies of Agalychnis. Corroborating the re-sults of Duellman (2001), we found no evi-dence for the monophyly of Agalychnis. Ourresults indicate that A. calcarifer is the sistergroup of the remaining Phyllomedusinae,and it has no close relationship with the otherexemplars of Agalychnis.

Phyllomedusa lemur, the only exemplar ofthe P. buckleyi group available for this anal-ysis, is recovered, although with low Bremersupport (3), as the sister group of Hyloman-tis, and it is only distantly related with theother exemplars of Phyllomedusa. This situ-ation corroborates previous suggestions(Funkhouser, 1957; Cannatella, 1980; Jung-fer and Weygoldt, 1994) that the P. buckleyigroup should not be included in Phyllome-dusa. Cruz (‘‘1988’’ [1989]) suggested, onthe basis of iris coloration, skin texture, poordevelopment of webbing, and slender body,that Hylomantis is related to two species ofthe P. bukleyi group, P. buckleyi and P. psi-lopygion. On the basis of the same characterstates, Cruz (1990) associated the P. buckleyigroup with both Hylomantis and Phasmahy-la. Our results support these ideas only inpart, because while our only exemplars ofHylomantis and the P. buckleyi group areeach monophyletic, Phasmahyla is moreclosely related to Phyllomedusa (excludingthe P. buckleyi group).

We had no clear idea regarding the posi-tion of Hylomantis and Phasmahyla. Mor-phologically, the evidence is conflicting inthat each one shares at least one differentpossible synapomorphy with the restrictedPhyllomedusa (Phyllomedusa excluding theP. buckleyi group). Phasmahyla has the sametype of nest where the eggs are wrapped ina leaf; nests are unknown in Hylomantis, butspecies of this genus share with Phyllome-dusa (excluding the P. buckleyi group) thepresence of the slip of the m. depressor man-dibulae that originates from the dorsal fasciaat the level of the m. dorsalis scapulae (Cruz,1990; Duellman et al., 1988b), a characterstate that is absent in all other Phyllomedu-sinae. Our analysis recovers Phasmahyla asthe sister group of the restricted Phyllome-

dusa, suggesting that the eggs wrapped in aleaf are a synapomorphy of this clade.

MAJOR PATTERNS OF RELATIONSHIPS

WITHIN HYLINAE

For purposes of discussion, we considerHylinae to be composed of four major clades(fig. 1), called here: (1) the South Americanclade I; (2) South American clade II (SA-II);(3) Middle American/Holarctic clade; and (4)South American/West Indian Casque-headedFrogs. These major sections and their sub-clades will be discussed in this order.

SOUTH AMERICAN CLADE I

This clade is composed of all GladiatorFrogs, the Andean stream-breeding Hyla, thegenus Aplastodiscus, and a Tepuian clade ofHyla. It contains five major clades (fig. 3).The first of these is called the Tepuian clade,and is composed solely of two exemplars ofthe H. aromatica and H. geographicagroups. The second clade is composed of allAndean stream-breeding Hyla. The third iscomposed of all the exemplars of the H. cir-cumdata, H. martinsi, and H. pseudopseudisgroups, from southeastern Brazil, and we arecalling it informally the Atlantic/Cerradoclade. The fourth is composed of the south-eastern Brazilian H. albosignata and H. al-bofrenata complexes of the larger, nonmon-ophyletic H. albomarginata group plus thetwo species of Aplastodiscus, and we arecalling it informally the Green clade. Thefifth clade is composed of all the remainingspecies groups (H. geographica, H. pulchel-la, H. boans, H. granosa, H. punctata, H.albomarginata complex of the H. albomar-ginata group) and unassigned species asso-ciated in the past with the Gladiator Frogs,and we are calling it informally the TGFclade (for True Gladiator Frogs.)

Six currently recognized species groupswithin the South American clade I are notmonophyletic. The Hyla albomarginatagroup is not monophyletic because its three‘‘complexes’’ defined by Cruz and Peixoto(‘‘1985’’ [1987]) are spread throughout theGreen clade and the TGF clade. The H. al-bomarginata complex is not monophyletic,with its species being related with differentgroups in the TGF clade (see below). The H.

Page 55: systematic review of the frog family hylidae, with special reference to ...

2005 55FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 3. A partial view of the strict consensus showing the relationships of the South American Iclade and its correspondence with the currently recognized species groups. Numbers above nodes areBremer support values. Numbers below nodes are Parsimony Jackknife absolute frequencies; those withan asterisk (*) have a 100% frequency. Black circles denote nodes that are present in the quick consensusestimation.

Page 56: systematic review of the frog family hylidae, with special reference to ...

56 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 4. A partial view of the strict consensus showing the relationships of the South American IIclade and its correspondence with the currently recognized species groups. Numbers above nodes areBremer support values. Numbers below nodes are Parsimony Jackknife absolute frequencies; those withan asterisk (*) have a 100% frequency. Numbers in boldfaced italic are node numbers for the list ofmorphological synapomorphies (see appendix 3). Black circles denote nodes that are present in the quickconsensus estimation. The arrow shows alternative placement of the (Scarthyla 1 (Lysapsus 1 Pseudis))clade when using the 3:1:2 weighting scheme (see text).

albosignata complex is monophyletic, as isthe H. albofrenata complex. These two com-plexes, however, do not form a monophyleticgroup, because Aplastodiscus is the sistergroup to the H. albosignata complex, andthis clade is sister to the H. albofrenata com-plex. Within the TGF Clade, the only groupthat is not represented by a single exemplar(the Hyla punctata group) that results asmonophyletic is the H. pulchella group. TheH. albomarginata complex, H. albopunctata,H. boans, H. geographica, and H. granosagroups are nonmonophyletic.

Hyla pellucens and H. rufitela are the sis-

ter group of the clade composed of H. heil-prini and the paraphyletic H. albopunctatagroup (see below); H. albomarginata is thesister taxon of a fragment of the H. boansgroup (see below). The H. albopunctatagroup is paraphyletic inasmuch as H. fasciataplus H. calcarata is nested within it. The H.boans group is polyphyletic because themostly southeastern Brazil/northeastern Ar-gentina exemplars (H. faber, H. lundii, H.pardalis, H. crepitans, and H. albomargina-ta) together with H. albomarginata are thesister taxon of the H. pulchella group and areonly distantly related to H. boans. Hyla

Page 57: systematic review of the frog family hylidae, with special reference to ...

2005 57FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

boans is the sister taxon of H. geographicaplus H. semilineata. The H. geographicagroup is rampantly polyphyletic, with its ex-emplars partitioned into five different cladeswithin the South American clade I: (1) H.kanaima is the sister taxon of H. inparquesi,the single exemplar of the H. aromaticagroup; (2) H. roraima and H. microdermaform a monophyletic group with four Guay-anese and one Amazonian species; (3) Hylapicturata is related to the exemplars of theH. punctata and H. granosa groups; (4) Hylasemilineata 1 H. geographica are related toH. boans; and (5) H. fasciata 1 H. calcarataare nested within the H. albopunctata groupas detailed above. The H. granosa group isparaphyletic by having H. picturata and H.punctata nested within it.

Andean Stream-Breeding Hyla and the Te-puian Clade

The monophyly of the Andean stream-breeding Hyla is congruent with suggestionspresented by Duellman et al. (1997) and Mi-jares-Urrutia (1997), who noticed similaritiesin larval morphology of the H. bogotensisand H. larinopygion groups. Duellman et al.(1997) presented a phylogenetic analysis re-stricted to wholly or partially Andean speciesgroups of Hyla. In their most parsimonioustree, the H. armata, H. bogotensis, and H.larinopygion groups formed a monophyleticgroup supported by three transformations intadpole morphology: the enlarged, ventrallyoriented oral disc; the complete marginal pa-pillae; and a labial tooth row formula 4/6 orhigher.

Duellman et al. (1997) suggested a closerelationship between the H. armata and H.larinopygion groups based on the presencein males of a greatly enlarged prepollex lack-ing a projecting spine. While our results arecongruent with this, note that males of the H.bogotensis group also have a prepollex withthe same external morphology as those of theH. armata and H. larinopygion groups. Ki-zirian et al. (2003) suggested that the H. ar-mata group was nested in the H. larinopy-gion group. Our results do not support thissuggestion. However, this could be a conse-quence of the few exemplars of the H. lari-nopygion group available for our study.

Kizirian et al. (2003) had doubts about theplacement of Hyla tapichalaca. Faivovich etal. (2004) showed that this species is relatedto the H. armata–H. larinopygion groups (al-though they only included H. armata in theiranalysis). Our results go a step further, indi-cating a closer relationship with the H. lari-nopygion group.

Hyla inparquesi and H. kanaima formingthe sister taxon of all the remaining SouthAmerican clade I is an unexpected result. Onthe basis of morphology, we expected ouronly exemplar of the H. aromatica group, H.inparquesi22, to be related to the Andeanstream-breeding clade of Hyla, because bothshare the character states that Duellman et al.(1997) suggested as synapomorphies in sup-port of the monophyly of the Andean stream-breeding Hyla: (1) known larvae with ven-tral, enlarged oral discs; (2) complete mar-ginal papillae; and (3) with a minimum labialtooth row formula of 4/6. Furthermore,adults of the H. aromatica group share agreatly enlarged prepollex without a project-ing spine in males that, as we mentionedabove, is present in most species of Andeanstream-breeding Hyla (the only known ex-ception being H. tapichalaca; Kizirian et al.,2003).

This sister-group relationship between theTepuian clade and all the remaining groupsof the South American clade I has furtherimplications. Based on the available material,Duellman et al. (1997) considered the pre-pollex greatly enlarged without a projectingspine to be an intermediate state in an or-dered transformation series from prepollexnot greatly enlarged to prepollex greatly en-larged with a projecting spine. Our topologyimplies that the greatly enlarged prepollexwithout a projecting spine is a synapomorphyof the whole South American clade I (withsubsequent transformations, including thedevelopment of a projecting spine). Howev-er, H. kanaima does not have an enlargedprepollex as prominent as that found in theH. armata, H. aromatica, H. bogotensis, andH. larinopygion groups. In order to clarifythis situation, it would be necessary to (1)define the prepollex character states osteo-logically, and (2) include a denser sampling

22 The tadpole of Hyla kanaima is unknown.

Page 58: systematic review of the frog family hylidae, with special reference to ...

58 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Page 59: systematic review of the frog family hylidae, with special reference to ...

2005 59FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 5. A partial view of the strict consensus showing the relationships of the Middle American–Holarctic and South American/West Indian Casqued-headed frog clades and it correspondence with thecurrently recognized species groups. Numbers above nodes are Bremer support values. Numbers belownodes are Parsimony Jackknife absolute frequencies; those with an asterisk (*) have a 100% frequency.Numbers in boldfaced italic are node numbers for the list of morphological synapomorphies (see ap-pendix 3). Black circles denote nodes that are present in the quick consensus estimation.

of the H. aromatica group, to better under-stand its relationship with H. kanaima. (Per-haps the character state of H. kanaima couldbe interpreted as a reversal.)

Our topology implies an interesting sce-nario regarding the evolution of larval mor-phology in the South American clade I; thatis, that larval morphology of the Atlantic/Cerrado, Green, and TGF clades evolvedfrom an ancestor with the highly modifiedmorphology typical of stream larvae (includ-ing large numbers of labial tooth rows, alarge oral disc with complete marginal pa-pillae, and relatively low fins) that duringevolution, underwent a transformation ofthese character states (specifically, reductionin labial tooth row formulae, a reduced oraldisc, and formation of an anterior gap in themarginal papillae). These transformationswere coincident with distributional shiftsfrom high-elevation mountain streams (as inthe Tepuian and Andean stream-breedingclades) toward lower elevation forest moun-tain streams (the cases of the Atlantic/Cer-rado clade, the Green clade, and, and sometaxa of the TGF clade), and Amazonian low-lands and the Cerrado-Chaco (several taxa ofthe TGF clade).

Gladiator Frogs

Duellman et al. (1997) suggested the ex-istence of a clade composed of the Hyla al-bomarginata, H. albopunctata, H. boans, H.circumdata, H. geographica, and H. pul-chella groups. The synapomorphy supportingthis clade is, according to these authors, thepresence of ‘‘an enlarged prepollical spinelacking a quadrangular base’’. Faivovich etal. (2004), based on the analysis of mito-chondrial DNA sequences and on the obser-vation (Garcia and Faivovich, personal obs.)that H. punctata and the H. polytaenia groupshow the same morphology of the prepollicalspine, argued that these additional groups

also belong to that clade (these authors fur-ther included the H. polytaenia group withinthe H. pulchella group), which was calledearlier in this paper ‘‘Gladiator Frogs’’. Ourresults indicate that a clade with the com-position suggested by Duellman et al. (1997)and Faivovich et al. (2004) is paraphyleticbecause Aplastodiscus is nested within it;furthermore, H. kanaima of the H. geogra-phica group is only distantly related to thisclade.

Atlantic/Cerrado Clade

Our results corroborate the long-suspectedassociation of the Hyla circumdata groupwith the groups of H. pseudopseudis and H.martinsi (Bokermann, 1964a; Cardoso, 1983;Caramaschi and Feio, 1990; Pombal andCaramaschi, 1995), even though the mono-phyly of these two groups could not be testedby our analysis. We also consider as corrob-orated the suspected relationship of the Hylacircumdata and H. pseudopseudis groupswith H. alvarengai (Bokermann, 1964a;Duellman et al., 1997), because Hyla sp. 9(aff. H. alvarengai) is nested in this clade.

Unfortunately, due to the unavailability ofsamples, we could not test the relationships ofthe Hyla claresignata group with this clade.Considering the phylogenetic context of theAtlantic/Cerrado clade within the SouthAmerican clade I, we must revisit the appar-ent synapomorphies of the H. claresignatagroup mentioned earlier (oral disc completelysurrounded by marginal papillae, and 7/12–8/13 labial tooth rows). The presence and dis-tribution of these character states in the Te-puian and Andean stream-breeding Hylaclades is suggestive, not of a closer relation-ship of the H. claresignata group with any ofthem (these character states are plesiomor-phies in this context), but of the nature of itsrelationship with the Atlantic/Cerrado clade.Perhaps the H. claresignata group is not a

Page 60: systematic review of the frog family hylidae, with special reference to ...

60 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

member of the Atlantic/Cerrado clade, but isa basal group related either to the Tepuian orAndean stream-breeding clade, or perhaps itis even the sister taxon of the clade composedof the Atlantic/Cerrado, Green, and TGFclades. At this point we are not aware of ev-idence favoring any of these alternatives.

Green Clade

Lutz (1950) was the first to suggest thatAplastodiscus was related to species latter in-cluded in the Hyla albosignata complex, asdefined by Cruz and Peixoto (‘‘1985’’[1987]). This was supported by Garcia et al.(2001a) based on the presence of enlargedinternal metacarpal and metatarsal tuberclesand unpigmented eggs. More recently, Had-dad et al. (2005) described the reproductivemode of Aplastodiscus perviridis, which in-cludes egg deposition in a subterranean nestexcavated by the male, where exotrophic lar-vae spend the early stages of developmentuntil flooding releases them to a nearby waterbody. This mode is the same as that observedin one species of the H. albosignata com-plex, H. leucopygia (Haddad and Sawaya,2000), and for the undescribed species of theH. albofrenata complex included in our anal-ysis, Hyla sp.1 (aff. H. ehrhardti) (Hartmannet al., 2004); this mode is further suspectedto occur in all species of both the H. albo-signata and H. albofrenata complexes (Had-dad and Sawaya, 2000, Hartmann et al.,2004). Species included in the H. albomar-ginata complex instead lay their eggs on thewater film surface (Duellman, 1970). Basedon the shared reproductive mode, Haddad etal. (2005) suggested that Aplastodiscus couldbe related to the H. albofrenata and H. al-bosignata complexes. Our results support themonophyly of both the H. albofrenata andH. albosignata complexes and their close re-lationship with Aplastodiscus, that is the sis-ter taxon of the H. albosignata complex.

While we are not aware of nonmolecularsynapomorphies for several nodes supportedby molecular evidence, the few osteologicaldata available for the South American cladeI indicate that the Green clade and the TGFclade share the presence of transverse pro-cesses of the sacral diapophyses notably ex-panded distally, while species of the Atlantic/

Cerrado clade (Bokermann, 1964a; Garcia2003) and H. tapichalaca (Kizirian et al.,2003), the only Andean stream-breedingHyla with any described postcranial osteol-ogy, have the transverse processes poorly ex-panded or not expanded at all. However, thedistribution of this character state is in con-flict with the presence of a prepollical spinein the Atlantic/Cerrado clade and the TGFclade, which is absent in the Green clade,where there is a fairly enlarged prepollex butno spine. A detailed study of prepollex mor-phology in these taxa would help to betterdefine the relevant transformation series andit transformation sequences in the tree.

True Gladiator Frog Clade

The results imply the nonmonophyly of sev-eral species groups within this clade, as de-scribed earlier. This situation is not unexpectedconsidering the paucity of evidence of mono-phyly previously available for most of them.

The monophyly of the group composed ofthe two unassigned species from the Gua-yana Highlands, Hyla benitezi, H. lemai,Hyla sp. 2, two members of the H. geogra-phica group (H. microderma and H. rorai-ma), and Hyla sp. 8 is further supported bythe presence of a mental gland in males (Fai-vovich et al., in prep.)

In the DNA-based phylogenetic analysisof the Hyla pulchella group performed byFaivovich et al. (2004), H. punctata is thesister species of H. granosa, with this overallclade forming the sister taxon of a cladecomposed of the H. albopunctata, H. geo-graphica, H. albomarginata, H. boans, andH. pulchella groups. In our analysis, H.punctata, our only exemplar of the group, isthe sister taxon of H. granosa, and this taxonis at the apex of a pectinated series that in-cludes H. sibleszi and, curiously, H. pictur-ata. Prior to the analysis, we had no idea asto with which species group H. picturatawould be related, but certainly we did notexpect this colorful frog to be nested withina group of green species.

Our results lend only partial support for arelationship between Hyla heilprini and theH. albomarginata group, as tentatively sug-gested by Duellman (1974) and Trueb andTyler (1974) based on overall pigmentation

Page 61: systematic review of the frog family hylidae, with special reference to ...

2005 61FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

and the white peritoneum, because H. heil-prini is the sister taxon of the H. albopunc-tata group (including a fragment of the H.geographica group), with H. heilprini plusthis unit being the sister taxon of a fragmentof the H. albomarginata group. The non-monophyly of the H. albopunctata groupcorroborates comments advanced by de Sa(1995, 1996) as to the lack of evidence forits monophyly.

Hyla crepitans, H. faber, H. lundii, and H.pardalis form, together with H. albomargin-ata, a monophyletic group only distantly re-lated to H. boans, the species that gives thename to the former group. Within this clade,the nest builders23 H. faber, H. lundii, and H.pardalis, are monophyletic.

The polyphyly of the Hyla boans grouphas implications for the evolution of repro-ductive modes, in that it implies independentorigins of nest-building behavior by males.Although theoretically possible, certainly noauthor had ever suggested that such a char-acteristic behavior as the nest building couldbe a homoplastic feature.24 However, the mo-lecular evidence points that way, and furtherevidence indicates that this or a similar re-productive mode also occurs in at least somespecies of the H. circumdata group (Pombaland Haddad, 1993, Pombal and Gordo,2004), implying then at least three indepen-dent occurrences within the South Americanclade I. In a wider context, nest building wasreported as well in Pelodryadinae in malesof Litoria jungguy (Richards, 1993; using thename L. lesueuri, see Donnellan and Mahony[2004]), thus implying a fourth instance ofhomoplasy within Hylidae.

Our topology for the Hyla pulchella groupis identical to that of Faivovich et al. (2004),including the exemplars of the former H. po-lytaenia group nested within it. Following

23 Caldwell (1992) referred to the facultative nature ofnest building in males of Hyla crepitans on specimensfrom Venezuela, far away from the range of H. crepitansin Brazil. Other authors (Lynch and Suarez-Mayorga,2001), expressed doubts regarding the taxonomic statusof northwestern South American H. crepitans, and un-published molecular data from Faivovich and Haddadindicate that more than one species is involved.

24 Our surprise with these results led us to sequencean additional sample of each Hyla boans and H. faberto check for the possibility of cross-contaminations; bothwere identical with the sequences we already had.

Faivovich et al. (2004), we continue to rec-ognize a H. polytaenia clade within the H.pulchella group. These authors stated that thelack of any pattern on the hidden surfaces ofthighs was one of two possible morphologicalsynapomorphies of this clade (with the otherbeing the mostly striped dorsal pattern). Thisobservation is mistaken, because the samecharacter state occurs in H. ericae (Caramas-chi and Cruz, 2000), H. joaquini, H. margin-ata, H. melanopleura, H. palaestes, and H.semiguttata (Duellman et al., 1997; Garcia etal., 2001b), suggesting that it actually may bea synapomorphy of a more inclusive cladewhose contents are still undefined.

SOUTH AMERICAN II CLADE

The South American II clade (fig. 4) iscomposed of the 30-chromosome Hyla, theHyla uruguaya group, Lysapsus, Pseudis,Scarthyla, Scinax, Sphaenorhynchus, and Xe-nohyla. It contains two main clades: onecomposed of Lysapsus, Pseudis, Scarthyla,and Scinax (including the H. uruguayagroup), and the other composed of Sphae-norhynchus, Xenohyla, and all the exemplarsof 30-chromosome Hyla species groups.

Within this clade, Scinax and the Hyla mi-crocephala group are not monophyletic. Sci-nax has H. uruguaya, an exemplar of the H.uruguaya group, nested within it. The H. mi-crocephala group is paraphyletic with re-spect to the available exemplars of the H.decipiens and H. rubicundula groups.

Relationships of Scinax

Several hypotheses have been advanced onthe relationships of Scinax. Aparasphenodonwas considered by Trueb (1970a) to be closelyrelated to Corythomantis and, in turn, she con-sidered these two genera to be nested withinthe (then) Hyla rubra group (currently the ge-nus Scinax), based on overall similarities incranial morphology. Scarthyla was consideredto be related to Scinax by Duellman and de Sa(1988). Duellman and Wiens (1992) extendedthis to suggest that Scarthyla is the sister taxonof Scinax, which together form the sister taxonof Sphaenorhynchus. According to Duellmanand Wiens (1992), character states supportingthe monophyly of these three genera are nar-row sacral diapophyses, anteriorly inclined ala-

Page 62: systematic review of the frog family hylidae, with special reference to ...

62 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

ry processes of the premaxillae, and tadpoleswith large, laterally placed eyes. Duellman andWiens (1992) suggested that possible morpho-logical synapomorphies of Scinax and Scarthy-la are reduced webbing on the hand and thepresence of an anterior process of the hyale.Tepuihyla was suggested to be closely relatedwith Scinax, this being supported by the ab-sence or extreme reduction of webbing be-tween toes I and II, adhesive discs wider thanlong, and the presence of double-tailed sperm(Ayarzaguena et al., ‘‘1992’’ [1993b]). This as-sociation was questioned by Duellman andYoshpa (1996) on the grounds that the absenceor extreme reduction of webbing between toesI and II was homoplastic among hylids (al-though Duellman and Wiens [1992] suggestedthis same character state to be a synapomorphyof Scinax). These authors suggested that theonly evidence uniting Tepuihyla with Scinaxcould be the double-tailed sperm reported byAyarzaguena et al. (‘‘1992’’ [1993b]) for Te-puihyla and by Fouquette and Delahoussaye(1977) for Scinax.25

Mijares-Urrutia et al. (1999) again suggesteda close relationship of Tepuihyla with Scinax,but also with Scarthyla and Sphaenorhynchus–Scinax relatives, as suggested by Duellman and

25 The interpretation of the double-tailed sperm as aputative synapomorphy is problematic for two practicalreasons: (1) Taboga and Dolder (1998), Kuramoto(1998), and Costa et al. (2004) suggested that previousreports of double-tailed spermatozoa in several Anurabased on optical microscopy are in error, because scan-ning electron microscopy and transmission electron mi-croscopy of ultrathin serial sections show that actuallythere is a single axoneme/paraxonemal rod and the axialfiber. This suggests that there could be a problem ofhomology between the structures present in Scinax andthose in Tepuihyla. (2) Even if we would assume thatthe problem is only about the correct interpretation oftwo different states in the optical microscopy (i.e.,whether the ‘‘double tail’’ is actually a double flagellumor an axoneme/paraxonemal rod and the axial fiber), wefind that the studied hylid taxa using optical microscopyare not numerous. Although Fouquette and Delahous-saye (1977) mentioned that they studied several hylines,an exhaustive list of those taxa was not given, and pub-lished records only include Acris (Delahoussaye, 1966),10 species of Hyla (Delahoussaye, 1966; Pyburn, 1993;Kuramoto, 1998; Taboga and Dolder, 1998; Costa et al.,2004), 1 species of Pseudacris (Delahoussaye, 1966),Pseudis and Lysapsus (Garda et. al., 2004), Scarthylagoinorum (Duellman and de Sa, 1988), several speciesof Scinax (Fouquette and Delahoussaye, 1977; Tabogaand Dolder, 1998; Costa et al., 2004), and Sphaenorhyn-chus lacteus (Fouquette and Delahoussaye, 1977).

Wiens (1992). Mijares-Urrutia et al. (1999)also noted that Tepuihyla has rounded sacraldiapophyses as found in these three genera(Duellman and Wiens, 1992).

Our results do not support a relationshipof Scinax with Aparasphenodon, Corythom-antis, or Tepuihyla because these three gen-era are nested within the South American/West Indies Casque-headed Frog clade. Fur-thermore, Scinax is not the sister group ofScarthyla but of a clade composed of Scar-thyla plus Lysapsus and Pseudis (in the 1:1:1 analysis) or of all the remaining genera in-cluded in the South American II clade (in the3:1:2 analysis).

Scinax is also paraphyletic with respect tothe Hyla uruguaya group, for which Boker-mann and Sazima (1973a) and Langone(1990) could not suggest affinities with anyother hylids. Most recently, Kolenc et al.(‘‘2003’’ [2004]) observed in the larvae ofH. uruguaya and H. pinima the morpholog-ical synapomorphies of the larvae of the Sci-nax ruber clade that were reported by Fai-vovich (2002), and they suggested a possiblerelationship between the H. uruguaya groupand the Scinax ruber clade. Adults of the H.uruguaya group are quite characteristic mor-phologically, and perhaps as a consequencethis group was never associated with anyspecies of Scinax prior to Kolenc et al.(‘‘2003’’ [2004]).

Our results reveal that none of the out-groups employed by Faivovich (2002) in thephylogenetic analysis of Scinax is particular-ly close to Scinax; instead, all other compo-nents of the South American II clade aremuch more suitable to establish character-state polarities in this genus. Consequently,exemplars of these closer neighbors of Sci-nax need to be added, and the synapomor-phies of Scinax resulting from that analysisneed to be reevaluated.

Lysapsus, Pseudis, and Scarthyla

The sister-group relationship betweenScarthyla goinorum and ‘‘pseudids’’ (Lysap-sus 1 Pseudis), and this group being nestedwithin Hylinae, corroborates recent findingsby Darst and Cannatella (2004) and Haas(2003). Burton (2004) reported a likely syn-apomorphy for the Scarthyla plus the ‘‘pseu-

Page 63: systematic review of the frog family hylidae, with special reference to ...

2005 63FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

did’’ clade that is corroborated in the presentanalysis; that is, the m. transversus metatar-sus II oblique, with a narrow, proximal con-nection to metatarsus II, and a broad, distalconnection to metatarsus III. Another char-acter state described by Burton (2004), theundivided tendon of the m. flexor digitorumbrevis superficialis, optimizes in this analysisas a synapomorphy of this clade plus Scinax.

Besides the molecular data, the monophy-ly of Lysapsus plus Pseudis is further sup-ported by the tendo superficialis pro digiti IIIarising from the m. flexor digitorum brevissuperficialis, with no contribution from theaponeurosis plantaris; the origin of m. flexorossis metatarsi IV and the joint tendon of or-igin of mm. flexores ossum metatarsorum IIand III crossing each other; the m. flexor os-sis metatarsi IV very short, inserting on theproximal two-thirds of metatarsal IV or less;absence of a tendon from the m. flexor dig-itorum brevis superficialis to the medial slipof the medial m. lumbricalis brevis digiti V;and m. transversus metatarsus III oblique,with a narrow, proximal connection ontometatarsal III, and a broad, distal connectionto metatarsal IV. Another likely morpholog-ical synapomorphy is the elongated interca-lary elements.

Vera Candioti (2004) noticed that Lysap-sus limellum and most of the 30-chromosomeHyla (H. nana and H. microcephala) studiedby her and Haas (2003) share two of the syn-apomorphies that Haas (2003) reported forPseudis paradoxa and P. minuta: insertion ofthe m. levator mandibulae lateralis in the na-sal sac, and a distinct gap in the m. subar-cualis rectus II–IV. Haas (2003) observeddifferent character states for H. ebraccata(the m. levator mandibulae lateralis inserts intissue close to posterodorsal process of su-prarostral cartilage or adrostral tissue; contin-uous m. subarcualis rectus II–IV), suggestingthe need for additional studies on its taxo-nomic distribution within the 30-chromo-some Hyla and in the other genera of theSouth American II clade.

Sphaenorhynchus, Xenohyla and the 30-Chromosome Hyla

Izecksohn (1959, 1996) suggested possiblerelationships of Xenohyla with Sphaenorhyn-

chus and Scinax (Izecksohn, 1996). Theseideas are partially corroborated by our 1:1:1results, with the exception that they also sug-gest that Xenohyla is the sister group of the30-chromosome Hyla. The karyotype is stillunknown in Xenohyla, and this poses an ob-stacle to our understanding of the limits ofthe 30-chromosome Hyla. Interestingly,while both Sphaenorhynchus and Xenohylado have a quadratojugal, in both cases it doesnot articulate with the maxilla (Duellman andWiens, 1992; Izecksohn, 1996), which couldbe seen as an intermediate step before theextreme reductions of the quadratojugal seenin the 30-chromosome Hyla (Duellman andTrueb, 1983). Tadpoles of Xenohyla and sev-eral species of 30-chromosome Hyla sharethe presence of the tail tip extended into aflagellum, as well as the presence of highcaudal fins (e.g., see Bokermann, 1963; Ken-ny, 1969; Gomes and Peixoto, 1991a, 1991b;Izecksohn, 1996; Peixoto and Gomes, 1999).

Phylogenetic hypotheses of the 30-chro-mosome Hyla species groups using morpho-logical characters were presented by Duell-man and Trueb (1983), Duellman et al.(1997), Kaplan (1991, 1994), and Kaplanand Ruız (1997); none of these tested themonophyly of the contained species groups.A summary of their proposals and the sup-porting evidence are depicted in figure 6.

Chek et al. (2001) presented a phyloge-netic analysis using partial 16S and cyto-chrome b sequences of the Hyla leucophyl-lata group, including exemplars of other 30-chromosome Hyla species groups. Becausethey did not include non-30-chromosome hy-lids, they did not test the monophyly of thisclade.

The distribution of certain characters inseveral species associated with the currentlyrecognized species groups suggests problemsin our phylogenetic understanding of thesefrogs. The monophyly of a group composedof the Hyla leucophyllata, H. marmorata, H.microcephala, and H. parviceps groups iscurrently supported by the absence of labialtooth rows in their larvae (Duellman andTrueb, 1983). However, within the H. parv-iceps group, H. microps (Santos et al., 1998)and H. giesleri (Bokermann, 1963; Santos etal., 1998) have at least one labial tooth row.Similarly, Gomes and Peixoto (1991a) and

Page 64: systematic review of the frog family hylidae, with special reference to ...

64 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 6. Current state of phylogenetic knowledge of the 30-chromosome Hyla. Redrawn from Duell-man (2001: 857) with the addition of Kaplan’s (2000) suggestion regarding the relationships of Hylapraestans with the H. garagoensis group. Numbered synapomorphies, as textually described by theseauthors, are: 1, 30 chromosomes; 2, reduced quadratojugal; 3, 1/2 labial tooth rows; 4, nuptial excres-cences absent; 5, tadpole tail xiphicercal; 6, tadpole mouth terminal; 7, 0/1 labial tooth rows; 8, 0/0labial tooth rows; 9, one ventral row of small labial papillae in tadpoles; 10, extensive axillary mem-brane; 11, longitudinal stripes on hindlimbs of tadpoles; 12, one ventral row of large labial papillae intadpoles; 13, tadpole body violin-shaped in dorsal view; 14, body of tadpole depressed; 15, labialpapillae absent in tadpoles; 16, internal surface of the arytenoids with a small medial depression.

Peixoto and Gomes (1999) noticed in the H.marmorata group the presence of one labialtooth row in the larvae of H. nahdereri, H.senicula, and H. soaresi. Based on thesefacts and similarities in tail depth, tail color,general body shape, and predatory habits,they suggested that the H. marmorata groupcould instead be more closely related to H.minuta than to the groups suggested byDuellman and Trueb (1983). Gomes andPeixoto (1991b) pointed out the presence ofa labial tooth row in the larva of H. elegans.Wild (1992) further noted the absence ofmarginal papillae (an apparent synapomor-phy of the H. microcephala group) in the lar-va of H. allenorum (a species of the H. parv-iceps group).

The reproductive modes of the differentspecies are also informative. According toDuellman and Crump (1974), Hyla parvicepsdeposits its eggs directly in the water, as doesH. microps (Bokermann, 1963), whereas H.bokermanni and H. brevifrons oviposit onleaves overhanging ponds; upon hatching,

the tadpoles drop into the water where theycomplete development. Hyla ruschii ovipos-its on leaves overhanging streams (Weygoldtand Peixoto, 1987). The oviposition onleaves occurs in most species of the H. leu-cophyllata group, whereas both reproductivemodes occur in the H. microcephala group.

Our results recover the 30-chromosomeHyla species as monophyletic; however, ourtopology differs from previous hypotheses.In our topology, the root is placed betweenthe H. marmorata group and the other ex-emplars, instead of between the H. labialisgroup and the other exemplars, as was as-sumed in previous analyses (Duellman andTrueb, 1983; Kaplan, 1991, 1994, 1999;Chek et al., 2001).

Topological differences from previous hy-potheses are not due merely to a re-rootingof the previously accepted tree; the relation-ships obtained by our analysis are quite dif-ferent from previous proposals. Our analysisdoes not recover as monophyletic the ex-emplars of the three species groups once

Page 65: systematic review of the frog family hylidae, with special reference to ...

2005 65FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

thought to be monophyletic on the basis oflacking labial tooth rows, that is, the Hylaleucophyllata, H. microcephala, and H.parviceps groups. Instead, the H. microce-phala group (including the taxa imbeddedwithin it) is the sister taxon of a clade com-posed of H. anceps and the exemplars of theH. leucophyllata group. The exemplars of theH. parviceps group are the sister taxon of aclade composed of the exemplars of the H.columbiana and H. labialis groups. Thisshows that the scenario of labial tooth rowevolution is more complex than previouslythought, because it implies several transfor-mations in both directions between presenceand absence of labial teeth within the clade.

Observations by Wassersug (1980), Spi-randeli Cruz (1991), and Kaplan and Ruiz-Carranza (1997) on the internal oral featuresof larvae of representatives of the Hyla leu-cophyllata (H. ebraccata and H. sarayacuen-sis), H. microcephala (H. microcephala, H.nana, H. phlebodes, and H. sanborni), andH. garagoensis (H. padreluna and H. viro-linensis) groups revealed a reduction of in-ternal oral structures (including reduction ofmost internal papillation, reduction of bran-chial baskets, reduction or absence of secre-tory ridges and secretory pits) that is mostextreme in the representatives of the H. mi-crocephala group. Hyla minuta does notshow the reductions seen in these speciesgroups (Spirandeli Cruz, 1991). This speciesalso shares with representatives of the H. leu-cophyllata group described by Wassersug(1980) a reduction in the density of the filtermesh of the branchial baskets in comparisonwith other hylid tadpoles. It is clear that thestudy of internal oral features will provideseveral additional characters relevant for thestudy of the 30-chromosome species of Hyla.

The exemplars of the Hyla parvicepsgroup obtain as monophyletic. However, weincluded only 3 of the 15 species currentlyincluded in this problematic group. We arenot confident that the monophyly of the H.parviceps group will be maintained as moretaxa are added. Regarding the exemplars ofthe H. leucophyllata group, their relation-ships are equivalent to those obtained byChek et al. (2001).

The sister-group relationship of Hyla an-ceps and the H. leucophyllata group corrob-

orates early suggestions by Lutz (1948,1973) that these could be related on the basisof sharing a large axilar membrane and flashcoloration.

While we could not test the monophyly ofthe Hyla minima and H. minuta groups, ourexemplars of these groups are sister taxa, andthey are only distantly related with the ex-emplars of the H. parviceps group. This po-sition does not support Duellman’s (2001)tentative suggestion that the species of the H.minima group should be included in the H.parviceps group.

The paraphyly of the Hyla microcephalagroup with respect to the H. rubicundulagroup is an expected result, as historically itsspecies were associated with H. nana and H.sanborni (Lutz, 1973). Nevertheless, the as-sociation of the H. microcephala and H. rub-icundula groups were reinforced by Puglieseet al. (2001), who described the larva of H.rubicundula and noted similarities (like thelack of marginal papillae) with the larvae ofmembers of the H. microcephala group. Inparticular, these authors noticed similaritieswith H. nana and H. sanborni, with the latterbeing the sister taxon of H. rubicundula inour analysis.

Carvalho e Silva et al. (2003) segregatedthe Hyla decipiens group from the H. micro-cephala group on the basis that the larvae ofthese species lack the possible morphologicalsynapomorphies currently diagnostic of theH. microcephala group (body of tadpole de-pressed, labial papillae absent in tadpoles)and the putative clade composed of the H.leucophyllata, H. microcephala, and H.parviceps groups (absence of labial toothrows). However, as mentioned above, our re-sults imply a complex scenario for labialtooth row transformations and place the H.decipiens group within the H. microcephalagroup. The available taxon sampling did notallow testing the monophyly of the H. deci-piens group. The fact that its known speciesshare the oviposition on leaves above the wa-ter, and the reversals in larval morphologythat led Carvalho e Silva et al. (2003) to con-sider them unrelated to the H. microcephalagroup, probably indicates that, even if nestedinside this group, the species assigned to theH. decipiens group could be a monophyleticunit.

Page 66: systematic review of the frog family hylidae, with special reference to ...

66 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

The relationships of the Hyla garagoensisgroup, from which no exemplar was avail-able for this study, were discussed by Kaplanand Ruiz-Carranza (1997). Based on the ab-sence of labial tooth rows, they placed the H.garagoensis group in a polytomy togetherwith the H. marmorata group and the cladecomposed of the H. microcephala, H. parv-iceps, and H. leucophyllata groups. Duell-man et al. (1997) presented a cladogram formost of the 30-chromosome Hyla groups,where the H. garagoensis and H. marmoratagroups appear together as a clade supportedby the presence of one ventral row of smallmarginal papillae in larvae. This characterstate needs further assessment, as indicatedby Gomes and Peixoto (1991a) and Peixotoand Gomes (1999), because tadpoles of theH. marmorata group have either one (H.nahdereri) or two rows of marginal papillae(H. senicula; H. soaresi); the tadpoles of H.padreluna, a species of the H. garagoensisgroup, also has a double row (Kaplan andRuiz-Carranza, 1997). Considering this andearlier comments, we do not see evidencethat associates the H. garagoensis group withthe H. marmorata group more than with anyother group within the 30-chromosome Hylaclade.

MIDDLE AMERICAN/HOLARCTIC CLADE

This clade is composed of most of theMiddle American/Holarctic genera and spe-cies groups of treefrogs (fig. 5). For the pur-poses of discussion, we divide it into fourlarge clades. The first of these includes Acrisand Pseudacris. The second includes Plec-trohyla, the Hyla bistincta group, the H. sum-ichrasti group, and various elements of theH. miotympanum group. The third clade in-cludes Duellmanohyla, Ptychohyla, H. mili-aria, H. bromeliacia (the sole exemplar ofthe H. bromeliacia group), and one elementof the H. miotympanum group. The fourthclade includes Smilisca, Triprion, Anotheca,and the exemplars of the H. arborea, H. ci-nerea, H. eximia, H. godmani, H. mixoma-culata, H. pictipes, H. pseudopuma, H. tae-niopus, and H. versicolor groups.

Within the Middle American/Holarcticclade, the genera Ptychohyla and Smilisca, aswell as the Hyla arborea, H. cinerea, H. ex-

imia, H. miotympanum, H. tuberculosa, andH. versicolor groups, are not monophyletic.The H. miotympanum group is polyphyletic;its exemplars split among three differentclades: H. miotympanum is the sister taxonof one of the exemplars of the H. tuberculosagroup, H. miliaria; H. arborescandens andH. cyclada are related to an undescribed spe-cies close to H. thorectes, and together arerelated to exemplars of the H. bistinctagroup; H. melanomma and H. perkinsi are atthe base of the H. sumichrasti group. Smilis-ca is not monophyletic, having Pternohylafodiens nested within it. Ptychohyla is para-phyletic with respect to H. dendrophasma(H. tuberculosa group). The H. arboreagroup is polyphyletic, with H. japonica nest-ed within the H. eximia group. The H. ci-nerea group is not monophyletic, with H. fe-moralis being more closely related to mem-bers of the H. eximia and H. versicolorgroups than to H. cinerea, H. gratiosa, andH. squirella. The H. versicolor group is notmonophyletic because H. andersonii is moreclosely related to the H. eximia group.

The monophyly of all genera and speciesgroups of Hyla contained in this clade wasmaintained by Duellman (1970, 2001) basedmostly on biogeographic grounds, becausemorphological evidence of monophyly waslacking. Duellman (2001) further presented adiagram depicting ‘‘suggested possible evo-lutionary relationships’’ among Middle andNorth American Hylinae, using as terminalsthe species groups of Hyla and the differentgenera (redrawn here as fig. 7). Duellman(2001) envisioned a North American basallineage being the sister taxon of what hecalled the Middle American basal lineage.This Middle American basal lineage is fur-ther divided into a lower Central Americanlineage (itself divided into an isthmian high-land lineage and a lowland lineage) and theMexican-Nuclear Central American lineage(in turn divided into a Mexican-Nuclear Cen-tral American highland lineage and a low-lands lineage).

While the basal position of Acris andPseudacris in this clade is consistent withDuellman’s (2001) intuitive suggestion of aNorth American basal lineage, it differs inthat the Holarctic species groups of Hyla areonly distantly related to them.

Page 67: systematic review of the frog family hylidae, with special reference to ...

2005 67FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 7. Relationships of Middle American and North American Hylinae as envisioned by Duellman(2001). Broken lines are tentative placements.

We found no evidence supporting Duell-man’s (2001) exclusively Mexican-NuclearCentral American lineage, nor of his Mexi-can-Nuclear Central American highland lin-eage. The latter has nested within it the Mex-ican-Nuclear Central American lowlandclade (the H. godmani group), a clade remi-niscent of Duellman’s (2001) isthmian high-land-lowlands lineage, and also all speciesgroups of Holarctic Hyla. Biogeographic im-plications of the discordant nature of our re-sults with Duellman’s suggested relationshipsbetween Middle- and North American Hyli-nae will be dealt with from a biogeographicperspective later in this paper.

The nonmonophyly of North American

Hylinae does not agree with previous anal-yses (Hedges, 1986; Cocroft, 1994; da Silva,1997; Moriarty and Cannatella, 2004) be-cause those analyses assumed implicitly thatAcris, the Holarctic Hyla, and Pseudacris aremonophyletic. In spite of this, the internalrelationships of Pseudacris recovered in thisanalysis are consistent to those obtained byMoriarty and Cannatella (2004).

Previous analyses either did not find evi-dence that Acris was particularly close to anygroup of North American hylids (Cocroft,1994), or else suggested relationships withdifferent species groups of North AmericanHyla (Hedges, 1986; da Silva, 1997). Twomorphological synapomorphies of this Acris

Page 68: systematic review of the frog family hylidae, with special reference to ...

68 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

1 Pseudacris clade could be the spherical orovoid testes (as opposed to elongate testes)and the presence of dark pigmentation in theperitoneum surrounding the testes (Ralin,1970, as cited by Hedges, 1986).

The nonmonophyly of the Hyla miotym-panum group is not surprising because, asdiscussed in the section on taxon sampling,it did not appear that any of its putative syn-apomorphies could withstand a test with abroader taxon sampling. Duellman (2001)merged the formerly recognized H. pinorumgroup (Duellman, 1970) with the H. miotym-panum group. With the notable exception ofH. miotympanum, our results are close to re-covering both groups as originally envi-sioned by Duellman (1970), because H. cy-clada and H. arborescandens (H. miotym-panum group) are recovered as monophylet-ic, and the former H. pinorum group isrecovered as a paraphyletic assemblage thatincludes the H. sumichrasti group nestedwithin it. In his analysis (Duellman, 2001:912), the two species included by Duellman(1970) in the H. pinorum group (H. melan-omma and H. pinorum), plus the two speciesthat were later associated with this group (H.perkinsi and H. juanitae), form a monophy-letic group supported by a single synapo-morphy, the presence of an extensive (equalto or more than one-half length of upper arm)axillary membrane.

The dubious monophyly of the 17 speciesassigned to the Hyla bistincta group was notseriously tested in our analysis, because only2 species were available. These two exem-plars form the sister group of two taxa pre-viously associated with the H. miotympanumgroup, and together they form the sister tax-on of Plectrohyla. According to Duellmanand Campbell (1992), character states sup-porting a monophyletic H. bistincta groupplus Plectrohyla are: medial ramus of pter-ygoid long, in contact with otic capsule; dor-sal skin thick (but see Mendelson and Toal[1995] and Duellman [2001] for discussionsof this character); complete marginal papillaeof the oral disc; and presence of at least onerow of submarginal papillae (called by theseauthors accessory labial papillae) on the pos-terior labium (but see Wilson et al. [1994a]for discussion of this character state). Fromthese, the complete marginal papillae of the

oral disc occur in all known larvae of theclade containing Plectrohyla, and the H. bis-tincta, H. sumichrasti, and fragments of theH. miotympanum group, as well as in larvaeof several other nearby clades (Ptychohyla,Duellmanohyla, the H. mixomaculata, and H.taeniopus groups; see Duellman 1970, 2001).Furthermore, the row of submarginal papillaein the larval oral disc presents a fair amountof variation in the extent and distribution ofthe papillae, within which could probably besubsumed the morphology seen in all knownlarvae of the clade mentioned above (see il-lustrations of all these oral discs in Duell-man, 1970, 2001). Besides discussions pro-vided by Mendelson and Toal (1995) andDuellman (2001) regarding the definition ofthe character state ‘‘thick skin’’, it does notoccur in the following species currently as-signed to the H. bistincta group: H. calvi-collina, H. charadricola, H. chryses, H. la-bedactyla, and H. sabrina (Duellman, 2001).Considering that 15 of 17 species currentlyincluded in the H. bistincta group and 15 of18 included in Plectrohyla could not be in-cluded in the analysis, we do not considerour results a strong test of their intrarelation-ships, particularly when several species ofthe H. bistincta group that present suspiciouscharacter state combinations, like the onesmentioned above, were not available. Our re-sults relating H. arborescandens with speciesof the H. bistincta group corroborate earliersuggestions by Caldwell (1974) that relatethis species to species currently placed in theH. bistincta group (H. mykter, H. robertso-rum, and H. siopela.). Mendelson and Toal(1996) also suggested affinities of H. arbo-rescandens and H. hazalae with the H. bis-tincta group on the basis of unpublished os-teological data.

Duellman (2001) noted the lack of evi-dence for the monophyly of the Hyla tuber-culosa group. Although poor, our taxon sam-pling does not recover it as monophyletic,because H. dendrophasma is nested withinPtychohyla, and H. miliaria is the sister tax-on of H. miotympanum. Duellman (2001)also referred to the possibility advanced byda Silva (1997) of a relationship of the H.tuberculosa group with the Gladiator Frogs;at this point the evidence presented hereindoes not support this idea, but in case a dens-

Page 69: systematic review of the frog family hylidae, with special reference to ...

2005 69FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

er sampling of the group still corroborates itspolyphyly, we would not be surprised ifsome of its elements (particularly H. tuber-culosa26) are shown to be related with theTGF clade.

Hyla miotympanum has repeatedly beenconsidered a generalized Middle Americanhyline (Duellman, 1963, 1970; Campbell andSmith, 1992; Duellman, 2001), largely be-cause the larva of H. miotympanum exhibitsa labial tooth row formula of 2/3 and a rel-atively small oral disc with an anterior gapin the marginal papillae. We are not aware ofany morphological synapomorphy support-ing its relationship with H. miliaria, althoughour molecular data firmly place it there. Ac-cording with our results, there is a morpho-logical synapomorphy supporting the mono-phyly of the clade composed of these twospecies plus Duellmanohyla, the H. brome-liacia group, and Ptychohyla (including H.dendrophasma): the tendo superficialis hal-lucis that tapers from an expanded corner ofthe aponeurosis plantaris, with fibers of them. transversus plantae distalis originating ondistal tarsal 2–3 that insert on the lateral sideof the tendon.

Considering its overall external appear-ance, we are surprised by the position of thepoorly known Hyla dendrophasma. This spe-cies was originally considered to be a mem-ber of the H. tuberculosa group (Campbellet al., 2000) based on its large snout–ventlength and extensive hand webbing, althoughwith the caveat that it lacks dermal fringes,the only character state shared by all otherspecies placed in the H. tuberculosa group.DNA was isolated and sequenced twice fromtissues of the female holotype, the onlyknown specimen (Campbell et al., 2000). In-asmuch as most previous notions of relation-ships among species of Ptychohyla derivefrom adult male morphology and tadpoles,the discovery of at least one male specimenof H. dendrophasma could hopefully allow

26 The other South American species of the Hyla tu-berculosa group, H. phantasmagoria, is known onlyfrom the holotype. It was considered a junior synonymof H. miliaria by Duellman (1970), who later resurrectedit (Duellman, 2001). Besides a few comments by thisauthor, no morphological comparisons with other speciesof the group are available.

us to better understand its relationships with-in Ptychohyla.

Campbell and Smith (1992) and Duellman(2001) suggested five morphological syna-pomorphies for Ptychohyla. One of these isapparently unique to Ptychohyla (pars pala-tina of the premaxilla with well-developedlingual flange), while the other four show amore extensive taxonomic distribution. (1)The cluster of ventrolateral mucous glands inbreeding males is present in Duellmanohylachamulae, D. ignicolor, and D. schmidtorum(Campbell and Smith, 1992; see also Thomaset al., 1993). (2) The presence in the ventro-lateral edge of forearm of tubercles coalescedinto a ridge (as opposed to the absence oftubercles) was reported for D. lythrodes, D.salvavida, D. schmidtorum, and D. soralia(Duellman, 1970; 2001); H. bromeliacia hasan indistinct row of tubercles that do not co-alesce into a ridge (absent in H. dendroscar-ta) (Duellman, 1970). (3) The double row ofmarginal papillae is present as well in larvaeof the H. bromeliacia group (Duellman,1970). Finally, (4) larvae of the H. bromelia-cia group have a labial tooth row formula of2/4 or 2/5, and all known larvae of Duell-manohyla have a labial tooth row formula of3/3; the minimum known for a species ofPtychohyla is 3/5 (P. legleri and P. salva-dorensis) (Duellman, 1970, 2001; Campbelland Smith, 1992).

The monophyly of the group composed ofPtychohyla euthysanota, P. hypomykter, P.leonhardschultzei, and P. zophodes is con-gruent with the results of Duellman (2001),who supported the monophyly of these taxabased on the presence of a thick, roundedtarsal fold. These species further share thepresence of hypertrophied ventrolateralglands in breeding males with two specieswe could not include in our analysis: P. ma-crotympanum and P. panchoi. Furthermore,all these species also share with P. spinipol-lex the presence of the nuptial excrescencescomposed of enlarged individual spines. Thestates of these characters are unknown inPtychohyla sp. and Hyla dendrophasma be-cause the only available specimens are fe-males. The nonmonophyly of P. hypomykterplus P. spinipollex is most surprising, con-sidering that both were considered to be a

Page 70: systematic review of the frog family hylidae, with special reference to ...

70 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

single species (Wilson and McCranie, 1989;see also McCranie and Wilson, 1993).

Although we included several species ofPtychohyla in our analysis, we do not thinkthat we have apprehended a good represen-tation of the morphological diversity of thegroup, and the absence of species like P. er-ythromma, P. legleri, and P. sanctaecruciscertainly weakens the test of monophyly ofPtychohyla. This is more so considering thefact that several of the putative morphologi-cal synapomorphies of Ptychohyla are actu-ally shared with some species of its sistertaxon, as discussed earlier, and that themonophyly of our exemplars of Ptychohylais weakly supported. The low Bremer sup-port (3) for Ptychohyla also suggests that theevidence for its monophyly deserves furtherattention.

The Hyla bromeliacia group was tenta-tively associated with the polyphyletic H.miotympanum group by Duellman (2001:779). Other than this, we are not aware of itbeing associated with any other group. Be-sides the molecular evidence, we are awareof at least one likely morphological synapo-morphy supporting the monophyly of Duell-manohyla plus the Hyla bromeliacia group:the presence of pointed serrations of the lar-val jaw sheaths (Campbell and Smith, 1992;Duellman, 1970; 2001). These are apparentlylonger in some species of Duellmanohylathan in the H. bromeliacia group, but bothseem to be notably more pointed than in Pty-chohyla (see descriptions and illustrations inDuellman, 1970).

We share with Duellman (2001) and Men-delson and Campbell (1999) doubts regard-ing the monophyly of the Hyla taeniopusgroup. Nevertheless, our two exemplars arerecovered as monophyletic in the analysis.Duellman (2001) examined the possibility ofa relationship between this group and the H.bistincta group, based on the fact that bothhave large stream-adapted tadpoles withsmall, ventral oral discs with complete mar-ginal papillae and bear a labial tooth row for-mula of 2/3 (but noting that the tooth-rowformula is slightly higher for H. nephila andH. trux). Our results suggest instead that theH. taeniopus group is the sister taxon of aclade composed of H. mixe (the only avail-able exemplar of the H. mixomaculata group)

plus the clade composed of the HolarcticHyla groups, the H. godmani, H. pictipes,and H. pseudopuma groups, and Anotheca,Smilisca (including Pternohyla), and Tri-prion. Furthermore, in the context of our re-sults, the ventral oral disc with completemarginal papillae seems to be a synapomor-phy of the whole Middle American clade,with subsequent transformations in the cladejust mentioned and in other points of the tree.

We were unable to test the monophyly ofthe Hyla mixomaculata group, because H.mixe was the only taxon available. Regard-less, and until a rigorous test is possible, themonophyly of this group could be reasonablyassumed based on the presence of the en-larged oral disc with 7/10 or 11 labial toothrows. At this point it should be stressed thatthe sequenced sample comes from a tadpolethat was assigned to the H. mixomaculatagroup based that on that characteristic, andthat it was tentatively assigned to H. mixe forbeing the only species of the group knownfrom the region where the larva was collect-ed; thus, considering the uncertainty in itsdetermination, its position in the tree shouldbe viewed cautiously.

Duellman (2001) included the species ofthe former Hyla picta group in the H. god-mani group. Unfortunately, the two exem-plars available to us for this analysis are onlythe two members of the former H. pictagroup and none of the restricted H. godmanigroup; therefore, this is not a satisfactory testof the monophyly of the H. godmani group(sensu lato).

The Lower Central American Lineage

The monophyly of the included exemplarsof the Hyla pictipes and H. pseudopumagroups, and its relationship with a clade com-posed of Anotheca, Smilisca, Triprion, andPternohyla, is quite consistent (in the sensethat it contains almost the same groups) withDuellman’s intuitive proposal of a lowerCentral American clade that contains an Isth-mian Highland lineage and a Lowland line-age (fig. 7), with the only exception beingthat he tentatively considered the H. miliariagroup related to Anotheca.

The monophyly of a group composed ofHyla pseudopuma and H. rivularis, the only

Page 71: systematic review of the frog family hylidae, with special reference to ...

2005 71FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

two exemplars available from the H. pseu-dopuma and H. pictipes groups, could besuggestive of a lineage of highland isthmianHylinae as suggested by Duellman (2001).Although the monophyly of each of thesetwo groups has not been tested here, the po-sition of the undescribed Mexican speciesHyla sp. 5 (aff. H. thorectes) deserves somecomments.

Duellman (1970) recognized the Hyla ha-zelae group in which he included the nomi-nal species and H. thorectes. Reasons for rec-ognizing this group were ‘‘the combinationof large hands with vestigial webbing, halfwebbed feet . . . and presence of a tympa-num are external features which separatethese species from other small stream-breed-ing Mexican Hyla. Furthermore both specieshave small, relatively narrow tongues andlarge tubercles below the anal opening. Thenature of the nasals and sphenethmoid areunique among northern Middle Americanhylids’’ (Duellman, 1970: 384). It is unclearif any of these character states could havebeen considered as evidence of monophylyof the group. It is also unclear on what basisDuellman (2001) dismantled the group andplaced H. hazelae in the H. miotympanumgroup, while H. thorectes was transferred tothe H. pictipes group. Wilson et al. (1994b)suggested that H. thorectes could be relatedto H. insolita and H. calypsa (under the nameH. lancasteri; see Lips, 1996) because theyshare oviposition on leaves overhangingstreams and have dark ventral pigmentation;these character states were not included inDuellman’s (2001) analysis of the group. Al-though we do not have data to take a positionregarding these actions, the fact that Hyla sp.5 (aff. H. thorectes) is unrelated to H. rivu-laris is here taken as evidence that H. tho-rectes should not be included in the H. pic-tipes group. Furthermore, all character statesadvanced by Duellman (2001) as shared byH. thorectes and the species of the H. picti-pes group are also shared by H. thorectes andthe taxa to which Hyla sp. 5 (aff. H. thorec-tes) appears to be closely related in our anal-ysis. Because we were unable to include H.calypsa, H. insolita, or H. lancasteri, we donot have elements to test the hypothesis ofWilson et al. (1994b) regarding the close re-

lationship of H. calypsa, H. insolita, and H.thorectes.

In order to better understand the relation-ships of the Hyla pictipes group, it would beimportant to add to this analysis exemplarsof the former H. zeteki and H. lancasterigroups, because together with the original H.pictipes and H. rivularis groups (as definedby Duellman, 1970) they represent the threemain morphological extremes of the group.The fact that so few exemplars of these twogroups were available is one of the weakerpoints of our analysis.

The paraphyly of Smilisca is partly con-sistent with Duellman’s (2001) phylogeneticanalysis of this genus in that Pternohyla isnested within it. However, we did not recoverTriprion nested within Smilisca, as didDuellman (2001).

A possible relationship between Triprionand Anotheca was first advanced by Lutz(1968) because she considered them to be theextreme of one specialization consisting ‘‘inexcessive ossification of the head, accompa-nied at some stages by extra dentition’’(Lutz, 1968: 10). Within this same line, sheincluded all casque-headed frogs, includingtogether South American and Middle Amer-ican forms. Duellman and Trueb (1976) sug-gested a possible link of Anotheca with Nyc-timantis (discussed below). Duellman (2001:332) proposed a tentative relation of Anoth-eca with the Hyla miliaria group based onthe oophagous tadpoles that develop in bro-meliads or tree-holes (known for the onlyspecies of the H. tuberculosa group with aknown tadpole, H. salvaje; see Wilson et al.,1985). While our results support a sister-group relationship of Anotheca and Triprionas suggested by Lutz (1968), it occurs withinthe Holarctic/Middle American clade and notwithin a group composed of all casque-head-ed frogs as she suggested. In the context ofthis analysis, both Triprion and Anothecashare the posterior expansion of the fronto-parietals that cover almost all the otoccipitaldorsally (see figures in Duellman, 1970).

Our analysis indicates that the insertion ofm. extensor digitorum comunis longus onmetatarsal II is a synapomorphy of a groupcomposed of Anotheca, Triprion, and theparaphyletic Smilisca. Furthermore, Smilisca(including Pternohyla) and Triprion share

Page 72: systematic review of the frog family hylidae, with special reference to ...

72 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

the type I septomaxillary (see Trueb, 1970a)and bifurcated cavum principale of the olfac-tory capsule (Trueb, 1970a); the distributionof these character states should be studied inAnotheca and nearby groups to determine thelevel of inclusiveness of these possible syn-apomorphies.

Real Hyla

Our results concerning the relationshipsbetween the North American and Eurasiaticspecies groups of Hyla differ from previousanalyses, in part likely because of the pre-vious assumption of monophyly of NorthAmerican/Holarctic Hylinae. In the firstplace, the molecular evidence supports aclade containing all North American and Eu-rasiatic species groups of Hyla, a result thatdiffers from previous analyses where rela-tionships either were unresolved (Cocroft,1994) or were paraphyletic with respect toAcris and/or Pseudacris (Hedges, 1986; daSilva, 1997). The polyphyly of the Hyla ar-borea group and the paraphyly of the H. ex-imia group corroborate previous ideas byAnderson (1991) and Borkin (1999) regard-ing their nonmonophyly and the closer rela-tionship of H. japonica with the H. eximiaand H. versicolor groups. A likely synapo-morphy of the H. eximia and H. versicolorgroups, including H. japonica and H. ander-sonii, is the nucleolar organizer region(NOR) present in chromosome 6 instead ofchromosome 10 (Anderson, 1991).

SOUTH AMERICAN/WEST INDIAN CASQUE-HEADED FROGS

This clade (fig. 5) is composed of Phyl-lodytes, Phrynohyas, Nyctimantis, and allSouth American/West Indian casque-headedfrogs: Argenteohyla, Aparasphenodon, Cor-ythomantis, Osteopilus, Osteocephalus, Tra-chycephalus, and Tepuihyla. It is divided ba-sally in a group composed of the two ex-emplars of Phyllodytes, and another groupcomposed of all casque-headed frog genera,including Phrynohyas and Nyctimantis.

Within this clade, other than those generathat are not monotypic (Argenteohyla, Nyc-timantis, Corythomantis) or represented inthis analysis by a single species (Aparas-phenodon, Tepuihyla), Phyllodytes and Os-

teopilus are monophyletic, and Osteocephal-us, Phrynohyas, and Trachycephalus are notmonophyletic. Osteocephalus is not mono-phyletic because O. langsdorffii (the onlyspecies of the genus distributed in the Atlan-tic forest) is not related to the remaining ex-emplars of Osteocephalus, which form amonophyletic group that is the sister taxonof Tepuihyla. Phrynohyas is not monophy-letic, having Trachycephalus nigromaculatusnested within it, and Trachycephalus is notmonophyletic, with T. jordani forming thesister taxon of ‘‘Phrynohyas’’ 1 T. nigro-maculatus.

With respect to Phyllodytes, we were un-able to find any published hypothesis regard-ing its relationships, and considering thescant information available on its morphol-ogy, we had no previous clue as to othergroups of Hylidae with which it might berelated. The only morphological characterstate of which we are aware that Phyllodytesshares with several members of the SouthAmerican/West Indian Casque-headed Frogsclade is the presence of at least four posteriorlabial tooth rows in the tadpole oral disc (seebelow, ‘‘Taxonomic Conclusions: A NewTaxonomy of Hylinae and Phyllomedusi-nae’’, for further details).

The polyphyly of Osteocephalus was notunexpected considering the lack of any evi-dence of its monophyly. This polyphyly re-sults because of the position of O. langs-dorffii. This is the only species of the genuspresent in the Atlantic forest and a speciesthat had been particularly poorly discussed inthe context of the systematics of Osteoce-phalus (Duellman, 1974). While we do nottest the monophyly of the bromeliad-breed-ing/single vocal sac species (here representedby a O. oophagus), our results show that ourexemplars with lateral vocal sacs are para-phyletic with respect to O. oophagus.

The monophyly of Tepuihyla was not test-ed in this analysis. Its sister-group relation-ship with Osteocephalus (excluding O.langsdorffii) is supported by our data, insteadof with Scinax as first suggested (Ayarza-guena et al., ‘‘1992’’ [1993b]; see earlier dis-cussion on the relationships of Scinax). Thissituation requires changes in the original in-terpretation of two character states that pro-vided evidence of the relationships of Te-

Page 73: systematic review of the frog family hylidae, with special reference to ...

2005 73FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

puihyla with other hylids. The presence ofspicules in the dorsum of males is more par-simoniously interpreted as a putative syna-pomorphy of Tepuihyla plus Osteocephalus,instead of a homoplasy, as advanced by Ay-arzaguena et al. (‘‘1992’’ [1993b]). Similarly,the reduction of webbing between toes I andII is more parsimoniously interpreted as a pu-tative synapomorphy of Tepuihyla (homo-plastic with Scinax) instead of a synapomor-phy of Scinax 1 Tepuihyla.

The monophyly of the four exemplars ofOsteopilus corroborates in a much broadertaxonomic context the results of Maxson(1992), Hedges (1996), and Hass et al.(2001), based on albumin immunologicaldistances and still unpublished sequence dataregarding its monophyly, and the recent tax-onomic changes summarized by Powell andHenderson (2003b). Unfortunately, we couldnot include in our analysis O. marianae, O.pulchrilineatus, and O. wilderi, and we arenot aware of any possible morphologicalsynapomorphy supporting their monophyly.In the absence of other evidence, it could besuggested that the oviposition and develop-ment in bromeliads, which occurs in thesethree species and O. brunneus, is a possiblesynapomorphy uniting these with O. cruci-alis, which apparently also has this repro-ductive mode (Hedges, 1987).

The presence of paired lateral vocal sacsand biogeographic considerations led Trueb(1970b) and Trueb and Duellman (1971) tosuggest the collective monophyly of Argen-teohyla, Osteocephalus, Phrynohyas, andTrachycephalus (at that time the species ofOsteocephalus having a single subgular vo-cal sac were still unknown). Furthermore,these authors considered Trachycephalus andPhrynohyas to be a monophyletic group onthe basis of sharing vocal sacs that are morelateral and protrude posteriorly to the anglesof the jaws when inflated. Trueb and Tyler(1974) suggested that the West Indian Osteo-pilus and the former Calyptahyla crucialis(now Osteopilus crucialis) were also relatedto this clade, although they exhibit a single,subgular vocal sac. Our results corroboratethe monophyly of Phrynohyas plus Trachy-cephalus (see below), but they also suggesta more complex situation where the casque-headed frogs with double vocal sacs are par-

aphyletic, with all of the genera of casque-headed frogs that have a single subgular sacbeing nested within them.

Duellman and Trueb (1976) suggested thatNyctimantis was related to Anotheca, be-cause both share the medial ramus of thepterygoid being juxtaposed squarely againstthe anterolateral corner of the ventral ledgeof the otic capsule. Also, frogs of both gen-era are known (Anotheca; Taylor, 1954;Jungfer, 1996) or suspected (Nyctimantis;Duellman and Trueb, 1976) to deposit theireggs in water-filled tree cavities. Our resultssuggest a radically different picture, withNyctimantis nested within the South Ameri-can/West Indian Casque-headed Frogs, whileAnotheca is nested within the Middle Amer-ican/Holarctic clade, being the sister taxon ofTriprion.

The topology has some discrepancies withprevious suggestions as to the relationshipsof Argenteohyla, Aparasphenodon, and Cor-ythomantis (for the latter two genera, see alsocomments for Scinax above). Argenteohylasiemersi was segregated by Trueb (1970b)from Trachycephalus, where it had beenplaced by Klappenbach (1961), because itlacks the diagnostic character states of Tra-chycephalus established by Trueb (1970a).Further, she suggested that Argenteohyla is aclose ally of Osteocephalus based on thepresence of paired lateral vocal sacs. Al-though Trueb (1970a) suggested that Apar-asphenodon and Corythomantis are sistertaxa, our evidence suggests that both Argen-teohyla and Nyctimantis are closer to Apar-asphenodon than to Corythomantis.

Most species in the South American/WestIndies Casque-headed Frog clade frequentlylive in or seek refuge in bromeliads or tree-holes. This has been reported for Aparas-phenodon (Paolillo and Cerda, 1981; Teix-eira et al., 2002), Argenteohyla (Barrio andLutz, 1966; Cespedez, 2000), Corythomantis(Jared et al., 1999), Nyctimantis (Duellmanand Trueb, 1976), Osteocephalus langsdorffii(Haddad, personal obs.), Phrynohyas (Goel-di, 1907; Prado et al., 2003), Tepuihyla (Ay-arzaguena et al., ‘‘1992’’ [1993b]), and Tra-chycephalus (Lutz, 1954; Bokermann,1966c). Furthermore, all species of Phyllod-ytes (Peixoto et al., 2003), some species ofOsteocephalus (Jungfer and Schiesari, 1995;

Page 74: systematic review of the frog family hylidae, with special reference to ...

74 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Jungfer and Weygoldt, 1999; Jungfer andLehr, 2001), some species of Osteopilus(Hedges, 1987; Lannoo et al., 1987), and atleast two species of Phrynohyas (Goeldi,1907; Lescure and Marty, 2000) even laytheir eggs in phytotelmata or treeholes wheretheir exotrophic larvae develop. While bro-meliads and treeholes are used as refuges orfor reproduction in other groups of hylids(e.g., Anotheca spinosa, the Hyla bromelia-cia group, the two bromeliad breeding frogsof the H. pictipes group, H. astartea, the H.tuberculosa group, Scinax alter, the Scinaxperpusillus group of the S. catharinae clade),the South American/West Indian Casque-headed Frog clade seems to be the largestclade of hylids that consistently makes useof bromeliads or treeholes.

The phylogenetic structure of the SouthAmerican/West Indies Casque-headed Frogclade implies a minimum of one instance ofreversal from presence of heavily exostosedand co-ossified skulls to normal looking, al-beit heavily built skulls (the case of Phry-nohyas), and at least a possible second andthird instance involving reversals from ex-ostosed skulls (the cases of Tepuihyla andOsteopilus vastus).

From a morphological perspective, theparaphyly of Phrynohyas with respect toTrachycephalus nigromaculatus and the con-comitant nonmonophyly of Trachycephalusare most interesting and surprising. Herpe-tologists have been noticing for years that T.nigromaculatus and Phrynohyas mesophaeaproduce hybrids throughout their overlappingranges of distribution (Haddad, personalobs.; Pombal, personal commun.; Ramos andGasparini, 2004). The possibility of hybrid-ization leads us to think that perhaps the in-trogression of P. mesophaea mitochondriacould actually be the reason for the recoveredparaphyly of Trachycephalus. However, phy-logenetic analyses using either tyrosinase orrhodopsin alone (the only two nuclear genesthat were successfully sequenced in T. nigro-maculatus) still recover a paraphyletic Tra-chycephalus (results not shown).

TAXONOMIC CONCLUSIONS: A NEWTAXONOMY OF HYLINAE AND

PHYLLOMEDUSINAEBelow we present a new taxonomic ar-

rangement of Hylinae and Phyllomedusinae,

based on the results discussed above. Whileour data clearly point to the fact that wecould hardly have a more paraphyletic anduninformative hylid taxonomy as the currentone, we foresee some resistance to this newmonophyletic taxonomy, due mostly to thelack of morphological evidence in the anal-ysis with consequent few morphological syn-apomorphies in the diagnoses (for many ofthe groups, only the molecular evidence pre-sented here provides the evidence of mono-phyly) or to insufficient numbers of exem-plars. The lack of a complete, well-re-searched nonmolecular data set is admittedlya weakness of this project. However, ourstudy represents the largest amount of evi-dence for the largest number of terminalsever put together and analyzed in a consistentway to address the phylogenetic relationshipsof hylids. Until a nonmolecular data set isassembled, we are left only with the evidenceprovided by our analysis. The alternatives areevident: either we ignore the present resultsand stick to the traditional, grossly uninfor-mative taxonomy, or we dare to present anew monophyletic taxonomy based on theevidence provided here. The latter option isfar closer to the goals of phylogenetic sys-tematics than is the former one. The new tax-onomy is the result of our attempt to recon-cile the need to recognize only monophyleticgroups and to minimize changes to the ex-isting taxonomy while keeping it informative(e.g.: we could have included all currentlyrecognized genera of Hylinae in the synon-ymy of Hyla; this would have resulted in aperfectly monophyletic though utterly unin-formative taxonomy).

We have not tested the monophyly of sev-eral genera and species groups either becausewe could not sample them at all (e. g. thecases of Phrynomedusa and the Hyla clare-signata and H. garagoensis group) or be-cause of insufficiency in sampling (e.g., theH. pictipes, H. pseudopuma, and H. mixo-maculata groups). There are, as well, sevenspecies that we could not associate with anygroup (see ‘‘Incertae Sedis and Nomina Du-bia’’ below and appendix 4). Nevertheless,we are being bold in the recognition ofgroups. We recognize all groups that werepreviously recognized but for which we havenot sampled sufficiently to test their mono-

Page 75: systematic review of the frog family hylidae, with special reference to ...

2005 75FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

phyly (i.e., only one species was available).These are noted in text. We also assume thatthe transformation series supporting themonophyly of the exemplars of any givenclade are correctly extrapolated as being ev-idence of the monophyly of the whole group.In the worse case scenario, we will be shownto be wrong; in the best case our hypotheseswill withstand further testing. By default, wehope our arrangement will stimulate furtherresearch.

The former subfamily Hemiphractinae isnow tentatively considered to be part of theparaphyletic Leptodactylidae, pending fur-ther research on this vast nonmonophyleticconglomerate of hyloids.

The total number of DNA transformationssupporting the monophyly of each relevantclade is informed in the respective diagnoses,with the exception of species groups whosemonophyly has not been tested in our anal-ysis. See figure 8 for a summary of the newtaxonomy and figures 9–12 for the strict con-sensus of our analysis updated with the newtaxonomy. See appendix 5 for details regard-ing the number of transitions, transversions,and inferred insertion/deletion events as wellas the specific positions involved for eachgene.

HYLINAE RAFINESQUE, 1815

SYNONYMS: See sections for tribes.DIAGNOSIS: This subfamily is diagnosed by

32 transformations in nuclear and mitochon-drial proteins and ribosomal genes. See ap-pendix 5 for a complete list of these trans-formations. Possible morphological synapo-morphies are the tendo superficialis digiti V(manus) with an additional tendon that arisesventrally from m. palmaris longus (da Silva,1998, as cited by Duellman, 2001).

COMMENTS: The 2n 5 24 chromosomesmay be another putative synapomorphy ofthis clade, but it will be necessary to betterunderstand its distribution in the more basalmembers of the different tribes.

COPHOMANTINI HOFFMANN, 1878

Cophomantina Hoffmann, 1878. Type genus: Co-phomantis Peters, 1870.

DIAGNOSIS: This tribe is diagnosed by 65transformations in nuclear and mitochondrial

proteins and ribosomal genes. See appendix5 for a complete list of these transformations.Possible morphological synapomorphies in-clude a ventral oral disc, and complete mar-ginal papillae in larvae, (these characterstates subsequently transform in more inclu-sive groups within this clade).

COMMENTS: This tribe includes the generaAplastodiscus, Bokermannohyla new genus,Hyloscirtus, Hypsiboas, and Myersiohylanew genus.

The increase in the number of labial toothrows is likely another synapomorphy of Co-phomantini, because all known larvae of Hy-loscirtus and Myersiohyla new genus colec-tively have a minimum of 6/7 labial toothrows. However, at this time the minimumnumber of labial tooth rows that is synapo-morphic for Cophomantini is ambiguous, be-cause the tadpole is still unknown in H. kan-aima.

An enlarged prepollex is present in allspecies of Hyloscirtus and in most speciesof Myersiohyla, new genus. (Unlike speciesof the H. aromatica group, in H. kanaima,the prepollex is not enlarged.) This charac-teristic could be a synapomorphy of Co-phomantini as an intermediate state leadingto the enlarged prepollex with a projectingspine, as proposed by Duellman et al.(1997). In order to understand whether thischaracter state is a synapomorphy of Copho-mantini, further research is required, includ-ing (1) more osteological work to define thecharacter states involved, and (2) additionalstudies on the phylogenetic relationshipswithin Myersiohyla, new genus, to under-stand whether the character state present inthe former H. kanaima could be interpretedas a reversal.

Burton (2004) suggested that the tendo su-perficialis hallucis tapering from an expand-ed corner of the aponeurosis plantaris, withfibers of the m. transversus plantae distalisoriginating on distal tarsal 2–3 inserting onthe lateral side of the tendon, provides evi-dence of monophyly of a group composed ofthe H. albomarginata, H. albopunctata, H.boans, H. geographica, and H. pulchellagroups. The lack of information on the tax-onomic distribution of this character statewithin several terminals of Cophomantinirenders its optimization ambiguous in all our

Page 76: systematic review of the frog family hylidae, with special reference to ...

76 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 8. A schematic summary of the new taxonomy of Hylidae proposed here, as indicated by thephylogenetic relationships of the genera of Hylinae, Pelodryadinae, and Phyllomedusinae. The genusPhrynomedusa was unavailable for this study and is not included.

most parsimonious trees. While it is clearthat it is a synapomorphy of some compo-nent of Cophomantini, at this point we do notknow its level of inclusiveness. (Burtonpoints out its presence in H. phyllognatha,the only member of the H. bogotensis groupthat he studied.) The same point holds for thepresence of an accessory tendon of the m.lumbricalis longus digiti III, which Burton(2004) considered characteristic of thosesame species groups.

There are other character states that wereobserved in exemplars of this tribe whosetaxonomic distribution needs to be assessedin its most basal taxa in order to know withmore precision the limits of the clade orclades they diagnose. One of these is thepoint of insertion of the tendon of the m.extensor brevis medius digiti IV that Fai-vovich (2002) found to insert in the medialproximal margin of phalanx 2 in the ex-emplars of this tribe that he studied (Aplas-todiscus perviridis, Hyla albopunctata, H.faber, and H. raniceps). In other hyloidsthis tendon is known to insert in the ante-rior medial margin of metacarpal IV(Burton, 1996, 1998b; Faivovich, 2002).Subsequently, this character state was ob-served in other species available for studies(H. albomarginata, H. andina, H. circum-data, H. clepsydra, H. geographica, H.granosa, H. multifasciata, and H. polytaen-ia; Faivovich, personal obs.).

There are at least two other characterstates whose taxonomic distribution withinthis tribe deserve further scrutiny. The firstof these is the presence in the dorsal surfaceof the larval oral cavity of an anteromedialloop of the prenarial wall into the prenarialarena. Wassersug (1980) described and re-ported it in Hyla rufitela, Spirandeli Cruz(1991) in Aplastodiscus perviridis, H. faber,H. lundii, and H. prasina, and D’Heursel andde Sa (1999) in H. geographica and H. semi-lineata. The second character state is thepresence of one (most frequently) or more (afew species of the H. bogotensis group; Mi-

jares-Urrutia, 1992b) fleshy projections ofvariable shape (triangular, round, or elliptic;sometimes called papillae) in the inner mar-gin of the nostrils of the larvae, which vari-ous authors (Kenny, 1969; Peixoto, 1981;Peixoto and Cruz, 1983; Lavilla, 1984; Mi-jares-Urrutia, 1992b; Wild, 1992; Ayarza-guena and Senaris, ‘‘1993’’ [1994]; de Sa,1995, 1996; Duellman et al., 1997; Faivov-ich, 2002; Gomes and Peixoto, 2002; Fai-vovich, personal obs.) noticed in several spe-cies: Aplastodiscus perviridis, Hyla albofren-ata, H. albomarginata, H. albopunctata, H.albosignata, H. alemani, H. andina, H. aro-matica, H. charazani, H. balzani, H. carval-hoi, H. circumdata, H. faber, H. fasciata, H.granosa, H. inparquesi, H. jahni, H. leuco-pygia, H. multifasciata, H. palaestes, H. pla-tydactyla, H. punctata, H. raniceps, H. sib-leszi, and an undescribed species of the H.aromatica group. Although not explicitlymentioned in the descriptions, this characterstate seems evident in illustrations of otherlarvae: H. goiana, H. joaquini, H. marginata,H. polytaenia, and H. pulchella (Eterovick etal., 2002; Gallardo, 1964; Garcia et al.,2001b, 2003).

Aplastodiscus A. Lutz in B. Lutz, 1950

TYPE SPECIES: Aplastodiscus perviridis A.Lutz in B. Lutz, 1950, by original designa-tion.

DIAGNOSIS: This genus is diagnosed by 72transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these molecular syn-apomorphies. Other apparent synapomor-phies of this clade are the particular repro-ductive modes, where the male constructs asubterranean nest in the muddy side ofstreams and ponds, and where larvae spendearly stages of development; subsequent toflooding, the exotrophic larvae live in pondsor streams (Haddad and Sawaya, 2000; Hart-mann et al., 2004, Haddad et al., 2005). Thepresence of proportionally very developed

Page 77: systematic review of the frog family hylidae, with special reference to ...

2005 77FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Page 78: systematic review of the frog family hylidae, with special reference to ...

78 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 9. A partial view of the strict consensus, updated with the new taxonomy for Phyllomedusinaeproposed here.

metacarpal and metatarsal tubercles is a pos-sible morphological synapomorphy of thegenus (Garcia et al., 2001).

COMMENTS: Our results imply a clade com-posed of Aplastodiscus and two complexesof the former Hyla albomarginata group, asdefined by Cruz and Peixoto (‘‘1985’’[1987]): the H. albofrenata and H. albosig-nata complexes, which are here included inAplastodiscus.

Garcia et al. (2001) suggested four syna-pomorphies for Aplastodiscus as then under-stood (that is, containing only A. cochranaeand A. perviridis): (1) lack of webbing be-tween toes I and II, and very reduced web-bing in the remaining toes, (2) bicolored iris,(3) females with unpigmented eggs, and (4)highly developed inner metacarpal and meta-tarsal tubercles. The lack of webbing be-tween toes I and II, the reduction of webbingamong the remaining toes, and the bicolorediris occur only in the two species originallycontained in Aplastodiscus. These species, A.cochranae and A. perviridis, are here includ-ed in the A. perviridis group, and thereforethese two character states are possibly syna-

pomorphic only of this group, not of Aplas-todiscus as redefined here. The very devel-oped inner metacarpal and metatarsal tuber-cles are also present in all species of the Hylaalbofrenata and H. albosignata complexes(Cruz and Peixoto ‘‘1984’’ [1985], ‘‘1985’’[1987]; Cruz et al., 2003), and we considerthis feature as a putative synapomorphy ofAplastodiscus as redefined here. The pres-ence of unpigmented eggs is known to occurin all species of the former H. albofrenataand H. albosignata complexes with knowneggs (Haddad and Sawaya, 2000; Garcia etal., 2001; Hartmann et al., 2004; Haddad etal., 2005). However, the taxonomic distribu-tion of egg pigmentation within Cophoman-tini is not well known. It is possible that un-pigmented eggs are actually a synapomorphyof a more inclusive clade, as they are knownto occur in at least some species of Hylo-scirtus (H. jahni, H. larinopygion, H. pal-meri, and H. platydactyla; La Marca, 1985,and Faivovich, personal obs.), Hypsiboas (H.lemai, Duellman [1997], and the undescribedspecies here called Hyla sp. 2), and Myers-iohyla new genus (Hyla inparquesi; Faivo-

Page 79: systematic review of the frog family hylidae, with special reference to ...

2005 79FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 10. A partial view of the strict consensus, updated with the new taxonomy for the tribe Co-phomantini.

Page 80: systematic review of the frog family hylidae, with special reference to ...

80 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 11. A partial view of the strict consensus, updated with the new taxonomy for the tribe Den-dropsophini.

vich, Myers, and McDiarmid, in prep.; eggsof M. kanaima are pigmented, Duellman andHoogmoed, 1992); the only known eggs ofspecies of Bokermannohyla, new genus havea pigmented animal pole (Sazima and Bok-ermann, 1977; Eterovick and Brandao,2001).

Most species of Aplastodiscus, as rede-fined here, possess a white parietal perito-neum (Garcia and Faivovich, personal obs.),as it occurs in some other Cophomantini(Hyla bogotensis, H. granosa, and H. punc-tata groups, H. marginata; Ruiz-Carranzaand Lynch [1991: 4]; Garcia [2003]; Faivo-vich, personal obs.). While this could be apossible synapomorphy of Aplastodiscus, the

taxonomic distribution of this character stateis still poorly known in various componentsof the Cophomantini, so we prefer to awaitfurther research on the issue, before hypoth-esizing polarities.

Bokermann (1967c) pointed out the over-all similarity among advertisement calls ofthe Hyla albofrenata and H. albosignatacomplexes and Aplastodiscus perviridis. Fu-ture research will define whether any char-acter state related to the advertisement callscould be considered as a synapomorphy ofAplastodiscus as redefined here, or of any ofits internal clades.

CONTENTS: Fourteen species included inthree species groups.

Page 81: systematic review of the frog family hylidae, with special reference to ...

2005 81FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 12. A partial view of the strict consensus, updated with the new taxonomy for the tribes Hyliniand Lophiohylini.

Page 82: systematic review of the frog family hylidae, with special reference to ...

82 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Aplastodiscus albofrenatus Group

DIAGNOSIS: This species group is diag-nosed by 114 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesetransformations. We are not aware of anymorphological synapomorphies for thisgroup.

CONTENTS: Six species. Aplastodiscus al-bofrenatus (A. Lutz, 1924), new comb.;Aplastodiscus arildae (Cruz and Peixoto,‘‘1985’’ [1987]), new comb.; Aplastodiscusehrhardti (Muller, 1924), new comb.; Aplas-todiscus musicus (B. Lutz, 1948), newcomb.; Aplastodiscus weygoldti (Cruz andPeixoto, ‘‘1985’’ [1987]), new comb.

Aplastodiscus albosignatus Group

DIAGNOSIS: This species group is diag-nosed by 42 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. A possible mor-phological synapomorphy of this group is thepresence of elaborate tubercles and ornamen-tation around the cloacal region (Cruz andPeixoto, ‘‘1985’’ [1987]).

CONTENTS: Seven species. Aplastodiscusalbosignatus (A. Lutz and B. Lutz, 1938),new comb.; Aplastodiscus callipygius (Cruzand Peixoto, ‘‘1984’’ [1985]), new comb.;Aplastodiscus cavicola (Cruz and Peixoto,‘‘1984’’ [1985]), new comb.; Aplastodiscusflumineus (Cruz and Peixoto, ‘‘1984’’[1985]), new comb.; Aplastodiscus ibirapi-tanga (Cruz, Pimenta, and Silvano, 2003),new comb.; Aplastodiscus leucopygius (Cruzand Peixoto, ‘‘1984’’ [1985]), new comb.;Aplastodiscus sibilatus (Cruz, Pimenta, andSilvano, 2003), new comb.

Aplastodiscus perviridis Group

DIAGNOSIS: This species group is diag-nosed by 58 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. Apparent mor-phological synapomorphies of this group in-clude the bicolored iris and the absence ofwebbing between toes I and II (known in-stances of homoplasy within hylids occur in

some Scinax and in various groups of Lo-phiohylini) and reduction of webbing be-tween the other toes (Garcia et al., 2001).

CONTENTS: Two species. Aplastodiscuscochranae (Mertens, 1952); Aplastodiscusperviridis A. Lutz in B. Lutz, 1950.

Bokermannohyla, new genus

TYPE SPECIES: Hyla circumdata Cope,‘‘1870’’ [1871].

DIAGNOSIS: This genus is diagnosed by 65transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy.

ETYMOLOGY: This genus is dedicated toWerner Carlos Augusto Bokermann (1929–1995), as homage to his contribution to theknowledge of Brazilian anurans. He also de-scribed several species now included in thenew genus. The name derives from Boker-mann 1 connecting -o 1 Hyla. We are adopt-ing the ending -hyla for several of the newgenera described here, most of which containspecies groups formerly placed in Hyla. Thegender is feminine.

COMMENTS: Bokermannohyla includes allspecies previously allocated in the Hyla cir-cumdata, H. martinsi, and H. pseudopseudisgroups. We include tentatively the H. clare-signata group pending the inclusion of itsspecies in the analysis, because it was asso-ciated to the H. circumdata group by Bok-ermann (1972) and Jim and Caramaschi(1979). Hyla alvarengai is also included be-cause our analysis shows that Hyla sp. 9 (aff.H. alvarengai) is nested within this new ge-nus. These species groups should be main-tained within Bokermannohyla until theirmonophyly is rigorously tested.

CONTENTS: Twenty-three species, placed infour species groups.

Bokermannohyla circumdata Group

DIAGNOSIS: This species group is diag-nosed by 52 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. A putative mor-phological synapomorphy of this group is thepresence of (usually thin) dark vertical

Page 83: systematic review of the frog family hylidae, with special reference to ...

2005 83FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

stripes on the posterior surface of the thigh(Heyer, 1985).

CONTENTS: Fifteen species. Bokermanno-hyla ahenea (Napoli and Caramaschi, 2004),new comb.; Bokermannohyla astartea (Bok-ermann, 1967), new comb.; Bokermannohylacaramaschii (Napoli, 2005) new comb.; Bok-ermannohyla carvalhoi (Peixoto, 1981), newcomb.; Bokermannohyla circumdata (Cope,‘‘1870’’ [1871]), new comb.; Bokermanno-hyla feioi (Napoli and Caramaschi, 2004),new comb.; Bokermannohyla gouveai (Peix-oto and Cruz, 1992), new comb.; Bokerman-nohyla hylax (Heyer, 1985), new comb.; Bok-ermannohyla ibitipoca (Caramaschi andFeio, 1990), new comb.; Bokermannohyla iz-eckshoni (Jim and Caramaschi, 1979), newcomb.; Bokermannohyla lucianae (Napoliand Pimenta, 2003), new comb.; Bokerman-nohyla luctuosa (Pombal and Haddad, 1993),new comb.; Bokermannohyla nanuzae (Bok-ermann and Sazima, 1973), new comb.; Bok-ermannohyla ravida (Caramaschi, Napoliand Bernardes, 2001), new comb.; Boker-mannohyla sazimai (Cardoso and Andrade,‘‘1982’’ [1983]), new comb.

Bokermannohyla claresignata Group

DIAGNOSIS: We are not aware of any syn-apomorphy supporting the monophyly of thisgroup; see below.

COMMENTS: We did not include any ex-emplar of this group, and as such we did nottest its monophyly. See the earlier discussionregarding its position in the South AmericanI clade. Considering the topology of Co-phomantini, synapomorphies suggested forthe Bokermannohyla claresignata group canonly be maintained if assumed to be reversals(i.e., a enlarged larval oral disc, completemarginal papillae, and large number of labialtooth rows are also present in Myersiohylanew genus and the Hyloscirtus armatusgroup; complete marginal papillae and largenumber of labial tooth rows are also presentin the H. bogotensis and H. larinopygiongroups; the marginal papillae are also com-plete or with an extremely reduced gap inother species of Bokermannohyla). Thiswould be unproblematic if it were a result ofthe analysis, but we prefer not to assume ita priori. While these character states cannot

be considered at this stage to support themonophyly of the B. claresignata group,considering that its two species are barelydistinguishable from each other, we think itsnonmonophyly is unlikely and we continueto recognize the group as a hypothesis to betested.

CONTENTS: Two species. Bokermannohylaclaresignata (A. Lutz and B. Lutz, 1939),new comb.; Bokermannohyla clepsydra (A.Lutz, 1925), new comb.

Bokermannohyla martinsi Group

DIAGNOSIS: Apparent morphological syna-pomorphies of this group are the develop-ment of the humeral crest into a hook-likeprojection, and a bifid prepollex (Boker-mann, 1965b).

COMMENTS: We included a single exemplarof this group, and as such we did not test itsmonophyly. We continue recognizing it onthe basis of the morphological evidence not-ed above.

CONTENTS: Two species. Bokermannohylalangei (Bokermann, 1965), new comb.; Bok-ermannohyla martinsi (Bokermann, 1964),new comb.

Bokermannohyla pseudopseudis Group

DIAGNOSIS: This group is diagnosed by 48transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy for this group.

COMMENTS: Considering our results, whichshow the undescribed species of the Hylapseudopseudis group (Hyla sp. 6) to be thesister taxon of an undescribed species similarwith H. alvarengai (Hyla sp. 9), we are ten-tatively including the H. alvarengai in thisspecies group. Eterovick and Brandao (2001)characterized this group on the basis of thepresence of short, lateral irregular tooth rowsand for having more tooth rows (between sixand eight rows) in the oral discs of the larvaethan do those of the Bokermannohyla cir-cumdata group. However, the tadpole of H.ibitiguara, included in this group by Cara-maschi et al. (2001), has a labial tooth for-mula of 2/4 (Cardoso, 1983) and seems tolack the short, lateral irregular tooth rows, as

Page 84: systematic review of the frog family hylidae, with special reference to ...

84 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

do tadpoles of H. alvarengai (Sazima andBokermann, 1977).

CONTENTS: Four species. Bokermannohylaalvarengai (Bokermann, 1956), new comb.;Bokermannohyla ibitiguara (Cardoso, 1983),new comb.; Bokermannohyla pseudopseudis(Miranda-Ribeiro, 1937), new comb.; Bok-ermannohyla saxicola (Bokermann, 1964),new comb.

Hyloscirtus Peters, 1882

TYPE SPECIES: Hyloscirtus bogotensis Pe-ters, 1882.

Hylonomus Peters, 1882. Type species: Hylono-mus bogotensis Peters, 1882, by monotypy. Pri-mary homonym of Hylonomus Dawson, 1860.

DIAGNOSIS: This genus is diagnosed by 56transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. The only putative morphologi-cal synapomorphy that we are aware of forthis genus is the wide dermal fringes on fin-gers and toes.

COMMENTS: This genus contains all speciesincluded in the Hyla armata, H. bogotensis,and H. larinopygion species groups. Thegroups are maintained unchanged within Hy-loscirtus until the monophyly of each ofthem is properly tested with denser taxonsampling.

While the wide dermal fringes in fingersand toes are present in the three speciesgroups, in the H. armatus group they aremore obvious in the first manual digit. In theH. bogotensis and H. larinopygion groupsthe fringes look even wider, apparently dueto a combination of proportionally smallerdiscs and wider fringe, which gives the fingeror toe the appearance of being almost aswide as the disc.

CONTENTS: Twenty-eight species placed inthree species groups.

Hyloscirtus armatus Group

DIAGNOSIS: This species group is diag-nosed by 103 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. Duellman et al.(1997) suggested four synapomorphies of the

H. armatus group: the presence of keratin-covered bony spines on the proximal ventralsurface of the humerus, on the expanded dis-tal element of the prepollex, and on the firstmetacarpal; forearms hypertrophied; tadpoletail long with low fins and bluntly roundedtip; and the presence of a ‘‘shelf’’ on the lar-val upper jaw sheath.

COMMENTS: Our observations of breedingmales of the two species of this group indi-cate the presence of darkly pigmented, ke-ratinized spicules in the dorsum, head (par-ticularly lips), forelimbs, undersides of fore-limbs, and pectoral and abdominal region. Asthe breeding biology of this and the othertwo species groups of the genus becomesbetter known, it will be possible to under-stand if the presence of these spicules are aputative synapomorphy of the H. armatusgroup.

CONTENTS: Two species. Hyloscirtus ar-matus (Boulenger, 1902), new comb.; Hylos-cirtus charazani (Vellard, 1970), new comb.

Hyloscirtus bogotensis Group

DIAGNOSIS: This species group is diag-nosed by 95 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesetransformations. The only morphologicalsynapomorphy that has been proposed forthis group is the presence of a mental glandin adult males (Duellman, 1972b). See ap-pendix 4 for a justification of the inclusionof ‘‘Hyalinobatrachium’’ estevesi (Rivero,1968) in this species group.

COMMENTS: Species of the Hyloscirtus bo-gotensis group have a white parietal perito-neum (Ruiz-Carranza and Lynch, 1991: 4),as do some other Cophomantini (see com-ments for Aplastodiscus). Further research onthe taxonomic distribution of this characterstate in the other species groups of Hyloscir-tus, and in the other genera of Cophomantini,would clarify which group or groups are di-agnosed by this synapomorphy.

CONTENTS: Sixteen species. Hyloscirtus al-bopunctulatus (Boulenger, 1882), newcomb.; Hyloscirtus alytolylax (Duellman,1972), new comb.; Hyloscirtus bogotensisPeters, 1882; Hyloscirtus callipeza (Duell-man, 1989), new comb.; Hyloscirtus colymba

Page 85: systematic review of the frog family hylidae, with special reference to ...

2005 85FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

(Dunn, 1931), new comb.; Hyloscirtus den-ticulentus (Duellman, 1972), new comb.; Hy-loscirtus estevesi (Rivero, 1968), new comb.;Hyloscirtus jahni (Rivero, 1961), new comb.;Hyloscirtus lascinius (Rivero, 1969), newcomb.; Hyloscirtus lynchi (Ruiz-Carranzaand Ardila-Robayo, 1991), new comb.; Hy-loscirtus palmeri (Boulenger, 1908), newcomb.; Hyloscirtus phyllognathus (Melin,1941), new comb.; Hyloscirtus piceigularis(Ruiz-Carranza and Lynch, 1982), newcomb.; Hyloscirtus platydactylus (Boulenger,1905), new comb.; Hyloscirtus simmonsi(Duellman, 1989), new comb.; Hyloscirtustorrenticola (Duellman and Altig, 1978),new comb.

Hyloscirtus larinopygion Group

DIAGNOSIS: This species group is diag-nosed by 32 transformations in mitochondri-al protein and ribosomal genes. See appendix5 for a complete list of these molecular syn-apomorphies. We are not aware of any mor-phological synapomorphy for this group.

CONTENTS: Ten species. Hyloscirtus cau-canus (Ardila-Robayo, Ruiz-Carranza, andRoa-Trujillo, 1993), new comb.; Hyloscirtuslarinopygion (Duellman, 1973), new comb.;Hyloscirtus lindae (Duellman and Altig,1978), new comb.; Hyloscirtus pacha (Duell-man and Hillis, 1990), new comb.; Hyloscir-tus pantostictus (Duellman and Berger,1982), new comb.; Hyloscirtus psarolaimus(Duellman and Hillis, 1990), new comb.; Hy-loscirtus ptychodactylus (Duellman and Hil-lis, 1990) new comb.; Hyloscirtus saram-piona (Ruiz-Carranza and Lynch, 1982) newcomb.; Hyloscirtus staufferorum (Duellmanand Coloma, 1993), new comb.; Hyloscirtustapichalaca (Kizirian, Coloma, and Paredes-Recalde, 2003), new comb.

Hypsiboas Wagler, 1830

TYPE SPECIES: Hyla palmata Daudin, 1802(5 Rana boans Linnaeus, 1758), by subse-quent designation by implication of Duell-man, 1977 (not monotypy as stated by Duell-man, 1977: 24).

Boana Gray, 1825. Type species: Rana boans Lin-naeus, 1758, by monotypy. Coined as a syno-nym of Hyla and never subsequently validatedas available under article 11.6.1 (ICZN, 1999).

Auletris Wagler, 1830. Type species: Rana boansLinnaeus, 1758, by subsequent designation ofStejneger (1907).

Lobipes Fitzinger, 1843. Type species: Hyla pal-mata Daudin, 1801 (5 Rana boans Linnaeus,1758), by original designation.

Phyllobius Fitzinger, 1843. Type species: Hyla al-bomarginata Spix, 1824, by original designa-tion. Primary homonym of Phyllobius Schoen-herr, 1824.

Centrotelma Burmeister, 1856. Type species: Hylainfulata Wied-Neuwied, 1824 (5 H. albomar-ginata Spix, 1824), by subsequent implicationby Duellman (1977) (not monotypy as stated byDuellman, 1977: 24).

Hylomedusa Burmeister, 1856. Type species: Hylacrepitans Wied-Neuwied, 1825, by subsequentdesignation by implication of Duellman (1977)(not monotypy as stated by Duellman, 1977:24).

Cinclidium Cope, 1867. Type species: Cinclidiumgranulatum Cope, 1867 (5 Rana boans Lin-naeus, 1758), by monotypy. Primary homonymof Cinclidium Blyth, 1842.

Cophomantis Peters, 1870. Type species: Co-phomantis punctillata Peters, 1870 (5 Hylasemilineata Spix, 1824) by monotypy.

Cincliscopus Cope, ‘‘1870’’ [1871]. Replacementname for Cinclidium Cope, 1867.

DIAGNOSIS: This genus is diagnosed by 33transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy for this genus.

COMMENTS: This genus is resurrected forall species formerly included in the Hyla al-bopunctata, H. boans, H. geographica, H.granosa, H. pulchella, and H. punctata spe-cies groups, the H. albomarginata complex,and several species previously unassigned toany group. Most of the former species groupsare retained using the new combinations andits contents are redefined in accordance withour results to avoid paraphyly.

It is tempting to suggest that the presenceof a prepollical spine is a possible synapo-morphy of this group. However, as discussedearlier, further anatomical studies are neces-sary to determine whether this character stateis homologous with that present in Boker-mannohyla.

Duellman (2001) and Savage (2002b) sug-gested that the name Boana Gray, 1825could be applied to a clade of Gladiator

Page 86: systematic review of the frog family hylidae, with special reference to ...

86 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Frogs. Gray (1825) suggested the nameBoana as a synonym of Hyla, and Stejneger(1907) subsequently designated Hyla boansas its type species. Unfortunately, as far aswe can determine from literature research,the name Boana has never been used in com-bination with an active species name, there-fore failing to fulfill the criterion establishedby article 11.6.1 (ICZN, 1999) for the avail-ability of names originally proposed as syn-onyms. Duellman (2001) further stated thatif Hyla punctata were included within thisgroup, ‘‘the generic Hylaplesia Boie wouldbe included in the synonymy of Boana.’’However, this is not the case since, as dis-cussed by Dubois (1982), the type species ofHylaplesia is Rana tinctoria Cuvier, 1797 (5Dendrobates tinctorius), by subsequent des-ignation of Dumeril and Bibron (1841).

Wagler (1830) did not combine Hypsiboaswith any of the species included in this ge-nus. Subsequent authors (e.g., Tschudi, 1838;Fitzinger, 1843, Cope, 1862) considered itmasculine, as we are doing here.

CONTENTS: Seventy species placed in sev-en species groups, plus two species unas-signed to group.

Hypsiboas albopunctatus Group

DIAGNOSIS: This species group is diag-nosed by 43 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. We are not awareof any morphological synapomorphy.

COMMENTS: To avoid paraphyly, we in-clude Hyla fasciata and H. calcarata in thegroup, and to avoid the creation of a speciesgroup for a single species, we also includethe sister taxon of the former H. albopunc-tata group, H. heilprini. Larvae so far knownof the group (H. albopunctata, H. calcarata,H. fasciata, H. multifasciata, H. raniceps),with the exception of H. heilprini and H. lan-ciformis are reported to have the mediodistalportion of the internal wall of the spiracleseparated from the body wall (de Sa, 1995;1996; Faivovich, 2002, personal obs.; Peix-oto and Cruz, 1983; Wild, 1992). Peixoto andCruz (1983) reported the same character statefor larvae of H. albomarginata. Additionalstudies on the taxonomic distribution of this

peculiar character state are needed to knowthe limits of the clade or clades it diagnoses.Wild (1992) noticed that larvae of H. cal-carata, H. fasciata, and H. lanciformis sharethe presence of pigmented caudal verticalbands that interconnect laterally along themusculature, with this pattern occurring aswell in H. raniceps (Faivovich, personalobs.).

Hyla dentei was originally associated withboth H. raniceps and the former H. geogra-phica group. We are tentatively including itin the Hypsiboas albopunctatus group inview of its overall similarities with Hyla cal-carata and H. fasciata.

CONTENTS: Nine species. Hypsiboas albo-punctatus (Spix, 1824), new comb.; Hypsi-boas calcaratus (Troschel, 1848), newcomb.; Hypsiboas dentei (Bokermann,1967), new comb.; Hypsiboas fasciatus(Gunther, 1858), new comb.; Hypsiboas heil-prini (Noble, 1923), new comb.; Hypsiboaslanciformis Cope, 1871; Hypsiboas leucoch-eilus (Caramaschi and Niemeyer, 2003), newcomb.; Hypsiboas multifasciatus (Gunther,1859), new comb.; Hypsiboas ranicepsCope, 1862.

Hypsiboas benitezi Group

DIAGNOSIS: This species group is diag-nosed by 30 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. A putative syn-apomorphy of this group is the presence ofa flat mental gland in males (Faivovich et al.,in prep.) (known instance of homoplasy inHyla granosa).

COMMENTS: This new species group in-cludes the clade composed of three speciesfrom the Guayana Highlands and three spe-cies from the northwestern Amazon Basin.Because one of the Guayanan and one of theAmazonian species are still undescribed,they are not further considered. Two species,Hyla microderma and H. roraima, are a frag-ment of the former H. geographica group.We are also including tentatively H. hutch-insi and H. rhythmicus, based on their overallsimilarity with H. benitezi. See appendix 4for a justification of the inclusion of Hylapulidoi (Rivero, 1968) in this species group.

Page 87: systematic review of the frog family hylidae, with special reference to ...

2005 87FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

CONTENTS: Seven species. Hypsiboas ben-itezi (Rivero, 1961), new comb.; Hypsiboashutchinsi (Pyburn and Hall, 1984), newcomb.; Hypsiboas lemai (Rivero, 1971), newcomb.; Hypsiboas microderma (Pyburn,1977), new comb.; Hypsiboas pulidoi (Riv-ero, 1968), new comb.; Hypsiboas rhythmi-cus (Senaris and Ayarzaguena. 2002), newcomb.; Hypsiboas roraima (Duellman andHoogmoed, 1992), new comb.

Hypsiboas faber Group

DIAGNOSIS: This species group is diag-nosed by 28 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. We are not awareof any morphological synapomorphy for thisgroup.

COMMENTS: We are including in this groupa clade of some species resulting from thefragmentation of the Hyla boans group. Ourresults indicate that H. crepitans, H. faber,H. lundii, and H. pardalis form, togetherwith H. albomarginata (a component of theHyla albomarginata group), a monophyleticgroup only distantly related to H. boans, thespecies that gives the name to the formergroup. For this reason, we recognize thisclade as the Hypsiboas faber species group.We tentatively include Hyla exastis in thisgroup because Caramaschi and Rodrigues(2003) related it to H. lundii and H. pardalison the basis of the lichenous color patternand the rugose dorsal skin texture.

A likely behavioral synapomorphy of mostspecies of this group, with the exception ofHyla albomarginata, is the construction ofnests by males (with two instances of ho-moplasy within Hylinae, some species of thenow called Hypsiboas semilineatus group(see p. 88), and the Bokermannohyla circum-data group.) The inclusion of Hyla pugnaxand H. rosenbergi is tentative, based on thefact that males construct nests, but they lackthe reticulated palpebral membrane, a likelysynapomorphy present in most species of thenow called Hypsiboas semilineatus group(see below). Future research will test thisbold hypothesis.

CONTENTS: Eight species. Hypsiboas al-bomarginatus (Spix, 1824), new comb.; Hyp-

siboas crepitans (Wied-Neuwied, 1824), newcomb.; Hypsiboas exastis (Caramaschi andRodrigues, 2003), new comb.; Hypsiboas fa-ber (Wied-Neuwied, 1821), new comb.; Hyp-siboas lundii (Burmeister, 1856), new comb.;Hypsiboas pardalis (Spix, 1824), new comb.;Hypsiboas pugnax (O. Schmidt, 1857), newcomb.; Hypsiboas rosenbergi (Boulenger,1898), new comb.

Hypsiboas pellucens Group

DIAGNOSIS: This species group is diag-nosed by 115 transformations in mitochon-drial ribosomal genes. See appendix 5 for acomplete list of these transformations. Weare not aware of any morphological syna-pomorphy for the group.

COMMENTS: We recognize this new speciesgroup to include the clade composed of thefragment of the former Hyla albomarginatacomplex that includes H. pellucens and H.rufitela. The inclusion of H. rubracyla is ten-tative, based on its previous association withH. pellucens.

CONTENTS: Three species. Hypsiboas pel-lucens (Werner, 1901), new comb.; Hypsi-boas rubracylus (Cochran and Goin, 1970),new comb.; Hypsiboas rufitelus (Fouquette,1958), new comb.

Hypsiboas pulchellus Group

DIAGNOSIS: This species group is diag-nosed by 55 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. Observations byFaivovich and Garcia (unpubl.) suggest thatthe absence of the slip of the m. depressormandibulae that originates on the dorsal fas-cia at the level of the m. dorsalis scapularis(present in all other exemplars so far studiedof Hypsiboas, and also of Aplastodiscus, Hy-loscirtus, and Bokermannohyla) is a possiblesynapomorphy of the group.

COMMENTS: We continue to recognizewithin this species group a Hypsiboas poly-taenius clade that includes Hyla beckeri, H.buriti, H. cipoensis, H. goiana, H. latistriata,H. leptolineata, H. phaeopleura, H. poly-taenia, and H. stenocephala. Besides molec-ular data, a likely morphological synapomor-phy that supports this clade is the dorsally

Page 88: systematic review of the frog family hylidae, with special reference to ...

88 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

striped pattern (homoplastic in Hyla bischoffiwhere a striped pattern occurs on some in-dividuals).

CONTENTS: Thirty species. Hypsiboas al-boniger (Nieden, 1923), new comb.; Hypsi-boas andinus (Muller, 1926), new comb.;Hypsiboas balzani (Boulenger, 1898), newcomb.; Hypsiboas beckeri (Caramaschi andCruz, 2004), new comb.; Hypsiboas bischoffi(Boulenger, 1887), new comb.; Hypsiboasburiti (Caramaschi and Cruz, 1999), newcomb.; Hypsiboas caingua (Carrizo, ‘‘1990’’[1991]), new comb.; Hypsiboas callipleura(Boulenger, 1902), new comb.; Hypsiboas ci-poensis (B. Lutz, 1968), new comb.; Hypsi-boas cordobae (Barrio, 1965), new comb.;Hypsiboas cymbalum (Bokermann, 1963),new comb.; Hypsiboas ericae (Caramaschiand Cruz, 2000), new comb.; Hypsiboas frei-canecae (Carnaval and Peixoto, 2004), newcomb.; Hypsiboas goianus (B. Lutz, 1968),new comb.; Hypsiboas guentheri (Boulenger,1886), new comb.; Hypsiboas joaquini (B.Lutz, 1968), new comb.; Hypsiboas latistria-tus (Caramaschi and Cruz, 2004), newcomb.; Hypsiboas leptolineatus (P. Braunand C. Braun, 1977), new comb.; Hypsiboasmarginatus (Boulenger, 1887), new comb.;Hypsiboas marianitae (Carrizo, 1992), newcomb.; Hypsiboas melanopleura (Boulenger,1912), new comb.; Hypsiboas palaestes(Duellman, De la Riva, and Wild, 1997), newcomb.; Hypsiboas phaeopleura (Caramaschiand Cruz, 2000), new comb.; Hypsiboas po-lytaenius (Cope, 1870), new comb.; Hypsi-boas prasinus (Burmeister, 1856), newcomb.; Hypsiboas pulchellus (Dumeril andBibron, 1841), new comb.; Hypsiboas rio-janus (Koslowsky, 1895), new comb.; Hyp-siboas secedens (B. Lutz, 1963), new comb.;Hypsiboas semiguttatus (A. Lutz, 1925), newcomb.; Hypsiboas stenocephalus (Caramas-chi and Cruz, 1999), new comb.

Hypsiboas punctatus Group

DIAGNOSIS: This species group is diag-nosed by 30 transformations in mitochondri-al protein and ribosomal genes. See appendix5 for a complete list of these molecular syn-apomorphies. We are not aware of any mor-phological synapomorphy for the group.

COMMENTS: We do not see any reason to

keep the former Hyla granosa and H. punc-tata groups separated, as our analysis showsthat the two nominal species form a mono-phyletic group and they are phenotypicallysimilar, so we include all the species in theHypsiboas punctatus group. The inclusion ofHyla alemani, H. atlantica, H. hobbsi, andH. ornatissima is tentative, based on theirprevious association with the former H. gra-nosa and H. punctata groups. The inclusionof Hyla picturata is based on our analysis.

CONTENTS: Eight species. Hypsiboas ale-mani (Rivero, 1964), new comb.; Hypsiboasatlanticus (Caramaschi and Velosa, 1996),new comb.; Hypsiboas granosus (Boulenger,1882), new comb.; Hypsiboas hobbsi (Coch-ran and Goin, 1970), new comb.; Hypsiboasornatissimus (Noble, 1923), new comb.;Hypsiboas picturatus (Boulenger, 1882), newcomb.; Hypsiboas punctatus (Schneider,1799), new comb.; Hypsiboas sibleszi (Riv-ero, 1971), new comb.

Hypsiboas semilineatus Group

DIAGNOSIS: This species group is diag-nosed by 128 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. A possible mor-phological synapomorphy of this speciesgroup is the presence of a reticulated palpe-bral membrane (with instances of homoplasyin other species of Hypsiboas: H. hutchinsiand H. microderma).

COMMENTS: We include in this group thefragments of the former Hyla boans and H.geographica groups that form a monophy-letic group. We prefer to call it the Hypsiboassemilineatus group because the use of eitherthe H. boans or H. geographicus groupswould only cause confusion regarding itscontents. The inclusion of Hyla wavrini isbased on the combination of the same repro-ductive mode of H. boans (eggs deposited ina basin built by the male) and a reticulatedpalpebral membrane (Hoogmoed, 1990).Hyla pombali is tentatively included basedon comments by Caramaschi et al (2004a)stressing its similarities with H. semilineata,but with the caveat that it lacks the reticu-lated palpebral membrane. Schooling behav-ior has been reported for tadpoles of H. geo-

Page 89: systematic review of the frog family hylidae, with special reference to ...

2005 89FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

graphica (Caldwell, 1989) and H. semilinea-ta (D’Heursel and Haddad, 2002), and thismay be a synapomorphy for at least thesetwo species.

CONTENTS: Six species. Hypsiboas boans(Linnaeus, 1758), new comb.; Hypsiboasgeographicus (Spix, 1824), new comb.; Hyp-siboas pombali (Caramaschi, Silva, and Feio,2004); Hypsiboas semilineatus (Spix, 1824),new comb.; Hypsiboas wavrini (Parker,1936), new comb.

Species of Hypsiboas Unassigned to Group

There are two species of Hypsiboas thatwe do not assign to any group because wedo not have evidence favoring a relationshipwith any of the species groups that we arerecognizing for the genus. These species areHypsiboas fuentei (Goin and Goin, 1968),new comb., and Hypsiboas varelae (Carrizo,1992), new comb.

Myersiohyla, new genus

TYPE SPECIES: Hyla inparquesi Ayarza-guena and Senaris (‘‘1993’’ [1994]).

DIAGNOSIS: This genus is diagnosed by 48transformations in mitochondrial protein andribosomal genes. See appendix 5 for com-plete list of these molecular synapomorphies.We are not aware of any morphological syn-apomorphy for this group.

ETYMOLOGY: Dedicated to Charles W. My-ers in recognition of his contributions to her-petology, particularly to the herpetofauna ofthe Guayana Highlands. The name derivesfrom Myersius (latinized Myers) 1 connect-ing -o 1 Hyla. The gender is feminine (My-ers and Stothers, MS).

COMMENTS: This new genus includes thespecies of Hyla aromatica group and H. kan-aima, a former member of the H. geogra-phica group. Ayarzaguena and Senaris(‘‘1993’’ [1994]) included the presence of astrong odor in the definition of the Hyla aro-matica group; this could be a possible syn-apomorphy of Myersiohyla. The presence ofa strong odor has yet to be recorded in H.kanaima. It should be noted that the samplewe included of H. inparquesi was not col-lected in the type locality, but in Cerro de laNeblina, ca. 300 km southward.

CONTENTS: Four species. Myersiohyla aro-

matica (Ayarzaguena and Senaris, ‘‘1993’’[1994]), new comb.; Myersiohyla inparquesi(Ayarzaguena and Senaris, ‘‘1993’’ [1994]),new comb.; Myersiohyla loveridgei (Rivero,1961), new comb.; Myersiohyla kanaima(Goin and Wodley, 1961), new comb.

DENDROPSOPHINI FITZINGER, 1843

Dendropsophi Fitzinger, 1843. Type genus: Den-dropsophus Fitzinger, 1843.

DIAGNOSIS: This tribe is diagnosed by 23transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. Apparent morphological syna-pomorphies of this tribe are the absence oflingual papillae in the larvae (known instanc-es of reversal in Lysapsus and Pseudis) andthe absence of nuptial excrescences (with in-stances of homoplasy in some species ofSphaenorhynchus and several Cophomanti-ni).

COMMENTS: This tribe contains the generaDendropsophus, Lysapsus, Pseudis, Scarthy-la, Scinax, Sphaenorhynchus, and Xenohyla.The absence of lingual papillae in the larvaeis the condition reported in all species ofDendropsophus, Scarthyla, and Scinax,whose larvae have been studied (Wassersug,1980; Duellman and de Sa, 1988; Echeverria,1997; Faivovich, 2002; Vera Candioti et al.,2004); a reversal occurs in Lysapsus andPseudis (de Sa and Lavilla, 1997; Vera Can-dioti, 2004). This character state is still un-known in Sphaenorhynchus and Xenohyla.Another possible morphological synapomor-phy is the absence of keratinized nuptial ex-crescences. Duellman et al. (1997) andDuellman (2001) suggested that the absenceof nuptial excrescences was a synapomorphyof the 30-chromosome Hyla. Nuptial excres-cences are also absent in Lysapsus, Pseudis,Scarthyla, Scinax, some species of Sphae-norhynchus, and Xenohyla (Caramaschi,1989; Duellman and Wiens, 1992; Faivovich,personal obs.; Rodriguez and Duellman,1994). Note that, while pigmented kerati-nized structures are absent in all thesegroups, nuptial pads are present at least insome species of Dendropsophus, Scarthyla,and Scinax (Faivovich, personal obs.).

Page 90: systematic review of the frog family hylidae, with special reference to ...

90 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Dendropsophus Fitzinger, 1843

TYPE SPECIES: Hyla frontalis Daudin, 1800(5 Rana leucophyllata Beireis, 1783), byoriginal designation.

Lophopus Tschudi, 1838. Type species: Hyla mar-morata Daudin (5 Bufo marmoratus Laurenti,1768), by monotypy. Primary homonym of Lo-phopus Dumeril, 1837.

Hylella Reinhardt and Lutken, ‘‘1861’’ [1862].Type species: Hylella tenera Reinhardt and Lut-ken, 1862 (5 Hyla bipunctata Spix, 1824), bysubsequent designation of Smith and Taylor(1948).

Guntheria Miranda-Ribeiro, 1926. Type species:Hyla dasynota Gunther, 1869 (5 Hyla seniculaCope, 1868), by monotypy.

DIAGNOSIS: This genus is diagnosed by 33transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. Karyological evidence is thepresence of 30 chromosomes. Morphologicalsynapomorphies of this clade are possibly theextreme reduction in the quadratojugal (alsooccurs in some Cophomantini and Hylini)and a 1/2 labial tooth row formula (knowninstance of homoplasy in Hyla anceps; sub-sequent reductions in the formula in someclades) (Duellman and Trueb, 1983; Wogelet al., 2000).

COMMENTS: This genus contains all speciesformerly placed in Hyla that are known orsuspected to have 30 chromosomes. How-ever, the fact that the karyotype of its sistertaxon, Xenohyla, is still unknown, precludesthe 30-chromosome condition to be consid-ered a synapomorphy of Dendropsophus, be-cause it could be a synapomorphy of Den-dropsophus 1 Xenohyla. A similar situationoccurs with two muscle characters. Burton(2004) suggested that the m. contrahentishallucis reduced or absent and the presenceof m. flexor teres hallucis are synapomor-phies of this group. Unfortunately, bothtransformations optimize ambiguously be-cause corresponding character states are stillunknown in Xenohyla.

While we consider the extreme reductionof the quadratojugal to be a possible mor-phological synapomorphy of Dendropso-phus, we warn that the condition requiresfurther study, because the quadratojugal is

reduced as well in Sphaenorhynchus and Xe-nohyla (Caramaschi, 1989; Duellman andWiens, 1992; Izecksohn, 1996), although ap-parently not to the level seen in Dendrop-sophus.

Bogart (1973), Gruber (2002), Skuk andLangone (1991), and Kaiser et al. (1996) de-scribed variation in chromosome morpholo-gy for several species of Dendropsophus.

CONTENTS: Eighty-eight species, most ofthem placed in nine species groups, and sev-en unassigned to group.

Dendropsophus columbianus Group

DIAGNOSIS: The only morphological syna-pomorphy suggested for this group is thepresence of two close, triangular lateral spac-es between the cricoid and arytenoids at theposterior part of the larynx (Kaplan, 1999).

COMMENTS: We included a single exemplarof this group, and as such we did not test itsmonophyly, but following Kaplan (1999) werecognize it on the basis of the evidencementioned above.

CONTENTS: Three species. Dendropsophusbogerti (Cochran and Goin, 1970), newcomb.; Dendropsophus carnifex (Duellman,1969), new comb.; Dendropsophus colum-bianus (Boettger, 1892), new comb.

Dendropsophus garagoensis Group

DIAGNOSIS: A possible morphological syn-apomorphy of this group is the internal sur-face of the arytenoids with a small medialdepression (Kaplan, 1999).

COMMENTS: We did not include any ex-emplar of this group in the analysis. We rec-ognize it following Kaplan (1999), who con-sidered Hyla praestans to be the sister taxonof the H. garagoensis group on the basis ofthem sharing the aforementioned putativesynapomorphy. We find it more informativeat this stage to include it in the group thanto consider it as a species unassigned to anygroup.

CONTENTS: Four species. Dendropsophusgaragoensis (Kaplan, 1991), new comb.;Dendropsophus padreluna (Kaplan andRuiz-Carranza, 1997), new comb.; Dendrop-sophus praestans (Duellman and Trueb,1983), new comb.; Dendropsophus viroli-

Page 91: systematic review of the frog family hylidae, with special reference to ...

2005 91FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

nensis (Kaplan and Ruiz-Carranza, 1997),new comb.

Dendropsophus labialis Group

DIAGNOSIS: We are not aware of any syn-apomorphy for this group.

COMMENTS: We included a single exemplarof this group in the analysis, and as such wedid not test its monophyly. Following Duell-man and Trueb (1983) and Duellman (1989),we continue to recognize the group pendinga rigorous test of its monophyly.

CONTENTS: Three species. Dendropsophuslabialis (Peters, 1863), new comb.; Dendrop-sophus meridensis (Rivero, 1961) newcomb.; Dendropsophus pelidna (Duellman,1989), new comb.

Dendropsophus leucophyllatus Group

DIAGNOSIS: This species group is diag-nosed by 35 transformations in mitochondri-al ribosomal genes. See appendix 5 for acomplete list of these molecular synapomor-phies.

COMMENTS: On the basis of our molecularresults, we are including Hyla anceps in thisgroup. With the exception of this species, allother members of the group share the pres-ence of pectoral glands in males and females(Duellman, 1970).

CONTENTS: Eight species. Dendropsophusanceps (A. Lutz, 1929), new comb.; Den-dropsophus bifurcus (Andersson, 1945), newcomb.; Dendropsophus ebraccatus (Cope,1874), new comb.; Dendropsophus elegans(Wied-Neuwied, 1824), new comb.; Den-dropsophus leucophyllatus (Beireis, 1783),new comb.; Dendropsophus rossalleni(Goin, 1959), new comb.; Dendropsophussarayacuensis (Shreve, 1935), new comb.;Dendropsophus triangulum (Gunther,‘‘1868’’ [1869]), new comb.

Dendropsophus marmoratus Group

DIAGNOSIS: This species group is diag-nosed by 73 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. Possible mor-phological synapomorphies of this group arethe warty skin around the margin of the low-

er lip, the crenulated margin of limbs, andthe dorsal marbled pattern (Bokermann,1964b) (instances of homoplasy in other Hy-linae). Furthermore, as it is discernible fromthe illustrations presented by Gomes andPeixoto (1991b) and Peixoto and Gomes(1999), and confirmed by Peixoto (personalcommun. cited in Altig and McDiarmid,1999a), known larvae of this species groupshare the presence of a thick sheath of tissuein the basal portion of the tail muscle andadjacent fins, another likely morphologicalsynapomorphy.

COMMENTS: Bokermann (1964b) diag-nosed this group as having large vocal sacs.While this could be a synapomorphy, we arehesitant to consider it as such until more an-atomical and comparative studies are done inDendropsophus. In connection with the largevocal sacs of the species of this group, Tyler(1971) mentioned that in Hyla marmoratathe pectoral lymphatic septum is modified ina way that permits the inflated sac to intrudeinto sub-humeral spaces.

CONTENTS: Eight species. Dendropsophusacreanus (Bokermann, 1964), new comb.;Dendropsophus dutrai (Gomes and Peixoto,1996), new comb.; Dendropsophus marmor-atus (Laurenti, 1768), new comb.; Dendrop-sophus melanargyreus (Cope, 1887), newcomb.; Dendropsophus nahdereri (B. Lutzand Bokermann, 1963), new comb.; Den-dropsophus novaisi (Bokermann, 1968) newcomb.; Dendropsophus seniculus (Cope,1868), new comb.; Dendropsophus soaresi(Caramaschi and Jim, 1983), new comb.

Dendropsophus microcephalus Group

DIAGNOSIS: This species group is diag-nosed by 42 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. Morphologicalsynapomorphies include the lack of labialtooth rows and marginal papillae (Duellmanand Trueb, 1983) (a reversal occurs in theDendropsophus decipiens clade).

COMMENTS: This group now includes allspecies from the Hyla decipiens, H. micro-cephala, and H. rubicundula groups. We didnot test the monophyly of the H. decipiensor H. rubicundula groups. We continue rec-

Page 92: systematic review of the frog family hylidae, with special reference to ...

92 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

ognition of the Dendropsophus microcepha-lus group and within it, pending a rigoroustest, a D. decipiens clade (including H. ber-thalutzae, H. decipiens, H. haddadi, and H.oliveirai), and a D. rubicundulus clade (in-cluding H. anataliasiasi, H. araguaya, H.cachimbo, H. cerradensis, H. elianeae, H.jimi, H. rhea, H. rubicundula, and H. tri-taeniata). Putative synapomorphies of the D.decipiens clade are the oviposition on leavesoverhanging water (homoplastic with the D.leucophyllatus group and some species of thenow D. parviceps group) and the presence ofa posterior row of marginal papillae (a re-versal). A putative synapomorphy of the D.rubicundulus clade is the green dorsum inlife that changes to pinkish or violet whenpreserved (Napoli and Caramaschi, 1998).

It seems likely that additional synapomor-phies for at least some species of Dendrop-sophus microcephalus group will be hy-pothesized as larval anatomy is carefullystudied. For example, the four species of thegroup studied by Spirandeli Cruz (1991) andWassersug (1980) (H. microcephala, H.nana, H. phlebodes, H. sanborni) showknob-like vestiges of the filter rows in larvae.It also remains to be seen whether the pe-culiarities of the mannicoto glandulare de-scribed by Lajmanovich et al. (2000) for H.nana are common to other larvae of thegroup.

CONTENTS: Thirty-three species. Dendrop-sophus anataliasiasi (Bokermann, 1972),new comb.; Dendropsophus araguaya (Na-poli and Caramaschi, 1998), new comb.;Dendropsophus berthalutzae (Bokermann,1962), new comb.; Dendropsophus bipunc-tatus (Spix, 1824), new comb.; Dendropso-phus branneri (Cochran, 1948), new comb.;Dendropsophus decipiens (A. Lutz, 1925),new comb.; Dendropsophus cachimbo (Na-poli and Caramaschi, 1999), new comb.;Dendropsophus cerradensis (Napoli andCaramaschi, 1998) new comb.; Dendropso-phus cruzi (Pombal and Bastos, 1998), newcomb.; Dendropsophus elianeae (Napoli andCaramaschi, 2000), new comb.; Dendropso-phus gryllatus (Duellman, 1973), new comb.;Dendropsophus haddadi (Bastos and Pom-bal, 1996), new comb.; Dendropsophus jimi(Napoli and Caramaschi, 1999), new comb.;Dendropsophus joannae (Kohler and Lotters,

2001), new comb.; Dendropsophus leali(Bokermann, 1964), new comb.; Dendrop-sophus mathiassoni (Cochran and Goin,1970), new comb.; Dendropsophus meridi-anus (B. Lutz, 1954), new comb.; Dendrop-sophus microcephalus (Cope, 1886), newcomb.; Dendropsophus minusculus (Rivero,1971), new comb.; Dendropsophus nanus(Boulenger, 1889), new comb.; Dendropso-phus oliveirai (Bokermann, 1963), newcomb.; Dendropsophus phlebodes (Stejneger,1906), new comb.; Dendropsophus pseudom-eridianus (Cruz et al., 2000), new comb.;Dendropsophus rhea (Napoli and Caramas-chi, 1999), new comb.; Dendropsophus rho-dopeplus (Gunther, 1858), new comb.; Den-dropsophus robertmertensi (Taylor, 1937),new comb.; Dendropsophus rubicundulus(Reinhardt and Lutken, ‘‘1861’’ [1862]), newcomb.; Dendropsophus sanborni (Schmidt,1944), new comb.; Dendropsophus sartori(Smith, 1951), new comb.; Dendropsophusstuderae (Carvalho e Silva, Carvalho e Silva,and Izecksohn, 2003), new comb.; Dendrop-sophus tritaeniatus (Bokermann, 1965), newcomb.; Dendropsophus walfordi (Boker-mann, 1962), new comb.; Dendropsophuswerneri (Cochran, 1952), new comb.

Dendropsophus minimus Group

DIAGNOSIS: No synapomorphy is knownfor this group.

COMMENTS: We included a single speciesof this group in the analisis, and as such wedid not test its monophyly and we are notaware of any evidence supporting it. Follow-ing Duellman (1982), we continue to recog-nize it pending a rigorous test of its mono-phyly.

CONTENTS: Four species. Dendropsophusaperomeus (Duellman, 1982), new comb.;Dendropsophus minimus (Ahl, 1933), newcomb.; Dendropsophus miyatai (Vigle andGoberdhan-Vigle, 1990), new comb.; Den-dropsophus riveroi (Cochran and Goin,1970), new comb.

Dendropsophus minutus Group

DIAGNOSIS: No synapomorphy is knownfor this group

COMMENTS: We included a single speciesof this group in the analysis, and as such we

Page 93: systematic review of the frog family hylidae, with special reference to ...

2005 93FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

did not test its monophyly. Following Mar-tins and Cardoso (1987), we continue to rec-ognize the species group pending a rigoroustest of its monophyly. Considering similari-ties between Hyla minuta and H. limai (Had-dad, personal obs.), we tentatively includethe latter in the group.

CONTENTS: Four species. Dendropsophusdelarivai (Kohler and Lotters, 2001), newcomb.; Dendropsophus limai (Bokermann,1962), new comb.; Dendropsophus minutus(Peters, 1872), new comb.; Dendropsophusxapuriensis (Martins and Cardoso, 1987),new comb.

Dendropsophus parviceps Group

DIAGNOSIS: This species group is diag-nosed by 27 transformations in nuclear andmitochondrial protein and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. We are not awareof any morphological synapomorphy sup-porting the monophyly of this group.

COMMENTS: We expressed our scepticismregarding the monophyly of this group, ascurrently defined, but found no evidence toreject monophyly. We recognize the grouppending a rigorous test of its monophyly.

CONTENTS: Fifteen species. Dendropso-phus allenorum (Duellman and Trueb, 1989),new comb.; Dendropsophus bokermanni(Goin, 1960), new comb.; Dendropsophusbrevifrons (Duellman and Crump, 1974),new comb.; Dendropsophus gaucheri (Les-cure and Marty, 2001), new comb.; Den-dropsophus giesleri (Mertens, 1950), newcomb.; Dendropsophus grandisonae (Goin,1966), new comb.; Dendropsophus koechlini(Duellman and Trueb, 1989), new comb.;Dendropsophus luteoocellatus (Roux, 1927),new comb.; Dendropsophus microps (Peters,1872), new comb.; Dendropsophus parviceps(Boulenger, 1882), new comb.; Dendropso-phus pauiniensis (Heyer, 1977), new comb.;Dendropsophus ruschii (Weygoldt and Peix-oto, 1987), new comb.; Dendropsophusschubarti (Bokermann, 1963), new comb.;Dendropsophus subocularis (Dunn, 1934),new comb.; Dendropsophus timbeba (Mar-tins and Cardoso, 1987), new comb.

Species of Dendropsophus Unassigned toGroup

There are several species of Dendropso-phus that have not been associated with anygroup. These are: Dendropsophus amicorum(Mijares-Urrutia, 1998), new comb.; Den-dropsophus battersbyi (Rivero, 1961), newcomb.; Dendropsophus haraldschultzi (Bok-ermann, 1962), new comb.; Dendropsophusstingi (Kaplan, 1994), new comb.; Dendrop-sophus tintinnabulum (Melin, 1941), newcomb.; Dendropsophus yaracuyanus (Mija-res-Urrutia and Rivero, 2000), new comb.

Lysapsus Cope, 1862

TYPE SPECIES: Lysapsus limellum Cope,1862, by monotypy.

Podonectes Steindachner, 1864. Type species: Po-donectes palmatus Fitzinger, 1864 (5 Lysapsuslimellum Cope, 1862), by monotypy.

DIAGNOSIS: This genus is diagnosed by 47transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these transformations.A possible morphological synapomorphy ofthis genus is the near absence of subacroso-mal cone in the sperm (Garda et al., 2004).

CONTENTS: Three species. Lysapsus carayaGallardo, 1964; Lysapsus laevis Parker,1935; Lysapsus limellum Cope, 1862.

Pseudis Wagler, 1830

TYPE SPECIES: Rana paradoxa Linnaeus,1758, by monotypy.

Batrachychthys Pizarro, 1876. Type species: notdesignated; based on larvae of Pseudis para-doxa (Linnaeus, 1758), according to Caramas-chi and Cruz (1998).

DIAGNOSIS: This genus is diagnosed by 28transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these transformations.We are not aware of any morphological syn-apomorphy for this genus.

COMMENTS: Garda et al. (2004) distin-guished Lysapsus and Pseudis on the basisof the ultrastructure of the sperm acrosomecomplex, but they stated that the morphologypresent in Lysapsus (near absence of suba-crosomal cone) is the apomorphic condition,

Page 94: systematic review of the frog family hylidae, with special reference to ...

94 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

with only the plesiomorphic condition beingfound in Pseudis and therefore not providingevidence of its monophyly.

CONTENTS: Six species. Pseudis bolbod-actyla A. Lutz, 1925; Pseudis cardosoiKwet, 2000; Pseudis fusca Garman, 1883;Pseudis minuta Gunther, 1858; Pseudis par-adoxa (Linnaeus, 1758); Pseudis tocantinsCaramaschi and Cruz, 1998.

Scarthyla Duellman and de Sa, 1988

TYPE SPECIES: Scarthyla ostinodactyla (5Hyla goinorum Bokermann, 1962), by orig-inal designation.

DIAGNOSIS: Molecular autapomorphies in-clude 227 transformations in nuclear and mi-tochondrial protein and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular autapomorphies. Apparent morpho-logical autapomorphies include the ability ofits tadpoles to propel themselves out of thewater, elongated tadpoles (Duellman andWiens, 1992) and the presence of a labialarm on the oral disc (McDiarmid and Altig,1990).

COMMENTS: The oral structure known asthe labial arm has also been reported for theScinax rostratus group (McDiarmid and Al-tig, 1990; Faivovich, 2002) and for four oth-er species of Scinax (Heyer et al., 1990; Al-ves and Carvalho e Silva, 2002; Alves et al.,2004). Suarez Mayorga and Lynch (2001b)recently reported a similar structure in thelarvae of Sphaenorhynchus dorisae, addingthat as yet unpublished studies suggest thatthe structures present in Scinax, Scarthyla,and Sphaenorhynchus are not homologs.

CONTENTS: Monotypic. Scarthyla goino-rum (Bokermann, 1962)

Scinax Wagler, 1830

TYPE SPECIES: Hyla aurata Wied-Neuwied1821, by subsequent designation of Stejneger(1907).

Ololygon Fitzinger, 1843. Type species: Hyla stri-gilata, Spix, 1824, by original designation.

Garbeana Miranda-Ribeiro, 1926. Type species:Garbeana garbei Miranda-Ribeiro, 1926, bymonotypy.

DIAGNOSIS: This genus is diagnosed by 83transformations in nuclear and mitochondrial

protein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. Morphological synapomorphiesinclude webbing between toes I and II thatdoes not extend beyond the subarticular tu-bercle of toe I, ability to bend finger I andtoe I, origin of the m. pectoralis abdominalisthrough well-defined tendons, and m. pecto-ralis abdominalis overlapping m. obliquusexternus (da Silva, 1998; Faivovich, 2002).

COMMENTS: Besides the first five characterstates mentioned above, Faivovich (2002)considered as synapomorphies of Scinax theround or poorly expanded sacral diapophy-ses, the occluded frontoparietal fontanelle,single origin of the m. extensor brevis su-perficialis digiti III from the ulnare, and thepresence of the m. lumbricalis longus digitiV that originates from the lateral corner ofthe aponeurosis palmaris. As mentioned ear-lier, the position of Scinax within Hylinaesuggests that outgroups employed by Faivo-vich (2002) are phylogenetically distant fromScinax. Because of this, we contend that thetaxonomic distribution of the aforementionedcharacter states needs to be reassessed, atleast among the other Dendropsophini, be-fore considering them synapomorphies ofScinax. For example, it seems evident thatthe round or poorly expanded sacral diapoph-yses are not a synapomorphy of Scinax, butof a more inclusive group (also present, atleast, in Scarthyla and Sphaenorhynchus;Duellman and Wiens, 1992), whose limitsare still unclear. In the same way, the absenceof the lingual papillae, as mentioned earlier,might be a synapomorphy of Dendropsophi-ni. The truncated discs of the digits wereconsidered a synapomorphy of Scinax byDuellman and Wiens (1992) and Faivovich(2002). The phylogenetic position of the sin-gle exemplar of the H. uruguaya group in theanalysis, as sister group of the S. ruber clade,complicates this interpretation. Discs in thetwo species of the group, H. uruguaya andH. pinima, are proportionally reduced in sizewith respect to most species of Scinax, can-not be considered truncated, and thereforedetermine an ambiguous optimization of thischaracter state.

Burton (2004) considered that m. flexorossis metatarsus IV with insertions on bothmetatarsi IV and V was a synapomorphy of

Page 95: systematic review of the frog family hylidae, with special reference to ...

2005 95FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Scinax. Because this character state is stillunknown in our two exemplars of the S. ca-tharinae clade, and in the exemplar of Hylauruguaya group, it optimizes ambiguously inour analysis; it is unclear if it is a synapo-morphy of Scinax or of a more exclusiveclade.

The Hyla uruguaya group is being includ-ed in Scinax to avoid rendering Scinax para-phyletic. Larvae of the two species of the H.uruguaya group share with members of theS. ruber clade some synapomorphies (theproctodeal tube not reaching the free marginof the lower fin, and the presence of kerati-nized spurs behind the lower jaw sheath andover the infralabial papillae [Kolenc et al.,‘‘2003’’ [2004]]). However, preliminary ob-servations on H. uruguaya indicate thatadults show at least one conflicting characterstate, the m. depressor mandibulae withoutan origin from the dorsal fascia at the levelof the m. dorsalis scapulae (Faivovich, per-sonal obs.)—a character state that optimizedas a synapomorphy of the S. catharinae cladein the analysis of Faivovich (2002). Thiscontroversy may be resolved when all theconflicting evidence is analyzed, including amuch denser sampling of Scinax. In themeantime, since the molecular evidence in-dicates affinities with the S. ruber clade, wetentatively include the two species of the H.uruguaya group in this clade, where they arerecognized as a separate group.

CONTENTS: Eighty-eight species placed intwo major clades.

Scinax catharinae Clade

DIAGNOSIS: This clade is diagnosed by 90transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these molecular syn-apomorphies. Morphological synapomor-phies suggested for this clade by Faivovich(2002) are absence of the anterior process ofthe suprascapula, internal vocal sac, distal di-vision of the middle branch of the m. exten-sor digitorum comunis longus, and insertionof the medial side of this branch on the ten-don of the m. extensor brevis medius digitiIV.

COMMENTS: Regardless of problems im-posed by the present results to interpretation

of the possible synapomorphies of Scinax re-sulting from Faivovich’s (2002) analysis, thesparse available knowledge on the taxonomicdistribution of the transformations supportingthe monophyly of the very distinctive S. ca-tharinae clade suggests that most of themstill hold in the present analysis. An excep-tion is the m. depressor mandibulae withoutan origin from the dorsal fascia at the levelof the m. dorsalis scapulae, which also oc-curs in Hyla uruguaya, rendering its opti-mization ambiguous in our analysis.

Scinax catharinae Group

DIAGNOSIS: Because we only included twospecies of the Scinax catharinae group as ex-emplars of the S. catharinae clade, the mo-lecular transformations that diagnose thisgroup are redundant with those diagnosingthe S. catharinae clade. Presumed morpho-logical synapomorphies of this group includethe posterior part of the cricoid ring exten-sively elongated and curved, the partial min-eralization of intercalary elements betweenultimate and penultimate phalanges, and thelaterodistal origin of the m. extensor brevisdistalis digiti III (Faivovich, 2002).

CONTENTS: Twenty-seven species. Scinaxagilis (Cruz and Peixoto, 1983); Scinax al-bicans (Bokermann, 1967); Scinax angrensis(B. Lutz, 1973); Scinax argyreornatus (Mi-randa-Ribeiro, 1926); Scinax ariadne (Bok-ermann, 1967); Scinax aromothyella Faivov-ich, 2005; Scinax berthae (Barrio, 1962);Scinax brieni (De Witte, 1927); Scinax can-astrensis (Cardoso and Haddad, 1982); Sci-nax carnevalli (Caramaschi and Kisteumach-er, 1989); Scinax catharinae (Boulenger,1888); Scinax centralis (Pombal and Bastos,1996); Scinax flavoguttatus (A. Lutz and B.Lutz, 1939); Scinax heyeri (Peixoto andWeygoldt, 1986); Scinax hiemalis (Haddadand Pombal, 1987); Scinax humilis (B. Lutz,1954); Scinax jureia (Pombal and Gordo,1991); Scinax kautskyi (Carvalho e Silva andPeixoto, 1991); Scinax littoralis (Pombal andGordo, 1991); Scinax longilineus (B. Lutz,1968); Scinax luizotavioi (Caramaschi andKisteumacher, 1989); Scinax machadoi(Bokermann and Sazima, 1973); Scinax ob-triangulatus (B. Lutz, 1973); Scinax ranki(Andrade and Cardoso, 1987); Scinax rizi-

Page 96: systematic review of the frog family hylidae, with special reference to ...

96 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

bilis (Bokermann, 1964); Scinax strigilatus(Spix, 1824); and Scinax trapicheiroi (B.Lutz, 1954).

Scinax perpusillus Group

DIAGNOSIS: Presumed synapomorphies ofthis group are the oviposition in bromeliadsand the extreme reduction of webbing be-tween toes II and III (Peixoto, 1987; Faivov-ich, 2002).

COMMENTS: The monophyly of this groupwas not tested by Faivovich (2002) becauseonly one species of the group was availablefor his analysis, where it obtained as the sis-ter taxon of all exemplars of the S. cathari-nae clade. For these two reasons, we contin-ue recognizing this group until its monophy-ly is rigorously tested.

CONTENTS: Seven species. Scinax alcatraz(B. Lutz, 1973); Scinax arduous Peixoto,2002; Scinax atratus (Peixoto, 1989); Scinaxlittoreus (Peixoto, 1988); Scinax melloi(Peixoto, 1989); Scinax perpusillus (A. Lutzand B. Lutz, 1939); Scinax v-signatus (B.Lutz, 1968).

Scinax ruber Clade

DIAGNOSIS: This clade is supported by 53transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. A morphological synapomorphysuggested for this clade by Faivovich (2002)is the proctodeal tube positioned above themargin of the lower fin.

COMMENTS: Faivovich (2002) was skepti-cal about the monophyly of the S. ruberclade; however, the present analysis recoversit as monophyletic, with a considerable num-ber of transformations supporting its mono-phyly.

As in the case of several of the synapo-morphies suggested by Faivovich’s (2002)analysis for Scinax, we are unsure as towhether the suggested morphological syna-pomorphies are optimized identically in ouranalysis. In particular, we do not know thetaxonomic distribution within Dendropsophi-ni for two other synapomorphies proposedfor this clade (Faivovich, 2002): the aryte-noids with a dorsal prominence developedover the pharyngeal margin, and absence of

the lateral m. extensor brevis distalis digiti V(pes). Preliminary observation on the larvaeof some species of Sphaenorhynchus (Sphae-norhynchus bromelicola, S. orophilus, S.pauloalvini, and S. prasinus; Faivovich, per-sonal obs.) indicate that their proctodealtubes are attached to the free margin of thelower fin, similar to the S. catharinae clade,instead of having the characteristic positionseen in larvae of the S. ruber clade.

Scinax megapodius and S. trachythoraxare considered here to be junior synonyms ofS. fuscovarius for reasons discussed in ap-pendix 4. There are two species, Hyla dolloiand H. karenanneae, that upon examinationof their type series we consider to be speciesof Scinax (see appendix 4 for further com-ments on them).

CONTENTS: Fifty-six species. Eleven as-signed to two groups, 43 unassigned to anygroup.

Scinax rostratus Group

DIAGNOSIS: Putative morphological syna-pomorphies of this group include the juxta-posed inner margins of the vomers; overlapof the otic plate of the crista parotica due toa broad otic plate; nonfenestration of the car-tilaginous plate of the squamosal with theoblique cartilage; pointed tubercle on heel;absence of the m. extensor brevis distalisdigiti II; presence of m. extensor brevis dis-talis digiti I (pes); discontinuity of lateralmargins with the posterior portion of the oraldisc; third posterior labial tooth row placedon a labial arm; reduction of the third pos-terior labial tooth to one-quarter the lengthof the second row; absence of keratinizedspurs behind the lower jaw sheath; and head-down calling position (Faivovich, 2002).

CONTENTS: Nine species. Scinax boulen-geri (Cope, 1887); Scinax garbei (Miranda-Ribeiro, 1926); Scinax jolyi (Lescure andMarty, 2001); Scinax kennedyi (Pyburn,1973); Scinax nebulosus (Spix, 1824); Scinaxpedromedinae (Henle, 1991); Scinax probos-cideus (Brongersma, 1933); Scinax rostratus(Peters, 1870); Scinax sugillatus (Duellman,1973).

Scinax uruguayus Group

DIAGNOSIS: Putative morphological syna-pomorphies of this group include the bicol-

Page 97: systematic review of the frog family hylidae, with special reference to ...

2005 97FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

ored iris and the presence of two keratinizedand pigmented plates on the sides of the low-er jaw sheath (Kolenc et al., ‘‘2003’’ [2004]).

COMMENTS: The marginal papillae of theposterior margin of the oral disc being largerthan those of the lateral margins (Kolenc etal., ‘‘2003’’ [2004]) and the reduction in toewebbing could be other synapomorphies ofthe group.

CONTENTS: Two species. Scinax pinima(Bokermann and Sazima, 1973) new comb.;Scinax uruguayus (Schmidt, 1944) newcomb.

Species of the Scinax ruber Clade Unas-signed to a Species Group

We follow Faivovich (2002) in not rec-ognizing the former Scinax ruber and S.staufferi groups, as both were not monophy-letic on his analysis. We are considering allspecies formerly included in these groups asmembers of the S. ruber clade, although weconsider them as unassigned to any group.These species are Scinax acuminatus (Cope,1862); Scinax altae (Dunn, 1933); Scinax al-ter (B. Lutz, 1973); Scinax auratus (Wied-Neuwied, 1821); Scinax baumgardneri (Riv-ero, 1961); Scinax blairi (Fouquette and Py-burn, 1972); Scinax boesemani (Goin, 1966);Scinax caldarum (B. Lutz, 1968); Scinaxcardosoi (Carvalho e Silva and Peixoto,1991); Scinax castroviejoi De la Riva, 1993;Scinax chiquitanus (De la Riva, 1990); Sci-nax crospedospilus (A. Lutz, 1925); Scinaxcruentommus (Duellman, 1972); Scinax cur-icica Pugliese, Pombal, and Sazima, 2004;Scinax cuspidatus (A. Lutz, 1925); Scinaxdanae (Duellman, 1986); Scinax dolloi (Wer-ner, 1898) new comb.; Scinax duartei (B.Lutz, 1951); Scinax elaeochrous (Cope,1875); Scinax eurydice (Bokermann, 1964);Scinax exiguus (Duellman, 1986); Scinaxflavidus La Marca, 2004; Scinax funereus(Cope, 1874); Scinax fuscomarginatus (A.Lutz, 1925); Scinax fuscovarius (A. Lutz,1925); Scinax granulatus (Peters, 1871); Sci-nax hayii (Barbour, 1909); Scinax ictericusDuellman and Wiens, 1993; Scinax karen-anneae (Pyburn, 1992) comb. nov.; Scinaxlindsayi Pyburn, 1992; Scinax manriqueiBarrio-Amoros, Orellana, and Chacon, 2004;Scinax maracaya (Cardoso and Sazima,

1980); Scinax nasicus (Cope, 1862); Scinaxoreites Duellman and Wiens, 1993; Scinaxpachycrus (Miranda-Ribeiro, 1937); Scinaxparkeri (Gaige, 1926); Scinax perereca Pom-bal, Haddad, and Kasahara, 1995; Scinaxquinquefasciatus (Fowler, 1913); Scinax rub-er (Laurenti, 1768); Scinax similis (Cochran,1952); Scinax squalirostris (A. Lutz, 1925);Scinax staufferi (Cope, 1865); Scinax trili-neatus (Hoogmoed and Gorzula, 1977); Sci-nax wandae (Pyburn and Fouquette, 1971);Scinax x-signatus (Spix, 1824).

Sphaenorhynchus Tschudi, 1838

TYPE SPECIES: Hyla lactea Daudin, 1801,by original designation.

Dryomelictes Fitzinger, 1843. Type species: Hylalactea Daudin, 1802, by original designation.

Dryomelictes Cope, 1865. Type species: Hyla au-rantiaca Daudin, 1802, by original designation.Junior homonym of Dryomelictes Fitzinger,1843.

Hylopsis Werner, 1894. Type species: Hylopsisplatycephalus Werner, 1894, by monotypy.

Sphoenohyla Lutz and Lutz, 1938. Substitutename (explicit subgenus of Hyla) for Sphae-norhynchus thought erroneously to be preoc-cupied by Sphenorhynchus Lichtenstein, 1823.

DIAGNOSIS: This genus is diagnosed by157 transformations in nuclear and mito-chondrial protein and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular synapomorphies. Duellman andWiens (1992) proposed the following syna-pomorphies for Sphaenorhynchus: posteriorramus of pterygoid absent; zygomatic ramusof squamosal absent or reduced to a smallknob; pars facialis of maxilla and alary pro-cess of premaxilla reduced; postorbital pro-cess of maxilla reduced, not in contact withquadratojugal; neopalatine reduced to a sliveror absent; pars externa plectri entering tym-panic ring posteriorly (rather than dorsally);pars externa plectri round; hyale curved me-dially; coracoids and clavicle elongated; andprepollex ossified, bladelike. Other likelysynapomorphies include the differentiationof the m. intermandibularis into a small api-cal supplementary element, and the extremedevelopment of the m. interhyoideus (Tyler,1971).

COMMENTS: Duellman and Wiens (1992)

Page 98: systematic review of the frog family hylidae, with special reference to ...

98 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

considered that the transverse process of pre-sacral vertebra IV elongate, oriented poste-riorly is a synapomorphy of Sphaenorhyn-chus. The presence of this character state inXenohyla (Izecksohn, 1996) suggests that inthe context of our topology, its optimizationis ambiguous. There are also some larval fea-tures that could be considered synapomor-phies of at least some species of Sphaeno-rhynchus, such as the morphology and po-sition of the nostrils and the presence ofsome notably large marginal papillae (seeKenny, 1969; Bokermann, 1973; Cruz, 1973;Cruz and Peixoto, 1980; Suarez-Mayorgaand Lynch, 2001b). The presence of a whiteperitoneum in five species (S. carneus, S.lacteus, S. planicola, S. prasinus, and S. sur-dus; Haddad and Faivovich, personal obs.)may be another synapomorphy of this genus(with several instances of homoplasy withinHylinae). Observations on six species (S.carneus, S. dorisae, S. lacteus, S. planicola,S. prasinus, and S. surdus) suggest that theyare ant specialists (Duellman, 1978; Rodri-guez and Duellman, 1994; Parmalee, 1999;Haddad, personal obs.), another likely syna-pomorphy whose taxonomic distributionwithin the group deserves additional study.

CONTENTS: Eleven species. Sphaenorhyn-chus bromelicola Bokermann, 1966; Sphae-norhynchus carneus (Cope, 1868); Sphae-norhynchus dorisae (Goin, 1967); Sphaeno-rhynchus lacteus (Daudin, 1801); Sphaeno-rhynchus orophilus (A. Lutz and B. Lutz,1938); Sphaenorhynchus palustris Boker-mann, 1966; Sphaenorhynchus pauloalviniBokermann, 1973; Sphaenorhynchus plani-cola (A. Lutz and B. Lutz, 1938); Sphaeno-rhynchus platycephalus (Werner, 1894);Sphaenorhynchus prasinus Bokermann,1973; Sphaenorhynchus surdus (Cochran,1953).

Xenohyla Izecksohn, 1996

TYPE SPECIES: Hyla truncata Izecksohn,1959, by original designation.

DIAGNOSIS: For the purposes of this paper,we consider that the 128 transformations inmitochondrial protein and ribosomal genesautapomorphic of Xenohyla truncata are syn-apomorphies of this genus. See appendix 5for a complete list of these molecular syna-

pomorphies. Although species of Xenohylaare very distinctive, we are aware of onlythree putative morphological synapomor-phies: the retention in adults of the scars ofthe windows of forelimbs emergence (but seeComments below); the presence of a small,transverse process in the urostyle; and fru-givorous habits (reported for X. truncata byda Silva et al. [1989] and Izecksohn [1996];unknown in X. eugenioi).

COMMENTS: We included a single speciesof this genus in the analysis, and as such wedid not test its monophyly, but consider itvery likely on the basis of the evidence notedabove and its unique external aspect. Izeck-sohn (1996) and Caramaschi (1998) noticedthat adults of Xenohyla retain scars of thelarge windows of forelimb emergence thatare evident in recently metamorphosed indi-viduals. Each of these scars actually corre-sponds to a thick pectoral patch of glandsthat is macroscopically evident upon super-ficial dissection (Faivovich, personal obs.).

CONTENTS: Two species. Xenohyla eugen-ioi Caramaschi, 2001; Xenohyla truncata (Iz-ecksohn, 1959).

HYLINI RAFINESQUE, 1815

Hylarinia Rafinesque, 1815. Type genus: HylariaRafinesque, 1814 (an unjustified emendation ofHyla Laurenti, 1768).

Hylina Gray, 1825. Type genus: Hyla Laurenti,1768.

Dryophytae Fitzinger, 1843. Type genus: Dry-ophytes Fitzinger, 1843.

Acridina Mivart, 1869. Type genus: Acris Du-meril and Bibron, 1841.

Triprioninae Miranda-Ribeiro, 1926. Type genus:Triprion Cope, 1866.

DIAGNOSIS: This tribe is diagnosed by 107transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. The only known morphologicalsynapomorphy is the undivided tendon of them. flexor digitorum brevis superficialis (thereare several instances of homoplasy withinHylidae including at least Scinax, Scarthyla1 Pseudis, and a reversal within Hylini).

COMMENTS: The tribe Hylini is proposedfor the clade of Middle American/Holarctichylids. It includes Acris, Anotheca, Duell-manohyla, Exerodonta, Hyla, Pseudacris,

Page 99: systematic review of the frog family hylidae, with special reference to ...

2005 99FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Ptychohyla, Smilisca (including Pternohyla),Triprion, and six new genera, Bromeliohylanew gen., Charadrahyla new gen., Ecnom-iohyla new gen., Isthmohyla new gen., Me-gastomatohyla new gen., and Tlalocohylanew gen. Morescalchi (1973) recognized thetribe Hylini in which he included most gen-era currently placed in Hylinae. Subsequentauthors have not used Hylini in the sense thatMorescalchi (1973) used it.

Acris Dumeril and Bibron, 1841

TYPE SPECIES: Rana gryllus LeConte,1825, by subsequent designation of Fitzinger(1843).

DIAGNOSIS: This genus is diagnosed by138 transformations in nuclear and mito-chondrial proteins and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular synapomorphies. Other apparent syn-apomorphies include the differentiation ofthe m. intermandibularis into an apical sup-plementary element (Tyler, 1971), and dip-loid chromosome number of 22 (Bushnell etal., 1939; Cole, 1966; Duellman, 1970).

CONTENTS: Two species. Acris crepitansBaird, 1854; Acris gryllus (LeConte, 1825).

Anotheca Smith, 1939

TYPE SPECIES: Gastrotheca coronata Ste-jneger, 1911 (5 Hyla spinosa Steindachner,1864), by original designation.

DIAGNOSIS: This monotypic genus is di-agnosed by 219 transformations of nuclearand mitochondrial protein and ribosomalgenes. See appendix 5 for a complete list ofthese transformations. Morphological auta-pomorphies include the tendo superficialishallucis that tapers from an expanded cornerof the aponeurosis plantaris; with fibers ofthe m. transversus plantae distalis originatingon distal tarsal 2–3 inserting on the lateralside of the tendon (several of homoplasy, seeappendix 1); the unique skull ornamentationcomposed of sharp, dorsally pointed spinesin the margins of frontoparietal, maxilla, na-sal (including canthal ridge), and squamosal,and character states that result in its repro-ductive mode, including maternal provision-ing of trophic eggs to tadpoles (see Jungfer,1996).

CONTENTS: Monotypic. Anotheca spinosa(Steindachner, 1864).

Bromeliohyla, new genus

TYPE SPECIES: Hyla bromeliacia Schmidt,1933.

DIAGNOSIS: For the purposes of this paperwe consider that the 141 transformations innuclear and mitochondrial protein and ribo-somal genes autapomorphic of Bromeliohylabromeliacia are synapomorphies of this ge-nus. See appendix 5 for a complete list ofthese molecular synapomorphies. Possiblenonmolecular synapomorphies of this genusare the reproductive mode, where eggs arelaid in water accumulated in bromeliads(several instances of homoplasy, e.g., twospecies of Isthmohyla, Phyllodytes, somespecies Osteopilus, and the Scinax perpusil-lus group), and tadpoles with dorsoventrallyflattened bodies and elongated tails.

ETYMOLOGY: From Bromelia 1 Hyla, inreference to the bromeliad breeding habits ofits species. The gender is feminine.

COMMENTS: We included a single speciesof this genus, and as such we did not test itsmonophyly. We consider it likely based onthe evidence noted above.

CONTENTS: Two species. Bromeliohylabromeliacia (Schmidt, 1933), new comb.;Bromeliohyla dendroscarta (Taylor, 1940),new comb.

Charadrahyla, new genus

TYPE SPECIES: Hyla taeniopus Gunther,1901.

DIAGNOSIS: This genus is diagnosed by 56transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these molecular syn-apomorphies. We are not aware of any mor-phological synapomorphy supporting this ge-nus.

ETYMOLOGY: Derived from the Greek wordcharadra- (ravine) 1 Hyla. In reference tothe habits of these frogs. The gender is fem-inine.

COMMENTS: This new genus includes thespecies formerly placed in the Hyla taenio-pus group.

CONTENTS: Five species. Charadrahyla al-tipotens (Duellman, 1968), new comb.;

Page 100: systematic review of the frog family hylidae, with special reference to ...

100 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Charadrahyla chaneque (Duellman, 1961),new comb.; Charadrahyla nephila (Mendel-son and Campbell, 1999), new comb.; Char-adrahyla taeniopus (Gunther, 1901), newcomb.; Charadrahyla trux (Adler and Denis,1972), new comb.

Duellmanohyla Campbell and Smith, 1992

TYPE SPECIES: Hyla uranochroa Cope,1876, by original designation.

DIAGNOSIS: This genus is diagnosed by 48transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. Likely morphological synapo-morphies of this group are the red iris, thelabial stripe expanded below orbit, the lackof nuptial excrescences, the ventrally orient-ed funnel-shaped oral disc in larvae, labialtooth rows reduced in length, and absence oflateral processes on upper jaw sheath (Duell-man, 2001).

CONTENTS: Eight species. Duellmanohylachamulae (Duellman, 1961); Duellmanohylaignicolor (Duellman, 1961); Duellmanohylalythrodes (Savage, 1968); Duellmanohyla ru-fioculis (Taylor, 1952); Duellmanohyla sal-vavida (McCranie and Wilson, 1986); Duell-manohyla schmidtorum (Stuart, 1954);Duellmanohyla soralia (Wilson and Mc-Cranie, 1985); Duellmanohyla uranochroa(Cope, 1876).

Ecnomiohyla, new genus

TYPE SPECIES: Hypsiboas miliarius Cope,1886.

DIAGNOSIS: This genus is diagnosed by 37transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy supporting this ge-nus.

ETYMOLOGY: From the Greek, ecnomios,meaning marvelous, unusual; an obvious ref-erence to the incredible frogs of the Hylatuberculosa group. The gender is feminine.

COMMENTS: This new genus contains theHyla tuberculosa group, excluding H. den-drophasma, and including one species of theH. miotympanum group as well. Erecting anew genus for this clade is the only way of

being consistent with the new monophyletictaxonomy that is proposed for hylids. Al-though naming the former H. tuberculosagroup as a genus constitutes a testable claimof monophyly, we expect that it will ulti-mately be found to be two or three differentclades, with one of these being the onenamed here.

CONTENTS: Ten species. Ecnomiohylaechinata (Duellman, 1962), new comb.; Ec-nomiohyla fimbrimembra (Taylor, 1948), newcomb.; Ecnomiohyla miliaria (Cope, 1886),new comb.; Ecnomiohyla minera (Wilson,McCranie, and Williams, 1985), new comb.;Ecnomiohyla miotympanum (Cope, 1863),new comb.; Ecnomiohyla phantasmagoria(Dunn, 1943); Ecnomiohyla salvaje (Wilson,McCranie, and Williams, 1985), new comb.;Ecnomiohyla thysanota (Duellman, 1966),new comb.; Ecnomiohyla tuberculosa (Bou-lenger, 1882), new comb.; Ecnomiohyla va-lancifer (Firschein and Smith, 1956), newcomb.

Exerodonta Brocchi, 1879

TYPE SPECIES: Exerodonta sumichrastiBrocchi, 1879, by monotypy.

DIAGNOSIS: This genus is diagnosed by 80transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these molecular syn-apomorphies. We are not aware of any mor-phological synapomorphy supporting this ge-nus.

COMMENTS: Exerodonta is resurrected forthe species previously placed in the Hylasumichrasti group and a fragment of the for-mer H. miotympanum group as defined byDuellman (2001) that corresponds to the tra-ditionally recognized H. pinorum group(Duellman 1970). Although we did not in-clude the type species, E. sumichrasti, in theanalysis, but only H. chimalapa and H. xera,we consider that these two species and H.sumichrasti and H. smaragdina are so similarthat we are not hesitant to consider themclosely related. Although we are not awareof any synapomorphy supporting the mono-phyly of the former H. pinorum group(Duellman, 1970), and our results suggest itis paraphyletic with respect to the H. sumi-chrasti group, we are tentatively including

Page 101: systematic review of the frog family hylidae, with special reference to ...

2005 101FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

the other species associated with it, H. ab-divita, H. bivocata, H. catracha, and H.juanitae by Snyder (1972), Porras and Wil-son (1987), and Campbell and Duellman(2000), in this resurrected genus.

CONTENTS: Eleven species, four placed inone species group, seven unassigned togroup.

Exerodonta sumichrasti Group

DIAGNOSIS: This species group is diag-nosed by 76 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. Putative mor-phological synapomorphies of this group arethe massive nasals (Duellman, 1970) and, inthe species with a known tadpole, the en-larged larval oral disc (homoplastic with theformer Hyla mixomaculata group), and the3/6 to 7 labial tooth row formula (Canseco-Marquez et al., 2003; Duellman, 1970).

COMMENTS: The illustrations of the oraldiscs of Hyla smaragdina, H. sumichrasti(Duellman, 1970), and H. xera (Canseco-Marquez et al., 2003) show that they sharethe multiple interruption of the last posteriorlabial tooth row into shorter rows, possiblyanother synapomorphy.

CONTENTS: Four species. Exerodonta chi-malapa (Mendelson and Campbell, 1994),new comb.; Exerodonta smaragdina (Taylor,1940), new comb.; Exerodonta sumichrastiBrocchi, 1879; Exerodonta xera (Mendelsonand Campbell, 1994), new comb.

Species of Exerodonta Unassigned toGroup

Considering that in our analysis Hyla me-lanomma and H. perkinsi are a grade leadingto the E. sumichrasti group, we are not as-signing to any group these and the other spe-cies associated with the former Hyla pinorumgroup (Duellman, 1970; Snyder, 1972; Porrasand Wilson, 1987; Campbell and Duellman,2000). These species are: Exerodonta abdi-vita (Campbell and Duellman, 2000), newcomb.; Exerodonta bivocata (Duellman andHoyt, 1961), new comb.; Exerodonta catra-cha (Porras and Wilson, 1987), new comb.;Exerodonta juanitae (Snyder, 1972), newcomb.; Exerodonta melanomma (Taylor,

1940), new comb.; Exerodonta perkinsi(Campbell and Brodie, 1992), new comb.;Exerodonta pinorum (Taylor, 1937), newcomb.

Hyla Laurenti, 1768

TYPE SPECIES: Hyla viridis Laurenti, 1768(5 Rana arborea Linnaeus, 1758), by sub-sequent designation of Stejneger (1907).

Calamita Schneider, 1799. Type species: Rana ar-borea Linnaeus, 1758, by subsequent designa-tion of Stejneger (1907).

Hylaria Rafinesque, 1814. Unjustified emendationfor Hyla.

Hyas Wagler, 1830. Type species: Rana arboreaLinnaeus, 1758, by monotypy. Junior homonymof Hyas Leach, 1815.

Dendrohyas Wagler, 1830. Substitute name forHyas Wagler, 1830.

Dryophytes Fitzinger, 1843. Type species: Hylaversicolor LeConte, 1825, by original designa-tion.

Epedaphus Cope, 1885. Type species: Hyla gra-tiosa LeConte, 1856, by monotypy.

DIAGNOSIS: This genus is diagnosed by 25transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy for the genus.

COMMENTS: Hyla is restricted to all speciespreviously placed in the H. arborea, H. ci-nerea, H. eximia, and H. versicolor groups,which are redefined herein.

CONTENTS: Thirty-two species, with 31placed in four species groups and one speciesunassigned to group.

Hyla arborea Group

DIAGNOSIS: This species group is diag-nosed by 37 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. We are not awareof any morphological synapomorphy sup-porting this group.

COMMENTS: The contents of the Hyla ar-borea group are restricted to avoid its para-phyly. The inclusion of the species that werenot included in the present analysis and donot show the NOR in chromosome 6 is ten-tative, because no evidence, other than the

Page 102: systematic review of the frog family hylidae, with special reference to ...

102 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

molecular data presented here, is known tosupport its monophyly.

CONTENTS: Fourteen species. Hyla annec-tans (Jerdon, 1870); Hyla arborea (Linnaeus,1758); Hyla chinensis Gunther, 1858; Hylahallowellii Thomson, 1912; Hyla immacula-ta Boettger, 1888; Hyla intermedia Boulen-ger, 1882; Hyla meridionalis Boettger, 1874;Hyla sanchiangensis Pope, 1929; Hyla sarda(De Betta, 1853); Hyla savignyi Audouin,1827; Hyla simplex Boettger, 1901; Hylatsinlingensis Liu and Hu, 1966; Hyla ussur-iensis Nikolsky, 1918; Hyla zhaopingensisTang and Zhang, 1984.

Hyla cinerea Group

DIAGNOSIS: This species group is diag-nosed by 35 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. We are not awareof any morphological synapomorphy sup-porting this group.

COMMENTS: Hyla femoralis is excludedfrom the H. cinerea group to avoid the par-aphyly of the group.

CONTENTS: Three species. Hyla cinerea(Schneider, 1799); Hyla gratiosa LeConte,‘‘1856’’ [1857]; Hyla squirella Bosc, 1800.

Hyla eximia Group

DIAGNOSIS: This species group is diag-nosed by 17 transformations in mitochondri-al proteins and ribosomal genes. See appen-dix 5 for a complete list of these molecularsynapomorphies. We are not aware of anymorphological synapomorphy supportingthis group.

COMMENTS: The inclusion of Hyla suweo-nensis is tentative, based on the fact that An-derson (1991) reported a NOR in chromo-some 6, a character state shared by H. fe-moralis and the H. eximia and H. versicolorgroups.

CONTENTS: Eleven species. Hyla anderson-ii Baird, 1854; Hyla arboricola Taylor, 1941;Hyla arenicolor Cope, 1886; Hyla bocourti(Mocquard, 1889); Hyla euphorbiacea Gun-ther, 1859; Hyla eximia Baird, 1854; Hylajaponica Gunther, ‘‘1858’’ [1859]; Hyla pli-cata Brocchi, 1877; Hyla suweonensis Ku-

ramoto, 1980; Hyla walkeri Stuart, 1954;Hyla wrightorum Taylor, 1939.

Hyla versicolor Group

DIAGNOSIS: This species group is diag-nosed by 51 transformations in nuclear andmitochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesemolecular synapomorphies. We are not awareof any morphological synapomorphy sup-porting this group.

COMMENTS: Hyla andersonii is transferredto the H. eximia group to avoid the paraphylyof the H. versicolor group.

CONTENTS: Three species. Hyla avivocaViosca, 1928; Hyla chrysoscelis Cope, 1880;Hyla versicolor LeConte, 1825.

Species of Hyla Unassigned to Group

Considering that relationships of Hyla fe-moralis Bosc, 1800 with the H. versicolorand H. eximia groups are unresolved, we pre-fer to keep this species unassigned as a morestable alternative to merging the H. versicol-or and the H. eximia groups into a singlegroup.

Isthmohyla, new genus

TYPE SPECIES: Hyla pseudopuma Gunther,1901.

DIAGNOSIS: This genus is diagnosed by 42transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy for the genus.

ETYMOLOGY: From Isthmo, Greek, in ref-erence to the mostly isthmian distribution ofthese frogs (the only exception is Hyla in-solita) 1 Hyla. The gender is feminine.

COMMENTS: This new genus includes allspecies of the Hyla pseudopuma and H. pic-tipes groups, as defined by Duellman (2001),with the exception of H. thorectes, which istransferred to Plectrohyla. Our taxon sam-pling of the relevant species groups was toosparse to result in a test of their respectivemonophyly. We tentatively recognize thesespecies groups as reviewed by Duellman(2001), with the exception that H. thorectesis excluded from the former H. pictipesgroup and not included in Isthmohyla.

Page 103: systematic review of the frog family hylidae, with special reference to ...

2005 103FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

CONTENTS: Fourteen species placed in twospecies groups.

Isthmohyla pictipes Group

DIAGNOSIS: We are not aware of any syn-apomorphy supporting the monophyly of thisgroup.

COMMENTS: We included a single exemplarof this group, and as such we did not test itsmonophyly. It is being tentatively recognizedfollowing Duellman (2001) until a rigoroustest is performed. This species group isformed by the former Hyla lancasteri, H.pictipes, H. rivularis, and H. zeteki groups(Duellman, 1970, 2001). The monophyly ofthe former H. zeteki group does not seem tobe controversial, as its two species sharemassive temporal musculature, bromeliaddwelling larvae, a terminal oral disc, and alabial tooth row formula of 1/1. The mono-phyly of the group composed of the formerH. rivularis and H. pictipes groups (as de-fined by Duellman, 1970) is supported by thepresence of an enlarged oral disc (Duellman,2001) with a broad band of conic submar-ginal papillae on the posterior part of thedisc, about three rows on the anterior part,and an M-shaped upper jaw sheath27 (Fai-vovich, personal obs.; see also illustrations inDuellman, 2001). The monophyly of the for-mer H. lancasteri group seems to be sup-ported by the presence of granular dorsalskin (Duellman, 2001; known homoplasticinstance in H. debilis), a short snout, and thepresence of dark ventral pigmentation (Wil-son et al., 1994b, known homoplastic in-stance in H. thorectes.)

CONTENTS: Ten species. Isthmohyla calyp-sa (Lips, 1996), new comb.; Isthmohyla de-bilis (Taylor, 1952), new comb.; Isthmohylainsolita (McCranie, Wilson, and Williams,1993), new comb.; Isthmohyla lancasteri(Barbour, 1928), new comb.; Isthmohyla pi-cadoi (Dunn, 1937), new comb.; Isthmohylapictipes (Cope, 1876), new comb.; Isthmo-hyla rivularis (Taylor, 1952), new comb.;Isthmohyla tica (Starret, 1966), new comb.;Isthmohyla xanthosticta (Duellman, 1968),

27 The description and illustrations of the tadpole ofHyla debilis by Duellman (1970) do not show thesecharacter states.

new comb.; Isthmohyla zeteki (Gaige, 1929),new comb.

Isthmohyla pseudopuma Group

DIAGNOSIS: We are not aware of any syn-apomorphy supporting the monophyly of thisgroup.

COMMENTS: We included a single exemplarof this group, and as such we did not test itsmonophyly. It is being tentatively recognizedfollowing Duellman (2001) until a rigoroustest is performed.

CONTENTS: Four species. Isthmohyla an-gustilineata (Taylor, 1952), new comb.; Isth-mohyla graceae (Myers and Duellman,1982), new comb.; Isthmohyla infucata(Duellman, 1968), new comb.; Isthmohylapseudopuma (Gunther, 1901), new comb.

Megastomatohyla, new genus

TYPE SPECIES: Hyla mixe Duellman, 1965.DIAGNOSIS: For the purposes of this paper,

we consider that the 209 transformations innuclear and mitochondrial protein and ribo-somal genes autapomorphic of Hyla mixe aresynapomorphies of this genus. See appendix5 for a complete list of these molecular syn-apomorphies. A possible morphological syn-apomorphy of this genus is the greatly en-larged oral disc of the known larvae bearing7–10 anterior rows and 10–11 posteriorrows.

ETYMOLOGY: From the Greek, mega, large,plus the stem of the genitive stomatos,mouth, in reference to the enlarged oral discof the larvae 1 Hyla. The gender is feminine.

COMMENTS: We included a single speciesof this genus, and as such we did not test itsmonophyly, but consider it very likely on thebasis of the evidence noted above. As men-tioned earlier, the sequenced sample comesfrom a tadpole that was assigned to the Hylamixomaculata group based on the enlargedoral disc and the labial tooth row formulaand tentatively assigned to H. mixe for beingthe only species of the group known fromthe region where it was collected. Consider-ing the uncertainty in its determination, itsposition in the tree should be viewed cau-tiously. This is not a situation we feel mostcomfortable with, but for a matter of beingconsistent with the general approach of this

Page 104: systematic review of the frog family hylidae, with special reference to ...

104 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

contribution, we consider that it is better todescribe a new genus for the H. mixomacu-lata group than to leave it as incerta sedis.Although we did not test the monophyly ofthe group, as stated earlier, we consider itbased on the morphological synapomorphyfor larvae mentioned above. Another possi-ble synapomorphy of this group could be thelack of vocal slits (Duellman, 1970), but thisis contingent on the internal relationships ofthe nearby Charadrahyla; C. chaneque is theonly species of that genus known to lack vo-cal slits (Duellman, 2001). If future studiesshow it to be the sister group of the remain-ing species of Charadrahyla, it could renderthe optimization of the lack of vocal slits asambiguous for both Charadrahyla and Me-gastomatohyla. Males of species included inMegastomatohyla lack nuptial excrescenceson the thumb (Duellman, 1970). The polarityof this character state is unclear because italso occurs in Charadrahyla altipotens andin Hyla godmani and H. loquax (Duellman,1970).

CONTENTS: Four species. Megastomatohylamixe (Duellman, 1965), new comb.; Megas-tomatohyla mixomaculata (Taylor, 1950),new comb.; Megastomatohyla nubicola(Duellman, 1964), new comb.; Megastoma-tohyla pellita (Duellman, 1968), new comb.

Plectrohyla Brocchi, 1877

TYPE SPECIES: Plectrohyla guatemalensisBrocchi, 1877, by original designation.

Cauphias Brocchi, 1877. Replacement name forPlectrohyla Brocchi, 1877.

DIAGNOSIS: This genus is supported by 43transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy supporting this ge-nus as redefined here.

COMMENTS: We are including in Plectro-hyla all species formerly placed in the Hylabistincta group and some of the members ofthe former H. miotympanum (H. cyclada andH. arborescandens) and H. pictipes (H. tho-rectes) groups. H. thorectes is being tenta-tively included because a still undescribedspecies, very similar to H. thorectes (Hylasp. 5) is nested within this clade. Hyla ha-

zelae is tentatively included because of itssimilarities with H. thorectes. Technicallyour results are certainly compatible with therecognition of a separate genus for the mem-bers of the H. bistincta group and the fewspecies from other groups associated withthem. However, we are particularly con-cerned that the present, clean separation be-tween Plectrohyla and these exemplars prob-ably will not hold when more species of thetwo clades, particularly from the H. bistinctagroup, are added. The facts that no apparentmorphological synapomorphies are knownfor the H. bistincta group and that some au-thors raised doubts regarding the limits be-tween it and Plectrohyla support the conser-vative stance of including all these species inPlectrohyla. We preserve a Plectrohyla gua-temalensis group for all the species of Plec-trohyla as defined in the past and tentativelyrecognize a group that contains all membersof the H. bistincta group plus the species ofother groups shown to be related with it inthis analysis.

The reasons why we are not consideringsome of the characters states shared by Plec-trohyla and the Hyla bistincta group thatwere advanced by Duellman (2001) as syn-apomorphies of the redefined Plectrohylawere discussed earlier in this paper (p. 68).The only character state that seems to be in-clusive of Plectrohyla and the H. bistinctagroup is the long medial ramus of the pter-ygoid in contact with the otic capsule. How-ever, both H. arborescandens and H. cycladawere reported by Duellman (2001) to have ashort medial ramus that does not contact theprootic. In a more densely sampled context,this character state could probably be inter-preted as a reversal; however, in the presentcontext it optimized ambiguously, so we donot consider it a morphological synapomor-phy of the redefined Plectrohyla.

CONTENTS: Thirty-nine species placed intwo species groups.

Plectrohyla bistincta Group

DIAGNOSIS: Exemplars of this speciesgroup in our analysis are diagnosed by 16transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these transformations.

Page 105: systematic review of the frog family hylidae, with special reference to ...

2005 105FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

We are not aware of any morphological syn-apomorphy supporting this group.

CONTENTS: Twenty-one species. Plectro-hyla ameibothalame (Canseco-Marquez,Mendelson, and Gutierrez-Mayen et al.,2002), new comb.; Plectrohyla arborescan-dens (Taylor, ‘‘1938’’[1939]), new comb.;Plectrohyla bistincta (Cope, 1877), newcomb.; Plectrohyla calthula (Ustach, Men-delson, McDiarmid, and Campbell, 2000),new comb.; Plectrohyla calvicollina (Toal,1994), new comb.; Plectrohyla celata (Toaland Mendelson, 1995), new comb.; Plectro-hyla cembra (Caldwell, 1974), new comb.;Plectrohyla charadricola (Duellman, 1964),new comb.; Plectrohyla chryses (Adler,1965), new comb.; Plectrohyla crassa (Broc-chi, 1877), new comb.; Plectrohyla cyanom-ma (Caldwell, 1974), new comb.; Plectro-hyla cyclada (Campbell and Duellman,2000) new comb.; Plectrohyla hazelae (Tay-lor, 1940), new comb.; Plectrohyla labedac-tyla (Mendelson and Toal, 1996), new comb.;Plectrohyla mykter (Adler and Dennis,1972), new comb.; Plectrohyla pachyderma,(Taylor, 1942), new comb.; Plectrohyla pen-theter (Adler, 1965), new comb.; Plectrohylapsarosema (Campbell and Duellman, 2000),new comb.; Plectrohyla robertsorum (Taylor,1940), new comb.; Plectrohyla sabrina(Caldwell, 1974), new comb.; Plectrohylasiopela, (Duellman, 1968), new comb.; Plec-trohyla thorectes (Adler, 1965), new comb.

Plectrohyla guatemalensis Group

DIAGNOSIS: This group is diagnosed by 34transformations in nuclear and mitochondrialproteins and ribosomal genes. See appendix5 for a complete list of these transformations.Possible morphological synapomorphies ofthis species group are bifurcate alary processof the premaxilla; sphenethmoid with ante-rior part ossified; frontoparietals abbutingposteriorly, exposing only small part of thefrontoparietal fontanelle; humerus havingwell-developed flanges; hypertrophied fore-arm; prepollex enlarged and ossified in bothsexes; prepollex truncate; and absence of lat-eral labial folds in larvae (Duellman andCampbell, 1992; Duellman, 2001).

CONTENTS: Eighteen species. Plectrohylaacanthodes Duellman and Campbell, 1992;

Plectrohyla avia Stuart, 1952; Plectrohylachrysopleura Wilson, McCranie, and Cruz-Dıaz, 1994; Plectrohyla dasypus McCranieand Wilson, 1981; Plectrohyla exquisitiaMcCranie and Wilson, 1998; Plectrohylaglandulosa (Boulenger, 1883); Plectrohylaguatemalensis Brocchi, 1877; Plectrohylahartwegi Duellman, 1968; Plectrohyla ixilStuart, 1942; Plectrohyla lacertosa Bumhan-zen and Smith, 1954; Plectrohyla matudaiHartweg, 1941; Plectrohyla pokomchi Duell-man and Campbell, 1984; Plectrohyla psi-loderma McCranie and Wilson, 1992; Plec-trohyla pycnochila Rabb, 1959; Plectrohylaquecchi Stuart, 1942; Plectrohyla sagorumHartweg, 1941; Plectrohyla tecunumaniDuellman and Campbell, 1984; Plectrohylateuchestes Duellman and Campbell, 1992.

Pseudacris Fitzinger, 1843

TYPE SPECIES: Rana nigrita LeConte,1825, by monotypy.

Chorophilus Baird, 1854. Type species: Rana ni-grita LeConte, 1825, by original designation.

Helocaetes Baird, 1854. Type species: Hyla tris-eriata Wied-Neuwied, 1839, by subsequentdesignation of Schmidt (1953).

Hyliola Mocquard, 1899. Type species: Hyla re-gilla Baird and Girard, 1852, by subsequentdesignation of Stejneger (1907).

Limnaoedus Mittleman and List, 1953. Type spe-cies: Hyla ocularis Bosc and Daudin, 1801, byoriginal designation.

Parapseudacris Hardy and Borrough, 1986. Typespecies: Hyla crucifer Wied-Neuwied, 1838, byoriginal designation.

DIAGNOSIS: This genus is diagnosed by 37transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. The m. transversus metatarsus IIbroad, occupying the entire length of meta-tarsus II optimizes in this analysis as a mor-phological synapomorphy of this genus.

CONTENTS: Fourteen species placed in fourclades.

Pseudacris crucifer Clade

DIAGNOSIS: This clade is diagnosed by mo-lecular data presented by Moriarty and Can-natella (2004).

CONTENTS: Two species. Pseudacris cru-

Page 106: systematic review of the frog family hylidae, with special reference to ...

106 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

cifer (Wied-Neuwied, 1838); Pseudacrisocularis (Bosc and Daudin, 1801).

Pseudacris ornata Clade

DIAGNOSIS: This clade is diagnosed by mo-lecular data presented by Moriarty and Can-natella (2004).

CONTENTS: Three species. Pseudacris illi-noensis Smith, 1951; Pseudacris ornata(Holbrook, 1836); Pseudacris streckeri A.A.Wright and A.H. Wright, 1933.

Pseudacris nigrita Clade

DIAGNOSIS: This clade is diagnosed by mo-lecular data presented by Moriarty and Can-natella (2004).

COMMENTS: According to Moriarty andCannatella (2004), this clade contains a moreexclusive clade that contains all species butP. brimleyi and P. brachyphona.

CONTENTS: Seven species. Pseudacris bra-chyphona (Cope, 1889); Pseudacris brimleyiBrandt and Walker, 1933; Pseudacris clarkii(Baird, 1854); Pseudacris feriarum (Baird,1854); Pseudacris maculata (Agassiz, 1850);Pseudacris nigrita (LeConte, 1825); Pseu-dacris triseriata (Wied-Neuwied, 1838).

Pseudacris regilla Clade

DIAGNOSIS: This clade is diagnosed by mo-lecular data presented by Moriarty and Can-natella (2004).

CONTENTS: Two species. Pseudacris ca-daverina (Cope, 1866); Pseudacris regilla(Baird and Girard, 1852).

Ptychohyla Taylor, 1944

TYPE SPECIES: Ptychohyla adipoventrisTaylor, 1944 (5 Hyla leonhardschultzei Ahl,1934), by original designation.

DIAGNOSIS: This genus is diagnosed by 11transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. An apparent morphological syn-apomorphy of this group is the well-devel-oped lingual flange of the pars palatina ofpremaxillar (Campbell and Smith, 1992).

COMMENTS: To avoid paraphyly, we are in-cluding Hyla dendrophasma in Ptychohyla.As mentioned earlier in the discussion, other

synapomorphies of Ptychohyla proposed byCampbell and Smith (1992) and Duellman(2001) are also present in some species of itssister taxon (Bromeliohyla 1 Duellmanohy-la), so we do not recognize them as syna-pomorphies until a phylogenetic analysis in-cluding that evidence is performed. Knownmales of the exemplars of Ptychohyla in-cluded in the analysis share the presence ofenlarged individual nuptial spines and hy-pertrophied ventrolateral glands (Duellman,2001), as do males of P. macrotympanumand P. panchoi. Discovery of males of H.dendrophasma will confirm whether thischaracter state is an apparent synapomorphyof these species or of a less inclusive clade.

CONTENTS: Thirteen species. Ptychohylaacrochorda Campbell and Duellman, 2000;Ptychohyla dendrophasma (Campbell,Smith, and Acevedo, 2000), new comb.; Pty-chohyla erythromma (Taylor, 1937); Pty-chohyla euthysanota Kellogg, 1928; Pty-chohyla hypomykter McCranie and Wilson,1993; Ptychohyla legleri (Taylor, 1958); Pty-chohyla leonhardschultzei (Ahl, 1934); Pty-chohyla macrotympanum (Tanner, 1957);Ptychohyla panchoi Duellman and Camp-bell, 1982; Ptychohyla salvadorensis (Mer-tens, 1952); Ptychohyla sanctaecrucis Camp-bell and Smith, 1992; Ptychohyla spinipollex(Schmidt, 1936); Ptychohyla zophodesCampbell and Duellman, 2000.

Smilisca Cope, 1865

TYPE SPECIES: Smilisca daulinia Cope,1865 (5 Hyla baudinii Dumeril and Bibron,1841), by monotypy.

Pternohyla Boulenger, 1882. Type species Pter-nohyla fodiens Boulenger, 1882, by monotypy.NEW SYNONYMY.

DIAGNOSIS: This genus is diagnosed by 38transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy.

COMMENTS: Pternohyla is included in thesynonymy of Smilisca to avoid paraphyly.

CONTENTS: Eight species. Smilisca baudi-nii (Dumeril and Bibron, 1841); Smilisca cy-anosticta (Smith, 1953); Smilisca dentata(Smith, 1957), new comb.; Smilisca fodiens

Page 107: systematic review of the frog family hylidae, with special reference to ...

2005 107FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

(Boulenger, 1882), new comb.; Smiliscaphaeota (Cope, 1862); Smilisca puma (Cope,1885); Smilisca sila (Duellman and Trueb,1966); Smilisca sordida (Peters, 1863).

Tlalocohyla, new genus

TYPE SPECIES: Hyla smithii Boulenger,1902.

DIAGNOSIS: This genus is diagnosed by 92transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy.

ETYMOLOGY: From Tlaloc, the Olmec Godof the rain, 1 connecting -o 1 Hyla. Thegender is feminine.

COMMENTS: The inclusion of Hyla god-mani and H. loquax is tentative and based onits association with H. picta and H. smithiiin the former H. godmani group by Duellman(2001). The larvae of H. loquax and H. smi-thii share a reduction in the length of thethird posterior tooth row (Caldwell, 1986;Lee, 1996). This feature is not present in thelarvae of H. godmani as described by Duell-man (1970).

CONTENTS: Four species. Tlalocohyla god-mani (Gunther, 1901), new comb.; Tlalocoh-yla loquax (Gaige and Stuart, 1934), newcomb.; Tlalocohyla picta (Gunther, 1901),new comb.; Tlalocohyla smithii (Boulenger,1902), new comb.

Triprion Cope, 1866

TYPE SPECIES: Pharyngodon petasatusCope, 1865, by monotypy.

Pharyngodon Cope, 1865. Junior homonym ofPharyngodon Diesing, 1861. Type species:Pharyngodon petasatus Cope, 1865, by mono-typy.

Diaglena Cope, 1887. Type species: Triprion spa-tulatus Gunther, 1882, by monotypy.

DIAGNOSIS: For the purposes of this paperwe consider that the 125 transformations innuclear and mitochondrial protein and ribo-somal genes autapomorphic of Triprion pe-tasatus are synapomorphies of this genus.See appendix 5 for a complete list of thesemolecular synapomorphies. In Duellman’s(2001) phylogenetic analysis of Pternohyla,

Smilisca, and Triprion, the monophyly ofTriprion is supported by three synapomor-phies28: maxilla greatly expanded laterally;prenasal bone present (known homoplasticinstance in Aparasphenodon); and presenceof parasphenoid odontoids.

COMMENTS: We included a single speciesof this genus, and as such we did not test itsmonophyly, but we do not consider it con-troversial on the basis of the morphologicalevidence mentioned above.

CONTENTS: Two species. Triprion petasa-tus (Cope, 1865); Triprion spatulatus Gun-ther, 1882.

LOPHIOHYLINI MIRANDA-RIBEIRO, 1926

Lophiohylinae Miranda-Ribeiro, 1926.Type genus: Lophyohyla Miranda-Ribeiro,1926.

Trachycephalinae B. Lutz, 1969. Type genus: Tra-chycephalus Tschudi, 1838.

DIAGNOSIS: This tribe is diagnosed by 63transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. A putative morphological syn-apomorphy of this tribe is the presence of atleast four posterior labial tooth rows in thelarval oral disc (e.g., Bokermann, 1966b;Duellman, 1974; de Sa, 1983; Lannoo et al.,1987; McDiarmid and Altig, 1990; Schiesariet al., 1996; da Silva in Altig and Mc-Diarmid, 1999b; Wogel et al., 2000) (rever-sals in Osteopilus marianae, O. crucialis, O.wilderi [Dunn, 1926] and in Osteocephalusoophagus [Jungfer and Schiesari, 1995]).

COMMENTS: This tribe contains all SouthAmerican and West Indian casque-headedfrogs and related groups. It includes Apar-asphenodon, Argenteohyla, Corythomantis,Osteopilus, Phyllodytes, Tepuihyla, a newmonotypic genus, and the genera Osteoce-phalus and Trachycephalus as redefinedhere.

Recently, Kasahara et al. (2003) noticedthat Aparasphenodon brunoi, Corythomantis

28 Note that on his preferred tree (fig. 410) one ofthese character transformations is numbered 18, whichseems to be a typographical error for 12, the only othercharacter that supports this clade but that is not shownin the tree.

Page 108: systematic review of the frog family hylidae, with special reference to ...

108 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

greeningi, and Osteocephalus langsdorffiishare similar chromosome morphology,where there is a clear discontinuity in thechromosome lengths of the first five pairsand the remaining seven pairs. Furthermore,they share the presence of a secondary con-striction in pair 10. Available information onkaryotypes of other casque-headed frogs ofthis clade suggests that the discontinuity inchromosome lengths occurs as well in Ar-genteohyla (apparent from plates publishedby Morand and Hernando, 1996), Phrynoh-yas venulosa (apparent from plates publishedby Bogart, 1973), and some species of Os-teopilus (O. brunneus, O. dominicensis, O.marianae, O. septentrionalis), but not in Os-teocephalus taurinus, the only species of thegenus Osteocephalus, as redefined here,whose karyotype was studied (Anderson,1996). The position of the secondary con-striction also varies, having been observed inchromosome 4 in Argenteohyla (Morand andHernando, 1996), chromosome 9 in Osteo-pilus brunneus, O. dominicensis, O. septen-trionalis, and O. wilderi (Anderson, 1996),chromosome 10 in Phrynohyas venulosa (ap-parent from plates published by Bogart,1973), and in chromosome 12 in Osteoce-phalus taurinus. The taxonomic distributionof these character states needs further studyto define the inclusiveness of the clades theysupport.

Delfino et al. (2002) noticed that serousskin glands of Osteopilus septentrionalis andPhrynohyas venulosa produce secretorygranules with a dense cortex and a pale me-dulla; they observed the same in a photo-graph of a section of skin of Corythomantisgreeningi published by Toledo and Jared(1995). Very few hylid taxa were studied forserous gland histology, and these include afew species of Phyllomedusa, HolarcticHyla, Scinax, and Pseudis paradoxa (seeDelfino et al., 2001, 2002). The taxonomicdistribution of these peculiar secretory gran-ules requires additional study to assess itslevel of generality and the clade or cladesthat it diagnoses.

Aparasphenodon Miranda-Ribeiro, 1920

TYPE SPECIES: Aparasphenodon brunoiMiranda-Ribeiro, 1920, by monotypy.

DIAGNOSIS: For the purposes of this paperwe consider that the 83 transformations innuclear and mitochondrial protein and ribo-somal genes autapomorphic of Aparasphen-odon brunoi are synapomorphies of this ge-nus. See appendix 5 for a complete list ofthese molecular synapomorphies. A possiblemorphological synapomorphy of this genusis the presence of a prenasal bone (Trueb,1970a.)

COMMENTS: We included a single speciesof this genus, and as such we did not test itsmonophyly, but we consider it possible basedon the morphological evidence mentionedabove.

CONTENTS: Three species. Aparaspheno-don bokermanni Pombal, 1993; Aparasphen-odon brunoi Miranda-Ribeiro, 1920; Apara-sphenodon venezolanus (Mertens, 1950).

Argenteohyla Trueb, 1970

TYPE SPECIES: Hyla siemersi Mertens,1937, by original designation.

DIAGNOSIS: Molecular autapomorphies in-clude 102 transformations in nuclear and mi-tochondrial protein and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular synapomorphies. Apparent morpho-logical autapomorphies of this taxon includethe articulation of the zygomatic ramus of thesquamosal with the pars fascialis of the max-illary, and the noticeable reduction in the sizeof discs of fingers and toes (Trueb, 1970b.)

CONTENTS: Monotypic. Argenteohyla sie-mersi (Mertens, 1937).

Corythomantis Boulenger, 1896

TYPE SPECIES: Corythomantis greeningiBoulenger, 1896, by monotypy.

DIAGNOSIS: Molecular autapomorphies in-clude 132 transformations in nuclear and mi-tochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesetransformations. Morphological autapomor-phies of this monotypic genus include the ab-sence of palatines, and nasals that conceal thealary processes of premaxillaries (Trueb,1970a).

CONTENTS: Monotypic. Corythomantisgreeningi Boulenger, 1896.

Page 109: systematic review of the frog family hylidae, with special reference to ...

2005 109FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Itapotihyla, new genus

TYPE SPECIES: Hyla langsdorffii Dumeriland Bibron, 1841.

DIAGNOSIS: Molecular autapomorphies in-clude 122 transformations in nuclear and mi-tochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesetransformations. A possible morphologicalautapomorphy is the presence of a prominentsubcloacal flap.

ETYMOLOGY: From Itapoti 1 -Hyla. Thegeneric name is an allusion to the resem-blance of the unique known species of thisgenus with lichens and mosses. Itapoti is aTupi-Guarani term, a composition of ‘‘ita’’(5 rock) with ‘‘poti’’ (5 flower or to flour-ish), which means lichen or moss.

CONTENTS: Monotypic. Itapotihyla langs-dorffii (Dumeril and Bibron, 1841), newcomb.

Nyctimantis Boulenger, 1882

TYPE SPECIES: Nyctimantis rugiceps Bou-lenger, 1882, by monotypy.

DIAGNOSIS: Molecular autapomorphies in-clude 139 transformations in mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. Possible morphological autapo-morphies are the development of an irregularorbital flange in the frontoparietal, and thesphenethmoid almost completely concealeddorsally by the frontoparietals and nasals(Duellman and Trueb, 1976).

CONTENTS: Monotypic. Nyctimantis rugi-ceps Boulenger, 1882.

Osteocephalus Steindachner, 1862

TYPE SPECIES: Osteocephalus taurinusSteindachner, 1862, by subsequent designa-tion of Kellogg (1932).

DIAGNOSIS: This genus is diagnosed by 34transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. We are not aware of any mor-phological synapomorphy supporting this ge-nus.

CONTENTS: Seventeen species. Osteoce-phalus buckleyi (Boulenger, 1882); Osteoce-phalus cabrerai (Cochran and Goin, 1970);

Osteocephalus deridens Jungfer, Ron, Seipp,and Almendariz, 2000; Osteocephalus elke-jungingerae (Henle, 1981); Osteocephalusexophthalmus Smith and Noonan, 2001; Os-teocephalus fuscifacies Jungfer, Ron, Seipp,and Almendariz, 2000; Osteocephalus heyeriLynch, 2002; Osteocephalus leoniae Jungferand Lehr, 2001; Osteocephalus leprieurii(Dumeril and Bibron, 1841); Osteocephalusmutabor Jungfer and Hodl, 2002; Osteoce-phalus oophagus Jungfer and Schiesari,1995; Osteocephalus pearsoni (Gaige,1929); Osteocephalus planiceps Cope, 1874;Osteocephalus subtilis Martins and Cardoso,1987; Osteocephalus taurinus Steindachner,1862; Osteocephalus verruciger (Werner,1901); Osteocephalus yasuni Ron and Pra-muk, 1999.

Osteopilus Fitzinger, 1843

TYPE SPECIES: Trachycephalus marmora-tus Dumeril and Bibron, 1841 (5 Hyla sep-tentrionalis Dumeril and Bibron, 1841).

Calyptahyla Trueb and Tyler, 1974. Type species:Trachycephalus lichenatus Gosse, 1851 (5Hyla crucialis Harlan, 1826), by original des-ignation.

DIAGNOSIS: This genus is diagnosed by 43transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. No morphological synapomor-phies are known for this genus.

CONTENTS: Eight species. Osteopilus brun-neus (Gosse, 1851); Osteopilus crucialis(Harlan, 1826); Osteopilus dominicensis(Tschudi, 1838); Osteopilus marianae(Dunn, 1926); Osteopilus pulchrilineatus(Cope ‘‘1869’’ [1870]); Osteopilus septen-trionalis (Dumeril and Bibron, 1841); Osteo-pilus vastus (Cope, 1871); Osteopilus wilderi(Dunn, 1925).

Phyllodytes Wagler, 1830

TYPE SPECIES: Hyla luteola Wied-Neu-wied, 1824, by monotypy.

Amphodus Peters, ‘‘1872’’ [1873]. Type species:Amphodus wuchereri Peters, ‘‘1872’’ [1873],by original designation.

Lophyohyla Miranda-Ribeiro, 1923. Type species:Lophyohyla piperata Miranda-Ribeiro, 1923 (5

Page 110: systematic review of the frog family hylidae, with special reference to ...

110 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hyla luteola Wied-Neuwied, 1824), by originaldesignation.

DIAGNOSIS: This genus is diagnosed by174 transformations in nuclear and mito-chondrial protein and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular synapomorphies. Two morphologicalsynapomorphies of this taxon are the pres-ence of odontoids on the mandible and onthe cultriform process of the parasphenoid(Noble, 1931).

CONTENTS: Eleven species placed in fourspecies groups (Caramaschi et al., 2004a),one of which is monotypic.

Phyllodytes auratus Group

DIAGNOSIS: We are not aware of any pos-sible synapomorphy for this group.

COMMENTS: We did not include any ex-emplar of this group, but we continue to rec-ognize it following Caramaschi et al. (2004b)pending a rigorous test. Caramaschi et al.(2004b) diagnosed the different speciesgroups based on color patterns; it is unclearif any of these patterns could be consideredsynapomorphic.

CONTENTS: Two species. Phyllodytes au-ratus (Boulenger, 1917); Phyllodytes wuch-ereri (Peters, ‘‘1872’’ [1873]).

Phyllodytes luteolus Group

DIAGNOSIS: We are not aware of any pos-sible synapomorphy for this group.

COMMENTS: We included a single exemplarof this group and thus did not test its mono-phyly, but we continue to recognize it fol-lowing Caramaschi et al. (2004b) pending arigorous test. See comments for the P. au-ratus group.

CONTENTS: Six species. Phyllodytes acu-minatus Bokermann, 1966; Phyllodytes bre-virostris Peixoto and Cruz, 1988; Phyllodytesedelmoi Peixoto, Caramaschi, and Freire,2003; Phyllodytes kautskyi Peixoto and Cruz,1988; Phyllodytes luteolus (Wied-Neuwied,1824); Phyllodytes melanomystax Caramas-chi, Silva, and Britto-Pereira, 1992.

Phyllodytes tuberculosus Group

DIAGNOSIS: We are not aware of any pos-sible synapomorphy for this group.

COMMENTS: We did not include any ex-emplar of this group, but we continue to rec-ognize it following Caramaschi et al. (2004b)pending a rigorous test. See comments forthe P. auratus group.

CONTENTS: Two species. Phyllodytes punc-tatus Caramaschi and Peixoto, 2004; Phyl-lodytes tuberculosus Bokermann, 1966.

Species of Phyllodytes Unassigned toGroup

Peixoto et al. (2003) assigned Phyllodytesgyrinaethes Peixoto, Caramaschi, and Freire,2003 to its own species group. As stated ear-lier in this paper, we consider that monotypicspecies groups are not informative.

Tepuihyla Ayarzaguena and Senaris,‘‘1992’’ [1993]

TYPE SPECIES: Hyla rodriguezi Rivero,1968, by original designation.

DIAGNOSIS: For the purposes of this paperwe consider that the 90 transformations innuclear and mitochondrial protein and ribo-somal genes autapomorphic of Tepuihylaedelcae are synapomorphies of this genus.See appendix 5 for a complete list of thesemolecular synapomorphies. In the context ofour results, the reduction of webbing be-tween toes I and II is a putative morpholog-ical synapomorphy of this genus (Ayarza-guena et al., ‘‘1992’’ [1993b]; several in-stances of homoplasy within Lophiohylini, inPhyllodytes, and in the clade composed ofCorythomantis, Argenteohyla, Aparaspheno-don, and Nyctimantis).

COMMENTS: We included a single speciesof Tepuihyla, and as such we did not test itsmonophyly. We continue to recognize it fol-lowing Ayarzaguena and Senaris (‘‘1992’’[1993b]) until its monophyly is rigorouslytested.

CONTENTS: Eight species. Tepuihyla aecii(Ayarzaguena, Senaris, and Gorzula, ‘‘1992’’[1993]); Tepuihyla celsae Mijares-Urrutia,Manzanilla-Pupo, and La Marca, 1999; Te-puihyla edelcae (Ayarzaguena, Senaris, andGorzula, ‘‘1992’’ [1993]); Tepuihyla galani(Ayarzaguena, Senaris, and Gorzula, ‘‘1992’’[1993]); Tepuihyla luteolabris (Ayarzaguena,Senaris, and Gorzula, ‘‘1992’’ [1993]); Te-puihyla rimarum (Ayarzaguena, Senaris, and

Page 111: systematic review of the frog family hylidae, with special reference to ...

2005 111FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Gorzula, ‘‘1992’’ [1993]); Tepuihyla rodri-guezi (Rivero, 1968); Tepuihyla talbergaeDuellman and Yoshpa, 1996.

Trachycephalus Tschudi, 1838

TYPE SPECIES: Trachycephalus nigroma-culatus Tschudi, 1838, by monotypy.

Phrynohyas Fitzinger, 1843. Type species: Hylazonata Spix, 1824 (5 Rana venulosa Laurenti,1768). NEW SYNONYMY.

Acrodytes Fitzinger, 1843. Type species: Hylavenulosa Daudin, 1802 (5 Rana venulosa Lau-renti, 1768), by original designation.

Scytopis Cope, 1862. Type species: Scytopis hebesCope, 1862, by monotypy.

Tetraprion Stejneger and Test, 1891. Type spe-cies: Tetraprion jordani Stejneger and Test,1891, by original designation.

DIAGNOSIS: This genus is diagnosed by 37transformations in nuclear and mitochondrialprotein and ribosomal genes. See appendix 5for a complete list of these molecular syna-pomorphies. The only possible morphologi-cal synapomorphy that we are aware of forthis genus is the presence of paired vocalsacs protruding posterior to the angles of thejaws when inflated (Trueb and Duellman,1971; see also Tyler, 1971).

COMMENTS: We are including Phrynohyasin the synonymy of Trachycephalus to avoidthe nonmonophyly of the two genera. Thereare other alternatives to resolve this situation,such as restricting Trachycephalus to thesoutheastern Brazilian taxa, including P. me-sophaea, while retaining Phrynohyas for theremaining species currently placed in that ge-nus, and resurrecting Tetraprion to accom-modate T. jordani. We consider that the ac-tion taken here is the most conservative.

CONTENTS: Ten species. Trachycephalusatlas Bokermann, 1966; Trachycephalus cor-iaceus (Peters, 1867), new comb.; Trachy-cephalus hadroceps (Duellman and Hoog-moed, 1992), new comb.; Trachycephalusimitatrix (Miranda-Ribeiro, 1926), newcomb.; Trachycephalus lepidus (Pombal,Haddad, and Cruz, 2003), new comb.; Tra-chycephalus mesophaeus (Hensel, 1867),new comb.; Trachycephalus nigromaculatusTschudi, 1838; Trachycephalus resinifictrix(Goeldi, 1907), new comb.; Trachycephalusvenulosus (Laurenti, 1768), new comb.

Incertae Sedis and Nomina Dubia

The taxonomic scheme introduced abovecomprises most of the valid species of Hy-linae. However, there are a number of speciesof former Hyla whose position in this newtaxonomy is uncertain. There are two likelyreasons for this. (1) The species have knowntype material and/or are known from multi-ple specimens, but the available informationis not sufficient to allow even the tentativeassignment to any of the taxonomic groups,so they are here considered as incerta sedis.(2) The species are known mostly from theiroriginal descriptions or type materials are re-ported to be lost or lack clear locality data.These are considered nomina dubia. See ap-pendix 4 for additional comments on someof these species. Within the first category fallHyla alboguttata Boulenger, 1882, Hylachlorostea Reynolds and Foster, 1992, Hylahelenae Ruthven, 1919, Hyla imitator (Bar-bour and Dunn, 1921), Hyla inframaculataBoulenger, 1882, Hyla vigilans Solano, 1971,and Hyla warreni Duellman and Hoogmoed,1992. In the second category we include(those with extant type material are followedby an asterisk) Calamita melanorabdotusSchneider, 1799, Calamita quadrilineatusSchneider, 1799, Hyla auraria* Peters, 1873,Hyla fusca Laurenti, 1768, Hypsiboas hyp-selops Cope, 1871, Hyla molitor* Schmidt,1857, Hyla palliata Cope, 1863, Hylaroeschmanni De Grys, 1938, Hyla surina-mensis Daudin, 1802, and Litoria ameri-cana* Dumeril and Bibron, 1841.

PHYLLOMEDUSINAE GUNTHER, 1858

Phyllomedusidae Gunther, 1858. Type genus:Phyllomedusa Wagler, 1830.

Pithecopinae B. Lutz, 1969. Type genus: Pithe-copus Cope, 1866.

DIAGNOSIS: The monophyly of this sub-family is supported by 95 transformations innuclear and mitochondrial protein and ribo-somal genes. See appendix 5 for a completelist of these molecular synapomorphies. Apossible morphological synapomorphy is thepupil constricting to vertical ellipse (Duell-man, 2001; known instance of homoplasy inNyctimystes). There are several larval char-acter states that may be synapomorphies,

Page 112: systematic review of the frog family hylidae, with special reference to ...

112 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

such as: the ventrolateral position of the spi-racle; arcus subocularis of larval chondrocra-nium with distinct lateral processes; ultralowsuspensorium; secondary fenestrae parieta-les; and absence of a passage between cera-tohyal and ceratobranchial I (Haas, 2003).

COMMENTS: Duellman (2001) consideredthe presence of a process on the medial sur-face of metacarpal II a synapomorphy ofPhyllomedusinae, with a known instance ofhomoplasy in Centrolenidae. However, be-cause Phyllomedusinae appears to be the sis-ter taxon of Pelodryadinae, the situation ismore complex. As noticed by Tyler and Da-vies (1978b), this character state is also pre-sent in some species groups of Litoria, so theinternal topology of Pelodryadinae will de-termine whether this character state is indeeda synapomorphy of Phyllomedusinae, withhomoplastic instances in Pelodryadinae, or ifit is a synapomorphy of Phyllomedusinae 1Pelodryadinae, with subsequent reversals inthe latter taxon. The supplementary postero-lateral elements of the m. intermandibularishave been considered a synapomorphy ofPhyllomedusinae (Duellman, 2001; Tyler,1971). As mentioned earlier, because it ismore parsimonious to interpret the sole pres-ence of supplementary elements of the m. in-termandibularis as a synapomorphy of Pelod-ryadinae 1 Phyllomedusinae, at this point itis ambiguous which of the positions (apicalas present in Pelodryadinae or posterolateralas in Phyllomedusinae) is the plesiomorphicstate of this clade.

The absence of the slip of the m. depressormandibulae that originates from the dorsalfascia at the level of the m. dorsalis scapulae(which subsequently reverses in Hylomantisand Phyllomedusa, see below) could also bea synapomorphy of Phyllomedusinae; how-ever, its taxonomic distribution among non-phyllomedusines needs to be assessed. Thisis most needed in Pelodryadinae, where asfar as we are aware, all observations on thismuscle are limited to Starrett’s (1968) un-published dissertation where she commentedon its morphology in 2 of the 172 knownvalid species of the subfamily. Ovipositionon leaves out of water could also be anothersynapomorphy of Phyllomedusinae, but thisis dependent on the position of Phrynome-dusa within Phyllomedusinae (species of this

genus do not oviposit on leaves but on rockcrevices or fallen trunks) and on the topologyof Pelodryadinae (however, only two speciesof Pelodryadinae, Litoria iris and L. longi-rostris, are known to lay eggs out of water,and not necessarily on leaves; Tyler, 1963;McDonald and Storch, 1993).

Several transformations that resulted assynapomorphies of Phyllomedusinae inBurton’s (2004) analysis optimize ambigu-ously in our trees because their distributionis unknown in Cruziohyla new genus. Con-sequently, it is unclear which transformationsare synapomorphic of the subfamily andwhich ones support the monophyly of inter-nal clades. These transformations are: two in-sertions of the m. flexor digitorum brevis su-perficialis; the tendon of the m. flexor digi-torum brevis superficialis divided along itslength into a medial tendon, from which arisetendo superficialis IV and m. lumbricalis lon-gus digiti V, and a lateral tendon from whicharise tendo superficialis V and m. lumbricalislongus digiti IV; tendo superficialis pro digitiII arising from a deep, triangular muscle,which originates on the distal tarsal 2–3; ten-do superficialis pro digiti III arising entirelyfrom the margin of the aponeurosis plantaris;two tendons of insertion of m. lumbricalislongus digiti V arising from two equal mus-cle slips; pennate insertion of the lateral slipof the medial m. lumbricalis brevis digiti V;m. transversus metatarsus II broad, occupy-ing the entire length of metatarsal II; m.transversus metatarsus III broad, occupyingmore than 75% of the length of metatarsalIII; m. extensor brevis superficialis digiti IIIwith two insertions, a flat tendon onto basalphalanx III and a pennate insertion on meta-tarsus III; and finally the m. extensor brevissuperficialis digiti IV with a single originwith belly undivided. The presence of m.flexor teres hallucis is shared with Pelodry-adinae; however, Burton (2004) stressed thatin that subfamily, presence or absence of thismuscle is subject to great intraspecific vari-ation, without providing information as tothe states present in the particular specimenshe studied, so the character was scored asmissing data in our matrix.

There are several other character systemsthat will likely provide additional synapo-morphies for this group of frogs. Manzano

Page 113: systematic review of the frog family hylidae, with special reference to ...

2005 113FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

and Lavilla (1995b) and Manzano (1997) de-scribed several unique character states frommusculature, whose taxonomic distributionacross all Phyllomedusinae needs to be as-sessed. Tyler and Davies (1978a) mentionedthat Phyllomedusinae are the only hylidswhere the mandibular branch of the trigem-inal nerve subdivides into two twigs after tra-versing the mandible. Various authors (e.g.,Kenny; 1969; Cruz, 1982; Lescure et al.,1995) noticed that larvae of several speciesof Phyllomedusinae are usually suspended inwater in an oblique or even vertical positionrelative to the water surface. Bagnara (1974)observed a light-sensitive tail-darkening re-action in larvae of two phyllomedusines (Pa-chymedusa dacnicolor and Phyllomedusatrinitatis), and we observed a similar reactionin tadpoles of Phyllomedusa tetraploidea(Faivovich, pers. obs.). Further research willdetermine how inclusive is the clade orclades supported by these synapomorphies.

The presence of multiple bioactive pep-tides has been suggested as a distinctivecharacter of Phyllomedusinae (Cei, 1985).Since the beginning of the biochemical pros-pecting, it has become evident that Phyllo-medusinae have several different classes ofbioactive peptides (Erspamer, 1994), someunique (e.g., sauvagine, deltorphins), somenot (e.g., bombesins, caeruleins), as do thePelodryadinae (Apponyi et al., 2004). Be-cause there are multiple bioactive peptides,it seems reasonable to consider the differentpeptide families individually as potentialsynapomorphies of Phyllomedusinae, Pelod-ryadinae, or Phyllomedusinae 1 Pelodryadi-nae. More work needs to be done to betterunderstand the taxonomic distribution of thedifferent classes of peptides.

Agalychnis Cope, 1864

TYPE SPECIES: Agalychnis callidryas Cope,1862, by original designation.

DIAGNOSIS: The monophyly of this groupis supported by 23 transformations in nuclearand mitochondrial protein and ribosomalgenes. See appendix 5 for a complete list ofthese molecular synapomorphies. Agalychnishas extensively developed webbing on handsand feet in relationship with Pachymedusa,Hylomantis, Cruziohyla new genus, Phas-

mahyla, and Phyllomedusa. Also, with theexception of A. annae, which has a yellowiris, the other species have either a red or adark red iris.

COMMENTS: Considering the lack ofknowledge regarding the internal structure ofPelodryadinae, where some species have ex-tensive hand and foot webbing (e.g., Tyler,1968), it is still unknown if these characterstates are plesiomorphic for Phyllomedusi-nae. Consequently, at this stage we do notknow exactly in which point of the topologyof Phyllomedusinae they are homoplastic(both hands and foot webbing are developedin Cruziohyla new genus and, somewhat lessextensively, in Phrynomedusa).

CONTENTS: Six species. Agalychnis annae(Duellman, 1963); Agalychnis callidryasCope, 1862; Agalychnis litodryas (Duellmanand Trueb, 1967); Agalychnis moreletii (Du-meril, 1853); Agalychnis saltator (Taylor,1955); Agalychnis spurrelli (Boulenger,‘‘1913’’ [1914].)

Cruziohyla, new genus

TYPE SPECIES: Agalychnis calcarifer Bou-lenger, 1902.

DIAGNOSIS: For the purposes of this paperwe consider that the 171 transformations innuclear and mitochondrial protein and ribo-somal genes autapomorphic of Cruziohylacalcarifer are synapomorphies of this genus.See appendix 5 for a complete list of thesemolecular synapomorphies. Possible mor-phological synapomorphies include the ex-tensive hand and foot webbing (but see com-ments for Agalychnis) and the developmentof tadpoles in water-filled depressions onfallen trees. See comments below.

ETYMOLOGY: The name comes from theLatinization of Cruz, Cruzius 1 connecting-o 1 Hyla. We dedicate this new genus toour colleague and friend Carlos Alberto Gon-calves da Cruz, in recognition of his variouscontributions to our knowledge of Phyllo-medusinae.

COMMENTS: Phrynomedusa, the only genusof Phyllomedusinae missing from our anal-ysis, shares with Cruziohyla a bicolored iris,developed foot webbing (although more ex-tensively developed in Cruziohyla), and oraldisc with complete marginal papillae in the

Page 114: systematic review of the frog family hylidae, with special reference to ...

114 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

larvae. However, they differ in that eggs ofPhrynomedusa are laid in rock crevices (A.Lutz and B. Lutz, 1939; Weygoldt, 1991) orfallen trunk cavities above streams, fromwhere tadpoles drop and develop. The larvaeof Cruziohyla, unlike those of most otherknown Phyllomedusinae, develop in water-filed depressions of fallen trees (Donnelly etal., 1987; Hoogmoed and Cadle, 1991; Cald-well, 1994; Block et al., 2003). Hoogmoedand Cadle (1991) reported two situationswhere tadpoles associated with Agalychniscraspedopus were found in small pools in theforest, without a clear indication of where theeggs were laid. This could be interpreted ei-ther as a polymorphic reproductive trait or asan indication that more than one species isinvolved.

The oral disc with marginal papillae as amorphological synapomorphy of Cruziohyla1 Phrynomedusa should be taken cautiouslybecause of our general ignorance of the in-ternal topology of Pelodryadinae. Some Pe-lodryadinae also have an oral disc with com-plete marginal papillae (see Anstis, 2002),and further analysis could show that this isactually a plesiomorphy for Phyllomedusi-nae. The same problem holds for the pres-ence of foot webbing.

Instead of creating Cruziohyla to includeAgalychnis calcarifer and A. craspedopus,we could place both species in Phrynome-dusa. Both alternatives imply taxonomicrisks (in particular, that Cruziohyla could beshown to be nested within Phrynomedusa).Taking into account our almost complete ig-norance of the relationships of Pelodryadi-nae, and therefore character-state polarities atits base, and that Phrynomedusa could notbe included in this analysis, we consider thatat this stage it is more appropriate to createCruziohyla than to enlarge Phrynomedusa,without being certain about character polar-ities at the base of Phyllomedusinae.

Agalychnis craspedopus could not be in-cluded in the analysis, but the close relation-ship between A. craspedopus and A. calcar-ifer seems uncontroversial, as both have beenrepeatedly associated by some authors(Duellman, 1970; Hoogmoed and Cadle,1991; Duellman, 2001).

CONTENTS: Two species. Cruziohyla cal-carifer (Boulenger, 1902), new comb., Cru-

ziohyla craspedopus (Funkhouser, 1957),new comb.

Hylomantis Peters, ‘‘1872’’ [1873]

TYPE SPECIES: Hylomantis aspera Peters,‘‘1872’’ [1873], by monotypy.

DIAGNOSIS: The monophyly of this groupis supported by 38 transformations in mito-chondrial protein and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular synapomorphies. We are not aware ofany morphological synapomorphy support-ing this genus.

COMMENTS: Only Phyllomedusa lemur ofthe P. buckleyi group was included in theanalysis, and it obtains as the sister group ofour exemplar of Hylomantis, H. granulosa,but with a Bremer support value of 3. Whileit is evident that this group should be ex-cluded from Phyllomedusa, the possible tax-onomic actions (whether to create a new ge-nus or to include it in Hylomantis) deservefurther discussion. From the definition of thegroup given by Cannatella (1980), the onlycharacter state that could be considered asynapomorphy is the bright orange flanks inlife. The other character states included byCannatella (1980) are either likely symple-siomorphies (absence of the slip of the m.depressor mandibulae originating from thedorsal fascia at the level of the m. dorsalisscapulae; hands and feet less than one-fourthwebbed; parotoid gland not differentiated;palpebrum unpigmented; frontoparietal fon-tanelle exposed, large, and oval; oral discs oflarvae lacking marginal papillae anteriorly)or character states whose taxonomic distri-bution in Phyllomedusinae makes their po-larity unclear (lack of spots or pattern onflanks; cream or white iris; size; dorsum uni-formly green by day; presence or absence ofcalcars). Like the P. buckleyi group, the twospecies included in Hylomantis by Cruz(1990) also lack spots or pattern on flanks,which are light yellow (instead of bright or-ange). At this point, we have no evidenceregarding the polarity of these two characterstates; consequently, we consider that themorphological evidence of monophyly of theP. buckleyi group is weak. Considering thatwe could not test the monophyly of the P.buckleyi group, and that available morpho-

Page 115: systematic review of the frog family hylidae, with special reference to ...

2005 115FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

logical evidence for its monophyly is notcompelling, provisionally, and with the ca-veat that the molecular support for thisgrouping is rather weak, we prefer to includeall species of this group in Hylomantis,where we recognize them as a separate spe-cies group, pending a rigorous test of itsmonophyly when a denser taxon samplingbecomes available.

CONTENTS: Eight species placed in twospecies groups.

Hylomantis aspera Group

DIAGNOSIS: Possible morphological syna-pomorphies of this group are the lanceolatediscs and presence of the slip of the m. de-pressor mandibulae originating from the dor-sal fascia at the level of the m. dorsalis scap-ulae (known homoplastic instance in Phyl-lomedusa and several other anurans).

COMMENTS: We included a single speciesof this group, and as such we did not we didnot test its monophyly, but we recognize itbased on the aforementioned evidence.

CONTENTS: Two species. Hylomantis as-pera Peters, ‘‘1872’’ [1873]; Hylomantisgranulosa (Cruz, ‘‘1988’’ [1989]).

Hylomantis buckleyi Group

DIAGNOSIS: The only apparent morpholog-ical synapomorphy of this group is the pos-session of bright orange flanks in life (Can-natella, 1980).

COMMENTS: We included a single speciesof this group, and as such we did not we didnot test its monophyly. We recognize it fol-lowing Cannatella (1980), pending a rigoroustest of its monophyly. Ruiz-Carranza et al.(1988) tentatively included Phyllomedusadanieli in the P. buckleyi group because ofthe reduced webbing, absence of parotoidglands, toe I shorter than toe II, presence ofa calcar, and unpigmented palpebrum. As theauthors noted, these characteristics are alsoshared with Phasmahyla and Hylomantis(they refer to these genera using the formerspecies groups of Phyllomedusa), but somealso with Phrynomedusa. One differencethey noticed was the golden iris colorationinstead of white; however, in the present sce-nario the polarity of this state is unclear (awhite iris is present in Phasmahyla and Hy-

lomantis, as redefined here). A difference isthe large snout–vent length (SVL) of P. dan-ieli compared with the species of Hylomantis(the only reported specimen of P. danieli, afemale, is 81 mm SVL; females of the otherspecies reach a maximum of 57 mm, accord-ing to Cannatella [1980]). Phyllomedusadanieli shares with the Hylomantis buckleyigroup its only apparent morphological syn-apomorphy (but see comments above), thebright orange flanks in life. Because of this,we tentatively include P. danieli in Hylo-mantis.

CONTENTS: Six species. Hylomantis buck-leyi (Boulenger, 1882), new comb.; Hylo-mantis danieli (Ruiz-Carranza, Hernandez-Camacho, and Rueda-Almonacid, 1988),new comb.; Hylomantis hulli (Duellman andMedelson, 1995), new comb.; Hylomantis le-mur (Boulenger, 1882), new comb.; Hylo-mantis medinai (Funkhouser, 1962), newcomb.; Hylomantis psilopygion (Cannatella,1980), new comb.

Pachymedusa Duellman, 1968

TYPE SPECIES: Phyllomedusa dacnicolorCope, 1864.

DIAGNOSIS: Molecular autapomorphies in-clude 105 transformations in nuclear and mi-tochondrial proteins and ribosomal genes.See appendix 5 for a complete list of thesetransformations. Possible morphological au-tapomorphies are the first toe opposable toothers, reticulated palpebral membrane (ho-moplastic with some species of Phyllome-dusa; Duellman et al., 1988b), and the irisreticulation (Duellman, 2001).

COMMENTS: Duellman (2001) also includ-ed the toes about one-fourth webbed as anautapomorphy of Pachymedusa. In the con-text of our results, this is probably not anautapomorphy, as the webbing is also equallyor more reduced in Hylomantis (as redefinedhere), Phasmahyla, and Phyllomedusa.

CONTENTS: Monotypic. Pachymedusa dac-nicolor (Cope, 1864).

Phasmahyla Cruz, 1990

TYPE SPECIES: Phyllomedusa guttata A.Lutz, 1924, by original designation.

DIAGNOSIS: The monophyly of this genusis supported by 94 transformations in mito-

Page 116: systematic review of the frog family hylidae, with special reference to ...

116 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

chondrial protein and ribosomal genes. Seeappendix 5 for a complete list of these mo-lecular synapomorphies. Possible morpho-logical synapomorphies of this genus are theabsence of a vocal sac, and the modificationof the larval oral disc into an anterodorsalfunnel-shaped structure (Cruz, 1990).

COMMENTS: Cruz (1990) mentioned the ab-sense of parotoid glands in Phasmahyla butstressed the presence of a pair of latero-dor-sal glands. While these glands could be cos-idered as possible synapomorphies of Phas-mahyla, additional work is needed in orderto determine if they could be considered ashomologous to the parotoid glands present inPhyllomedusa.

CONTENTS: Four species. Phasmahylacochranae (Bokermann, 1966); Phasmahylaexilis (Cruz, 1980); Phasmahyla guttata (A.Lutz, 1924); Phasmahyla jandaia (Boker-mann and Sazima, 1978).

Phrynomedusa Miranda-Ribeiro, 1923

TYPE SPECIES: Phrynomedusa fimbriataMiranda-Ribeiro, 1923, by subsequent des-ignation of Miranda-Ribeiro (1926).

DIAGNOSIS: A likely synapomorphy of thistaxon is the oviposition in rock crevices orfallen trunks overhanging streams (A. Lutzand B. Lutz, 1939; Weygoldt, 1991).

COMMENTS: We did not include any speciesof this genus in our analysis. Besides theplace of oviposition, we are not aware of anyother possible synapomorphy of Phrynome-dusa. This is not a strong support for itsmonophyly, particularly if we consider thatwith the exception of Weygoldt’s (1991)studies in captivity of Phrynomedusa mar-ginata, reports on oviposition of Phrynome-dusa are mostly anecdotal.

The most obvious difference betweenPhrynomedusa and Cruziohyla is the impres-sive SVL difference. Although the reductionin SVL could actually be a synapomorphy ofPhrynomedusa, considering how rudimenta-ry is our knowledge of the topology of Pe-lodryadinae, and considering its taxonomicdistribution in Phyllomedusinae (Phasmahy-la, Hylomantis, and Cruziohyla also have aproportionally smaller SVL, as do some spe-cies of Phyllomedusa), the polarity of SVLas a character, if definable at all, is far from

clear. Phrynomedusa could either be the sis-ter group of Cruziohyla or the remainingPhyllomedusinae.

CONTENTS: Five species. Phrynomedusaappendiculata (A. Lutz, 1925); Phrynome-dusa bokermanni Cruz, 1991; Phrynomedusafimbriata Miranda-Ribeiro, 1923; Phryno-medusa marginata (Izecksohn and Cruz,1976); Phrynomedusa vanzolinii Cruz, 1991.

Phyllomedusa Wagler, 1830

TYPE SPECIES: Rana bicolor Boddaert,1772 by monotypy.

Pithecopus Cope, 1866. Type species: Phyllome-dusa azurea Cope, 1862.

Bradymedusa Miranda-Ribeiro, 1926. Type spe-cies: Hyla hypochondrialis Daudin, 1800, bysubsequent designation of Vellard (1948).

DIAGNOSIS: The monophyly of this taxonis supported by 49 transformations in nuclearand mitochondrial protein and ribosomalgenes. See appendix 5 for a complete list ofthese transformations. Apparent morpholog-ical synapomorphies of Phyllomedusa are thepresence of parotoid glands, toe I longer thantoe II, and presence of the slip of the m. de-pressor mandibulae originating from the dor-sal fascia at the level of the m. dorsalis scap-ulae (known instance of homoplasy in theHylomantis granulosa group, and severalother anurans) (Duellman et al., 1988b).

COMMENTS: The transformation from pres-ence to absence of the m. abductor brevisplantae hallucis optimizes ambiguously inour analysis because the state of this char-acter is unknown in Phasmahyla.

Blaylock et al. (1976) described the pe-culiar wiping behavior in P. boliviana (as P.pailona), P. hypochondrialis, P. sauvagii,and P. tetraploidea (as P. iheringii). This be-havior was subsequently reported in P. dis-tincta, P. tarsius (Castanho and De Luca,2001), and P. iheringii (Langone et al.,1985). Castanho and De Luca (2001) furthernoticed a peculiar daily molting behavior.Further research on the taxonomic distribu-tion of these behaviors in Phyllomedusa willdetermine the limits of the group(s) they sup-port. The presence of the so-called lipidglands has been so far been reported in thefive species of Phyllomedusa that were stud-ied (P. bicolor, P. boliviana, P. hypochon-

Page 117: systematic review of the frog family hylidae, with special reference to ...

2005 117FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

drialis, P. sauvagii, and P. tetraploidea;Blaylock et al., 1976; Delfino et al., 1998;Lacombe et al., 2000) and were noticed tobe unique to the genus by Delfino et al.(1998), so they could likely be another syn-apomorphy. As noticed by Cruz (1982), andcorroborated by most larval descriptions ofPhyllomedusinae, the larvae of most speciesof Phyllomedusa,29 as redefined here, havethe third posterior row of labial teeth reducedin relation to the first and second posteriorrows.

CONTENTS: Twenty-six species, some ofthem included in four species groups.

Phyllomedusa burmeisteri Group

DIAGNOSIS: We are not aware of any syn-apomorphy of this group.

COMMENTS: We included only a single spe-cies of this group in our analysis, and as suchwe did not test its monophyly, but we rec-ognize it following Pombal and Haddad(1992), pending a rigorous test of its mono-phyly.

CONTENTS: Four species. Phyllomedusaburmeisteri Boulenger, 1882; Phyllomedusadistincta B. Lutz, 1950; Phyllomedusa iher-ingii Boulenger, 1885; Phyllomedusa tetra-ploidea Pombal and Haddad, 1992.

Phyllomedusa hypochondrialis Group

DIAGNOSIS: We are not aware of any syn-apomorphy of this group.

COMMENTS: We included a single speciesof this group, and as such we did not test itsmonophyly, but we recognize it followingBrandao (2002), pending a rigorous test ofits monophyly. Manzano and Lavilla (1995b)described the muscle epicoracoideus in Phyl-lomedusa hypochondrialis, and Manzano(1997) noticed its absence in other speciesthat she studied (P. atelopoides, P. boliviana,and P. sauvagii). Our observations on theonly other species of the group available tous, P. rohdei (AMNH A-20263), indicatethat it also has the m. epicoracoideus, so weconsider the presence of this muscle a pos-sible synapomorphy of the group. All species

29 The only exception we are aware of is the larvaeof Phyllomedusa vaillanti, where P-3 almost equals P-2(Caramaschi and Jim, 1983).

of this group lack vomerine teeth, as doPhasmahyla, Phyllomedusa palliata andsome species of Phrynomedusa (Brandao,2002; Cruz, 1990). The taxonomic distribu-tion of other myological peculiarities de-scribed by Manzano and Lavilla (1995b) inP. hypochondrialis, such as the presence ofthin and/or shortened muscles, and unusualinsertions of some of them, needs to be as-sessed in other Phyllomedusinae.

CONTENTS: Six species. Phyllomedusa ay-eaye (B. Lutz, 1966); Phyllomedusa centralisBokermann, 1965; Phyllomedusa hypochon-drialis (Daudin, 1800); Phyllomedusa me-gacephala (Miranda-Ribeiro, 1926); Phyllo-medusa oreades Brandao, 2002; Phyllome-dusa rohdei Mertens, 1926.

Phyllomedusa perinesos Group

DIAGNOSIS: A possible synapomorphy ofthis group is the purple coloration on thehands, feet, flanks, and concealed surfaces,as well as the purple venter with white gran-ules (Cannatella, 1982).

COMMENTS: We did not include any ex-emplar of this group in the analysis. Itsmonophyly is tentatively assumed followingCannatella (1982) and is based on the evi-dence mentioned above.

CONTENTS: Four species. Phyllomedusabaltea Duellman and Toft, 1979; Phyllome-dusa duellmani Cannatella, 1982; Phyllome-dusa ecuatoriana Cannatella, 1982; Phyllo-medusa perinesos Duellman, 1973.

Phyllomedusa tarsius Group

DIAGNOSIS: We are not aware of any syn-apomorphy supporting the monophyly of thisgroup.

COMMENTS: We included a single speciesof this group, and as such we did not test itsmonophyly, but we continue to recognize itfollowing De la Riva (1999) until its mono-phyly is rigorously tested.

CONTENTS: Four species. Phyllomedusaboliviana Boulenger, 1902; Phyllomedusacamba De la Riva, 2000; Phyllomedusa sau-vagii Boulenger, 1882; Phyllomedusa tarsius(Cope, 1868).

Page 118: systematic review of the frog family hylidae, with special reference to ...

118 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Species of Phyllomedusa Unassigned toGroup

There are several species that are currentlynot assigned to any group. These are: Phyl-lomedusa atelopoides Duellman, Cadle, andCannatella, 1988; Phyllomedusa bicolor(Boddaert, 1772); Phyllomedusa coelestis(Cope, 1874); Phyllomedusa palliata Peters,‘‘1872’’ [1873]; Phyllomedusa tomopterna(Cope, 1868); Phyllomedusa trinitatis Mer-tens, 1926; Phyllomedusa vaillanti Boulen-ger, 1882; and Phyllomedusa venusta Duell-man and Trueb, 1967.

BIOGEOGRAPHICAL COMMENTARYOur objective here is to comment on pat-

terns of distribution among the major bio-geographic/tectonic units and not to providea detailed biogeographic analysis. The distri-bution/biogeographic units of our discussionare (1) Australia plus New Guinea, (2) con-tinental South America, (3) Middle America(in the sense of being composed of tropicalMexico, the Chortis Block of Central Amer-ica, and the Panamanian Isthmus), and (4)the temperate Holarctic. Clearly all of theseregions have histories that provide clues asto movements and diversifications withinthese areas. Because of the enormity of thetopic of biogeography for the entire Hylidae,our comments will be truncated, limited ei-ther by our taxonomic sampling, knowledgeof earth history, or phylogenetic resolution.Nevertheless, there are obvious geographicpatterns that warrant our attention.

The distribution of the Hylidae stronglysuggests a southern-continent origin of thetaxon, a conclusion in accord with sugges-tions based on different lines of evidence ad-vanced over the last 80 years (Metcalf,1923a, 1923b, 1928; Duellman, 1970, 2001;Savage, 2002a) and supported by the obser-vation that all the major groups of hylidshave their centers of diversity in southerncontinents, with only phylogenetically sec-ondary centers of diversification existing inMiddle America, North America, and evenmore attenuated areas of radiation in Eurasia.

RELATIONSHIPS BETWEEN AUSTRALIA AND

SOUTH AMERICA

The relationship between Australian andSouth American taxa has been previously

noted for the Hylidae (Darst and Cannatella,2004; Hoegg et al., 2004) and in several oth-er groups (see Sanmartın and Ronquist[2004] for a review). In our results (fig. 13),the Australopapuan Pelodryadinae forms thesister taxon of the predominantly SouthAmerican Phyllomedusinae, a distributionwhich we think speaks to one of the earliestpatterns in the entire Hylidae, that of an Aus-tralia–Antarctica–South American connec-tion. We cannot address any other topics ofpelodryadine biogeography due to our lim-ited sampling.

RELATIONSHIPS BETWEEN SOUTH AND

MIDDLE AMERICA

Having the sister taxon of the Phyllome-dusinae in Australia strongly suggests asouthern (South American) origin of thePhyllomedusinae, although distribution ofthe most basal taxon, Cruziohyla calcarifer,is in Choco/lower Middle America, with theremaining taxa found from northwesternMexico to southern Brazil. This distributionsuggests that the phyllomedusine biogeo-graphic pattern is not recent. Assuming aconnection between Australia and SouthAmerica was by way of Antarctica, onewould be driven to the conclusion that SouthAmerica is the home of the phyllomedusines.The fact that we could not include any ex-emplar of Phrynomedusa, an Atlantic Forestgenus possibly related with Cruziohyla,could possibly cloud the general picture.

Apart from the Hylini, there are severalinstances of members of the other three tribesof Hylinae having a Middle American distri-bution (figs. 14–16), corroborating the sug-gestion of Duellman (2001) regarding the ex-istence of several independent vicariance ordispersal events with hylids between SouthAmerica and Middle America. Our resultsimply eight independent events of dispersalfrom South America into Middle America:(1) Dendropsophus ebraccatus, (2) D. micro-cephalus, (3) ancestor of Hylini, (4) Hypsi-boas boans, (5) H. rufitelus, (6) Scinax bou-lengeri, (7) S. elaeochrous and S. staufferi,and (8) Trachycephalus venulosus. However,this number is a clear underestimation be-cause we did not include other terminals thatalso have a Middle American distribution

Page 119: systematic review of the frog family hylidae, with special reference to ...

2005 119FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

(e.g., Dendropsophus phlebodes, D. robert-mertensi, D. sartori, D. subocularis, Hypsi-boas pugnax, H. rosenbergi, Scinax altae,and S. rostratus) and which may representadditional entries into Middle America fromSouth America. For some of these species(e.g., Scinax altae and S. rostratus) we con-sider it likely that they are related to otherMiddle American members of their respec-tive phylogenetic nearest relatives (hence notadding to the number of independent biogeo-graphic events). Other species (Dendropso-phus subocularis) might imply additionalevents because they are probably nestedwithin mostly South American clades. Theuncertain position of the other species (e.g.,Dendropsophus phlebodes, D. robertmerten-si, D. sartori, Hypsiboas pugnax, H. rosen-bergi) in our phylogenetic hypothesis doesnot allow us to suggest that their presence inMiddle America either represents indepen-dent events or that they are contained withinother groups of species whose ancestorsmoved into Middle America.

Considering the Hylinae with a MiddleAmerican origin, the results imply two bio-geographic events to explain the presence ofthese lineages in South America: the cases ofScinax elaeochrous (fig. 15) and Smiliscaphaeota (fig. 16). Once again, this is a min-imal number of events. The monophyly ofEcnomiohyla could be in error, because mostspecies were unavailable for study and atleast E. tuberculosa (not studied) is possiblyunrelated to the Middle American fringe-limbed treefrogs. Duellman (2001) suggestedthat Smilisca sila and S. sordida together aremonophyletic (apparent synapomorphies:ventral oral disc in the larvae and small innermetatarsal tubercle) and together are the sis-ter taxon of S. puma. If this hypothesis with-stands further testing, it would represent athird independent biogeographic event in-volving a Middle American lineage presentin northern South America.

SOUTH AMERICA

GUAYANA HIGHLANDS–ANDES–ATLANTIC FOREST

Within Cophomantini (fig. 14), the firstfour genera contain elements from threecharacteristic formations, quite distant geo-

graphically from each other: Myersiohyla iscomposed solely of Guayana Highlands spe-cies; Hyloscirtus is composed exclusively ofAndean species; Bokermannohyla and Aplas-todiscus are composed almost exclusively ofspecies from the southeastern Brazilian At-lantic Forest and Rocky fields associatedwith this formation and to the Cerrado. Weare not aware of any similar biogeographicpattern in any other animal group.

GUAYANA HIGHLANDS

Our analysis included 6 of the 19 hylidendemics (updated from Duellman’s [1999]list by adding Hypsiboas rhythmicus) of theGuayana Highlands, plus two undescribedspecies. The topology suggests a minimumof four independent occurrences of endemichylines in the Guayana Highlands (figs. 14,16): (1) the Hypsiboas benitezi group (thisgroup also contains three species from west-ern Amazonia: H. hutchinsi, H. microderma,and Hypsiboas sp. 2), (2) Hypsiboas sibleszi,(3) Myersiohyla, and (4) Tepuihyla. In the H.benitezi group, it is ambiguous whether thereis an origin in the Guayana Highlands witha subsequent dispersal/vicariance event intonorthwestern Amazonia, or two independentevents that led to the presence of these spe-cies in the highlands.

Considering the 13 taxa from the GuayanaHighlands that were unavailable for thisstudy, all but two species are members ofgroups represented in the analysis. Seven arespecies of Tepuihyla, three are species ofMyersiohyla, two are species of Scinax (S.danae, and S. exiguus), one is a species ten-tatively associated with the Hypsiboas beni-tezi group (H. rhythmicus), and one is incertasedis (‘‘Hyla warreni’’). Phylogenetic rela-tionships of the two species of Scinax withother species of the genus are still unknown,as is the position of ‘‘Hyla warreni’’. Whenconsidering relationships of the GuayanaHighlands lineages with the other Hylinae,current evidence suggests they are related toelements from the Amazon Basin (Osteoce-phalus, Hypsiboas microderma, Hypsiboassp. 2) and the Choco (Hypsiboas picturatus).

IMPACT OF THE ANDES IN HYLINE EVOLUTION

The uplift of the Andes and subsequentclimatic changes in the Quaternary have an

Page 120: systematic review of the frog family hylidae, with special reference to ...

120 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Page 121: systematic review of the frog family hylidae, with special reference to ...

2005 121FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 13. A partial view of the strict consensus showing major biogeographic patterns among out-groups, Pelodryadinae and Phyllomedusinae, and the geographic distribution of the exemplars of Phyl-lomedusinae. Distributions are taken from Duellman (1999) and Frost (2002). Only collective groupsreferred in ‘‘Biogeographic Commentary’’ are shown. An asterisk (*) indicates the distribution of Phyl-lomedusa hypochondrialis that ranges from the Chaco/Cerrado through the Amazon Basin and Guayanalowlands up to the Llanos.

impressive correlation with large radiationsof anuran groups, such as certain Bufonidae,Centrolenidae, Dendrobatidae, Hemiphracti-nae, and Eleutherodactylinae (e.g., Lynch,1986; Coloma, 1995; Lynch and Duellman,1997; Lynch et al., 1997; Lynch, 1998;Duellman, 1999). Previous knowledge of hy-lid distribution, as well as our results, sug-gests a much more limited impact of the An-des in hylid radiation and speciation, withthree hyline radiations in the Andes (figs. 14,16): Hyloscirtus, the Andean clade of theHypsiboas pulchellus group, and the Den-dropsophus columbianus 1 D. labialisgroups clade. If we consider the taxa thatwere not included in this analysis, there are41 with an Andean distribution: Dendrop-sophus aperomeus, D. battersbyi, ‘‘Hylachlorostea’’, D. delarivai, D. praestans, D.stingi, D. yaracuyanus, ‘‘Hyla vigilans’’, Os-teocephalus elkejungingerae, O. leoniae, O.pearsoni, Scinax fuscovarius, S. castroviejoi,S. manriquei, S. oreites, the four species ofthe Dendropsophus garagoensis group, plus23 additional members of Hyloscirtus, theAndean clade of the Hypsiboas pulchellusgroup, and the Dendropsophus columbianus1 D. labialis groups clade (Duellman, 1999;Mijares-Urrutia and Rivero, 2000; Jungferand Lehr, 2001; Kohler and Lotters, 2001a;Barrio-Amoros et al., 2004). If the D. gara-goensis group is not related to the Dendrop-sophus columbianus 1 D. labialis groupsclade, then it would represent a fourth An-dean radiation of hylids. Relationships of theAndean D. aperomeus, D. battersbyi, D. de-larivai, D. stingi, and D. yaracuyanus withinDendropsophus are unknown, so they mayrepresent as many as five additional eventsleading to the presence of hylids in the An-des. A similar situation occurs with ‘‘Hylachlorostea’’, ‘‘Hyla vigilans’’, Scinax man-riquei, S. oreites, and the species of Osteo-cephalus. Scinax castroviejoi and S. fusco-

varius are sister species (Faivovich, unpubl.data), so they are considered another inde-pendent entrance into the Andes. Adding upall these species and clades gives a maximumtotal of 17 independent biogeographicevents, of which 5 subsequently radiated and13 are single taxa. If the Andean species ofOsteocephalus were monophyletic, then thefigure could decrease to 14 independentevents, 6 of which subsequently radiated.

Considering the information outlinedabove, and returning to the beginning of thissection, whereas now we have an upper anda lower limit for the number of independentradiations of hylids in the Andes, we have noidea as to the number of independent radia-tions of Bufonidae, Centrolenidae, Dendro-batidae, and Hemiphractinae in the Andes.

A question that might arise is why there issuch poor diversification of hylids in the An-des (note that its complement, Why are thereso many species in extra-Andean areas?, isequally valid). There are several scenariosthat could answer this question. The presencein several areas of the Andes of anurangroups with obligate aquatic life-historystages dependent on either ponds or streams(Centrolenidae, Bufonidae) appears to be astrong argument against a hypothesis of lackof appropriate habitats. The fact that hylidsare found in fairly high altitudes in the Andes(e.g., species in the Andean stream-breedingclade reach up to 2400 m; Duellman et al.,1997; species of the D. labialis group reachup to 3500 m; Luddecke and Sanchez, 2002)and other places (e.g., several Hylini livingbetween 2000 and 3000 m; see Duellman,2001) could indicate that there may be fewphysiological constraints limiting the exploi-tation of higher areas.30

30 We understand that this argument is weak; perhapsthe hylid groups that are not physiologically constrainedare precisely those that could colonize and diversify inthe highlands.

Page 122: systematic review of the frog family hylidae, with special reference to ...

122 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Fig. 14. A partial view of the strict consensus showing the geographic distribution of the componentsof Cophomantini. Distributions, in general, are taken from Duellman (1999). Only collective groupsreferred in ‘‘Biogeographic Commentary’’ are shown. An asterisk (*) indicates the distribution of Hyp-siboas punctatus that ranges from the Chaco/Cerrado through the Amazon Basin and Guayana lowlandsup to the Caribbean lowlands. Two asterisks (**) indicate the geographic distribution of Hypsiboascordobae that is restricted to the Sierras of Central Argentina.

Page 123: systematic review of the frog family hylidae, with special reference to ...

2005 123FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

ATLANTIC FOREST

Of the several instances of hyline taxa pre-sent in the Atlantic Forest of Brazil, eight aresingle terminals and six are clades (figs. 14–16). The terminals are (1) Aparasphenodonbrunoi, (2) Dendropsophus anceps, (3) D.giesleri, (4) D. minutus, (5) D. seniculus, (6)Hypsiboas albopunctatus, (7) Scinax urugua-yus, and (8) Xenohyla truncata. The cladesare (1) Aplastodiscus, (2) the Hypsiboas fa-ber group plus the H. pulchellus group clade,(3) Trachycephalus nigromaculatus plus T.mesophaeus, (4) Phyllodytes, (5) the Scinaxcatharinae clade, and (6) Bokermannohyla.Including the approximately 134 hylid spe-cies that were unavailable for this study witha distribution in eastern Brazil would cer-tainly increase the number of clades and ter-minals in an unpredictable way.

Faivovich (2002) observed that Scinaxwas divided in two clades, one endemic tothe Atlantic Forest (the S. catharinae clade)and another that was widespread in the Neo-tropics (the S. ruber clade). Our results implyan ambiguous situation. The position of S.uruguayus as the sister taxon of the remain-ing species of the S. ruber clade suggests thatScinax could have as well originated insoutheastern Brazil and colonized other areasof the Neotropics in subsequent events. Adenser taxon sampling of Scinax would allowa test of this hypothesis.

In Lophiohylini, nearly all species of Phyl-lodytes are from the Atlantic Forest (the onlyexception being P. auratus from Trinidad),as is also true for Itapotihyla langsdorffii andseveral other species of the tribe. However,the situation here is equivocal because itwould be equally parsimonious to postulatetwo independent events leading to the pres-ence of I. langsdorffii and Phyllodytes in theAtlantic Forest.

Within Bokermannohyla, the B. circum-data species group, mostly from forested re-gions, is nested within a clade composed ofspecies and species groups (B. pseudopseudisand B. martinsi groups) restricted to thehighland formations of rocky fields (Boker-mann and Sazima, 1973b; Eterovick andBrandao, 2001; Lugli and Haddad, in prep.).The facts that the other species included inthe B. martinsi group, B. langei, is from for-

ested areas (Bokermann, 1964a) and that twospecies of the B. circumdata group, B. na-nuzae and B. sazimai are from rocky fields(Bokermann and Sazima, 1973b; Cardosoand Andrade ‘‘1982’’ [1983]) suggest that adenser taxon sampling of Bokermannohyla isnecessary to better understand whether thesefrogs are an original element from the rockyfields that secondarily radiated in the forestedareas or vice versa.

The clade composed of the Hypsiboas fa-ber and H. pulchellus groups could be an ex-ample of an Atlantic Forest (or at least aneastern Brazilian31) origin with subsequentradiations into other regions. Faivovich et al.(2004) found that within the H. pulchellusgroup, an Andean clade was nested within anAtlantic Forest clade. Exactly the same pat-tern for the group is corroborated by ouranalysis (fig. 14).

ORIGIN OF WEST INDIAN HYLIDS

Our results support assertions made byHass et al. (2001) and Hedges (1996), basedon immunological distances and unpublishedsequence data, regarding a diphyletic originof West Indian hylids. Osteopilus is the sistergroup of a clade composed of Osteocephalusand the montane Tepuihyla (fig. 16). Whilethe incomplete taxon sampling precludes acareful assessment of the distribution of themost basal taxa of these genera, our resultsare compatible with a northern South Amer-ican origin for Osteopilus; Tepuihyla is re-stricted to highlands in Venezuela and Guy-ana (Ayarzaguena et al., ‘‘1992’’ [1993b],Duellman and Yoshpa, 1996; Mijares-Urrutiaet al., 1999), and Osteocephalus is wide-spread in the Amazon Basin and surroundingregions, from Venezuela and French Guianato Bolivia (e.g., De la Riva et al., 2000; Les-cure and Marty, 2000; Jungfer and Lehr,2001; Smith and Noonan, 2001).

31 Hypsiboas crepitans in Brazil occurs in some areasof the Atlantic forest and mostly in adjacent CerradoCaatinga and Cerrado formations; however, we stillthink the observed pattern is meaningful, and the addi-tion of the remaining species of the group will help tobetter define it. Hypsiboas crepitans also has wider dis-tribution, including Panama, Colombia, Venezuela, andthe Guayanas; however, the status of those populationsneeds to be reassessed (Lynch and Suarez-Mayorga,2001), as do their relationships with the H. faber group.

Page 124: systematic review of the frog family hylidae, with special reference to ...

124 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Regarding the other West Indian hylid spe-cies, Hypsiboas heilprini and its sister-grouprelationship with the H. albopunctatus group(fig. 14) is notable in that the basal taxon ofthe group, H. raniceps, has a broad distri-bution through open areas of South America,spanning about 3500 km, from French Gui-ana (Lescure and Marty, 2000) to easterncentral Argentina (Basso, 1995). The factthat both hylid lineages present in the WestIndies clearly have a northern South Ameri-can origin is coincident with the suggestionsmade by Hedges (1996).

MIDDLE AMERICA AND THE HOLARCTIC

The molecular evidence for Hylini doesnot support the idea of a basal split betweenan Isthmian–Lowlands clade and a Mexican–Nuclear Central American clade as was sug-gested by Duellman (2001). Instead, it sug-gests the existence of a clade composed pri-marily of, but not limited to, Mexican high-lands-Nuclear Central American elements(fig. 15). Nested within this clade, there is alineage composed of two lowland clades(Tlalocohyla, and the group composed of An-otheca, Triprion, and Smilisca), an IsthmianHighlands clade (Isthmohyla) and one NorthAmerican–Eurasiatic clade (Hyla).

Within the Mexican Highlands–NuclearCentral American clade, and besides the ma-jor lineage that diversified outside this region(Hyla, Isthmohyla), there are two other in-stances of terminals distributed in lower Cen-tral America (fig. 15), Duellmanohyla rufi-oculis and Ecnomiohyla miliaria. There arealso at least three more cases that were un-available for this study: two species of Duell-manohyla (D. lythrodes, D. uranochroa), thelower Central American species of Ecnom-iohyla (E. fimbrimembra, E. thysanota), andPtychohyla (P. legleri). The two instancesimplied by our results are a lower limit; theaddition of further exemplars of Duellma-nohyla, Ecnomiohyla, and Ptychohyla willdetermine if there were other events as well.

Hylini is nested within a South Americanclade, supporting a South American originfor this group. It is interesting, however, tosee a likely Mexican highlands–Nuclear Cen-tral American origin for the lowland lineages(Anotheca, Tlalocohyla, Smilisca, Triprion),

and that the Isthmian Highlands Isthmohylais nested within all these lineages. We seethese situations as being at least partiallycompatible with the current paleogeographicscenario for Middle America (see Iturralde-Vinent and McPhee, 1999; Savage, 2002a).

The topology of the Mexican Highlands–Nuclear Central American clades also showssome fine-grained patterns, like the possiblesister-taxon relationship between a cladefrom the Mexican highlands (Plectrohylabistincta group) and one from the NuclearCentral American highlands (Plectrohylaguatemalensis group). The problem is thatconsidering the scarce taxon sampling ofthese two species groups in our analysis, andthe very likely possibility of further rear-rangements upon addition of more exemplarsof these groups (see comments in earlier dis-cussion), it seems risky to hypothesize aboutthe recovered pattern.

Most authors who have discussed the ori-gin of Eurasiatic Hyla assumed its originfrom western North American Hyla and itsdispersion to Eurasia presumably throughBeringia (Anderson, 1991; Borkin, 1999;Duellman, 2001; Kuramoto, 1980). The to-pology of Hyla (fig. 15) shows two Eura-siatic taxa. One of these, the H. arboreagroup, forms the sister taxon of the remain-ing Hyla. The other, H. japonica, is imbed-ded within the H. eximia group, which inturn is nested within a grade of eastern NorthAmerican species. This situation implies twoindependent biogeographic events to explainthe origin of Eurasiatic Hyla, as suggested byAnderson (1991) and Borkin (1999). Whilethis pattern is partially compatible with theidea of a western North American origin ofat least some Eurasiatic Hyla (those nestedwithin the H. eximia group) claimed by pre-vious authors, it remains at least equivocalfor the clade that contains most exemplars ofthe H. arborea group. The only way of main-taining a western North American origin forthis clade is to invoke a very important his-torical shift in the distribution of the cur-rently eastern North American speciesgroups or to accept an eastern North Amer-ican–European (North Atlantic) vicariance ordispersal event. The position of the H. eximiagroup nested within eastern North Americanspecies groups requires a dispersal/vicariance

Page 125: systematic review of the frog family hylidae, with special reference to ...

2005 125FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 15. Partial view of the strict consensus showing the geographic distribution of the componentsof Dendropsophini. Distributions, in general, are taken from Duellman (1999). Only collective groupsreferred in ‘‘Biogeographic Commentary’’ are shown. An asterisk (*) indicates the geographic distri-bution of Scinax squalirostris that includes the Atlantic forest, Cerrado, Chaco, and Pampean grasslands.Two asterisks (**) indicate the geographic distribution of Scinax ruber that includes the Amazonian andGuayana lowlands, Caribbean lowlands, and Llanos. Three asterisks (***) indicate the geographic dis-tribution of Pseudis paradoxa that extends from the Chaco region to the Amazonian and Guayanalowlands, the Llanos, and the Caribbean lowlands.

event southward to explain the distributionof this lineage, as suggested by Duellman(2001).

A ROUGH TEMPORAL FRAMEWORK: CLUES

FROM THE HYLID FOSSIL RECORD

The hylid fossil record is remarkably scant(Sanchiz, 1998a), and hylid remains, on mostoccasions, are represented by disarticulatedilia. The oldest fossil record tentatively as-signed to Hylidae is remains of an ilium and

a humerus from the Maastrichtian of Naskal,India (Prasad and Rage, 1995) tentatively as-signed to Hylidae, although Sanchiz (1998a)considered the identification dubious. Hylidswere mentioned from the Paleocene of Ita-boraı (Brazil) by Estes (1970), Estes andReig (1973), Estes and Baez (1985), andBaez (2001), but the material—also iliac re-mains—is stills unstudied.

The earliest known record for NorthAmerica is Hyla swanstoni, from the Late

Page 126: systematic review of the frog family hylidae, with special reference to ...

126 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Page 127: systematic review of the frog family hylidae, with special reference to ...

2005 127FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Fig. 16. Partial view of the strict consensus showing the geographic distribution of the componentsof Hylini and Lophiohylini. Distributions were taken from Campbell (1999) and Duellman (1970, 2001).Only collective groups referred in ‘‘Biogeographic Commentary’’ are shown. An asterisk (*) indicatesthe distribution of Anotheca spinosa that is present in the Mexican, Nuclear Central American, andIsthmian highlands. Two asterisks (**) indicate the geographic distribution of Trachycephalus venulosus,which extends from central eastern Argentina to Southern Mexico.

Eocene of Cypress Hill Formation (Saskatch-ewan, Canada), described by Holman (1968)based on eroded iliac remains; Sanchiz(1998a) also considered this taxonomic as-signment to be dubious. Other iliac remainsfrom the mid-Miocene of North America(mostly from the Hemingfordian NorthAmerican Land Mammal Age) were also re-ferred to hylids (i.e., Acris barbouri, Hylamiocenica, H. miofloridiana, Proacris min-toni, Pseudacris nordensis), as well as sev-eral Pleistocene remains that were assignedto extant species (Holman, 2003).

The oldest known hylid record for Europewas reported by Sanchiz (1998b) from earlyMiocene lignite deposits of Austria. The re-mains consist of a fragmentary sacral verte-bra and a scapula, which Sanchiz (1998b)found to be similar to Hyla arborea and H.meridionalis, and assigned to Hyla sp. Otherremains from the late Miocene, as well asfrom the Pliocene to Holocene, were referredto Hyla sp., H. arborea, and the most recentones to some extant species (see Sanchiz[1998a] for review).

The oldest fossil record of hylids in Aus-tralia dates to the Lower to Middle Miocene,where some species of Litoria were de-scribed on the basis of iliac remains (e.g.,Tyler, 1991). Other Pleistocene and Holoceneremains were assigned to extant species (seeSanchiz [1998a] for a review).

We are not inclined to construct far-reach-ing hypotheses based on such a sparse fossilrecord. Without taking into account Hylaswanstoni, already questioned by Sanchiz(1998a), we must consider the possibility thatat least one of the North American iliac re-mains from the Miocene assigned to hylidsis actually related to the extant groups ofHolarctic hylids. If this were the case, itwould imply a minimum age of approxi-mately 15 mybp of hylid presence in NorthAmerica. If we consider with the same le-

niency the Miocene remains from Europe,especially the approximately 17 mybp Hylasp. reported by Sanchiz (1998b), we couldconsider an even earlier, though still unspec-ified, minimum age of hylid presence inNorth America. All the evidence regardinghylid fossil record and its minimum ages hasbeen presented.

How this information could be used de-pends on how much we are willing to assumeabout the role of known geophysical data indating cladogenetic events. In recent studiesaddressing phylogenetic studies of some froggroups, geophysical information was usedfor molecular clock calibrations (e.g., Bos-suyt and Milinkovitch, 2000; Vences et al.,2003c). Leaving aside particular objectionsabout molecular clock estimations, the use ofclade-independent information as calibrationpoints entails assumptions about the evolu-tionary process and about the primacy andprecision of paleogeographic reconstructionsthat should be taken cautiously (Page andLydeard, 1994). It has been this clade-inde-pendent information that has classically beenused to date one of the important events ofthe hylid radiation: the origin of the Hylini.

Both Savage (1966, 1982, 2002a) andDuellman (1970, 2001) suggested an earlycolonization event of Middle America byHylinae and Phyllomedusinae stocks in thelate Cretaceous–Eocene; from these stocks,all remaining Middle American and NorthAmerican elements differentiated due to sev-eral vicariant and dispersal events throughthe Tertiary. Considering that the evidencefor the existence of a late mid-Miocene land-bridge between North and South America(necessarily involving Central America) isambiguous (Iturralde-Vinent and McPhee,1999), a ‘‘classical’’ assumption of nonover-water dispersal would imply that actually theminimum age of colonization of MiddleAmerica must have been at least about 75

Page 128: systematic review of the frog family hylidae, with special reference to ...

128 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

mybp, during the existence of the so-calledpost-Cretaceous Arc landbridge (Iturralde-Vinent and McPhee, 1999). While this seemslike a logical deduction, we find it to be un-supported by the available data pertaining tohylids. We only know (or better, assume) thathylids were present in North America 15mybp and possibly in Europe 17 mybp. Ac-cordingly, we are still uncomfortable in as-signing 75 mybp as the minimum age of Hy-lini. Instead, this age should be the result ofeither a fossil record (still unknown) or a dat-ing exercise.

FUTURE DIRECTIONS

In order to increase our knowledge of hy-lid phylogenetics, we see several lines of in-quiry stemming from this project whose pur-suit would be fruitful. These are:

1. Nonmolecular data set: As stated elsewherein this paper, an extensive, well-researchednonmolecular data set is a major gap in ouranalysis. Every effort should be made tocomplete one and to combine it with theavailable molecular data.

2. Phylogeny of Pelodryadinae: By far thegreatest deficiency in our knowledge of hy-lid relationships that still need to be solvedis the relationships among Pelodryadinae.The combination of a densely sampled dataset of Pelodryadinae with ours will be help-ful for understanding Phyllomedusinae re-lationships.

3. Inclusion of unrepresented groups and dens-er taxon sampling of poorly representedgroups of Hylinae: No exemplars of theBokermannohyla claresignata and the Den-dropsophus garagoensis groups were avail-able for this analysis. Furthermore, severalgroups have been poorly represented; suchis the case for Ecnomiohyla, Exerodonta,Isthmohyla, Megastomatohyla, Plectrohyla,and Tlalocohyla. A major task in the futurewill be to rigorously test all the tentative as-sociations of species not included in theanalysis with the various clades that weidentified.

4. Relationships within smaller taxonomicunits: Our results provide a general frame-work for the study of relationships withinalmost any of the genera or species groupsof the species-rich genera of Hylidae. In par-ticular, we think that the study of relation-ships through an increased taxon samplingwithin Bokermannohyla, Dendropsophus,

Ecnomiohyla, Hyloscirtus, Hypsiboas, andPlectrohyla would result in importantchanges in our understanding of thosegroups.

5. Resolution of the taxa herein considered in-sertae sedis: A careful study of availablematerial of the taxa that we could not as-sociate with any of clades that we identifyand, if available, the inclusion of moleculardata derived from them would hopefullypermit their inclusion in the phylogeneticcontext of hylids.

ACKNOWLEDGMENTS

First and foremost, we thank William E.Duellman for his major contribution to ourknowledge of hylid frogs. His lifework wasthe foundation of this project and a perma-nent source of inspiration. Several of hisideas were corroborated here, while we wereunable to find evidence supporting a few oth-ers. These discrepancies are immaterial inour appreciation of his monumental contri-bution.

For the loan of tissue samples employedin this study, voucher specimens, help in thefield, or critical material, we thank (see ap-pendix 4 for institutional abreviations):Raoul Bain, Charles J. Cole, Linda S. Ford,and Charles W. Myers (AMNH); AngeliqueCorthals (AMCC-AMNH); Cornelya Klutsch(ZFMK); Diego F. Cisneros-Heredia (DFCH-USFQ); Eric Smith and Paul Ustach (UTA);Boris L. Blotto, Andres Sehinkman, MartinRamirez, Santiago Nenda, and Gustavo R.Carrizo (MACN); Oscar Flores-Villela andAdrian Nieto Montes de Oca (MZFC);Dwight Lawson (Zoo Atlanta), David Wake,and Meredith Mahoney (MVZ); Jose P. Pom-bal Jr. (MNRJ); Marcio Martins, Miguel T.Rodrigues, and Renata Cecilia Amaro Ghi-lardi (Universidade de Sao Paulo); HussamZaher, Paulo Nuin, and Patricia Narvaes(MZUSP); Frederick H. Sheldon and DonnaDittmann (LSU); W. Ronald Heyer and RoyW. McDiarmid (USNM); Karen Lips(SIUC); Luis Coloma (QCAZ); Jiri Moravec(NMP6V); Steve Lougheed (Queen’s Uni-versity); Ignacio De la Riva (MNCN); DiegoBaldo (Universidad Nacional de Misiones);George Lenglet (IRSNB); James Hanken(MCZ); Frank Glaw (ZSM); Elizabeth Scot(TMSA); Rainer Gunther (ZMB); Barry

Page 129: systematic review of the frog family hylidae, with special reference to ...

2005 129FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Clarke (BMNH); Arnold Kluge and GregSchnider (UMMZ); Robert Murphy (ROM);Steve Donnellan (SAMA); Jorge Williams(MLP); Goran Nilson (NHMG); Janalee P.Caldwell (Sam Noble Oklahoma Museum ofNatural History, University of Oklahoma;samples collected under National ScienceFundation grants DEB-9200779 and DEB-9505518); Rafael de Sa (University of Rich-mond); Renoud Boistel (Universite ParisSud); Luis Canseco-Marquez (UniversidadNacional Autonoma de Mexico); Esteban O.Lavilla (Fundacion Miguel Lillo); MaureenA. Donnelly (Florida International Universi-ty); John D. Lynch (Instituto de Ciencias Na-turales, Universidad Nacional de Colombia);Magno Segalla (Museu de Historia NaturalCapao da Imbuia); Helio da Silva (Univer-sidade Federal Rural do Rio de Janeiro); AnaCarolina de Queiroz Carnaval (University ofChicago); Paul Moler (Florida Fish andWildlife Conservation Commission); RobertN. Fisher (U.S. Geological Survey, San Di-ego, CA); Valerie McKenzie (University ofCalifornia, Santa Barbara); Aaron Bauer(Villanova University); Marcos Vaira (Mu-seo de Ciencias Naturales, Universidad Na-cional de Salta); Claude Gascon (Conserva-tion International); Joseph Mendelsohn (UtahState University); Axel Kwet (StaatlichesMuseum fur Naturkunde, Stuttgart); RogerioP. Bastos (Universidade Federal de Goias);Joao Luis Gasparini (Universidade Federaldo Espırito Santo); Marcelo Gordo (Univer-sidade Federal do Amazonas); Sonia Cechin(Universidade Federal de Santa Maria); IvanSazima (Universidade Estadual de Campi-nas); Marılia T.A. Hartmann, Paulo Hart-mann, Luciana Lugli, Ariovaldo P. CruzNeto, Cynthia P.A. Prado, Luız O. M. Gias-son, and Luıs F. Toledo (Universidade Estad-ual Paulista–Rio Claro); Giovanni Vincipro-va (Universidade Federal do Rio Grande doSul); Phillipe Gaucher (Mission Pour la Cre-ation du Parc de la Guyane); Karl-HeinzJungfer; Sylvain Dubey; A.P. Almeida; PedroCacivio; Martin Henzel; and Pierrino andSandy Mascarino. Their generosity was in-strumental in the completion of this project.

Tissues from Bolivian AMNH specimenswere collected during an expedition support-ed by the Center for Biodiversity and Con-servation at the American Museum of Nat-

ural History and the Center for Environmen-tal Research and Conservation at ColumbiaUniversity, New York, in collaboration withthe Museo de Historia Natural Noel-KempffMercado, Santa Cruz, Bolivia, and ColeccionBoliviana de la Fauna, La Paz. Tissues fromAMNH Vietnamese specimens were collect-ed under National Science Foundation DEB-9870232 to the Center for Biosiversity andConservation at the AMNH. Exportation per-mits of Brazilian samples were issued by Au-torizacao de Acesso e de Remessa de Amos-tra de Componente do Patrimonio Geneticon8 037/2004; permits for collection were is-sued by IBAMA/RAN, licenca 057/03, pro-cesso 02001.002792/98–03.

For discussions on hylid systematics and/or nomenclatural problems, we thank Jose A.Langone, Jose P. Pombal, Jr., Charles W. My-ers, Esteban O. Lavilla, and Roy McDiarmid.Tom Burton answered many questions andrequests of clarifications regarding his im-portant contribution (Burton, 2004). Jan DeLaet and Pablo Goloboff made useful sug-gestions regarding the analyses. Maureen A.Donnelly, Jose P. Pombal, Jr., Charles W.Myers, Jose L. Langone, Taran Grant, Nor-berto P. Giannini, Raoul Bain, Diego Pol, andW. Leo Smith kindly read partially or com-pletely the manuscript and provided usefulcomments and ideas.

Julian Faivovich acknowledges the Amer-ican Museum of Natural History, E3B/Co-lumbia University, NASA/AMNH computa-tional phylogenetic fellowship, AMNH Roo-sevelt Grant, and National Science Founda-tion grant no. DEB-0407632 for financialsupport. Furthermore, he thanks Diego Pol,W. Leo Smith, Taran Grant, Rafael de Sa,Charles J. Cole, Fernando Lobo, and EstebanLavilla for their early encouragment to pur-sue this project.

Celio F.B. Haddad thanks programa BIO-TA/FAPESP (proc. 01/13341–3) and CNPqfor financial support.

Jonathan A. Campbell acknowledges Na-tional Science Foundation grant no. DEB-0102383 for financial support.

Darrel R. Frost and Ward C. Wheeler ac-knowledge support from NASA grantsNAG5–8443 and NAG5–12333. They alsoespecially thank Lisa Gugenheim and Mer-

Page 130: systematic review of the frog family hylidae, with special reference to ...

130 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

rily Sterns for their efforts in support of mo-lecular research at the AMNH.

REFERENCES

Alcalde, L., and S.D. Rosset. ‘‘2003’’ [2004].Descripcion y comparacion del condrocraneoen larvas de Hyla raniceps (Cope, 1862), Sci-nax granulatus (Peters, 1871) y Scinax squali-rostris (A. Lutz, 1925) (Anura: Hylidae). Cuad-ernos de Herpetologıa 17: 33–49.

Almeida, C.G., and A.J. Cardoso. 1985. Variabi-lidade em medidas dos espermatozoides deHyla fuscovaria (Amphibia, Anura) e seu sig-nificado taxonomico. Revista Brasileira deBiologia 45: 387–391.

Altig, R., and R.W. McDiarmid. 1999a. Bodyplan. Development and morphology. In R.W.McDiarmid and R. Altig (editors), Tadpoles.The biology of anuran larvae: 24–51. Chicago:The University of Chicago Press.

Altig, R., and R.W. McDiarmid. 1999b. Diversity.Familial and generic characterizations. In R.W.McDiarmid and R. Altig (editors), Tadpoles.The biology of anuran larvae: 295–337. Chi-cago: The University of Chicago Press.

Alves, A.C.R., and S.P. Carvalho e Silva. 2002.Descriptions of the tadpoles of Scinax alter andScinax cuspidatus. Journal of Herpetology 36:133–137.

Alves, A.C.R., M.d.R. Gomes, and S.P. Carvalhoe Silva. 2004. Description of the tadpole of Sci-nax auratus (Wied-Neuwied) (Anura, Hylidae).Revista Brasileira de Zoologia 21: 315–317.

Anderson, K. 1991. Chromosome evolution inHolarctic Hyla treefrogs. In D.M. Green andS.K. Sessions (editors), Amphibian cytogenet-ics and evolution: 299–331. New York: Aca-demic Press.

Anderson, K. 1996. A karyological perspective onthe monophyly of the hylid genus Osteopilus.In R. Powell and R.W. Henderson (editors),Contributions to West Indian herpetology: atribute to Albert Schwartz: 157–168. Ithaca,NY: Society for the Study of Amphibians andReptiles.

Anstis, M. 2002. Tadpoles of south-eastern Aus-tralia. A guide with keys. Sydney: Reed NewHolland.

Apponyi, M.A., T.L. Pukala, C.S. Brinkworth,V.M. Maselli, J.H. Bowie, M.J. Tyler, G.W.Booker, J.C. Wallace, J.A. Carver, F. Separovic,J.J. Doyle, and L.E. Llewellyn. 2004. Host-de-fense peptides of Australian anurans: structure,mechanisms of action and evolutionary signif-icance. Peptides 25: 1035–1054.

Austin, J.D., S.C. Lougheed, K. Tanner, A.A.Chek, J.P. Bogart, and P.T. Boag. 2002. A mo-

lecular perspective on the evolutionary affini-ties of an enigmatic Neotropical frog, Allophry-ne ruthveni. Zoological Journal of the LinneanSociety 134: 335–346.

Ayarzaguena, J. 1992. Los centrolenidos de laGuayana Venezolana. Publicaciones de la Aso-ciacion de Amigos de Donana: 1–46.

Ayarzaguena, J., and J.C. Senaris. ‘‘1993’’[1994]. Dos nuevas especies de Hyla (Anura;Hylidae) para las Cumbres Tepuyanas del Es-tado Amazonas, Venezuela. Memoria de la So-ciedad de Ciencias Naturales La Salle 53: 127–146.

Ayarzaguena, J., J.C. Senaris, and S. Gorzula.‘‘1992’’ [1993a]. El grupo Osteocephalus rod-riguezi de las tierras altas de la guayana vene-zolana: descripcion de cinco nuevas especies.Memoria Sociedad de Ciencias Naturales LaSalle 52: 133–142.

Ayarzaguena, J., J.C. Senaris, and S. Gorzula.‘‘1992’’ [1993b]. Un nuevo genero para las es-pecies del ‘‘grupo Osteocephalus rodriguezi’’(Anura: Hylidae). Memoria de la Sociedad deCiencias Naturales La Salle 52: 213–221.

Baez, A.M. 2001. Tertiary anurans from SouthAmerica. In H. Heatwole and R.L. Carrol (ed-itors), Amphibian biology, vol. 4: 1388–1401.Sidney: Surrey Beatty and Sons.

Bagnara, J.T. 1974. The tail-darkening reaction ofphyllomedusine tadpoles. Journal of Experi-mental Zoology 187: 149–154.

Bagnara, J.T., and W. Ferris. 1975. The presenceof phyllomedusine melanosomes and pigmentsin Australian hylids. Copeia 1975: 592–595.

Barrio, A., and B. Lutz. 1966. Notas Batracolo-gicas. I. Sobre la supuesta presencia del generoFlectonotus Miranda-Ribeiro en la Argentina.II. Observaciones etoecologicas sobre Trachy-cephalus siemersi (Mertens) (Anura, Hylidae).Physis 26: 107–108.

Barrio, A., and P. Rinaldi de Chieri. 1971. Con-tribucion al esclarecimiento de la posicion taxo-filetica de algunos batracios patagonicos de lafamilia Leptodactylidae mediante el analisiscariotipico. Physis 30: 673–685.

Barrio-Amoros, C.L., and O. Fuentes. 2003. Anew species of Stefania (Anura: Hylidae:Hemiphractinae) from the summit of Cerro Au-tana, Estado Amazonas, Venezuela. Herpetolo-gica 59: 504–512.

Barrio-Amoros, C.L., A. Orellana, and A. Cha-con. 2004. A new species of Scinax (Anura:Hylidae) from the Andes of Venezuela. Journalof Herpetology 38: 105–112.

Basso, N.G. 1995. Hyla raniceps. Geographic dis-tribution. Herpetological Review 26: 105.

Bastos, R.P., and J.P. Pombal, Jr. 1996. A new

Page 131: systematic review of the frog family hylidae, with special reference to ...

2005 131FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

species of Hyla (Anura: Hylidae) from easternBrazil. Amphibia–Reptilia 17: 325–331.

Biju, S.D., and F. Bossuyt. 2003. New frog fromIndia reveals an ancient biogeographical linkwith the Seychelles. Nature 425: 711–714.

Blair, W.F. 1958. Call structure and species groupsin U.S. treefrogs (Hyla). Southwestern Natural-ist 3: 77–89.

Blaylock, L.A., R. Ruibal, and K. Platt-Aloia.1976. Skin structure and wiping behavior ofPhyllomedusinae frogs. Copeia 1976: 283–295.

Block, J.E., S.L. Unser, J.K. Mooney, and E.R.Wild. 2003. Agalychnis craspedopus (Amazonleaf frog). Reproduction. Herpetological Re-view 34: 134–135.

Bogart, J.E. 1973. Evolution of anuran karyo-types. In J.L. Vial (editor), Evolutionary biol-ogy of the anurans. Contemporary research onmajor problems: 329–349. Columbia, MO:University of Missouri Press.

Bokermann, W.C.A. 1962. Cuatro nuevos hylidosdel Brasil. Neotropica 8: 81–91.

Bokermann, W.C.A. 1963. Girinos de anfıbiosbrasileiros—I (Amphibia–Salientia). Anais daAcademia Brasileira de Ciencias 35: 465–474.

Bokermann, W.C.A. 1964a. Dos nuevas especiesde Hyla de Minas Gerais y notas sobre Hylaalvarengai bok (Amphibia, Salientia, Hylidae).Neotropica 10: 67–76.

Bokermann, W.C.A. 1964b. Notes on treefrogs ofthe Hyla marmorata group with description ofa new species (Amphibia, Hylidae). Sencken-bergiana Biologica 45: 243–254.

Bokermann, W.C.A. 1965a. Tres novos batraquiosda regiao central de Mato Grosso, Brasil. Re-vista Brasileira de Biologia 25: 257–264.

Bokermann, W.C.A. 1965b. Hyla langei, a newfrog from Parana, southern Brasil. Journal ofthe Ohio Herpetological Society 5: 49–51.

Bokermann, W.C.A. 1966a. Notas sobre Hylidaedo Espirito Santo (Amphibia, Salientia). Revis-ta Brasileira de Biologia 26: 29–37.

Bokermann, W.C.A. 1966b. O genero PhyllodytesWagler, 1830 (Anura, Hylidae). Anais da Aca-demia Brasileira de Ciencias 38: 335–344.

Bokermann, W.C.A. 1966c. Una nueva especie deTrachycephalus de Bahia, Brasil (Amphibia,Hylidae). Neotropica 12: 120–124.

Bokermann, W.C.A. 1967a. Hyla astartea, novaespecie da Serra do Mar em Sao Paulo (Am-phibia, Hylidae). Revista Brasileira de Biologia27: 157–158.

Bokermann, W.C.A. 1967b. Nova especie de Hylado Amapa (Amphibia, Hylidae). Revista Bras-ileira de Biologia 27: 109–112.

Bokermann, W.C.A. 1967c. Notas sobre cantosnupciais de anfıbios brasileiros. I. (Anura). An-

ais da Academia Brasileira de Ciencias 39:441–443.

Bokermann, W.C.A. 1968. Notas sobre alguns an-fibios Brasileiros descritos por Reinhardt e Lut-ken em 1862 (Amphibia). Revista Brasileira deBiologia 28: 327–329.

Bokermann, W.C.A. 1972. Notas sobre Hyla clep-sydra A. Lutz (Anura, Hylidae). Revista Bras-ileira de Biologia 32: 291–295.

Bokermann, W.C.A. 1973. Duas novas especiesde Sphaenorynchus da Bahia (Anura, Hylidae).Revista Brasileira de Biologia 33: 589–594.

Bokermann, W.C.A., and I. Sazima. 1973a. An-fıbios da Serra do Cipo, Minas Gerais, Brasil.1: Duas especies novas de Hyla (Anura, Hyli-dae). Revista Brasileira de Biologia 33: 521–528.

Bokermann, W.C.A. and I. Sazima. 1973b. Anfı-bios da Serra do Cipo, Minas Gerais, Brasil. 1:Especies novas de ‘‘Hyla’’ (Anura, Hylidae).Revista Brasileira de Biologia 33: 329–336.

Bokermann, W.C.A., and I. Sazima. 1978. Anfı-bios da Serra do Cipo, Minas Gerais, Brasil. 4:Descricao de Phyllomedusa jandaia sp. n. (An-ura, Hylidae). Revista Brasileira de Biologia38: 927–930.

Bonacum, J., R. DeSalle, P. O’Grady, D. Olivera,J. Wintermute, and M. Zilversmith. 2001. Newnuclear and mitochondrial primers for system-atics and comparative genomics in Drosophili-dae. Drosophila Information Service 84: 201–204.

Borkin, L.J. 1999. Distribution of amphibians inNorth Africa, Europe, western Asia, and theformer Soviet Union. In W.E. Duellman (edi-tor), Patterns of distribution of amphibians. Aglobal perspective: 329–420. Baltimore: TheJohns Hopkins University Press.

Bossuyt, F., and M.C. Milinkovitch. 2000. Con-vergent adaptive radiations in Madagascan andAsian ranid frogs reveal covariation betweenlarval and adult traits. Proceedings of the Na-tional Academy of Sciences USA 97: 6585–6590.

Boulenger, G.A. 1882. Catalogue of the BatrachiaSalientia s. Ecaudata in the collection of theBritish Museum, 2nd ed. London: Taylor andFrancis.

Brandao, R.A. 2002. A new species of Phyllo-medusa Wagler, 1830 (Anura: Hylidae) fromcentral Brazil. Journal of Herpetology 36: 571–578.

Bremer, K. 1988. The limits of amino acid se-quence data in angiosperm phylogenetic recon-struction. Evolution 42: 795–803.

Burton, T.C. 1996. Adaptations and evolution inthe hand muscles of Australo-Papuan hylid

Page 132: systematic review of the frog family hylidae, with special reference to ...

132 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

frogs (Anura: Hylidae: Pelodryadinae). Austra-lian Journal of Zoology 44: 611–623.

Burton, T.C. 1998a. Are the distal extensor mus-cles of the fingers of anurans an adaptation toarboreality? Journal of Herpetology 32: 611–617.

Burton, T.C. 1998b. Variation in the hand and su-perficial throat musculature of Neotropical lep-todactylid frogs. Herpetologica 54: 53–72.

Burton, T.C. 2004. Muscles of the pes of hylidfrogs. Journal of Morphology 260: 209–233.

Bushnell, R.J., E.P. Bushnell, and M.V. Parker.1939. A chromosome study of five members ofthe family Hylidae. Journal of the TennesseeAcademy of Science 14: 209–215.

Cadle, J.E., and R. Altig. 1991. Two lotic tadpolesfrom the Andes of southern Peru: Hyla armataand Bufo veraguensis, with notes on the call ofHyla armata (Amphibia: Anura: Hylidae andBufonidae). Studies on Neotropical Fauna andEnvironment 26: 45–53.

Caldwell, J.P. 1974. A re-evaluation of the Hylabistincta species group, with descriptions ofthree new species (Anura: Hylidae). OccasionalPapers of the Museum of Natural History, TheUniversity of Kansas 28: 1–37.

Caldwell, J.P. 1986. A description of the tadpoleof Hyla smithii with comments on tail colora-tion. Copeia 1986: 1004–1006.

Caldwell, J.P. 1989. Structure and behavior ofHyla geographica tadpole schools, with com-ments on classification of group behavior intadpoles. Copeia 1989: 938–950.

Caldwell, J.P. 1992. Diversity of reproductivemodes in anurans: facultative nest constructionin gladiator frogs. In W.C. Hamlett (editor), Re-productive biology of South American verte-brates: 85–97. New York: Springer-Verlag.

Caldwell, J.P. 1994. Natural history and survivalof eggs and early larval stages of Agalychniscalcarifer (Anura: Hylidae). HerpetologicalNatural History 2: 57–66.

Campbell, J.A. 1999. Distribution patterns of Am-phibians in Middle America. In W.E. Duellman(editor), Patterns of distribution of amphibians.A global perspective: 111–210. Baltimore: TheJohns Hopkins University Press.

Campbell, J.A., and W.E. Duellman. 2000. Newspecies of stream-breeding hylid frogs from thenorthern versant of the highlands of Oaxaca,Mexico. Scientific Papers of the Natural His-tory Museum, The University of Kansas 16: 1–28.

Campbell, J.A., and E.N. Smith. 1992. A new frogof the genus Ptychohyla (Hylidae) from the Si-erra de Santa Cruz, Guatemala, and descriptionof a new genus of Middle American stream-breeding treefrogs. Herpetologica 48: 153–167.

Campbell, J.A., E.N. Smith, and M. Acevedo.2000. A new species of fringe-limbed treefrog(Hylidae) from the Sierra de los Cuchumatanesof northwestern Guatemala. Herpetologica 56:250–256.

Cannatella, D.C. 1980. A review of the Phyllo-medusa buckleyi group (Anura: Hylidae). Oc-casional Papers of the Museum of Natural His-tory, The University of Kansas 87: 1–40.

Cannatella, D.C. 1982. Leaf-frogs of the Phyllo-medusa perinesos group (Anura: Hylidae).Copeia 1982: 501–513.

Canseco-Marquez, L., J.R. Mendelson III, and G.Gutierrez-Mayen. 2002. A new species of Hyla(Anura: Hylidae) from the Mixteca Alta, Oa-xaca, Mexico. Herpetologica 58: 260–269.

Canseco-Marquez, L., G. Gutierrez-Mayen, andJ.R. Mendelson III. 2003. Distribution and nat-ural history of the hylid frog Hyla xera in theTehuacan-Cuicatlan valley, Mexico, with a de-scription of the tadpole. The Southwestern Nat-uralist 48: 670–675.

Caramaschi, U. 1989. Revisao do genero Sphae-norhynchus Tschudi, 1838: Composicao, anal-ise cladıstica e biogeografia (Anura, Hylidae).Ph.D. dissertation, Instituto de Biociencias,Universidade de Sao Paulo, Sao Paulo

Caramaschi, U. 1998. Description of a secondspecies of the genus Xenohyla (Anura: Hyli-dae). Amphibia-Reptilia 19: 377–384.

Caramaschi, U., and C.A.G. Cruz. 1998. Notastaxonomicas sobre Pseudis fusca Garman e P.bolboactyla A. Lutz, com a descricao de umanova especie correlata (Anura, Pseudidae). Re-vista Brasileira de Biologia 15: 929–944.

Caramaschi, U., and C.A.G. Cruz. 2000. Duas es-pecies novas de Hyla Laurenti, 1768 do estadode Goias, Brasil (Amphibia, Anura, Hylidae).Boletim do Museu Nacional, Nova Serie, Zool-ogia 422: 1–12.

Caramaschi, U., and R.N. Feio. 1990. A new spe-cies of Hyla (Anura, Hylidae) from southernMinas Gerais, Brazil. Copeia 1990: 542–546.

Caramaschi, U., and J. Jim. 1983. Observacoessobre habitos e desenvolvimento dos girinos dePhyllomedusa vaillanti Boulenger, 1882 (Am-phibia, Anura, Hylidae). Revista Brasileira deBiologia 43: 261–268.

Caramaschi, U. and M.F. Napoli. 2004. The no-menclatural status of the synonyms of Hylapardalis Spix, 1824, and the taxonomic posi-tion of Hyla biobeba Bokerman and Sazima,1973. Journal of Herpetology 38: 501–509.

Caramaschi, U., and H. Niemeyer. 2003. Newspecies of the Hyla albopunctata group fromcentral Brazil (Amphibia, Anura, Hylidae).Boletim do Museu Nacional, Nova Serie, Zool-ogia 504: 1–8.

Page 133: systematic review of the frog family hylidae, with special reference to ...

2005 133FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Caramaschi, U., and M.T. Rodrigues. 2003. Anew large treefrog species, genus Hyla Lauren-ti, 1768, from southern Bahia, Brazil (Amphib-ia, Anura, Hylidae). Arquivos do Museu Na-cional 61: 255–260.

Caramaschi, U., and O.L. Peixoto. 2004. A newspecies of Phyllodytes (Anura: Hylidae) fromthe state of Sergipe, northeastern Brazil. Am-phibia-Reptilia 25: 1–7.

Caramaschi, U., and A. Velosa. 1996. Nova es-pecie de Hyla Laurenti, 1768 do leste brasileiro(Amphibia, Anura, Hylidae). Boletim do Mu-seu Nacional, Nova Serie, Zoologia 365: 1–7.

Caramaschi, U., H.R. da Silva, and M.C.d. Britto–Pereira. 1992. A new species of Phyllodytes(Anura, Hylidae) from southern Bahia, Brazil.Copeia 1992: 187–191.

Caramaschi, U., M.F. Napoli, and A.T. Bernardes.2001. Nova especie do grupo de Hyla circum-data (Cope, 1870) do Estado de Minas Gerais,Brasil (Amphibia, Anura, Hylidae). Boletim doMuseu Nacional, Nova Serie, Zoologia 457: 1–11.

Caramaschi, U., B.V.S. Pimenta, and R.N. Feio.2004a. Nova especie do grupo de Hyla geogra-phica Spix, 1824 da Floresta Atlantica, Brasil(Amphibia, Anura, Hylidae). Boletim do Mu-seu Nacional, Nova Serie, Zoologia 518: 1–14.

Caramaschi, U., O.L. Peixoto, and M.T. Ro-drigues. 2004b. Revalidation and redescriptionof Phyllodytes wuchereri (Peters, 1873) (Am-phibia, Anura, Hylidae). Arquivos do MuseuNacional 62: 185–191.

Cardoso, A.J. 1983. Descricao e biologia de umanova especie de Hyla Laurenti, 1768 (Amphib-ia, Anura, Hylidae). Iheringia, Zoologia 62: 37–45.

Cardoso, A.J., and G.V. Andrade. ‘‘1982’’ [1983].Nova especie de Hyla do Parque Nacional Se-rra da Canastra (Anura, Hylidae). Revista Bras-ileira de Biologia 42: 589–593.

Carnaval, A.C.O.Q., and O.L. Peixoto. 2004. Anew species of Hyla from northeastern Brazil(Amphibia, Anura, Hylidae). Herpetologica 60:387–395.

Carrizo, G.R. 1992. Cuatro especies nuevas de an-uros (Bufonidae: Bufo e Hylidae: Hyla) del nor-te de la Argentina. Cuadernos de Herpetologıa7: 14–23.

Carvalho e Silva, S.P., A.M.P.T. Carvalho e Silva,and E. Izecksohn. 2003. Nova especie de HylaLaurenti do grupo de H. microcephala Cope(Amphibia, Anura, Hylidae) do nordeste doBrasil. Revista Brasileira de Zoologia 20: 553–558.

Castanho, L.M., and I.M.S. De Luca. 2001.Moulting behavior in leaf-frogs of the genus

Phyllomedusa (Anura: Phyllomedusinae). Zool-ogischer Anzeiger 240: 3–6.

Cei, J.M. 1985. Taxonomic and evolutionary sig-nificance of peptides in amphibian skin. Pep-tides 6(suppl. 3): 13–16.

Cei, J.M. 1987. Additional notes to ‘‘Amphibiansof Argentina’’: An update 1980–1986. Moni-tore Zoologico Italiano (N. S.) 21: 209–272.

Cespedez, J.A. 2000. Historia natural de la ranade Pedersen, Argenteohyla siemersi pederseni(Anura: Hylidae). Boletin de la AsociacionHerpetologica Espanola 11: 75–80.

Chang, J. 1996. Inconsistency of evolutionary treetopology reconstruction methods when substi-tution rates vary across characters. Mathemat-ical Biosciences 134: 189–215.

Chek, A.A., S.C. Lougheed, J.P. Bogart, and P.T.Boag. 2001. Perception and history: molecularphylogeny of a diverse group of Neotropicalfrogs, the 30-chromosomes Hyla (Anura: Hy-lidae). Molecular Phylogenetics and Evolution18: 370–385.

Cochran, D.M. 1955. Frogs of southeastern Bra-zil. Bulletin of the United States National Mu-seum 206: 1–423.

Cochran, D.M. 1961. Type specimens of reptilesand amphibians in the United States NationalMuseum. Bulletin of the United States NationalMuseum 220: 1–291.

Cochran, D.M., and C.J. Goin. 1970. Frogs of Co-lombia. Bulletin of the United States NationalMuseum 288: 1–655.

Cocroft, R.B. 1994. A cladistic analysis of chorusfrog phylogeny (Hylidae: Pseudacris). Herpe-tologica 50: 420–437.

Cole, C.J. 1966. The chromosomes of Acris cre-pitans blanchardi Harper (Anura: Hylidae).Copeia 1966: 578–580.

Coloma, L.A. 1995. Ecuadorian frogs of the ge-nus Colostethus (Anura: Dendrobatidae). Mis-cellaneous Publications of the Museum of Nat-ural History, University of Kansas 87: 1–72.

Cope, E.D. 1862. Catalogues of the reptiles ob-tained during the explorations of the Parana,Paraguay, Vermejo and Uruguay Rivers, byCapt. Thos. J. Page, U.S.N.; and of those pro-cured by Lieut. N. Michler, U.S. Top. Eng.,Commander of the expedition conducting thesurvey of the Atrato River. Proceedings of theAcademy Natural Sciences of Philadelphia 14:346–359.

Cope, E.D. 1863. On Trachycephalus, Scaphiopusand other Batrachia. Proceedings of the Acad-emy of Natural Sciences of Philadelphia 15:43–54.

Costa, G.C., G.H.C. Vieira, R.D. Teixeira, A.A.Garda, G.R. Colli, and S.N. Bao. 2004. An ul-trastructural comparative study of the sperm of

Page 134: systematic review of the frog family hylidae, with special reference to ...

134 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hyla pseudopseudis, Scinax rostratus, and S.squalirostris (Amphibia: Anura: Hylidae).Zoomorphology 123: 191–197.

Cruz, C.A.G. 1973. Observacoes sobre o girinode Sphaenorhynchus planicola (Lutz and Lutz,1938) (Amphibia, Anura, Hylidae). Arquivosde Universidade Federal Rural do Rio de Ja-neiro 3: 83–86.

Cruz, C.A.G. 1982. Conceituacao de grupos deespecies de Phyllomedusinae brasileiras combase em carcteres larvarios (Amphibia, Anura,Hylidae). Arquivos de Universidade FederalRural do Rio de Janeiro 5: 147–171.

Cruz, C.A.G. ‘‘1988’’ [1989]. Sobre Phyllome-dusa aspera e a descricao de uma especie novadesse genero (Amphibia, Anura, Hylidae). Ar-quivos de Universidade Federal Rural do Riode Janeiro 11: 39–44.

Cruz, C.A.G. 1990. Sobre as relacoes intergener-icas de Phyllomedusinae da Floresta Atlantica(Amphibia, Anura, Hylidae). Revista Brasileirade Biologia 50: 709–726.

Cruz, C.A.G., and U. Caramaschi. 1998. Defini-cao, composicao e distribucao geografica dogrupo de Hyla polytaenia Cope, 1870 (Am-phibia, Anura, Hylidae). Boletim do Museu Na-cional, Nova Serie, Zoologia 392: 1–19.

Cruz, C.A.G., and A.G. Dias. 1991. Girinos dogrupo ‘‘microcephala’’ do estado do Rio de Ja-neiro (Amphibia, Anura, Hylidae). RevistaBrasileira de Zoologia 7: 679–683.

Cruz, C.A.G., and O.L. Peixoto. 1980. Notas so-bre o girino de Sphaenorhynchus orophilus(Lutz and Lutz, 1938) (Amphibia, Anura, Hy-lidae). Revista Brasileira de Biologia 40: 383–386.

Cruz, C.A.G., and O.L. Peixoto. ‘‘1984’’ [1985].Especies verdes de Hyla: o complexo ‘‘albosig-nata’’ (Amphibia, Anura, Hylidae). Arquivosde Universidade Federal Rural do Rio de Ja-neiro 7: 31–47.

Cruz, C.A.G., and O.L. Peixoto. ‘‘1985’’ [1987].Especies verdes de Hyla: o complexo ‘‘albof-renata’’ (Amphibia, Anura, Hylidae). Arquivosde Universidade Federal Rural do Rio de Ja-neiro 8: 59–70.

Cruz, C.A.G., U. Caramaschi, and A.G. Dias.2000. Especie nova de Hyla Laurenti, 1768 doEstado do Rio de Janeiro, Brasil (Amphibia,Anura, Hylidae). Boletim do Museu Nacional,Nova Serie, Zoologia 434: 1–8.

Cruz, C.A.G., B.V.S. Pimenta, and D.L. Silvano.2003. Duas novas especies pertenecentes aocomplexo de Hyla albosignata Lutz and Lutz,1938, do leste do Brasil (Amphibia, Anura, Hy-lidae). Boletim do Museu Nacional, Nova Ser-ie, Zoologia 503: 1–13.

Cunningham, M. 2002. Identification and evolu-

tion of Australian torrent treefrogs (Anura: Hy-lidae: Litoria nannotis group). Memoirs of theQueensland Museum 48: 93–102.

Darst, C.R., and D.C. Cannatella. 2004. Novel re-lationships among hyloid frogs inferred from12S and 16S mitochondrial DNA sequences.Molecular Phylogenetics and Evolution 31:462–475.

da Silva, H.R. 1997. Two character states new forhylines and the taxonomy of the genus Pseu-dacris. Journal of Herpetology 31: 609–613.

da Silva, H.R. 1998. Phylogenetic relationships ofthe family Hylidae with emphasis on the rela-tionships within the subfamily Hylinae (Am-phibia: Anura). Ph.D. dissertation, Departmentof Systematics and Ecology, University of Kan-sas.

da Silva, H.R., M.C. De Britto-Pereira, and U.Caramaschi. 1989. Frugivory and seed dispers-al by Hyla truncata, a Neotropical tree-frog.Copeia 1989: 781–783.

De Laet, J. 2005. Parsimony and the problem ofinapplicables in sequence data. In V.A. Albert(editor), Parsimony, phylogeny, and genomics:81–116. Oxford University Press.

De Laet, J., and E. Smets. 1998. On the three-taxon approach to parsimony analysis. Cladis-tics 14: 363–381.

Delahoussaye, A.J. 1966. The comparative spermmorphology of the Louisiana Hylidae (Am-phibia: Anura). Proceedings of the LouisianaAcademy of Sciences 29: 140–152.

De la Riva, I., 1999. A new Phyllomedusa fromsouthwestern Amazonia (Amphibia: Anura:Hylidae). Revista Espanola de Herpetologıa 13:123–131.

De la Riva, I., and W.E. Duellman. 1997. Theidentity and distribution of Hyla rossalleniGoin. Amphibia-Reptilia 18: 433–436.

De la Riva, I., J. Kohler, S. Lotters, and S. Rei-chle. 2000. Ten years of research on Bolivianamphibians: updated checklist, distribution,taxonomic problems, literature and iconogra-phy. Revista Espanola de Herpetologıa 14: 19–164.

Delfino, G., B.B. Alvarez, R. Brizzi, and J.A. Ces-pedez. 1998. Serous cutaneous glands of Ar-gentine Phyllomedusa Wagler 1830 (Anura Hy-lidae): secretory polymorphism and adaptiveplasticity. Tropical Zoology 11: 333–351.

Delfino, G., D. Nosi, and F. Giachi. 2001. Secre-tory granule-cytoplasm relationships in serousglands of anurans: ultrastructural evidence andpossible functional role. Toxicon 39: 1161–1171.

Delfino, G., R. Brizzi, D. Nosi, and A. Terreni.2002. Serous cutaneous glands in New Worldhylid frogs: an ultrastructural study on skin poi-

Page 135: systematic review of the frog family hylidae, with special reference to ...

2005 135FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

sons confirms phylogenetic relationships be-tween Osteopilus septentrionalis and Phrynoh-yas venulosa. Journal of Morpholgy 253: 176–186.

de Sa, R.O. 1983. Descripcion de la larva de Ar-genteohyla siemersi (Mertens, 1937), (Anura:Hylidae). Resumenes y Comunicaciones de lasJornadas de Ciencias Naturales, Montevideo 3:40–41.

de Sa, R.O. 1995. Hyla albopunctata. Catalogue ofAmerican Amphibians and Reptiles 602: 1–5.

de Sa, R.O. 1996. Hyla multifasciata. Catalogue ofAmerican Amphibians and Reptiles 624: 1–4.

de Sa, R.O., and E.O. Lavilla. 1997. The tadpoleof Pseudis minuta (Anura: Pseudidae), an ap-parent case of heterochrony. Amphibia-Reptilia18: 229–240.

D’Heursel, A., and R.O. de Sa. 1999. Comparingthe tadpoles of Hyla geographica and Hylasemilineata. Journal of Herpetology 33: 353–361.

D’Heursel, A., and C.F.B. Haddad. 2002. School-ing and swimming behaviors of Hyla semili-neata tadpoles (Anura, Hylidae). Iheringia,Zoologia 92: 99–104.

Donnellan, S.C., and M.J. Mahony. 2004. Allo-zyme, chromosomal and morphological vari-ability in the Litoria lesueuri species group(Anura: Hylidae), including a description of anew species. Australian Journal of Zoology 52:1–28.

Donnelly, M.A., and C.W. Myers. 1991. Herpe-tological results of the 1990 Venezuelan expe-dition to the summit of Cerro Guaiquinima,with new tepui reptiles. American MuseumNovitates 3017: 1–54.

Donnelly, M.A., C. Guyer, D.M. Krempels, andH.E. Braker. 1987. The tadpole of Agalychniscalcarifer (Anura: Hylidae). Copeia 1987: 247–250.

Dubois, A. 1982. Dendrobates Wagler, 1830 andDendrobatidae Cope, 1865 (Amphibia, Anura):proposed conservation. Bulletin of ZoologicalNomenclature 39: 267–278.

Dubois, A. 1987. Miscellanea taxinomica batrach-ologica (I). Alytes 5: 7–95.

Duellman, W.E. 1963. A review of the MiddleAmerican tree frogs of the genus Ptychohyla.University of Kansas Publications, Museum ofNatural History 15: 297–349.

Duellman, W.E. 1966. Taxonomic notes on someMexican and Central American Hylid frogs.University of Kansas Publications, Museum ofNatural History 17: 263–279.

Duellman, W.E. 1967. Additional studies of chro-mosomes of anuran amphibians. SystematicZoology 16: 38–43.

Duellman, W.E. 1968a. The genera of phyllome-

dusine frogs (Anura: Hylidae). University ofKansas Publications, Museum of Natural His-tory 18: 1–10.

Duellman, W.E. 1968b. The taxonomic status ofsome American hylid frogs. Herpetologica 24:194–209.

Duellman, W.E. 1969. Phyllomedusa buckleyiBoulenger: variation, distribution and synony-my. Herpetologica 25: 134–140.

Duellman, W.E. 1970. Hylid frogs of MiddleAmerica. Monographs of the Museum of Nat-ural History, University of Kansas 1–2: 1–753.

Duellman, W.E. 1971a. The nomenclatural statusof the names Hyla boans (Linnaeus) and Hylamaxima (Laurenti) (Anura: Hylidae). Herpeto-logica 27: 397–405.

Duellman, W.E. 1971b. A taxonomic review ofSouth American hylid frogs, genus Phrynoh-yas. Occasional Papers of the Museum of Nat-ural History, The University of Kansas 4: 1–21.

Duellman, W.E. 1972a. The systematic status andlife history of Hyla rhodopepla Gunther. Her-petologica 28: 369–375.

Duellman, W.E. 1972b. A review of the Neotrop-ical frogs of the Hyla bogotensis group. Occa-sional Papers of the Museum of Natural His-tory, University of Kansas 11: 1–31.

Duellman, W.E. 1973a. Frogs of the Hyla geogra-phica group. Copeia 1973: 515–533.

Duellman, W.E. 1973b. Descriptions of new hylidfrogs from Colombia and Ecuador. Herpetolo-gica 29: 219–227.

Duellman, W.E. 1974. A reassessment of the tax-onomic status of some Neotropical hylid frogs.Occasional Papers of the Museum of NaturalHistory, University of Kansas 27: 1–27.

Duellman, W.E. 1977. Liste der rezenten Amphi-bien und Reptilien. Hylidae, Centrolenidae,Pseudidae. Das Tierreich 95: 1–225.

Duellman, W.E. 1978. The biology of an Equa-torial herpetofauna in Amazonian Ecuador.Miscellaneous Publications of the Museum ofNatural History of the University of Kansas 65:1–352.

Duellman, W.E. 1982. A new species of small yel-low Hyla from Peru (Anura: Hylidae). Am-phibia-Reptilia 3: 153–160.

Duellman, W.E. 1989. New species of hylid frogsfrom the Andes of Colombia and Venezuela.Occasional Papers of the Museum of NaturalHistory, The University of Kansas 131: 1–12.

Duellman, W.E. 1999. Distribution patterns ofamphibians in South America. In W.E. Duell-man (editor), Patterns of distribution of am-phibians. A global perspective: 255–328. Bal-timore: The Johns Hopkins University Press.

Duellman, W.E. 2001. Hylid frogs of Middle

Page 136: systematic review of the frog family hylidae, with special reference to ...

136 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

America. Ithaca, NY: Society for the Study ofAmphibians and Reptiles.

Duellman, W.E., and J.A. Campbell. 1992. Hylidfrogs of the genus Plectrohyla: systematics andphylogenetic relationships. Miscellaneous Pub-lications of the Museum of Zoology, Universityof Michigan 181: 1–32.

Duellman, W.E., and C.J. Cole. 1965. Studies ofchromosomes of some anuran amphibians (Hy-lidae and Centrolenidae). Systematic Zoology14: 139–143.

Duellman, W. E., and L.A. Coloma. 1993. Hylastaufferorum, a new species of treefrog in theHyla larinopygion group from the cloud forestof Ecuador. Occasional Papers of the Museumof Natural History, The University of Kansas161: 1–11.

Duellman, W.E., and M. Crump. 1974. Speciationin frogs of the Hyla parviceps group in the up-per Amazon basin. Occasional Papers of theMuseum of Natural History, University of Kan-sas 23: 1–40.

Duellman, W.E., and R.O. de Sa. 1988. A newgenus and species of South American hylidfrog with a highly modified tadpole. TropicalZoology 1: 117–136.

Duellman, W.E., and J.M.J. Fouquette. 1968.Middle American frogs of the Hyla microce-phala group. University of Kansas Publicationsof the Museum of Natural History 17: 517–557.

Duellman, W.E., and P. Gray. 1983. Developmen-tal biology and systematics of the egg-broodinghylid frogs, genera Flectonotus and Fritziana.Herpetologica 39: 333–359.

Duellman, W.E., and D.M. Hillis. 1990. System-atics of frogs of the Hyla larinopygion group.Occasional Papers of the Museum of NaturalHistory, University of Kansas 134: 1–23.

Duellman, W.E., and M.S. Hoogmoed. 1984. Thetaxonomy and phylogenetic relationships of thehylid frog genus Stefania. Miscellaneous Pub-lications of the Museum of Natural History ofthe University of Kansas 75: 1–39.

Duellman, W.E., and M.S. Hoogmoed. 1992.Some hylid frogs from the Guiana highlands,northeastern south America: new species, dis-tributional records, and a generic reallocation.Occasional Papers of the Museum of NaturalHistory, University of Kansas 147: 1–21.

Duellman, W.E., and J.R. Mendelson III. 1995.Amphibians and reptiles from northern Depar-tamento Loreto, Peru: taxonomy and biogeog-raphy. The University of Kansas Science Bul-letin 55: 329–376.

Duellman, W.E., and L. Trueb. 1966. Neotropicalhylid frogs, genus Smilisca. University of Kan-sas Publications Museum of Natural History17: 281–375.

Duellman, W.E., and L. Trueb. 1976. The system-atic status and relationships of the hylid frogNyctimantis rugiceps Boulenger. OccasionalPapers of the Museum of Natural History, Uni-versity of Kansas 58: 1–14.

Duellman, W.E., and L. Trueb. 1983. Frogs of theHyla columbiana group: taxonomy and phylo-genetic relationships. In A.G.J. Rhodin and K.Miyata (editors), Advances in herpetology andevolutionary biology: 33–51. Cambridge, MA:Museum of Comparative Zoology, HarvardUniversity.

Duellman, W.E., and L. Trueb. 1986. Biology ofamphibians. New York: McGraw-Hill.

Duellman, W.E., and L. Trueb. 1989. Two newtreefrogs of the Hyla parviceps group from theAmazon basin in southeastern Peru. Herpeto-logica 45: 1–10.

Duellman, W.E., and J.J. Wiens. 1992. The statusof the hylid frog genus Ololygon and the rec-ognition of Scinax Wagler, 1830. OccasionalPapers of the Museum of Natural History, Uni-versity of Kansas 151: 1–23.

Duellman, W.E., and M. Yoshpa. 1996. A newspecies of Tepuihyla (Anura: Hylidae) fromGuyana. Herpetologica 52: 275–281.

Duellman, W.E., I. De la Riva, and E.R. Wild.1997. Frogs of the Hyla armata and Hyla pul-chella groups in the Andes of South America,with definitions and analyses of phylogeneticrelationships of Andean groups of Hyla. Sci-entific Papers of the Natural History Museum,The University of Kansas 3: 1–41.

Duellman, W.E., J.E. Cadle, and D.C. Cannatella.1988a. A new species of terrestrial Phyllome-dusa (Anura: Hylidae) from southern Peru.Herpetologica 44: 91–95.

Duellman, W.E., L.R. Maxson, and C.A. Jesi-olowski. 1988b. Evolution of marsupial frogs(Hylidae: Hemiphractinae): immunological ev-idence. Copeia 1988: 527–543.

Dumeril, A.M.C., and G. Bibron. 1841. Erpeto-logie generale ou histoire naturelle completedes reptiles, tome 8. Paris: Librairie Encyclo-pedique de Roret.

Dunn, E.R. 1926. The frogs of Jamaica. Proceed-ings of the Boston Society of Natural History38: 11–130.

Dunn, E.R. 1943. An extraordinary new Hylafrom Colombia. Caldasia 1943: 309–311.

Echeverria, D.D. 1997. Microanatomy of the buc-cal apparatus and oral cavity of Hyla minutaPeters, 1872 larvae (Anura, Hylidae), with dataon feeding habits. Alytes 15: 26–36.

Eliosa Leon, H.R. 2002. Variacion geografica enHyla eximia (Anura: Hylidae). Boletin de la So-ciedad Herpetologica Mexicana 10: 59–60.

Emerson, S.B., C. Richards, R.C. Drewes, and

Page 137: systematic review of the frog family hylidae, with special reference to ...

2005 137FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

K.M. Kjer. 2000. On the relationships amongranoid frogs: a review of the evidence. Herpe-tologica 56: 209–230.

Erspamer, V. 1994. Bioactive secretions of theamphibian integument. In H. Heatwole andG.T. Barthalmus (editors), Amphibian biology,vol. 1: 178–350. Surrey: Beatty & Sons.

Estes, R. 1970. Origin of the recent North Amer-ican lower vertebrate fauna: An inquiry into thefossil record. Forma et Functio 3: 139–163.

Estes, R., and A.M. Baez. 1985. Herpetofauna ofNorth and South America during the late Cre-taceous and Cenozoic: evidence for inter-change? In F.G. Stehli and S.D. Webb (editors),The great American biotic interchange: 139–197. New York: Plenum Press.

Estes, R., and O. Reig. 1973. The early fossil re-cord of frogs: a review of the evidence. In J.Vial (editor), Evolutionary biology of the an-urans: 11–63. Columbia, MO: University ofMissouri Press.

Eterovick, P.C., and R.A. Brandao. 2001. A de-scription of the tadpoles and advertisementcalls of members of the Hyla pseudopseudisgroup. Journal of Herpetology 35: 442–450.

Eterovick, P.C., I.S. Barros, and I. Sazima. 2002.Tadpoles of two species in the Hyla polytaeniaspecies group and comparison with other tad-poles of Hyla polytaenia and Hyla pulchellagroups (Anura, Hylidae). Journal of Herpetol-ogy 36: 512–515.

Fabrezi, M. 2001. A survey of prepollex and pre-hallux variation in anuran limbs. ZoologicalJournal of the Linnean Society 131: 227–248.

Fabrezi, M., and E.O. Lavilla. 1992. Estructuradel condrocraneo y esqueleto hiobranquial enlarvas de algunos hılidos neotropicales (Anura:Hylidae). Acta Zoologica Lilloana 41: 155–164.

Faivovich, J. 2002. A cladistic analysis of Scinax(Anura: Hylidae). Cladistics 18: 367–393.

Faivovich, J., C.A.G. Cruz, and O.L. Peixoto.2002. Identity of Hyla ehrhardti Muller, 1924(Anura, Hylidae). Journal of Herpetology 36:325–327.

Faivovich, J., P.C.A. Garcia, F. Ananias, L. Lanari,N.G. Basso, and W.C. Wheeler. 2004. A mo-lecular perspective on the phylogeny of theHyla pulchella species group (Anura, Hylidae).Molecular Phylogenetics and Evolution 32:938–950.

Farris, J.S. 1983. The logical basis of phyloge-netic analysis. In N.I. Platnick and V.A. Funk(editors), Advances in cladistics: Proceedingsof the Third Meeting of the Willi Hennig So-ciety, vol. 2: 7–36. New York: Columbia Uni-versity Press.

Farris, J.S. 1999. Likelihood and inconsistency.Cladistics 15: 199–204.

Farris, J.S. 2000. Corroboration versus ‘‘strongestevidence’’. Cladistics 16: 385–393.

Farris, J.S., V.A. Albert, M. Kallersjo, D. Lip-scomb, and A.G. Kluge. 1996. Parsimony jack-knifing outperforms neighbor-joining. Cladis-tics 12: 99–124.

Feller, A., and S.B. Hedges. 1998. Molecular ev-idence for the early history of living amphibi-ans. Molecular Phylogenetics and Evolution 9:509–516.

Firschein, I.L., and H.M. Smith. 1956. A newfringe-limbed Hyla (Amphibia: Anura) from anew faunal district of Mexico. Herpetologica12: 17–21.

Fitzinger, L.J. 1843 [1973]. Systema Reptilium.Athens, OH: SSAR, p. 128.

Ford, L.S., and D.C. Cannatella. 1993. The majorclades of frogs. Herpetological Monographs 7:94–117.

Fouquette, M.J., and A.J. Delahoussaye. 1977.Sperm morphology in the Hyla rubra group(Amphibia, Anura, Hylidae), and its bearing ongeneric status. Journal of Herpetology 11: 387–396.

Franz, R. 2003. Wet mountains and mountainfrogs. In R.W. Henderson and R. Powell (edi-tors), Islands and the sea: essays on herpetolog-ical exploration in the West Indies. Society forthe Study of the Amphibians and Reptiles. Con-tributions to Herpetology, vol. 20: 159–167.Ithaca, NY.

Frost, D.R. 1985. Amphibian species of the world:a taxonomic and geographic reference. Law-rence, KS: Association of Systematic Collec-tions and Allen Press.

Frost, D.R. 2004. Amphibian species of the world:an online reference, version 3.0 (22 August2004). Electronic database accessible at http://research.amnh.org/herpetology/amphibia/in-dex.html. American Museum of Natural His-tory.

Frost, D.R., M.T. Rodrigues, T. Grant, and T.A.Titus. 2001. Phylogenetics of the lizard genusTropidurus (Squamata: Tropiduridae: Tropidur-inae): direct optimization, descriptive efficien-cy, and sensitivity analysis of congruence be-tween molecular data and morphology. Molec-ular Phylogenetics and Evolution 21: 352–371.

Funkhouser, A. 1957. A review of the Neotropicaltree frogs of the genus Phyllomedusa. Occa-sional Papers of the Natural History Museumof Stanford University 5: 1–90.

Gallardo, J.M. 1964. Observaciones biologicassobre Hyla raddiana Fitz., en la provincia deBuenos Aires. Ciencia E Investigacion 17: 63–69.

Page 138: systematic review of the frog family hylidae, with special reference to ...

138 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Gallardo, J.M. 1970. Estudio ecologico sobre losanfibios y reptiles del sudeste de la provinciade Buenos Aires, Argentina. Revista del MuseoArgentino de Ciencias Naturales ‘‘BernardinoRivadavia’’, Zoologia 10: 27–63.

Garcia, P.C.A. 2003. Revisao taxonomica e anal-ise filogenetica das especies do genero HylaLaurenti do complexo marginata/semiguttata(Amphibia, Anua, Hylidae). Ph.D. dissertation,Universidade Estadual Paulista, Rio Claro, SaoPaulo, Brazil.

Garcia, P.C.A., U. Caramaschi, and A. Kwet.2001a. O status taxonomico de Hyla cochranaeMertens e recaracterizacao de Aplastodiscus A.Lutz (Anura, Hylidae). Revista Brasileira deZoologia 18: 1197–1218.

Garcia, P.C.A., G. Vinciprova, and C.F.B. Haddad.2001b. Vocalizacao, girino, distribucao geo-grafica e novos comentarios sobre Hyla mar-ginata Boulenger, 1887 (Anura, Hylidae, Hyli-nae). Boletim do Museu Nacional, Nova Serie,Zoologia 460: 1–19.

Garcia, P.C.A., G. Vinciprova, and C.F.B. Haddad.2003. The taxonomic status of Hyla pulchellajoaquini B. Lutz, 1968 (Anura: Hylidae). Her-petologica 59: 350–363.

Garda, A.A., G.C. Costa, G.R. Colli, and S.N.Bao. 2004. Spermatozoa of Pseudinae (Am-phibia, Anura, Hylidae), with a test of the hy-pothesis that sperm ultrastructure correlateswith reproductive modes in anurans. Journal ofMorphology 261: 196–205.

Gaudin, A.J. 1974. An osteological analysis ofHolarctic tree frogs, family Hylidae. Journal ofHerpetology 8: 141–152.

Giribet, G. 2001. Exploring the behavior of POY,a program for direct optimization of moleculardata. Cladistics 17: S60–S70.

Goeldi, E. 1907. Description of Hyla resinifictrixGoeldi, a new Amazonian tree frog peculiar forits breeding habits. Proceedings of the Zoolog-ical Society of London 1907: 135–140.

Goin, C.J. 1961. Synopsis of the genera of hylidfrogs. Annals of the Carnegie Museum 36: 5–18.

Goin, C.J., and O.B. Goin. 1968. A new tree frogfrom Suriname. Copeia 3: 581–583.

Goin, C.J., and J.D. Woodley. 1969. A new tree-frog from Guyana. Zoological Journal of theLinnean Society 48: 135–140.

Goloboff, P.A. 1999. Analyzing large data sets inreasonable times: solutions for composite opti-ma. Cladistics 15: 415–428.

Goloboff, P.A. 2003. Parsimony, likelihood, andsimplicity. Cladistics 19: 91–103.

Goloboff, P.A., and J.S. Farris. 2001. Methods forquick consensus estimation. Cladistics 17: S26–S34.

Goloboff, P.A., J.S. Farris, and K.C. Nixon. 2000.T.N.T.: tree analysis using new technology. Pro-gram and documentation, version 1.0. Avail-able from the authors, and at www.zmuc.dk/public/phylogeny.

Gomes, M.R., and O.L. Peixoto. 1991a. Consi-deracoes sobre os girinos de Hyla senicula(Cope, 1868) e Hyla soaresi (Caramaschi eJim, 1983) (Amphibia, Anura, Hylidae). ActaBiologica Leopoldensia 13: 5–18.

Gomes, M.R., and O.L. Peixoto. 1991b. Larvasde Hyla do grupo ‘‘leucophyllata’’ com a des-cricao da de H. elegans Wied, 1824 e notassobre a variacao do padrao de colorido do ad-ulto nesta especie (Anura, Hylidae). RevistaBrasileira de Biologia 51: 257–262.

Gomes, M.R., and O.L. Peixoto. 2002. O girinode Hyla leucopygia Cruz and Peixoto, 1984(Amphibia, Anura, Hylidae). Boletim do Mu-seu de Biologia Mello Leitao, Nova Serie 13:17–25.

Gorham, S.W. 1974. Checklist of world amphib-ians up to January 1, 1970. Saint John, Canada:New Brunswick Museum.

Gorzula, S., and C. Senaris. ‘‘1998’’ [1999]. Con-tribution to the herpetofauna of the VenezuelanGuyana: I. A data base. Scientia Guianae 8: 1–270.

Grant, T., E.C. Humphrey, and C.W. Myers. 1997.The medial lingual process of frogs: a bizarrecharacter of old world ranoids discovered inSouth American dendrobatids. American Mu-seum Novitates 3212: 1–40.

Gray, J.E. 1825. A synopsis of the genera of rep-tiles and Amphibia, with a description of somenew species. Annals of Philosophy, ser. 2, 10:193–217.

Graybeal, A. 1993. The phylogenetic utility of cy-tochrome b: lessons from bufonid frogs. Mo-lecular Phylogenetics and Evolution 2: 256–269.

Graybeal, A. 1997. Phylogenetic relationships ofbufonid frogs and tests of alternate macroevo-lutionary hypotheses characterizing their radi-ation. Zoological Journal of the Linnean Soci-ety 119: 297–338.

Gruber, S.L. 2002. Estudos citogeneticos em es-pecies do genero Hyla (Anura, Hylidae) dosgrupos com 2n 5 24 e 2n 5 30 cromossomos,com tecnicas de coloracao diferencial. Master’sthesis, Universidade Estadual Paulista, Rio Cla-ro, Sao Paulo, Brazil.

Guillaume, C.P., P. Gaucher, and F.M. Catzeflis.2001. Does Hyla hadroceps belong to the genusPhrynohyas (Hylidae: Batrachia)? First ap-proach using the mitochondrial gene 12S,rRNA. 11th ordinary general meeting of Socie-tas Europaea Herpetologica (SEH), Zalec, Slov-

Page 139: systematic review of the frog family hylidae, with special reference to ...

2005 139FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

enie, 13–17 VII 2001. Summary in Biota2(suppl.): 68–69.

Guimaraes, L.D., R. de Freitas Juliano, and R.P.Bastos. 2001. Life history notes: Hyla raniceps(NCN). Combat. Herpetological Review 32:102–103.

Haas, A. 1996. Das larvale cranium von Gastro-theca riobambae und seine metamorphose(Amphibia, Anura, Hylidae). Verhandlungendes Naturwissenschaftlichen Vereins in Ham-burg 36: 33–162.

Haas, A. 2003. Phylogeny of frogs as inferredfrom primarily larval characters (Amphibia:Anura). Cladistics 19: 23–89.

Haas, A., and S.J. Richards. 1998. Correlations ofcranial morphology, ecology, and evolution inAustralian suctorial tadpoles of the genera Li-toria and Nyctimystes (Amphibia: Anura: Hy-lidae: Pelodryadinae). Journal of Morphology238: 109–141.

Haddad, C.F.B., and R.J. Sawaya. 2000. Repro-ductive modes of Atlantic forest hylid frogs: ageneral overview and the description of a newmode. Biotropica 32: 862–871.

Haddad, C.F.B., J. Faivovich, and P.C.A. Garcia.2005. The specialized reproductive mode of thetreefrog Aplastodiscus perviridis (Anura: Hyli-dae). Amphibia-Reptilia. 26: 87–92.

Hall, T.A. 1999. BioEdit: a user-friendly biologi-cal sequence alignment editor and analysis. De-partment of Microbiology. North Carolina StateUniversity.

Hartmann, M.T., P.A. Hartmann and C.F.B. Had-dad. 2004. Visual signaling and reproductivebiology in a nocturnal treefrog genus Hyla (An-ura: Hylidae). Amphibia-Reptilia 25: 395–406.

Hass, C.A., L.R. Maxson, and S.B. Hedges. 2001.Relationships and divergence times of West In-dian amphibians and reptiles: insights from al-bumin immunology. In C.A. Woods and F.E.Sergile (editors), Biogeography of the West In-dies. Patterns and perspectives: 157–174. BocaRaton, FL: CRC Press.

Hawkins, J.A., C.E. Hughes, and R.W. Scotland.1997. Primary homology assessment, charac-ters, and character states. Cladistics 13: 275–283.

Hay, J.M., I. Ruvinsky, S.B. Hedges, and L.R.Maxson. 1995. Phylogenetic relationships ofamphibian families inferred from DNA se-quences of mitochondrial 12S and 16S ribo-somal RNA genes. Molecular Biology andEvolution 12: 928–937.

Hedges, S.B. 1986. An electrophoretic analysis ofHolarctic hylid frog evolution. Systematic Zo-ology 35: 1–21.

Hedges, S.B. 1987. Vocalization and habitat pref-erence of the Jamaican treefrog Hyla marianae

(Anura, Hylidae). Caribbean Journal of Science23: 380–384.

Hedges, S.B. 1994. Molecular evidence for theorigin of birds. Proceedings of the NationalAcademy of Sciences USA 91: 2621–2624.

Hedges, S.B. 1996. The origin of West Indian am-phibians and reptiles. In R. Powell and R.W.Henderson (editors), Contributions to West In-dian herpetology: a tribute to Albert Schwartz:95–128. Ithaca, NY: Society for the Study ofAmphibians and Reptiles.

Heyer, W.R. 1977. Taxonomic notes on frogs fromthe Madeira and the Purus rivers, Brasil. PapeisAvulsos de Zoologia 31: 141–162.

Heyer, W.R. 1980. The calls and taxonomic po-sitions of Hyla giesleri and Ololygon opalina(Amphibia: Anura: Hylidae). Proceedings ofthe Biological Society of Washington 93: 655–661.

Heyer, W.R. 1985. New species of frogs fromBoraceia, Sao Paulo, Brazil. Proceedings of theBiological Society of Washington 98: 657–671.

Heyer, W.R., A.S. Rand, C.A.G. Cruz, O.L. Pei-xoto, and C.E. Nelson. 1990. Frogs of Bora-ceia. Arquivos de Zoologia 31: 231–410.

Hillis, D.M., and M.T. Dixon. 1991. RibosomalRNA: molecular evolution and phylogenetic in-ference. Quarterly Review of Biology 66: 411–453.

Hillis, D.M., L.K. Ammerman, M.T. Dixon, andR.O. de Sa. 1993. Ribosomal DNA and thephylogeny of frogs. Herpetological Mono-graphs 7: 118–131.

Hoegg, S., M. Vences, H. Brinkmann, and A.Meyer. 2004. Phylogeny and comparative sub-stitution rates of frogs inferred from sequencesof three nuclear genes. Molecular Biology andEvolution 21: 1188–1200.

Holman, A.J. 1968. Lower Oligocene amphibiansfrom Saskatchewan. Quarterly Journal of theFlorida Academy of Sciences 31: 273–289.

Holman, A.J. 2003. Fossil frogs and toads ofNorth America. Bloomington: Indiana Univer-sity Press.

Hoogmoed, M.S. 1979. Resurrection of Hyla or-natissima Noble (Amphibia, Hylidae) and re-marks on related species of green tree frogsfrom the Guiana area. Notes on the herpetofau-na of Surinam VI. Zoologische Verhandelingen172: 1–46.

Hoogmoed, M.S. 1990. Resurrection of Hyla wav-rini Parker (Amphibia: Anura: Hylidae), a glad-iator frog from northern South America. Zool-ogische Mededeelingen 64: 71–93.

Hoogmoed, M.S., and J.E. Cadle. 1991. Naturalhistory and distribution of Agalychnis craspe-dopus (Funkhouser, 1957) (Amphibia: Anura:

Page 140: systematic review of the frog family hylidae, with special reference to ...

140 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hylidae). Zoologische Mededeelingen 65: 129–142.

Hutchinson, M.N., and L.R. Maxson. 1986. Im-munological evidence on relationships of someAustralian terrestrial frogs (Anura: Hylidae: Pe-lodryadinae). Australian Journal of Zoology 34:575–582.

Hutchinson, M.N., and L.R. Maxson. 1987. Phy-logenetic relationships among Australian treefrogs (Anura: Hylidae: Pelodryadinae): an im-munological approach. Australian Journal ofZoology 35: 61–74.

ICZN. 1999. International code of zoological no-menclature, 4th ed. London: International Trustfor Zoological Nomenclature.

Iturralde-Vinent, M.A., and R.D.E. MacPhee.1999. Paleogeography of the Caribbean region:implications for Cenozoic biogeography. Bul-letin of the American Museum of Natural His-tory 238: 1–95.

Izecksohn, E. 1959. Uma nova especie de ‘‘Hy-lidae’’ da baixada fluminense, Estado de Rio deJaneiro, Brasil (Amphibia, Anura). RevistaBrasileira de Biologia 19: 259–263.

Izecksohn, E. 1988. Algumas consideracoes sobreo genero Euparkerella, com a descricao de tresnovas especies (Amphibia, Anura, Leptodactyl-idae). Revista Brasileira de Biologia 48: 59–74.

Izecksohn, E. 1996. Novo genero de Hylidae bras-ileiro (Amphibia, Anura). Revista de Universi-dade Rural, Serie Ciencias da Vida 18: 47–52.

Izecksohn, E., and C.A.G. Cruz. 1976. Nova es-pecie de Phyllomedusinae do Estado do Espır-ito Santo, Brasil (Amphibia, Anura, Hylidae).Revista Brasileira de Biologia 36: 257–261.

Jared, C., M.M. Antoniazzi, E. Katchburian, R.C.Toledo, and E. Freymuller. 1999. Some aspectsof the natural history of the casque-headed treefrog Corythomantis greeningi Boulenger (Hy-lidae). Annales des Sciences Naturelles 3: 105–115.

Jim, J. 1980. Aspectos ecologicos dos anfıbios re-gistrados na regiao de Botucatu, Sao Paulo(Amphibia, Anura). Ph.D. dissertation, Univ-ersidade de Sao Paulo.

Jim, J., and U. Caramaschi. 1979. Uma nova es-pecie da regiao de Botucatu, Sao Paulo, Brasil(Amphibia, Anura). Revista Brasileira de Biol-ogia 39: 717–719.

Jungfer, K.H. 1996. Reproduction and parentalcare of the coronated treefrog, Anotheca spi-nosa (Steindachner, 1864) (Anura: Hylidae).Herpetologica 52: 25–32.

Jungfer, K.H., and W. Hodl. 2002. A new speciesof Osteocephalus from Ecuador and a rede-scription of O. leprieurii (Dumeril and Bibron,1841) (Anura: Hylidae). Amphibia-Reptilia 23:21–46.

Jungfer, K.H., and E. Lehr. 2001. A new speciesof Osteocephalus with bicoloured iris from Po-zuzo (Peru: Departamento de Pasco) (Amphib-ia: Anura: Hylidae). Zoologische Abhandlun-gen Staatliches Museum fur Tierkunde, Dres-den 51: 321–329.

Jungfer, K.H., and L.C. Schiesari. 1995. Descrip-tion of a central Amazonian and Guyanan treefrog, genus Osteocephalus (Anura, Hylidae),with oophagous tadpoles. Alytes 13: 1–13.

Jungfer, K.H., and P. Weygoldt. 1994. The repro-ductive biology of the leaf frog Phyllomedusalemur Boulenger, 1882, and a comparison withother members of the Phyllomedusinae (Anura:Hylidae). Revue Francaise de Aquariologie 21:57–64.

Jungfer, K.H., and P. Weygoldt. 1999. Biparentalcare in the tadpole-feeding Amazonian treefrogOsteocephalus oophagus. Amphibia-Reptilia20: 235–249.

Jungfer, K.H., S. Ron, R. Seipp, and A. Almen-dariz. 2000. Two new species of hylid frogs,genus Osteocephalus, from Amazonian Ecua-dor. Amphibia-Reptilia 21: 327–340.

Kaiser, H., C. Mais, F. Bolanos, C. Steinlen, W.Feichtinger, and M. Schmid. 1996. Chromo-somal investigation of three Costa Rican frogsfrom the 30-chromosome radiation of Hylawith the description of a unique geographicvariation in nucleolus organizer regions. Ge-netica 98: 95–102.

Kaplan, M. 1991. A new species of Hyla from theeastern slope of the Cordillera Oriental innorthern Colombia. Journal of Herpetology 25:313–316.

Kaplan, M. 1994. A new species of frog of thegenus Hyla from the cordillera oriental innorthern Colombia with comments on the tax-onomy of Hyla minuta. Journal of Herpetology28: 79–87.

Kaplan, M. 1997. On the status of Hyla bogertiCochran and Goin. Journal of Herpetology 31:536–541.

Kaplan, M. 1999. On the phylogenetic relation-ships of Hyla praestans and the monophyly ofthe Hyla columbiana group: morphological ob-servations on the larynx. Revista de la Acade-mia Colombiana de Ciencias Exactas, Fısicas yNaturales 23: 299–302.

Kaplan, M., and P.M. Ruız. 1997. Two new spe-cies of Hyla from the Andes of Central Colom-bia and their relationships to other small An-dean Hyla. Journal of Herpetology 31: 230–244.

Kasahara, S., A.P. Zampieri Silva, S.L. Gruber,and C.F.B. Haddad. 2003. Comparative cyto-genetic analysis on four tree frog species (An-

Page 141: systematic review of the frog family hylidae, with special reference to ...

2005 141FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

ura, Hylidae, Hylinae) from Brazil. Cytogenet-ics and Genome Research 103: 155–162.

Kellogg, R. 1932. Mexican tailless amphibians inthe United States National Museum. Bulletin ofthe United States National Museum Bulletin160: 1–224.

Kenny, J.S. 1969. The Amphibia of Trinidad.Studies on the fauna of Curacao and other Ca-ribbean islands 108: 1–78.

King, M. 1980. A cytotaxonomic analysis of Aus-tralian hylid frogs of the genus Litoria. In C.B.Banks and A.A. Martin (editors), Proceedingsof the Melbourne Herpetological Symposium:169–175. Melbourne, Australia.

King, M., M.J. Tyler, M. Davies, and D. King.1979. Karyotypic studies on Cyclorana and as-sociated genera of Australian frogs. AustralianJournal of Zoology 27: 699–708.

Kizirian, D., L.A. Coloma, and A. Paredes-Re-calde. 2003. A new treefrog (Hylidae: Hyla)from southern Ecuador and a description of itsantipredator behavior. Herpetologica 59: 339–349.

Klappenbach, M.A. 1961. Notas herpetologicas,II. Hallazgo de Trachycephalus siemersi (Mer-tens) y Phyllomedusa iheringi Boulenger (Am-phibia, Salientia) en el Uruguay. Comunica-ciones Zoologicas del Museo de Historia Nat-ural de Montevideo 5: 1–8.

Klappenbach, M.A. 1985. Notas herpetologicas,V. Comunicaciones Zoologicas del Museo deHistoria Natural de Montevideo 11: 1–23.

Klappenbach, M.A., and J.A. Langone. 1992. Lis-ta sistematica y sinonımica de los anfibios delUruguay. Anales del Museo Nacional de His-toria Natural de Montevideo, 2a Serie, 8: 163–222.

Kluge, A.G. 1979. The gladiator frogs of MiddleAmerica and Colombia—a reevaluation of theirsystematics (Anura: Hylidae). Occasional Pa-pers of the Museum of Zoology, University ofMichigan 688: 1–24.

Kluge, A.G. 1989. A concern for evidence and aphylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes). Systematic Zo-ology 38: 7–25.

Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Ed-wards, S. Pabo, F.X. Villablanca, and A.C. Wil-son. 1989. Dynamics of mitochondrial DNAevolution in animals: amplification and se-quencing with conserved primers. Proceedingsof the National Academy of Sciences USA 86:6196–6200.

Kolaczkowski, B., and J.W. Thornton. 2004. Per-formance of maximum parsimony and likeli-hood phylogenetics when evolution is hetero-geneous. Nature 431: 980–984.

Kohler, J. 2000. Amphibian diversity in Bolivia:

a study with special reference to montane forestregions. Bonner Zoologische Monographien48: 1–243.

Kohler, J., and S. Lotters. 2001a. A new speciesof minute Hyla from the southwestern Amazonbasin (Amphibia, Anura, Hylidae). Studies onNeotropical Fauna and Environment 36: 105–112.

Kohler, J., and S. Lotters. 2001b. Description ofa small tree frog, genus Hyla (Anura: Hylidae),from humid Andean slopes of Bolivia. Sala-mandra 37: 175–184.

Kolenc, F., C. Borteiro, and M. Tedros. ‘‘2003’’[2004]. La larva de Hyla uruguaya Schmidt,1944 (Anura: Hylidae), con comentarios sobresu biologıa en Uruguay y su status taxonomico.Cuadernos de Herpetologıa 17: 87–100.

Kuramoto, M. 1980. Mating calls of treefrogs (ge-nus Hyla) in the Far East, with description of anew species from Korea. Copeia 1980: 100–108.

Kuramoto, M. 1998. Spermatozoa of several frogspecies from Japan and adjacent regions. Jap-anese Journal of Herpetology 17: 107–116.

Kuramoto, M., and A. Allison. 1991. Karyotypesof five hylid frogs from Papua New Guinea,with a discussion on their systematic implica-tions. Japanese Journal of Herpetology 14: 6–11.

Kwet, A. 2000. The genus Pseudis (Anura: Pseu-didae) in Rio Grande do Sul, southern Brazil,with description of a new species. Amphibia-Reptilia 21: 39–55.

Lacombe, C., C. Cifuentes-Diaz, I. Dunia, M. Au-ber-Thomay, P. Nicolas, and M. Amiche. 2000.Peptide secretion in the cutaneous glands ofSouth American tree frog Phyllomedusa bicol-or: an ultrastructural study. European Journalof Cell Biology 79: 634–641.

Lajmanovich, R.C., M.F. Izaguirre, M.F. Vera-Candioti, and V.H. Casco. 2000. Unique struc-tural pattern of the manicotto glandulare ofHyla nana tadpoles (Anura: Hylidae). Amphib-ia-Reptilia 21: 237–242.

La Marca, E. 1985. Systematic and ecological ob-servations on the Neotropical frogs Hyla jahniand Hyla platydactyla. Journal of Herpetology19: 227–237.

La Marca, E. 1992. Catalogo taxonomico biogeo-grafico y bibliografico de las ranas de Venezue-la. Cuadernos Geograficos 9: 1–197.

La Marca, E. 1997. Lista actualizada de los anfi-bios de Venezuela. In E. La Marca (editor),Vertebrados actuales y fosiles de Venezuela 1:103–119. Merida,Venezuela: Museo de Cienciay Tecnologıa de Merida.

La Marca, E. 1998. Biodiversidad de anfibios enlos Andes de Venezuela: analisis preliminar por

Page 142: systematic review of the frog family hylidae, with special reference to ...

142 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

pisos de vegetacion. In G. Halffter (editor), Ladiversidad biologica de Iberoamerica III. Vol-umen Especial, Acta Zoologica Mexicana, nue-va serie: 199–210. Xalapa, Mexico: Instituto deEcologıa, A.C.

Lang, M. 1990. Annotated catalogue of the type-specimens from the herpetological collection ofthe Royal Belgian Institute of Natural Sciences,Brussels. Documents de Travail de l’InstitutRoyal des Sceinces Naturelles de Belgique 59:1–36.

Langone, J.A. 1990. Revalidacion de Hyla uru-guaya Schmidt, 1944 (Amphibia, Anura, Hyli-dae). Comunicaciones Zoologicas del Museo deHistoria Natural de Montevideo 12: 1–9.

Langone, J.A. ‘‘1994’’ [1995]. Ranas y sapos delUruguay. Montevideo: Museo Damaso AntonioLarranaga, Serie de Divulgacion n8 5, 123 pp.

Langone, J.A., and N.G. Basso. 1987. Distribu-cion geografica y sinonimia de Hyla nana Bou-lenger, 1889 y de Hyla sanborni Schmidt, 1944(Anura, Hylidae) y observaciones sobre formasafines. Comunicaciones Zoologicas del Museode Historia Natural de Montevideo 11: 1–17.

Langone, J.A., C.M. Prigioni, and L. Venturino.1985. Informe preliminar sobre el comporta-miento reproductor y otros aspectos de la biol-ogıa de Phyllomedusa iheringi, Boulenger,1885 (Anura, Hylidae). Comunicaciones Zool-ogicas del Museo de Historia Natural de Mon-tevideo 11: 1–12.

Lannoo, M.J., D.S. Townsend, and R. Wassersug.1987. Larval life in the leaves: arboreal tadpoletypes, with special attention to the morphology,ecology, and behavior of the oophagous Osteo-pilus brunneus (Hylidae) larva. Fieldiana Zo-ology, N.S. 38: 1–31.

Laurent, R.F. 1986. Sous classe de Lissamphi-biens: Lissamphibia systematique. In P.-P.Grasse and M. Delsol (editors), Traite de zool-ogie: anatomie, systematique, biologie, tomeXIV, fascicle 1B—Batraciens: 594–797. Paris:Masson.

Lavilla, E.O. 1984. Redescripcion de larvas deHyla pulchella andina (Anura: Hylidae) con unanalisis de la variabilidad interpoblacional.Neotropica 30: 19–30.

Lavilla, E.O. 1990. The tadpole of Hyla nana(Anura: Hylidae). Journal of Herpetology 24:207–209.

Lavilla, E.O. 1992. Tipos portadores de nombre ylocalidades tipo de anfibios de Argentina. ActaZoologica Lilloana 42: 61–100.

Lee, J.C. 1996. The amphibians and reptiles of theYucatan peninsula. Ithaca, NY: Cornell Univer-sity Press.

Lehr, E., and R.V. May. 2004. Rediscovery of

Hyla melanopleura Boulenger, 1912 (Amphib-ia: Anura: Hylidae). Salamandra 40: 51–58.

Lescure, J., and C. Marty. 2000. Atlas des am-phibiens de Guyane. Paris: Publications Scien-tifiques du Museum National d’Histoire Natu-relle.

Lescure, J., C. Marty, V. Marty, F. Starace, M.Auber-Thomay, and F. Letellier. 1995. Contri-bution a l’etude des amphibiens de Guyanafrancaise. X. Les Phyllomedusa (Anura, Hyli-dae). Revue Francaise de Aquariologie 22: 35–50.

Lewis, P.O. 2001. A likelihood approach to esti-mating phylogeny from discrete morphologicalcharacter data. Systematic Biology 50: 913–925.

Lichtenstein, M.H. C., and E. von Martens 1856.Nomenclator Reptilium et Amphibiorum MuseiZoologici Berolinensis. Namensverzeichnissder in der zoologischen Sammlung de Konig-lichen Universitat zu Berlin aufgestellten Artenvon Reptilien und Amphibien nach ihren Ord-nungen, Familien und Gattungen, Berlin, 48 pp.

Lips, K. 1996. New treefrog from the Cordillerade Talamanca of Central America with a dis-cussion of systematic relationships in the Hylalancasteri group. Copeia 1996: 615–626.

Luddecke, H., and O.R. Sanchez. 2002. Are trop-ical highland frog calls cold-adapted? The caseof the Andean frog Hyla labialis. Biotropica34: 281–288.

Lutz, A., and B. Lutz. 1939. I. Notes on the genusPhyllomedusa Wagler. A) Observations onsmall Phyllomedusae without vomerine teeth orconspicuous parotids found in the region of Riode Janeiro. B) Phyllomedusa bahiana Lutz. An-naes da Academia Brasileira de Sciencias 11:219–263.

Lutz, B. 1948. Anuros da Colecao Adolpho Lutzda regiao sud-este do Brasil. I. Hyla ancepsLutz, 1929. Memorias do Instituto OswaldoCruz 46: 299–313.

Lutz, B. ‘‘1948’’ [1949]. Anfibios anuros da co-lecao Adolpho Lutz II. Especies verdes do ge-nero Hyla do leste-meridional do Brasil. Me-morias do Instituto Oswaldo Cruz 46: 551–577.

Lutz, B. 1950. Anfıbios anuros da colecao Adol-pho Lutz. V. Locomocao e estrutura das ex-tremidades. V.a Phyllomedusa (P.) burmeisteridistincta A. Lutz. V.b Aplastodiscus perviridisA. Lutz. Memorias do Instituto Oswaldo Cruz48: 599–637.

Lutz, B. 1954. Anfıbios anuros do Distrito Fed-eral. Memorias do Instituto Oswaldo Cruz 52:155–238.

Lutz, B. 1963. New species of Hyla from south-eastern Brazil. Copeia 1963: 561–562.

Lutz, B. 1968. Taxonomy of Neotropical Hylidae.

Page 143: systematic review of the frog family hylidae, with special reference to ...

2005 143FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

The Pearce-Sellards Series, Texas MemorialMuseum 11: 1–25.

Lutz, B. 1973. Brazilian Species of Hyla. Austin:University of Texas Press.

Lynch, J.D. 1971. Evolutionary relationships, os-teology, and zoogeography of leptodactyloidfrogs. Miscellaneous Publications of the Mu-seum of Natural History, University of Kansas53: 1–238.

Lynch, J.D. 1973. The transition from archaic toadvanced frogs. In J.L. Vial (editor), Evolution-ary biology of the anurans. Contemporary re-search on major problems: 131–182. Columbia:University of Missouri Press.

Lynch, J.D. 1986. Origins of the high Andean her-petological fauna. In F. Vuilleumier and M.Monasterio (editors), High altitude tropical bio-geography: 478–499. New York: Oxford Uni-versity Press.

Lynch, J.D. 1998. New species of Eleutherodac-tylus from the Cordillera Occidental of westernColombia with a synopsis of the distributionsof species in western Colombia. Revista de laAcademia Colombiana de Ciencias Exactas,Fısicas y Naturales 22: 117–148.

Lynch, J.D. 2002. A new species of the genusOsteocephalus (Hylidae: Anura) from the west-ern Amazon. Revista de la Academia Colom-biana de Ciencias Exactas, Fısicas y Naturales26: 289–292.

Lynch, J.D., and W.E. Duellman. 1997. Frogs ofthe genus Eleutherodactylus in western Ecua-dor. University of Kansas Natural History Mu-seum, Special Publication 23: 1–236.

Lynch, J.D., and A.M. Suarez-Mayorga. 2001.The distributions of the gladiator frogs (Hylaboans group) in Colombia, with comments onsize variation and sympatry. Caldasia 23: 491–507.

Lynch, J.D., P.M. Ruiz-Carranza, and C.M. Ar-dila-Robayo. 1997. Biogeographic patterns ofColombian frogs and toads. Revista de la Ac-ademia Colombiana de Ciencias Exactas, Fisi-cas y Naturales 21: 237–248.

MacCulloch, R.D., and A. Lathrop. 2002. Excep-tional diversity of Stefania (Anura: Hylidae) onMount Ayangana, Guyana: three new speciesand new distribution records. Herpetologica 58:327–346.

Manzano, A.S. 1997. Estudio comparativo de lamiologıa de la cintura pectoral de algunos Phyl-lomedusinos. Bollettino del Museo di ScienzeNaturali, Torino 15: 255–277.

Manzano, A.S., and E.O. Lavilla. 1995a. Myolog-ical peculiarities in Rhinoderma darwinii (An-ura: Rhinodermatidae). Journal of Morphology224: 125–129.

Manzano, A.S., and E.O. Lavilla. 1995b. Notas

sobre la miologıa apendicular de Phyllomedusahypocondrialis (Anura, Hylidae). Alytes 12:169–174.

Marquez, R., I. De la Riva, and J. Bosch. 1993.Advertisement calls of Bolivian species of Hyla(Amphibia, Anura, Hylidae). Biotropica 25:426–443.

Martins, M., and A.J. Cardoso. 1987. Novas es-pecies de hilıdeos do Estado do Acre (Amphib-ia: Anura). Revista Brasileira de Biologia 47:549–558.

Martins, M., and C.F.B. Haddad. 1988. Vocaliza-tions and reproductive behavior in the smithfrog, Hyla faber Wied (Amphibia: Hylidae).Amphibia-Reptilia 9: 49–60.

Martins, M., and G. Moreira. 1991. The nest andthe tadpole of Hyla wavrini, Parker (Amphibia,Anura). Memorias do Instituto Butantan 53:197–204.

Maxson, L.R. 1992. Tempo and pattern in anuranspeciation and phylogeny: an albumin perspec-tive. In K. Adler (editor), Herpetology: currentresearch on the biology of amphibians and rep-tiles: 41–57. Oxford, OH: Society for the Studyof Amphibians and Reptiles.

Maxson, L.R., D.P. Ondrula, and M.J. Tyler. 1985.An immunological perspective on evolutionaryrelationships in Australian frogs of the hylidgenus Cyclorana. Australian Journal of Zoolo-gy 33: 17–22.

Maxson, L.R., M.J. Tyler, and R.D. Maxson.1982. Phylogenetic relationships of Cycloranaand the Litoria aurea species-group (Anura:Hylidae): a molecular perspective. AustralianJournal of Zoology 30: 643–651.

McCranie, J.R., and L.D. Wilson. 1993. Taxo-nomic changes associated with the names Hylaspinipollex Schmidt and Ptychohyla meraziWilson and McCranie (Anura, Hylidae). TheSouthwestern Naturalist 38: 100–104.

McCranie, J.R., and L.D. Wilson. 2002. The am-phibians of Honduras. Ithaca, NY: Society forthe Study of Amphibians and Reptiles.

McDiarmid, R.W., and R. Altig. 1990. Descriptionof a bufonid tadpole and two hylid tadpolesfrom western Ecuador. Alytes 8: 51–60.

McDonald, K.R. and D.L. Storch. 1993. A newreproductive mode for an Australian hylid frog.Memoirs of the Queensland Museum 34: 200.

Mendelson, J.R., III, and J.A. Campbell. 1999.The taxonomic status of populations referred toHyla chaneque in southern Mexico, with thedescription of a new treefrog from Oaxaca.Journal of Herpetology 33: 80–86.

Mendelson, J.R., III, and K.R. Toal. 1995. A newspecies of Hyla (Anura: Hylidae) from cloudforest in Oaxaca, Mexico, with comments onthe status of the Hyla bistincta group. Occa-

Page 144: systematic review of the frog family hylidae, with special reference to ...

144 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

sional Papers of the Museum of Natural His-tory, The University of Kansas 174: 1–20.

Mendelson J.R., III, and K.R. Toal III. 1996. Anew species of Hyla (Anura: Hylidae) from thesierra madre del sur of Oaxaca, Mexico, withcomments on Hyla chryses and Hyla mykter.Journal of Herpetology 30: 326–333.

Mendelson, J.R., III, H.R. da Silva, and A.M.Maglia. 2000. Phylogenetic relationshipsamong marsupial frog genera (Anura: Hylidae:Hemiphractinae) based on evidence from mor-phology and natural history. Zoological Journalof the Linnean Society 128: 125–148.

Menin, M., R.A. Silva, and A.A. Giaretta. 2004.Reproductive biology of Hyla goiana (Anura,Hylidae). Iheringia, Zoologia 94: 49–52.

Metcalf, M.M. 1923a. The origin and distributionof the Anura. American Naturalist 57: 385–411.

Metcalf, M.M. 1923b. The opalinid ciliate infu-sorians. Bulletin of the United States NationalMuseum 120: 1–484.

Metcalf, M.M. 1928. The Bell-toads and theiropalinid parasites. American Naturalist 62: 5–21.

Meyer, E., B.G.M. Jamieson, and D.M. Scheltin-ga. 1997. Sperm ultrastructure of six Australianhylid frogs from two genera (Litoria and Cy-clorana): phylogenetic implications. Journal ofSubmicroscopic Cytology and Pathology 29:443–451.

Mijares-Urrutia, A. 1992a. Sobre el renacuajo deHyla alemani Rivero (Anura: Hylidae). ActaBiologica Venezuelica 13: 35–39.

Mijares-Urrutia, A. 1992b. El renacuajo de Hylalascinia, con aportes al conocimiento de losrenacuajos de Hyla jahni e Hyla platydactyla(Hylidae) de los andes venezolanos. Alytes 10:91–98.

Mijares-Urrutia, A. 1997. Renacuajos de tres es-pecies de ranas (Amphibia: Bufonidae, Hyli-dae) de Colombia y Venezuela. Acta CientıficaVenezolana 48: 139–144.

Mijares-Urrutia, A. 1998. Una nueva especie derana arborıcola (Amphibia: Hylidae) de unbosque nublado del oeste de Venezuela. RevistaBrasileira de Biologia 58: 659–663.

Mijares-Urrutia, A., and R.A. Rivero. 2000. Anew treefrog from the Sierra de Aroa, northernVenezuela. Journal of Herpetology 34: 80–84.

Mijares-Urrutia, A., J. Manzanilla-Puppo, and E.La Marca. 1999. Una nueva especie de Tepui-hyla (Anura: Hylidae) del noroeste de Vene-zuela, con comentarios sobre su biogeografıa.Revista de Biologia Tropical 47: 1099–1110.

Miranda-Ribeiro, A. 1926. Notas para servirem aoestudo do gymnobatrachios (Anura) brasileiros.

Archivos do Museu Nacional do Rio de Janeiro27: 1–227.

Miranda-Ribeiro, A. 1937. Alguns batrachios no-vos das colecoes do Museu Nacional. O Campo1937(Maio): 66–69.

Misuraca, G., G. Prota, J.T. Bagnara, and S.K.Frost. 1977. Identification of the leaf–frog me-lanophore pigment, rhodomelanochrome, aspterorhodin. Comparative Biochemistry andPhysiology 57B: 41–43.

Morand, M., and A. Hernando. 1996. Cariotipo yregion organizadora del nucleolo en Argenteo-hyla siemersi pederseni (Anura: Hylidae). FA-CENA 12: 141–144.

Morescalchi, A. 1973. Amphibia. In A.B. Chi-arelli and E. Capanna (editors), Cytotaxonomyand vertebrate evolution: 233–348. London:Academic Press.

Moriarty, E.C., and D.C. Cannatella. 2004. Phy-logenetic relationships of the north americanchorus frogs (Pseudacris: Hylidae). MolecularPhylogenetics and Evolution 30: 409–420.

Moritz, C., C.J. Schneider, and D.B. Wake. 1992.Evolutionary relationships within the Ensatinaeschscholtzii complex confirm the ring speciesinterpretation. Systematic Biology 41: 273–291.

Muller, L., and W. Hellmich. 1936. Amphibienund Reptilien I. Teil: Amphibia, Chelonia, Lor-icata. In H. Krieg (editor), WissenschaftlicheErgebnisse der Deutschen Gran Chaco-Expe-dition: 120 pp. Stuttgart: Stecker und Schroder.

Myers, C.W., and M.A. Donnelly. 1997. A tepuiherpetofauna on a granitic mountain (Tamacu-ari) in the borderland between Venezuela andBrazil: report from the Phipps Tapirapeco Ex-pedition. American Museum Novitates 3213:1–71.

Myers, C.W., and R. Stothers. MS. The myth ofHylas revisited: the frog name Hyla, and othercommentary on the Specimen Medicum of J. N.Laurenti, the ‘‘father of herpetology’’.

Myers, C.W., A.O. Paolillo, and J.W. Daly. 1991.Discovery of a defensively malodorous andnocturnal frog in the family Dendrobatidae:phylogenetic significance of a new genus andspecies from the Venezuelan Andes. AmericanMuseum Novitates 3002: 1–33.

Napoli, M.F. 2000. Taxonomia, variacao morfo-logica e distribuicao geografica das especies dogrupo de Hyla circumdata (Cope, 1870) (Am-phibia, Anura, Hylidae). Ph.D. dissertation,Universidade Federal do Rio de Janeiro.

Napoli, M.F., and U. Caramaschi. 1998. Duas no-vas especies de Hyla Laurenti, 1768 do Brasilcentral afins de H. tritaeniata Bokermann, 1965(Amphibia, Anura, Hylidae). Boletim do Mu-seu Nacional, Nova Serie, Zoologia 391: 1–12.

Page 145: systematic review of the frog family hylidae, with special reference to ...

2005 145FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Napoli, M.F., and U. Caramaschi. 1999. The tax-onomic status of Hyla elongata Lutz, 1925.Journal of Herpetology 33: 484–487.

Napoli, M.F., and U. Caramaschi. 2004. Two newspecies of the Hyla circumdata group from Se-rra do Mar and Serra da Mantiqueira, south-eastern Brazil, with description of the adver-tisement call of Hyla ibitipoca (Anura, Hyli-dae). Copeia 2004: 534–545.

Napoli, M.F., and B.V.S. Pimenta. 2003. Nova es-pecie do grupo de Hyla circumdata (Cope,1870) do sul da Bahia, Brasil (Amphibia, An-ura, Hylidae). Arquivos do Museu Nacional 61:189–194.

Nicholls, G.C. 1916. The structure of the vertebralcolumn in the Anura Phaneroglossa and its im-portance as a basis of classification. Proceed-ings of the Linnean Society of London 128:80–92.

Nieden, F. 1923. Anura I. Subordo Aglossa undPhanerglossa sectio 1 Arcifera. Das Tierreich46: 1–584.

Nixon, K.C. 1999a. The parsimony ratchet, a newmethod for rapid parsimony analysis. Cladistics15: 407–414.

Nixon, K.C. 1999b. WinClada. Computer soft-ware and documentation, available at: http://www.Cladistics.com.

Nixon, K.C., and J.M. Carpenter. 1996. On si-multaneous analysis. Cladistics 12: 221–241.

Noble, G.K. 1922. The phylogeny of the Salientia.I. The osteology and the thigh musculature;their bearing on classification and phylogeny.Bulletin of the American Museum of NaturalHistory 46: 1–87.

Noble, G.K. 1927. The value of life history datain the study of evolution of the Amphibia. An-nals of the New York Academy of Sciences 30:31–128.

Noble, G.K. 1931. The biology of the Amphibia.New York: McGraw-Hill.

Page, R.D.M., and C. Lydeard. 1994. Towards acladistic biogeography of the Caribbean. Cla-distics 10: 21–41.

Page, T.J. 1859. La Plata, the Argentine Confed-eration, and Paraguay. Being a narrative of theexploration of the tributaries of the river LaPlata and adjacent countries during the years1853, ’54, ’55, and ’56, under the orders of theUnited States Government. New York: Harperand Brothers.

Palumbi, S.R., A. Martin, W.O. McMillan, L.Stice, and G. Grabowski. 1991. The simplefool’s guide to PCR, version 2.0. Privately pub-lished.

Paolillo, A.O., and J. Cerda. 1981. Nuevos hal-lazgos de Aparasphenodon venezolanus (Mer-tens) (Salientia, Hylidae) en el Territorio Fe-

deral Amazonas, Venezuela, con anotacionessobre su biologıa. Memoria de la Sociedad deCiencias Naturales La Salle 41: 77–95.

Parker, H.W. 1940. The Australian frogs of thefamily Leptodactylidae. Novitates Zoologicae42: 1–106.

Parmalee, J.R. 1999. Trophic ecology of a tropicalanuran assemblage. Scientific Papers of theNatural History Museum, The University ofKansas 11: 1–59.

Peixoto, O.L. 1981. Nova especie de Hyla da Se-rra dos Orgaos, Estado de Rio de Janeiro, Brasil(Amphibia, Anura, Hylidae). Revista Brasileirade Biologia 41: 515–520.

Peixoto, O.L. 1987. Caracterizacao do grupo‘‘perpusilla’’ e revalidacao da posicao taxon-omica de Ololygon perpusilla perpusilla eOlolygon perpusilla v-signata (Amphibia, An-ura, Hylidae). Arquivos de Universidade Fed-eral Rural do Rio de Janeiro 10: 37–49.

Peixoto, O.L., and C.A.G. Cruz. 1983. Girinos deespecies de Hyla do grupo ‘‘albomarginata’’ doSudeste brasileiro (Amphibia, Anura, Hylidae).Arquivos de Universidade Federal Rural do Riode Janeiro 6: 155–163.

Peixoto, O.L., and C.A.G. Cruz. 1988. Descricaode duas especies novas do genero PhyllodytesWagler (Amphibia, Anura, Hylidae). RevistaBrasileira de Biologia 48: 265–272.

Peixoto, O.L., and M.R. Gomes. 1999. The tad-pole of Hyla nahdereri Lutz and Bokermann,1963. Journal of Herpetology 33: 477–479.

Peixoto, O.L., U. Caramaschi, and E.M.X. Freire.2003. Two new species of Phyllodytes (Anura:Hylidae) from the state of Alagoas, northeast-ern Brazil. Herpetologica 59: 235–246.

Peters, W.C.H. ‘‘1872’’ [1873]. Uber eine, zweineue Gattungen enthaltende, Sammlung vonBatrachiern des Hrn. Dr. O. Wucherer aus Ba-hia, so wie uber einige neue oder weniger be-kannte Saurier. Monatsberichte der koniglichAkademie der Wissenschaften zu Berlin 1872:768–776.

Peters, W.C.H. 1873. Uber eine neue Schildkro-tenart, Cinosternon effeldtii und einige andereneue oder weniger bekannte Amphibien. Mon-atsberichte der koniglich Akademie der Wis-senschaften zu Berlin 1873: 603–618.

Pol, D., and M.E. Siddall. 2001. Biases in maxi-mum likelihood and parsimony: a simulationapproach to a 10-taxon case. Cladistics 17:266–281.

Pombal, J.P., Jr. 1993. A new species of Apara-sphenodon (Anura: Hylidae) from southeasternBrazil. Copeia 1993: 1088–1091.

Pombal, J.P., Jr., and R.P. Bastos. 1998. Nova es-pecie de Hyla Laurenti, 1768 do centro-oestebrasileiro e a posicao taxonomica de H. micro-

Page 146: systematic review of the frog family hylidae, with special reference to ...

146 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

cephala werneri Cochran, 1952 e H. microce-phala meridiana B. Lutz, 1952 (Anura, Hyli-dae). Boletim do Museu Nacional, Nova Serie,Zoologia 390: 1–14.

Pombal, J.P., Jr., and U. Caramaschi. 1995. Posi-cao taxonomica de Hyla pseudopseudis Miran-da-Ribeiro, 1937 e Hyla saxicola Bokermann,1964 (Anura, Hylidae). Boletim do Museu Na-cional, Nova Serie, Zoologia 363: 1–8.

Pombal, J.P., Jr., and M. Gordo. 2004. Anfıbiosanuros da Jureia. In O.A.V. Marques and W.Duleba (editors), Estacao ecologica Jureia-Ita-tins: ambiente fısico, flora e fauna: 243–256.Ribeirao Preto, Sao Paulo, Brasil: Holos Edi-tora.

Pombal, J.P., Jr., and C.F.B. Haddad. 1992. Espe-cies de Phyllomedusa do grupo burmeisteri doBrasil oriental, com descricao de uma especienova (Amphibia: Hylidae). Revista Brasileirade Biologia 52: 217–229.

Pombal, J.P., Jr., and C.F.B. Haddad. 1993. Hylaluctuosa, a new treefrog from southeastern Bra-zil (Amphibia: Hylidae). Herpetologica 49: 16–21.

Pombal, J.P., Jr., C.F.B. Haddad, and C.A.G. Cruz.2003. New species of Phrynohyas from Atlan-tic rain forest of southeastern Brazil (Anura,Hylidae). Copeia 2003: 379–383.

Pope, C.H. 1931. Notes on the amphibians fromFukien, Hainan, and other parts of China. Bul-letin of the American Museum of Natural His-tory 61: 397–611.

Porras, L., and L.D. Wilson. 1987. A new speciesof Hyla from the highlands of Honduras and ElSalvador. Copeia 1987: 478–482.

Powell, R., and R.W. Henderson. 2003a. Somehistorical perspectives. In R.W. Henderson andR. Powell (editors), Islands and the sea: essayson herpetological exploration in the West In-dies. Society for the Study of Amphibians andReptiles, Contributions to Herpetology, 20: 9–20. Ithaca, NY.

Powell, R., and R.W. Henderson. 2003b. A secondset of addenda to the checklist of West Indianamphibians and Reptiles. Herpetological Re-view 34: 341–345.

Prado, G., J.H. Borgo, P.A. Abrunhosa, and H.Wogel. 2003. Comportamento reprodutivo, vo-calizacao e redescricao do girino de Phrynoh-yas mesophaea (Hensel, 1867) do Sudeste doBrasil (Amphibia, Anura, Hylidae). Boletim doMuseu Nacional, Nova Serie, Zoologia 510: 1–11.

Prasad, G.V.R., and J.C. Rage. 1995. Amphibiansand squamates from the Maastrichtian of Nas-kal, India. Cretaceous Research 16: 95–107.

Prendini, L. 2001. Species or supraspecific taxa asterminals in cladistic analysis? Groundplans

versus exemplars revisited. Systematic Biology50: 290–300.

Pugliese, A., A.C.R. Alves, and S.P. Carvalho eSilva. 2000. The tadpoles of Hyla oliveirai andHyla decipiens with notes on the Hyla micro-cephala group (Anura, Hylidae). Alytes 18: 73–80.

Pugliese, A., A.C.R. Alves, and J.P. Pombal, Jr.2001. The tadpole of Hyla rubicundula. Journalof Herpetology 35: 686–688.

Pyburn, W.F. 1977. A new hylid frog (Amphibia,Anura, Hylidae) from the Vaupes River of Co-lombia with comments on related species. Jour-nal of Herpetology 11: 405–410.

Pyburn, W.F. 1978. The voice and relationships ofthe treefrog Hyla hobbsi (Anura: Hylidae). Pro-ceedings of the Biological Society of Washing-ton 91: 123–131.

Pyburn, W.F. 1984. A new stream-inhabiting tree-frog (Anura: Hylidae) from southeastern Co-lombia. Herpetologica 40: 366–372.

Pyburn, W.F. 1993. A new species of dimorphictree frog, genus Hyla (Amphibia: Anura: Hy-lidae) from the Vaupes River of Colombia. Pro-ceedings of the Biological Society of Washing-ton 106: 46–50.

Rabello, M.N. 1970. Chromosomal studies in Bra-zilian anurans. Caryologia 23: 45–59.

Ralin, D.B. 1970. Genetic compatibility and aphylogeny of the temperate North Americanhylid fauna. Ph.D. dissertation, University ofTexas, Austin. [Not seen, cited from Hedges,1986].

Ramos, A.D., and J.L. Gasparini. 2004. Anfibiosdo Gioapaba-Acu, Fundao, Estado do EspıritoSanto. Vitoria: Grafica Santo Antonio.

Read, K., J.S. Keogh, I.A.W. Scott, J.D. Roberts,and P. Doughty. 2001. Molecular phylogeny ofthe australian frog genera Crinia, Geocrinia,and allied taxa (Anura, Myobatrachidae). Mo-lecular Phylogenetics and Evolution 21: 294–308.

Reynolds, R.P., and M.S. Foster. 1992. Four newspecies of frogs and one new species of snakefrom the Chapare region of Bolivia, with noteson other species. Herpetological Monographs 6:83–104.

Richards, S.J. 1993. Functional significance ofnest construction by an australian rainforestfrog: a preliminary analysis. Memoirs of theQueensland Museum 34: 89–93.

Richards, S.J., and G.R. Johnston. 1993. A newspecies of Nyctimystes (Anura: Hylidae) fromthe Star mountains, Papua New Guinea. Mem-oirs of the Queensland Museum 33: 73–76.

Rivero, J.A. 1961. Salientia of Venezuela. Bulle-tin of the Museum of Comparative Zoology126: 1–207.

Page 147: systematic review of the frog family hylidae, with special reference to ...

2005 147FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Rivero, J.A. 1964. Salientios (Amphibia) en la co-leccion de la Sociedad de Ciencias Naturales laSalle de Venezuela. Caribbean Journal of Sci-ence 4: 297–305.

Rivero, J.A. 1968. Los Centrolenidos de Vene-zuela (Amphibia: Salientia). Memoria de la So-ciedad de Ciencias Naturales La Salle 28: 301–334.

Rivero, J.A. 1969. A new species of Hyla (Am-phibia, Salientia) from the region of Paramo deTama, Venezuela. Caribbean Journal of Science9: 145–150.

Rivero, J.A. 1970. On the origin, endemism anddistribution of the genus Stefania Rivero (Am-phibia, Salientia) with a description of a newspecies from southeastern Venezuela. Boletinde la Sociedad Venezolana de Ciencias Natur-ales 28: 456–481.

Rivero, J.A. ‘‘1971’’ [1972]. Notas sobre los an-fibios de Venezuela. I. Sobre los hilidos de laGuayana venezolana. Caribbean Journal of Sci-ences 11: 181–188.

Rivero, J.A. 1985. Nuevos centrolenidos de Co-lombia y Venezuela. Brenesia 23: 335–373.

Rodrıguez, L.O., and W.E. Duellman. 1994.Guide to the frogs of the Iquitos region, Ama-zonian Peru. The University of Kansas NaturalHistory Museum Special Publication 22: i–ii,1–80.

Romero de Perez, G., and P.M. Ruiz-Carranza.1996. Histologia, histoquımica y estructura finade la glandula mentoniana de dos especies deHyla (grupo bogotensis) y del antebrazo dePhrynopus adenobatrachius. Revista de la Ac-ademia Colombiana de Ciencias Exactas, Fısi-cas y Naturales 20: 575–584.

Ron, S., and J.B. Pramuk. 1999. A new speciesof Osteocephalus (Anura, Hylidae) from Am-azonian Ecuador and Peru. Herpetologica 55:433–446.

Ruiz-Carranza, P.M., J.I. Hernandez-Camacho,and J.V. Rueda-Almonacid. 1988. Una nuevaespecie de Phyllomedusa Wagler 1830 (Am-phibia: Anura: Hylidae) del noroeste de Colom-bia. Trianea 2: 373–382.

Ruiz-Carranza, P.M., and J.D. Lynch. 1991. RanasCentrolenidae de Colombia I. Lozania 57: 1–32.

Ruvinsky, I., and L.R. Maxson. 1996. Phyloge-netic relationships among bufonoid frogs (An-ura: Neobatrachia) inferred from mitochondrialDNA sequences. Molecular Phylogenetics andEvolution 5: 533–547.

Sachsse, R., E. Izecksohn, and S.P. Carvalho eSilva. 1999. The systematic status of Hyla al-bolineata Lutz and Lutz, 1939 (Amphibia: An-ura: Hylidae). Herpetologica 55: 401–406.

Salducci, M.D., C. Marty, R. Chappaz, and A.

Gilles. 2002. Molecular phylogeny of FrenchGuiana Hylinae: implications for the systematicand biodiversity of the Neotropical frogs.Compte Rendu des Seances de la Societe dePhysique et d’Histoire Naturelle, Biologie 325:141–153.

Sanchiz, B. 1998a. Salientia. In P. Wellnhofer (ed-itor), Encyclopedia of paleoherpetology 4: 1–276. Munchen: Verlag Dr. Friedrich Pfeil.

Sanchiz, B. 1998b. Vertebrates from the earlyMiocene lignite deposits of the opencast mineOberdorf (Western Styrian Basin, Austria): 2.Amphibia. Annalen des Naturhistorischen Mu-seums in Wien 99A: 13–29.

Sanderson, M.J., and J. Kim. 2000. Parametricphylogenetics? Systematic Biology 49: 817–829.

Sankoff, D. 1975. Minimal mutation trees of se-quence. SIAM Journal of Applied Mathematics21: 35–42.

Sankoff, D., and R.J. Cedergren. 1983. Simulta-neous comparisons of three or more sequencesrelated by a tree. In D. Sankoff and J. Kruskal(editors), Time warps, string edits, and macro-molecules. The theory and practice of sequencecomparisons: 253–264. Reading, MA: Addi-son-Wesley.

Sanmartın, I., and F. Ronquist. 2004. Southernhemisphere biogeography inferred by event-based models: plant versus animal patterns.Systematic Biology 53: 216–243.

Santos, C.S., A.C.R. Alves, and S.P. Carvalho eSilva. 1998. Description of the tadpoles of Hylagiesleri and Hyla microps from southern Brazil.Journal of Herpetology 32: 61–66.

Santos, J.C., L.A. Coloma, and D.C. Cannatella.2003. Multiple, recurring origins of aposema-tism and diet specialization in poison frogs.Proceedings of the National Academy of Sci-ences USA 100: 12792–12797.

Savage, J.M. 1966. The origins and history of theCentral American herpetofauna. Copeia 1966:719–766.

Savage, J.M. 1973. The geographic distribution offrogs: patterns and predictions. In J.L. Vial (ed-itor), Evolutionary biology of the Anurans:contemporary research on major problems:351–445. Columbia: University of MissouriPress.

Savage, J.M. 1982. The enigma of Central Amer-ican herpetofauna: dispersals or vicariance?Annals of the Missouri Botanical Garden 69:464–547.

Savage, J.M. 2002a. The amphibians and reptilesof Costa Rica. A herpetofauna between twocontinents, between two seas. Chicago: Univer-sity of Chicago Press.

Page 148: systematic review of the frog family hylidae, with special reference to ...

148 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Savage, J.M. 2002b. The hylid frogs of MiddleAmerica [book review]. Copeia 2002: 545–552.

Savage, J.M., and A.L.D. Carvalho. 1953. Thefamily position of neotropical frogs currentlyreferred to the genus Pseudis. Zoologica, Sci-entific Contributions of the New York Zoolog-ical Society 38: 193–200.

Savage, J.M., and W.R. Heyer. ‘‘1968’’ [1969].The tree-frogs (family Hylidae) of Costa Rica:diagnosis and distribution. Revista de BiologiaTropical 16: 1–127.

Sazima, I., and W.C.A. Bokermann. 1977. Anfı-bios da Serra do Cipo, Minas Gerais, Brasil. 3:Observacoes sobre a biologia de Hyla alvar-engai Bok. (Anura, Hylidae). Revista Brasileirade Biologia 37: 413–417.

Schiesari, L.C., B. Grillitsch, and C. Vogl. 1996.Comparative morphology of phytotelmonousand pond-dwelling larvae of four neotropicaltreefrog species (Anura, Hylidae, Osteocephal-us oophagus, Osteocephalus taurinus, Phry-nohyas resinifictrix, Phrynohyas venulosa).Alytes 13: 109–139.

Schmidt, K.P. 1953. A checklist of North Ameri-can amphibians and reptiles, 6th ed. Chicago:American Society of Ichthyologists and Her-petologists.

Senaris, J.C., and J. Ayarzaguena. 2002. A newHyla (Anura: Hylidae) from the highlands ofVenezuelan Guyana. Journal of Herpetology36: 634–640.

Senaris, J.C., J. Ayarzaguena, and S. Gorzula.‘‘1996’’ [1997]. Revision taxonomica del ge-nero Stefania (Anura; Hylidae) en Venezuelacon la descripcion de cinco nuevas especies.Publicaciones de la Asociacion de Amigos deDonana 7: 1–57.

Sheil, C.A., J.R. Mendelson, and H.R. da Silva.2001. Phylogenetic relationships of the speciesof Neotropical horned frogs, genus Hemiphrac-tus (Anura: Hylidae: Hemiphractinae), based onevidence from morphology. Herpetologica 57:203–214.

Siddall, M.E. 1998. Success of parsimony in thefour-taxon case: long-branch repulsion by like-lihood in the Farris zone. Cladistics 14: 209–220.

Siddall, M.E., and A.G. Kluge. 1999. Letter to theeditor. Cladistics 15: 439–440.

Simmons, M.P., K.M. Pickett, and M. Miya. 2004.How meaningful are Bayesian support values?Molecular Biology and Evolution 21: 188–199.

Skuk, G., and J.A. Langone. 1991. Los cromo-somas de cuatro especies del genero Hyla (An-ura, Hylidae) con un numero diploide de 2n 530. Acta Zoologica Lilloana 41: 165–171.

Smith, E.N., and B.P. Noonan. 2001. A new spe-cies of Osteocephalus (Anura: Hylidae) from

Guyana. Revista de Biologia Tropical 49: 347–357.

Smith, H.M., and E.H. Taylor. 1948. An annotatedchecklist and key to the Amphibia of Mexico.Bulletin of the United States National Museum194: 1–118.

Smith, T.F., M.S. Waterman, and W.M. Fitch.1981. Comparative biosequence metrics. Jour-nal of Molecular Evolution 18: 38–46.

Snyder, D.H. 1972. Hyla juanitae, a new treefrogfrom southern Mexico, and its relationship toH. pinorum. Journal of Herpetology 6: 5–15.

Spirandeli Cruz, E.F. 1991. Estudo comparativoda morfologia oral interna de larvas de anfıbiosanuros que ocorrem na regiao de Botucatu, SaoPaulo (Amphibia, Anura). Instituto de Biocien-cias. Ph.D. dissertation, Universidade de SaoPaulo, Sao Paulo

Starrett, P.H. 1968. The phylogenetic significanceof the jaw musculature in anuran amphibians.Ph.D. dissertation University of Michigan, AnnArbor.

Steel, M. 2002. Some statistical aspects of themaximum parsimony method. In R. De Salle,G. Giribet, and W. Wheeler (editors), Molecularsystematics and evolution: theory and practice:125–139. Basel, Switzerland: Birkhauser Ver-lag.

Steel, M., and D. Penny. 2000. Parsimony, like-lihood, and the role of models in molecularphylogenetics. Molecular Biology and Evolu-tion 17: 839–850.

Steel, M.A., M.D. Hendy, and D. Penny. 1993.Parsimony can be consistent! Systematic Biol-ogy 42: 581–587.

Steel, M., L. Szekely, and M. Hendy. 1994. Re-constructing trees from sequences whose sitesevolve at variable rates. Journal of ComparativeBiology 1: 153–163.

Stejneger, L. 1907. Herpetology of Japan and ad-jacent territory. Bulletin of the United StatesNational Museum 58: 1–577.

Stewart, M.M. 2003. Recollections of Jamaica. InR.W. Henderson and R. Powell (editors), Is-lands and the sea: essays on herpetological ex-ploration in the West Indies: 121–132. Contri-butions to Herpetology, no. 20. Ithaca, NY: So-ciety for the Study of Amphibians and Reptiles.

Strong, E.E., and D.L. Lipscomb. 1999. Charactercoding and inapplicable data. Cladistics 15:363–371.

Suarez-Mayorga, A.M., and J.D. Lynch. 2001a.Redescription of the tadpole of Hyla vigilans(Anura: Hylidae) and notes about possible tax-onomic relationships. Caribbean Journal of Sci-ences 37: 116–119.

Suarez-Mayorga, A.M., and J.D. Lynch. 2001b.Los renacuajos colombianos de Sphaenorhyn-

Page 149: systematic review of the frog family hylidae, with special reference to ...

2005 149FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

chus (Hylidae): descripciones, anotaciones sis-tematicas y ecologicas. Revista de la AcademiaColombiana de Ciencias Exactas, Fısicas y Na-turales 25: 411–420.

Taboga, S.R., and H. Dolder. 1993. Ultrastructuralanalysis of the Hyla ranki spermatozoan tail(Amphibia, Anura, Hylidae). Cytobios 75: 85–95.

Taylor, E.H. 1948. Two new hylid frogs from Cos-ta Rica. Copeia 1948: 233–238.

Taylor, E.H. 1952. The frogs and toads of CostaRica. University of Kansas Science Bulletin 35:577–942.

Taylor, E.H. 1954. Frog-egg eating tadpoles ofAnotheca coronata (Stejneger) (Salientia, Hy-lidae). University of Kansas Science Bulletin36: 589–595.

Teixeira, R.L., J.A.P. Schneider, and G.I. Almeida.2002. The occurrence of amphibians in bro-meliads from a southeastern Brazilian restingahabitat, with special reference to Aparasphen-odon brunoi (Anura, Hylidae). Brazilian Jour-nal of Biology 62: 263–268.

Thomas, E.O., L. Tsang, and P. Licht. 1993. Com-parative histochemistry of the sexually dimor-phic skin glands of anuran amphibians. Copeia1993: 133–143.

Titus, T.A., and A. Larson. 1996. Molecular phy-logenetics of desmognathine salamanders (Cau-data: Plethodontidae): a reevaluation of evolu-tion in ecology, life history, and morphology.Systematic Biology 45: 229–238.

Toal, K.R., III. 1994. A new species of Hyla (An-ura: Hylidae) from the Sierra de Juarez, Oaxa-ca, Mexico. Herpetologica 50: 187–193.

Toledo, R.C., and C. Jared. 1995. Cutaneous gran-ular glands and amphibian venoms. Compara-tive Biochemistry and Physiology 111A: 1–29.

Trewavas, E. 1933. The hyoid and larynx of theAnura. Philosophical Transactions of the RoyalSociety of London 222: 401–527.

Trueb, L. 1969. Pternohyla, P. dentata, P. fodiens.Catalogue of American Amphibians and Rep-tiles 77: 1–4.

Trueb, L. 1970a. Evolutionary relationships ofcasque-headed tree frogs with co-ossified skulls(Family Hylidae). University of Kansas Publi-cations, Museum of Natural History 18: 547–716.

Trueb, L. 1970b. The generic status of Hyla sie-mersi Mertens. Herpetologica 26: 254–267.

Trueb, L. 1974. Systematic relationships of Neo-tropical horned frogs, genus Hemiphractus(Anura: Hylidae). Occasional Papers of theMuseum of Natural History, University of Kan-sas 29: 1–60.

Trueb, L., and W.E. Duellman. 1971. A synopsisof Neotropical hylid frogs, genus Osteocephal-

us. Occasional Papers of the Museum of Nat-ural History, The University of Kansas 1: 1–47.

Trueb, L., and M.J. Tyler. 1974. Systematics andevolution of the greater Antillean hylid frogs.Occasional Papers of the Museum of NaturalHistory, University of Kansas 24: 1–60.

Tschudi, J.J. von. 1838 (1967). Classification derBatrachier, mit berucksichtigung der fossilenthiere dieser abtheilung der reptilien. Athens,OH: Society for the Study of Amphibians andReptiles.

Tuffley, C., and M. Steel. 1997. Links betweenmaximum likelihood and maximum parsimonyunder a simple model of site substitution. Bul-letin of Mathematical Biology 59: 581–607.

Tyler, M.J. 1963. A taxonomic study of amphib-ians and reptiles of the Central Highlands ofNew Guinea, with notes on their ecology andbiology 2. Anura: Ranidae and Hylidae. Trans-actions of the Royal Society of South Australia86: 105–130.

Tyler, M.J. 1968. Papuan hylid frogs of the genusHyla. Zoologische Verhandelingen: 1–203.

Tyler, M.J. 1971. The phylogenetic significance ofvocal sac structure in hylid frogs. OccasionalPapers of the Museum of Natural History, TheUniversity of Kansas 19: 319–360.

Tyler, M.J. 1972. Superficial mandibular muscu-lature, vocal sacs and the phylogeny of Austra-lo-Papuan leptodactylid frogs. Records of theSouth Australian Museum 16: 1–20.

Tyler, M.J. 1978. Amphibians of South Australia.Government Printer, South Australia.

Tyler, M.J. 1979. Herpetofaunal relationships ofSouth America with Australia. In W.E. Duell-man (editor), The South American herpetofau-na: its origins, evolution, and dispersal: 73–106. University of Kansas, Museum of NaturalHistory Monographs, 7.

Tyler, M.J. 1982. The hylid frog genus LitoriaTschudi: an overview. In D.G. Newman (edi-tor), New Zealand herpetology. Proceedings ofa symposium held at Victoria University ofWellington 29–31 January 1980: 103–112.Wellington, N.Z.: New Zealand Wildlife Ser-vice, Occasional Publication No. 2.

Tyler, M.J. 1991. A large new species of Litoria(Anura: Hylidae) from the Tertiary of Queens-land. Transactions of the Royal Society ofSouth Australia 115: 103–105.

Tyler, M.J., and M. Davies. 1978a. Phylogeneticrelationships of Australian hyline and Neotrop-ical phyllomedusine frogs of the family Hyli-dae. Herpetologica 34: 219–224.

Tyler, M.J., and M. Davies. 1978b. Species-groups within the Australopapuan hylid frog

Page 150: systematic review of the frog family hylidae, with special reference to ...

150 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

genus Litoria Tschudi. Australian Journal ofZoology Supplement 63: 1–47.

Tyler, M.J., and M. Davies. 1979. Redefinitionand evolutionary origin of the Australopapuanhylid frog genus Nyctimystes Stejneger. Austra-lian Journal of Zoology 27: 755–772.

Tyler, M.J., and M. Davies. 1993. Family Hylidae.In C.J. Glasby, G.J.B. Ross, and P.L. Beesley(editors), Fauna of Australia, vol. 2A. Amphib-ia and Reptilia: 58–63. Canberra: AustralianGovernment Publishing Service.

Tyler, M.J., G.F. Watson, and A.A. Martin. 1981.The Amphibia: diversity and distribution. In A.Keast (editor), Ecological biogeography ofAustralia: 1277–1301. Hague: Dr. W. Junk.

Ustach, P.C., J.R. Mendelson III, R.W. Mc-Diarmid, and J.A. Campbell. 2000. A new spe-cies of Hyla (Anura: Hylidae) from the SierraMixes, Oaxaca, Mexico, with comments on on-togenetic variation in tadpoles. Herpetologica56: 239–250.

Vellard, J. 1948. Batracios del Chaco Argentino.Acta Zoologica Lilloana 5: 137–174.

Vences, M., and F. Glaw. 2001. Systematic reviewand molecular phylogenetic relationships of thedirect developing Malagasy anurans of theMantidactylus asper group. Alytes 19: 107–139.

Vences, M., J. Kosuch, F. Glaw, W. Bohme, andM. Veith. 2003a. Molecular phylogeny of hy-peroliid treefrogs: biogeographic origin of Mal-agasy and Seychelean taxa and re-analysis offamilial paraphyly. Journal of Zoological Sys-tematics and Evolutionary Research 41: 205–215.

Vences, M., J. Kosuch, R. Boistel, C.F.B. Haddad,E. La Marca, S. Lotters, and M. Veith. 2003b.Convergent evolution of aposematic colorationin Neotropical poison frogs: a molecular phy-logenetic perspective. Organisms, Diversity,and Evolution 3: 215–226.

Vences, M., D.R. Vieites, F. Glaw, H. Brinkmann,J. Kosuch, M. Veith, and A. Meyer. 2003c.Multiple overseas dispersal in amphibians. Pro-ceedings of the Royal Society of London B270: 2435–2442.

Vences, M., J. Kosuch, S. Lotters, A. Widmer,K.H. Jungfer, J. Kohler, and M. Veith. 2000.Phylogeny and classification of poison frogs,(Amphibia: Dendrobatidae), based on mito-chondrial 16S and 12S ribosomal RNA genesequences. Molecular Phylogenetics and Evo-lution 15: 34–40.

Vera Candioti, M.F. 2004. Morphology of pre-metamorphic larvae of Lysapsus limellus (An-ura: Pseudinae). Amphibia-Reptilia 25: 41–54.

Vera Candioti, M.F., E.O. Lavilla, and D.D. Eche-verria. 2004. Feeding mechanism in two tree-

frogs, Hyla nana and Scinax nasicus (Anura:Hylidae). Journal of Morphology 261: 206–224.

Vigle, G.O., and D.C.I. Goberdhan-Vigle. 1990.A new species of small colorful Hyla from thelowland rainforest of Amazonian Ecuador. Her-petologica 46: 467–473.

Wagler, J. 1830. Naturliches System der Amphi-bien: mit vorangehender Classification der Sau-gethiere und Vogel: ein Beitrag zur verglei-chenden Zoologie. Cotta’schen, Munchen.

Wassersug, R. 1980. Internal oral features of lar-vae from eight anuran families: functional, sys-tematic, evolutionary and ecological consider-ations. Miscellaneous Publications of the Mu-seum of Natural History, University of Kansas68: 1–146.

Wassersug, R.J., and W.E. Duellman. 1984. Oralstructures and their development in egg-brood-ing hylid frog embryos and larvae: evolution-ary and ecological implications. Journal ofMorphology 182: 1–37.

Werner, F. 1903. Neue reptilien und batrachier ausdem naturhistorischen museum in Brussel.Nebst bemerkungen uber einige andere arten.Zoologische Anzeiger 26: 246–253.

Weygoldt, P. 1984. Durch nachzucht erhalten: dermakifrosch Phyllomedusa exilis. Aquarien-Ma-gazin 1984: 147–150.

Weygoldt, P. 1991. Zur biologie und zum verhal-ten von Phyllomedusa marginata Izecksohnand Da Cruz, 1976 im terrarium. Salamandra27: 83–96.

Weygoldt, P., and S.P. Carvalho e Silva. 1991. Ob-servations on mating, oviposition, egg sac for-mation and development in the egg-broodingfrog, Fritziana goeldii. Amphibia-Reptilia 12:67–80.

Weygoldt, P., and O.L. Peixoto. 1987. Hyla rus-chii n. sp., a new frog from the Atlantic forestdomain in the State of Espırito Santo, Brazil(Amphibia, Hylidae). Studies on NeotropicalFauna and Environment 22: 237–247.

Wheeler, W.C. 1996. Optimization alignment: theend of multiple sequence alignment in phylo-genetics? Cladistics 12: 1–9.

Wheeler, W.C. 1998. Alignment characters, dy-namic programming and heuristic solutions. InR. DeSalle and B. Schierwater (editors), Mo-lecular approaches to ecology and evolution:243–251. Basel: Birkhauser Verlag.

Wheeler, W.C. 2002. Optimization alignment:down, up, error, and improvements. In R. DeSalle, G. Giribet, and W.C. Wheeler (editors),Techniques in molecular systematics and evo-lution: 55–69. Bassel: Birkhauser Verlag.

Wheeler, W.C. 2003a. Iterative pass optimizationof sequence data. Cladistics 19: 254–260.

Page 151: systematic review of the frog family hylidae, with special reference to ...

2005 151FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Wheeler, W.C. 2003b. Implied alignment: a syn-apomorphy-based multiple-sequence alignmentmethod and its use in cladogram search. Cla-distics 19: 261–268.

Wheeler, W.C., D. Gladstein, and J. De Laet.2002. POY, version 3.0. Program available atftp.amnh.org/pub.molecular/poy.

Wild, E.R. 1992. The tadpoles of Hyla fasciataand H. allenorum, with a key to the tadpoles ofthe Hyla parviceps group (Anura: Hylidae).Herpetologica 48: 439–447.

Wiley, J.E. 1982. Chromosome banding patternsof treefrogs (Hylidae) of the eastern UnitedStates. Herpetologica 38: 507–520.

Wilkinson, J.A., M. Matsui, and T. Terachi. 1996.Geographic variation in a Japanese tree frog(Rhacophorus arboreus) revealed by PCR-aid-ed restriction site analysis of mtDNA. Journalof Herpetology 30: 418–423.

Williams, J.D., and A. Bosso. 1994. Estado sis-tematico y distribucion geografica de Argenteo-hyla siemersi (Mertens, 1937) en la RepublicaArgentina (Anura: Hylidae). Cuadernos de Her-petologia 8: 57–62.

Wilson, L.D., and J.R. McCranie. 1989. A newspecies of Ptychohyla of the euthysanota groupfrom Honduras, with comments on the status ofthe genus Ptychohyla Taylor (Anura: Hylidae).Herpetologica 45: 10–17.

Wilson, L.D., J.R. McCranie, and K.L. Williams.1985. Two new species of fringe-limbed hylidfrogs from nuclear Central America. Herpeto-logica 41: 141–150.

Wilson, L.D., J.R. McCranie, and G.A. Cruz.1994a. A new species of Plectrohyla (Anura:Hylidae) from a premontane rainforest in north-ern Honduras. Proceedings of the BiologicalSociety of Washington 107: 67–78.

Wilson, L.D., J.R. McCranie, and K.L. Williams.1985. Two new species of fringe-limbed hylidfrogs from nuclear Central America. Herpeto-logica 41: 141–150.

Wilson, L.D., J.R. McCranie, and K.L. Williams.1994b. Commentary on the reproductive biol-ogy and systematic relationships of Hyla inso-lita McCranie, Wilson, and Williams. Caribbe-an Journal of Science 30: 214–221.

Wogel, H., P.A. Abrunhosa, and J.P. Pombal, Jr.2000. Girinos de cinco especies do Sudeste doBrasil (Amphibia: Hylidae, Leptodactylidae,Microhylidae). Boletim do Museu Nacional,Nova Serie, Zoologia: 1–16.

Yang, Z. 1997. How often do frog models producebetter phylogenies? Molecular Biology andEvolution 414: 105–108.

Zweifel, R.G. 1983. Two new hylid frogs fromthe Papua New Guinea and a discussion of theNyctimystes papua species group. AmericanMuseum Novitates 2759: 1–21.

Page 152: systematic review of the frog family hylidae, with special reference to ...

152 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1

LIS

TO

FV

AL

IDR

EC

EN

TS

PE

CIE

SO

FH

YL

INA

EA

ND

PH

YL

LO

ME

DU

SIN

AE,

INC

LU

DIN

G,

IFA

PP

LIC

AB

LE,

TH

EC

UR

RE

NT

LY

AS

SIG

NE

DS

PE

CIE

S

GR

OU

PA

ND

ITS

ST

AT

US

WIT

HT

HE

NE

WT

AX

ON

OM

Y

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Acr

iscr

epit

ans

Bai

rd,

1854

—A

cris

crep

itan

s—

Acr

isgr

yllu

s(L

eCon

te,

1825

)—

Acr

isgr

yllu

s—

Ano

thec

asp

inos

a(S

tein

dach

ner,

1864

)—

Ano

thec

asp

inos

a—

Apa

rasp

heno

don

boke

rman

niP

omba

l,19

93—

Apa

rasp

heno

don

boke

rman

ni—

Apa

rasp

heno

don

brun

oiM

iran

da-R

ibei

ro,

1920

—A

para

sphe

nodo

nbr

unoi

—A

para

sphe

nodo

nve

nezo

lanu

s(M

erte

ns,

1950

)—

Apa

rasp

heno

don

vene

zola

nus

—A

plas

todi

scus

coch

rana

e(M

erte

ns,

1952

)—

Apl

asto

disc

usco

chra

nae

Apl

asto

disc

uspe

rvir

idis

grou

pA

plas

todi

scus

perv

irid

isA

.L

utz,

1950

—A

plas

todi

scus

perv

irid

isA

plas

todi

scus

perv

irid

isgr

oup

Arg

ente

ohyl

asi

emer

si(M

erte

ns,

1937

)—

Arg

ente

ohyl

asi

emer

si—

Cor

ytho

man

tis

gree

ning

iB

oule

nger

,18

96—

Cor

ytho

man

tis

gree

ning

i—

Due

llm

anoh

yla

cham

ulae

(Due

llm

an,

1961

)—

Due

llm

anoh

yla

cham

ulae

—D

uell

man

ohyl

aig

nico

lor

(Due

llm

an,

1961

)—

Due

llm

anoh

yla

igni

colo

r—

Due

llm

anoh

yla

lyth

rode

s(S

avag

e,19

68)

—D

uell

man

ohyl

aly

thro

des

—D

uell

man

ohyl

aru

fiocu

lis

(Tay

lor,

1952

)—

Due

llm

anoh

yla

rufio

culi

s—

Due

llm

anoh

yla

salv

avid

a(M

cCra

nie

and

Wil

son,

1986

)—

Due

llm

anoh

yla

salv

avid

a—

Due

llm

anoh

yla

schm

idto

rum

(Stu

art,

1954

)—

Due

llm

anoh

yla

schm

idto

rum

—D

uell

man

ohyl

aso

rali

a(W

ilso

nan

dM

cCra

nie,

1985

)—

Due

llm

anoh

yla

sora

lia

Due

llm

anoh

yla

uran

ochr

oa(C

ope,

1875

)—

Due

llm

anoh

yla

uran

ochr

oa—

‘‘H

yali

noba

trac

hium

este

vesi

’’(R

iver

o,19

68)

—H

ylos

cirt

uses

teve

siH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

abdi

vita

Cam

pbel

lan

dD

uell

man

,20

00H

.m

ioty

mpa

num

grou

pE

xero

dont

aab

divi

taU

nass

igne

dH

yla

acre

ana

Bok

erm

ann,

1964

H.

mar

mor

ata

grou

pD

endr

opso

phus

acre

anus

Den

drop

soph

usm

arm

orat

usgr

oup

Hyl

aah

enea

Nap

oli

and

Car

amas

chi,

2004

H.

circ

umda

tagr

oup

Bok

erm

anno

hyla

ahen

eaB

oker

man

nohy

laci

rcum

data

grou

pH

yla

albo

fren

ata

A.

Lut

z,19

24H

.al

bofr

enat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

usal

bofr

enat

usA

plas

todi

scus

albo

fren

atus

grou

p

Hyl

aal

bogu

ttat

aB

oule

nger

,18

82U

nass

igne

dIn

cert

ase

dis

—H

yla

albo

mar

gina

taS

pix,

1824

H.

albo

mar

gina

taco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Hyp

sibo

asal

bom

argi

natu

sH

ypsi

boas

fabe

rgr

oup

Hyl

aal

boni

gra

Nie

den,

1923

H.

pulc

hell

agr

oup

Hyp

sibo

asal

boni

ger

Hyp

sibo

aspu

lche

llus

grou

pH

yla

albo

punc

tata

Spi

x,18

24H

.al

bopu

ncta

tagr

oup

Hyp

sibo

asal

bopu

ncta

tus

Hyp

sibo

asal

bopu

ncta

tus

grou

pH

yla

albo

punc

tula

taB

oule

nger

,18

82U

nass

igne

dH

ylos

cirt

usal

bopu

nctu

latu

sH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

albo

sign

ata

A.

Lut

zan

dB

.L

utz,

1938

H.

albo

sign

ata

com

plex

,H

.al

bom

argi

nata

grou

pA

plas

todi

scus

albo

sign

atus

Apl

asto

disc

usal

bosi

gnat

usgr

oup

Hyl

aal

bovi

ttat

aL

icht

enst

ein

and

Mar

tens

,18

56U

nass

igne

dH

ypsi

boas

pulc

hell

usH

ypsi

boas

pulc

hell

usgr

oup

Hyl

aal

eman

iR

iver

o,19

64H

.gr

anos

agr

oup

Hyp

sibo

asal

eman

iH

ypsi

boas

punc

tatu

sgr

oup

Page 153: systematic review of the frog family hylidae, with special reference to ...

2005 153FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

aal

leno

rum

Due

llm

anan

dT

rueb

,19

89H

.pa

rvic

eps

grou

pD

endr

opso

phus

alle

noru

mD

endr

opso

phus

parv

icep

sgr

oup

Hyl

aal

tipo

tens

Due

llm

an,

1968

H.

taen

iopu

sgr

oup

Cha

radr

ahyl

aal

tipo

tens

—H

yla

alva

reng

aiB

oker

man

n,19

56U

nass

igne

dB

oker

man

nohy

laal

vare

ngai

Bok

erm

anno

hyla

pseu

dops

eudi

sgr

oup

Hyl

aal

ytol

ylax

Due

llm

an,

1972

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

alyt

olyl

axH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

amei

both

alam

eC

anse

co-M

rque

z,M

ende

lson

,an

dG

utie

rrez

-May

en,

2002

H.

bist

inct

agr

oup

Ple

ctro

hyla

amei

both

alam

eP

lect

rohy

labi

stin

cta

grou

p

Hyl

aam

eric

ana

(Dum

eril

and

Bib

ron,

1841

)U

nass

igne

dN

omen

dubi

um—

Hyl

aam

icor

umM

ijar

es-U

rrut

ia,

1998

Una

ssig

ned

Den

drop

soph

usam

icor

umU

nass

igne

dH

yla

anat

alia

sias

iB

oker

man

n,19

72H

.ru

bicu

ndul

agr

oup

Den

drop

soph

usan

atal

iasi

asi

Den

drop

soph

usm

icro

ceph

alus

grou

p,D

.ru

bicu

ndul

uscl

ade

Hyl

aan

ceps

A.

Lut

z,19

29U

nass

igne

dD

endr

opso

phus

ance

psD

endr

opso

phus

leuc

ophy

llat

usgr

oup

Hyl

aan

ders

onii

Bai

rd,

1854

H.

vers

icol

orgr

oup

Hyl

aan

ders

onii

Hyl

aex

imia

grou

pH

yla

andi

naM

ulle

r,19

24H

.pu

lche

lla

grou

pH

ypsi

boas

andi

nus

Hyp

sibo

aspu

lche

llus

grou

pH

yla

angu

stil

inea

taT

aylo

r,19

52H

.ps

eudo

pum

agr

oup

Isth

moh

yla

angu

stil

inea

taIs

thm

ohyl

aps

eudo

pum

agr

oup

Hyl

aan

nect

ans

(Jer

don,

1870

)H

.ar

bore

agr

oup

Hyl

aan

nect

ans

Hyl

aar

bore

agr

oup

Hyl

aap

erom

eaD

uell

man

,19

82H

.m

inim

agr

oup

Den

drop

soph

usap

erom

eus

Den

drop

soph

usm

inim

usgr

oup

Hyl

aar

agua

yaN

apol

ian

dC

aram

asch

i,19

98H

.ru

bicu

ndul

agr

oup

Den

drop

soph

usar

agua

yaD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

rubi

cund

ulus

clad

eH

yla

arbo

rico

laT

aylo

r,19

41H

.ex

imia

grou

pH

yla

arbo

rico

laH

.ex

imia

grou

pH

yla

arbo

rea

(Lin

naeu

s,17

58)

H.

arbo

rea

grou

pH

yla

arbo

rea

Hyl

aar

bore

agr

oup

Hyl

aar

bore

scan

dens

Tay

lor,

1939

‘‘19

38’’

H.

mio

tym

panu

mgr

oup

Ple

ctro

hyla

arbo

resc

ande

nsP

lect

rohy

labi

stin

cta

grou

pH

yla

aren

icol

orC

ope,

1866

H.

exim

iagr

oup

Hyl

aar

enic

olor

Hyl

aex

imia

grou

pH

yla

aril

dae

Cru

zan

dP

eixo

to,

1987

‘‘19

85’’

H.

albo

fren

ata

com

plex

,H

.al

bom

argi

nata

grou

pA

plas

todi

scus

aril

dae

Apl

asto

disc

usal

bofr

enat

usgr

oup

Hyl

aar

mat

aB

oule

nger

,19

02H

.ar

mat

agr

oup

Hyl

osci

rtus

arm

atus

Hyl

osci

rtus

arm

atus

grou

pH

yla

arom

atic

aA

yarz

agae

Úna

and

Sen

aris

,19

94‘‘

1993

’’H

.ar

omat

ica

grou

pM

yers

iohy

laar

omat

ica

Hyl

aas

tart

eaB

oker

man

n,19

67H

.ci

rcum

data

grou

pB

oker

man

nohy

laas

tart

eaB

oker

man

nohy

laci

rcum

data

grou

pH

yla

atla

ntic

aC

aram

asch

ian

dV

elos

a,19

96H

.pu

ncta

tagr

oup

Hyp

sibo

asat

lant

icus

Hyp

sibo

aspu

ncta

tus

grou

pH

yla

aura

ria

Pet

ers,

1873

Una

ssig

ned

Nom

endu

bium

—H

yla

aviv

oca

Vio

sca,

1928

H.

vers

icol

orgr

oup

Hyl

aav

ivoc

aH

yla

vers

icol

orgr

oup

Hyl

aba

lzan

iB

oule

nger

,18

98H

.pu

lche

lla

grou

pH

ypsi

boas

balz

ani

Hyp

sibo

aspu

lche

llus

grou

pH

yla

batt

ersb

yiR

iver

o,19

61U

nass

igne

dD

endr

opso

phus

batt

ersb

yiD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

abe

cker

iC

aram

asch

ian

dC

ruz,

2004

H.

pulc

hell

agr

oup,

H.

poly

taen

iacl

ade

Hyp

sibo

asbe

cker

iH

ypsi

boas

pulc

hell

usgr

oup,

H.

poly

taen

ius

clad

eH

yla

beni

tezi

Riv

ero,

1961

Una

ssig

ned

Hyp

sibo

asbe

nite

ziH

ypsi

boas

beni

tezi

grou

p

Page 154: systematic review of the frog family hylidae, with special reference to ...

154 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

abe

rtha

lutz

aeB

oker

man

n,19

62H

yla

deci

pien

sgr

oup

Den

drop

soph

usbe

rtha

lutz

aeD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

deci

pien

scl

ade

Hyl

abi

furc

aA

nder

sson

,19

45H

.le

ucop

hyll

ata

grou

pD

endr

opso

phus

bifu

rcus

Den

drop

soph

usle

ucop

hyll

atus

grou

pH

yla

bipu

ncta

taS

pix,

1824

H.

mic

roce

phal

agr

oup

Den

drop

soph

usbi

punc

tatu

sD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

abi

scho

ffiB

oule

nger

,18

87H

.pu

lche

lla

grou

pH

ypsi

boas

bisc

hoffi

Hyp

sibo

aspu

lche

llus

grou

pH

yla

bist

inct

aC

ope,

1878

‘‘18

77’’

H.

bist

inct

agr

oup

Ple

ctro

hyla

bist

inct

aP

lect

rohy

labi

stin

cta

grou

pH

yla

bivo

cata

Due

llm

anan

dH

oyt,

1961

H.

mio

tym

panu

mgr

oup

Exe

rodo

nta

bivo

cata

Una

ssig

ned

Hyl

abo

ans

(Lin

naeu

s,17

58)

H.

boan

sgr

oup

Hyp

sibo

asbo

ans

Hyp

sibo

asse

mil

inea

tus

grou

pH

yla

boco

urti

Moc

quar

d,18

99H

.ex

imia

grou

pH

yla

boco

urti

Hyl

aex

imia

grou

pH

yla

boge

rti

Coc

hran

and

Goi

n,19

70H

.co

lum

bian

agr

oup

Den

drop

soph

usbo

gert

iD

endr

opso

phus

colu

mbi

anus

grou

pH

yla

bogo

tens

is(P

eter

s,18

82)

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

bogo

tens

isH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

boke

rman

niG

oin,

1960

H.

parv

icep

sgr

oup

Den

drop

soph

usbo

kerm

anni

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

bran

neri

Coc

hran

,19

48H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

bran

neri

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

brev

ifro

nsD

uell

man

and

Cru

mp,

1974

H.

parv

icep

sgr

oup

Den

drop

soph

usbr

evif

rons

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

brom

elia

cia

Sch

mid

t,19

33H

.br

omel

iaci

agr

oup

Bro

mel

iohy

labr

omel

iaci

a—

Hyl

abu

riti

Car

amas

chi

and

Cru

z,19

99H

.pu

lche

lla

grou

p,H

.po

lyta

enia

clad

eH

ypsi

boas

buri

tiH

ypsi

boas

pulc

hell

usgr

oup,

H.

poly

taen

ius

clad

eH

yla

cach

imbo

Nap

oli

and

Car

amas

chi,

1999

H.

rubi

cund

ula

grou

pD

endr

opso

phus

cach

imbo

Den

drop

soph

usm

icro

ceph

alus

grou

p,D

.ru

bicu

ndul

uscl

ade

Hyl

aca

ingu

aC

arri

zo,

1991

‘‘19

90’’

H.

pulc

hell

agr

oup

Hyp

sibo

asca

ingu

aH

ypsi

boas

pulc

hell

usgr

oup

Hyl

aca

lcar

ata

Tro

sche

l,18

48H

.ge

ogra

phic

agr

oup

Hyp

sibo

asca

lcar

atus

Hyp

sibo

asal

bopu

ncta

tus

grou

pH

yla

call

ipez

aD

uell

man

,19

89H

.bo

gote

nsis

grou

pH

ylos

cirt

usca

llip

eza

Hyl

osci

rtus

bogo

tens

isgr

oup

Hyl

aca

llip

leur

aB

oule

nger

,19

02H

.pu

lche

lla

grou

pH

ypsi

boas

call

iple

ura

Hyp

sibo

aspu

lche

llus

grou

pH

yla

call

ipyg

iaC

ruz

and

Pei

xoto

,19

8519

84H

.al

bosi

gnat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

usca

llip

ygiu

sA

plas

todi

scus

albo

sign

atus

grou

p

Hyl

aca

lthu

laU

stac

h,M

ende

lson

,M

cDia

rmid

,an

dC

ampb

ell,

2000

H.

bist

inct

agr

oup

Ple

ctro

hyla

calt

hula

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

aca

lvic

olli

naT

oal,

1994

H.

bist

inct

agr

oup

Ple

ctro

hyla

calv

icol

lina

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

aca

lyps

aL

ips,

1996

H.

pict

ipes

grou

pIs

thm

ohyl

aca

lyps

aIs

thm

ohyl

api

ctip

esgr

oup

Hyl

aca

ram

asch

iiN

apol

i,20

05H

.ci

rcum

data

grou

pB

oker

man

nohy

laca

ram

asch

iiB

oker

man

nohy

laci

rcum

data

grou

pH

yla

carn

ifex

Due

llm

an,

1969

H.

colu

mbi

ana

grou

pD

endr

opso

phus

carn

ifex

Den

drop

soph

usco

lum

bian

usgr

oup

Hyl

aca

rval

hoi

Pei

xoto

,19

81H

.ci

rcum

data

grou

pB

oker

man

nohy

laca

rval

hoi

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

aca

trac

haP

orra

san

dW

ilso

n,19

87H

.m

ioty

mpa

num

grou

pE

xero

dont

aca

trac

haU

nass

igne

dH

yla

cauc

ana

Ard

ila-

Rob

ayo,

Rui

z-C

arra

nza,

and

Roa

-Tru

jill

o,19

93H

.la

rino

pygi

ongr

oup

Hyl

osci

rtus

cauc

anus

Hyl

osci

rtus

lari

nopy

gion

grou

p

Page 155: systematic review of the frog family hylidae, with special reference to ...

2005 155FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

aca

vico

laC

ruz

and

Pei

xoto

,19

85‘‘

1984

’’H

.al

bosi

gnat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

usca

vico

laA

plas

todi

scus

albo

sign

atus

grou

p

Hyl

ace

lata

Toa

lan

dM

ende

lson

,19

95H

.bi

stin

cta

grou

pP

lect

rohy

lace

lata

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

ace

mbr

aC

aldw

ell,

1974

H.

bist

inct

agr

oup

Ple

ctro

hyla

cem

bra

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

ace

rrad

ensi

sN

apol

ian

dC

aram

asch

i,19

98H

.ru

bicu

ndul

agr

oup

Den

drop

soph

usce

rrad

ensi

sD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

rubi

cund

ulus

clad

eH

yla

chan

eque

Due

llm

an,

1961

H.

taen

iopu

sgr

oup

Cha

radr

ahyl

ach

aneq

ue—

Hyl

ach

arad

rico

laD

uell

man

,19

64H

.bi

stin

cta

grou

pP

lect

rohy

lach

arad

rico

laP

lect

rohy

labi

stin

cta

grou

pH

yla

char

azan

iV

ella

rd,

1970

H.

arm

ata

grou

pH

ylos

cirt

usch

araz

ani

Hyl

osci

rtus

arm

atus

grou

pH

yla

chim

alap

aM

ende

lson

and

Cam

pbel

l,19

94H

.su

mic

hras

tigr

oup

Exe

rodo

nta

chim

alap

aE

xero

dont

asu

mic

hras

tigr

oup

Hyl

ach

inen

sis

Gun

ther

,18

58H

.ar

bore

agr

oup

Hyl

ach

inen

sis

Hyl

aar

bore

agr

oup

Hyl

ach

loro

stea

Rey

nold

san

dF

oste

r,19

92U

nass

igne

dIn

cert

ase

dis

—H

yla

chry

ses

Adl

er,

1965

H.

bist

inct

agr

oup

Ple

ctro

hyla

chry

ses

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

ach

ryso

scel

isC

ope,

1880

H.

vers

icol

orgr

oup

Hyl

ach

ryso

scel

isH

yla

vers

icol

orgr

oup

Hyl

aci

nere

a(S

chne

ider

,17

99)

H.

cine

rea

grou

pH

yla

cine

rea

Hyl

aci

nere

agr

oup

Hyl

aci

poen

sis

B.

Lut

z,19

68H

.pu

lche

lla

grou

p,H

.po

lyta

enia

clad

eH

ypsi

boas

cipo

ensi

sH

ypsi

boas

pulc

hell

usgr

oup,

H.

poly

taen

ius

clad

eH

yla

circ

umda

ta(C

ope,

1871

)H

.ci

rcum

data

grou

pB

oker

man

nohy

laci

rcum

data

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

acl

ares

igna

taA

.L

utz

and

B.

Lut

z,19

39H

.cl

ares

igna

tagr

oup

Bok

erm

anno

hyla

clar

esig

nata

Bok

erm

anno

hyla

clar

esig

nata

grou

pH

yla

clep

sydr

aA

.L

utz,

1925

H.

clar

esig

nata

grou

pB

oker

man

nohy

lacl

epsy

dra

Bok

erm

anno

hyla

clar

esig

nata

grou

pH

yla

colu

mbi

ana

Boe

ttge

r,18

92H

.co

lum

bian

agr

oup

Den

drop

soph

usco

lum

bian

usD

endr

opso

phus

colu

mbi

anus

grou

pH

yla

coly

mba

Dun

n,19

31H

.bo

gote

nsis

grou

pH

ylos

cirt

usco

lym

baH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

cord

obae

Bar

rio,

1965

H.

pulc

hell

agr

oup

Hyp

sibo

asco

rdob

aeH

ypsi

boas

pulc

hell

usgr

oup

Hyl

acr

assa

(Bro

cchi

,18

77)

H.

bist

inct

agr

oup

Ple

ctro

hyla

cras

saP

lect

rohy

labi

stin

cta

grou

pH

yla

crep

itan

sW

ied-

Neu

wie

d,18

24H

.bo

ans

grou

pH

ypsi

boas

crep

itan

sH

ypsi

boas

fabe

rgr

oup

Hyl

acr

uzi

Pom

bal

and

Bas

tos,

1998

H.

mic

roce

phal

agr

oup

Den

drop

soph

uscr

uzi

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

cyan

omm

aC

aldw

ell,

1974

H.

bist

inct

agr

oup

Ple

ctro

hyla

cyan

omm

aP

lect

rohy

labi

stin

cta

grou

pH

yla

cycl

ada

Cam

pbel

lan

dD

uell

man

,20

00H

.m

ioty

mpa

num

grou

pP

lect

rohy

lacy

clad

aP

lect

rohy

labi

stin

cta

grou

pH

yla

cym

balu

mB

oker

man

n,19

63H

.pu

lche

lla

grou

pH

ypsi

boas

cym

balu

mH

ypsi

boas

pulc

hell

usgr

oup

Hyl

ade

bili

sT

aylo

r,19

52H

.pi

ctip

esgr

oup

Isth

moh

yla

debi

lis

Isth

moh

yla

pict

ipes

grou

pH

yla

deci

pien

sA

.L

utz,

1925

H.

deci

pien

sgr

oup

Den

drop

soph

usde

cipi

ens

Den

drop

soph

usm

icro

ceph

alus

grou

p,D

.de

cipi

ens

clad

eH

yla

dela

riva

iK

hler

and

Ltt

ers,

2001

H.

min

uta

grou

pD

endr

opso

phus

dela

riva

iD

endr

opso

phus

min

utus

grou

pH

yla

dend

roph

asm

aC

ampb

ell,

Sm

ith,

and

Ace

vedo

,20

00H

.m

ilia

ria

grou

pP

tych

ohyl

ade

ndro

phas

ma

Hyl

ade

ndro

scar

taT

aylo

r,19

40H

.br

omel

iaci

agr

oup

Bro

mel

iohy

lade

ndro

scar

ta—

Page 156: systematic review of the frog family hylidae, with special reference to ...

156 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

ade

ntei

Bok

erm

ann,

1967

H.

geog

raph

ica

grou

pH

ypsi

boas

dent

eiH

ypsi

boas

albo

punc

tatu

sgr

oup

Hyl

ade

ntic

ulen

taD

uell

man

,19

72H

.bo

gote

nsis

grou

pH

ylos

cirt

usde

ntic

ulen

tus

Hyl

osci

rtus

bogo

tens

isgr

oup

Hyl

ado

lloi

Wer

ner,

1903

Una

ssig

ned

Scin

axdo

lloi

Scin

axru

ber

clad

eH

yla

dutr

aiG

omes

and

Pei

xoto

,19

96H

.m

arm

orat

agr

oup

Den

drop

soph

usdu

trai

Den

drop

soph

usm

arm

orat

usgr

oup

Hyl

aeb

racc

ata

Cop

e,18

74H

.le

ucop

hyll

ata

grou

pD

endr

opso

phus

ebra

ccat

usD

endr

opso

phus

leuc

ophy

llat

usgr

oup

Hyl

aec

hina

taD

uell

man

,19

62H

.tu

berc

ulos

agr

oup

Ecn

omio

hyla

echi

nata

—H

yla

ehrh

ardt

iM

ulle

r,19

24H

.al

bofr

enat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

useh

rhar

dti

Apl

asto

disc

usal

bofr

enat

usgr

oup

Hyl

ael

egan

sW

ied-

Neu

wie

d,18

24H

.le

ucop

hyll

ata

grou

pD

endr

opso

phus

eleg

ans

Den

drop

soph

usle

ucop

hyll

atus

grou

pH

yla

elia

neae

Nap

oli

and

Car

amas

chi,

2000

H.

rubi

cund

ula

grou

pD

endr

opso

phus

elia

neae

Den

drop

soph

usm

icro

ceph

alus

grou

p,D

.ru

bicu

ndul

uscl

ade

Hyl

aer

icae

Car

amas

chi

and

Cru

z,20

00H

.pu

lche

lla

grou

pH

ypsi

boas

eric

aeH

ypsi

boas

pulc

hell

usgr

oup

Hyl

aeu

phor

biac

eaG

unth

er,

1858

H.

exim

iagr

oup

Hyl

aeu

phor

biac

eaH

yla

exim

iagr

oup

Hyl

aex

asti

sC

aram

asch

ian

dR

odri

gues

,20

03H

.bo

ans

grou

pH

ypsi

boas

exas

tis

Hyp

sibo

asfa

ber

grou

pH

yla

exim

iaB

aird

,18

54H

.ex

imia

grou

pH

yla

exim

iaH

yla

exim

iagr

oup

Hyl

afa

ber

Wie

d-N

euw

ied,

1821

H.

boan

sgr

oup

Hyp

sibo

asfa

ber

Hyp

sibo

asfa

ber

grou

pH

yla

fasc

iata

Gun

ther

,18

58H

.ge

ogra

phic

agr

oup

Hyp

sibo

asfa

scia

tus

Hyp

sibo

asal

bopu

ncta

tus

grou

pH

yla

feio

iN

apol

ian

dC

aram

asch

i,20

04H

.ci

rcum

data

grou

pB

oker

man

nohy

lafe

ioi

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

afe

mor

alis

Bos

c,18

00H

.ci

nere

agr

oup

Hyl

afe

mor

alis

Una

ssig

ned

Hyl

afim

brim

embr

aT

aylo

r,19

48H

.m

ilia

ria

grou

pE

cnom

iohy

lafim

brim

embr

a—

Hyl

aflu

min

eaC

ruz

and

Pei

xoto

,19

85‘‘

1984

’’H

.al

bofr

enat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

usflu

min

eus

Apl

asto

disc

usal

bofr

enat

usgr

oup

Hyl

afr

eica

neca

eC

arna

val

and

Pei

xoto

,20

04H

.pu

lche

lla

grou

pH

ypsi

boas

frei

cane

cae

Hyp

sibo

aspu

lche

llus

grou

pH

yla

fuen

tei

C.

Goi

nan

dO

.G

oin,

1968

Una

ssig

ned

Hyp

sibo

asfu

ente

iU

nass

igne

dH

yla

fusc

aL

aure

nti,

1768

Una

ssig

ned

Nom

endu

bium

—H

yla

gara

goen

sis

Kap

lan,

1991

H.

gara

goen

sis

grou

pD

endr

opso

phus

gara

goen

sis

Den

drop

soph

usga

rago

ensi

sgr

oup

Hyl

aga

uche

riL

escu

rean

dM

arty

,20

00H

.pa

rvic

eps

grou

pD

endr

opso

phus

gauc

heri

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

geog

raph

ica

Spi

x,18

24H

.ge

ogra

phic

agr

oup

Hyp

sibo

asge

ogra

phic

usH

ypsi

boas

sem

ilin

eatu

sgr

oup

Hyl

agi

esle

riM

erte

ns,

1950

H.

parv

icep

sgr

oup

Den

drop

soph

usgi

esle

riD

endr

opso

phus

parv

icep

sgr

oup

Hyl

ago

dman

iG

unth

er,

1901

H.

godm

ani

grou

pT

lalo

cohy

lago

dman

i—

Hyl

ago

iana

B.

Lut

z,19

68H

.pu

lche

lla

grou

p,H

.po

lyta

enia

clad

eH

ypsi

boas

goia

nus

Hyp

sibo

aspu

lche

llus

grou

p

Hyl

ago

uvea

iP

eixo

toan

dC

ruz,

1992

H.

circ

umda

tagr

oup

Bok

erm

anno

hyla

gouv

eai

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

agr

acea

eM

yers

and

Due

llm

an,

1982

H.

pseu

dopu

ma

grou

pIs

thm

ohyl

agr

acea

eIs

thm

ohyl

aps

eudo

pum

agr

oup

Hyl

agr

andi

sona

eG

oin,

1966

H.

mic

roce

phal

agr

oup

Den

drop

soph

usgr

andi

sona

eD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

agr

anos

aB

oule

nger

,18

82H

.gr

anos

agr

oup

Hyp

sibo

asgr

anos

usH

ypsi

boas

punc

tatu

sgr

oup

Page 157: systematic review of the frog family hylidae, with special reference to ...

2005 157FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

agr

atio

saL

eCon

te,

1857

‘‘18

56’’

H.

cine

rea

grou

pH

yla

grat

iosa

Hyl

aci

nere

agr

oup

Hyl

agr

ylla

taD

uell

man

,19

73H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

gryl

latu

sD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

agu

enth

eri

Bou

leng

er,

1886

H.

pulc

hell

agr

oup

Hyp

sibo

asgu

enth

eri

Hyp

sibo

aspu

lche

llus

grou

pH

yla

hadd

adi

Bas

tos

and

Pom

bal,

1996

H.

deci

pien

sgr

oup

Den

drop

soph

usha

ddad

iD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

deci

pien

scl

ade

Hyl

aha

llow

elli

iT

hom

pson

,19

12H

.ar

bore

agr

oup

Hyl

aha

llow

elli

iH

yla

arbo

rea

grou

pH

yla

hara

ldsc

hult

ziB

oker

man

n,19

62U

nass

igne

dD

endr

opso

phus

hara

ldsc

hult

ziU

nass

igne

dH

yla

haze

lae

Tay

lor,

1940

H.

mio

tym

panu

mgr

oup

Ple

ctro

hyla

haze

lae

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

ahe

ilpr

ini

Nob

le,

1923

Una

ssig

ned

Hyp

sibo

ashe

ilpr

ini

Hyp

sibo

asal

bopu

ncta

tus

grou

pH

yla

hele

nae

Rut

hven

,19

19U

nass

igne

dIn

cert

ase

dis

—H

yla

hobb

siC

ochr

anan

dG

oin,

1970

H.

punc

tata

grou

pH

ypsi

boas

hobb

siH

ypsi

boas

punc

tatu

sgr

oup

Hyl

ahu

tchi

nsi

Pyb

urn

and

Hal

l,19

84H

.ge

ogra

phic

agr

oup

Hyp

sibo

ashu

tchi

nsi

Hyp

sibo

asbe

nite

zigr

oup

Hyl

ahy

lax

Hey

er,

1985

H.

circ

umda

tagr

oup

Bok

erm

anno

hyla

hyla

xB

oker

man

nohy

laci

rcum

data

grou

pH

yla

hyps

elop

s(C

ope,

1871

)U

nass

igne

dN

omen

dubi

um—

Hyl

aib

irap

itan

gaC

ruz,

Pim

enta

and

Sil

vano

,20

03H

.al

bosi

gnat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

usib

irap

itan

gaA

plas

todi

scus

albo

sign

atus

grou

p

Hyl

aib

itig

uara

Car

doso

,19

83H

.ps

eudo

pseu

dis

grou

pB

oker

man

nohy

laib

itig

uara

Bok

erm

anno

hyla

pseu

dops

eudi

sgr

oup

Hyl

aib

itip

oca

Car

amas

chi

and

Fei

o,19

90H

.ci

rcum

data

grou

pB

oker

man

nohy

laib

itip

oca

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

aim

itat

or(B

arbo

uran

dD

unn,

1921

)U

nass

igne

dIn

cert

ase

dis

—H

yla

imm

acul

ata

Boe

ttge

r,18

88H

.ar

bore

agr

oup

Hyl

aim

mac

ulat

aH

yla

arbo

rea

grou

pH

yla

infr

amac

ulat

aB

oule

nger

,18

82U

nass

igne

dIn

cert

ase

dis

—H

yla

infu

cata

Due

llm

an,

1968

H.

pseu

dopu

ma

grou

pIs

thm

ohyl

ain

fuca

taIs

thm

ohyl

aps

eudo

pum

agr

oup

Hyl

ain

parq

uesi

Aya

rzag

uena

and

Sen

aris

,19

94‘‘

1993

’’H

.ar

omat

ica

grou

pM

yers

iohy

lain

parq

uesi

Hyl

ain

soli

taM

cCra

nie,

Wil

son,

and

Wil

liam

s,19

93H

.pi

ctip

esgr

oup

Isth

moh

yla

inso

lita

Isth

moh

yla

pict

ipes

grou

p

Hyl

ain

term

edia

Bou

leng

er,

1882

H.

arbo

rea

grou

pH

yla

inte

rmed

iaH

yla

arbo

rea

grou

pH

yla

izec

ksoh

niJi

man

dC

aram

asch

i,19

79H

.ci

rcum

data

grou

pB

oker

man

nohy

laiz

ecks

ohni

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

aja

hni

Riv

ero,

1961

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

jahn

iH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

japo

nica

Gun

ther

,18

59‘‘

1858

’’H

.ar

bore

agr

oup

Hyl

aja

poni

caH

yla

exim

iagr

oup

Hyl

aji

mi

Nap

oli

and

Car

amas

chi,

1999

H.

rubi

cund

ula

grou

pD

endr

opso

phus

jim

iD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

rubi

cund

ulus

clad

eH

yla

joan

nae

Koh

ler

and

Lot

ters

,20

01H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

joan

nae

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

joaq

uini

B.

Lut

z,19

68H

.pu

lche

lla

grou

pH

ypsi

boas

joaq

uini

Hyp

sibo

aspu

lche

llus

grou

pH

yla

juan

itae

Sny

der,

1972

H.

mio

tym

panu

mgr

oup

Exe

rodo

nta

juan

itae

—H

yla

kana

ima

Goi

nan

dW

oodl

ey,

1969

H.

geog

raph

ica

grou

pM

yers

iohy

laka

naim

a—

Page 158: systematic review of the frog family hylidae, with special reference to ...

158 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

aka

rena

nnea

eP

ybur

n,19

93U

nass

igne

dSc

inax

kare

nann

aeSc

inax

rube

rcl

ade

Hyl

ako

echl

ini

Due

llm

anan

dT

rueb

,19

89H

.pa

rvic

eps

grou

pD

endr

opso

phus

koec

hlin

iD

endr

opso

phus

parv

icep

sgr

oup

Hyl

ala

beda

ctyl

aM

ende

lson

and

Toa

l,19

96H

.bi

stin

cta

grou

pP

lect

rohy

lala

beda

ctyl

aP

lect

rohy

labi

stin

cta

grou

pH

yla

labi

alis

Pet

ers,

1863

H.

labi

alis

grou

pD

endr

opso

phus

labi

alis

Den

drop

soph

usla

bial

isgr

oup

Hyl

ala

ncas

teri

Bar

bour

,19

28H

.pi

ctip

esgr

oup

Isth

moh

yla

lanc

aste

riIs

thm

ohyl

api

ctip

esgr

oup

Hyl

ala

ncif

orm

is(C

ope,

1871

)H

.al

bopu

ncta

tagr

oup

Hyp

sibo

asla

ncif

orm

isH

ypsi

boas

albo

punc

tatu

sgr

oup

Hyl

ala

ngei

Bok

erm

ann,

1965

H.

mar

tins

igr

oup

Bok

erm

anno

hyla

lang

eiB

oker

man

nohy

lam

arti

nsi

grou

pH

yla

lari

nopy

gion

Due

llm

an,

1973

H.

lari

nopy

gion

grou

pH

ylos

cirt

usla

rino

pygi

onH

ylos

cirt

usla

rino

pygi

ongr

oup

Hyl

ala

scin

iaR

iver

o,19

69H

.bo

gote

nsis

grou

pH

ylos

cirt

usla

scin

ius

Hyl

osci

rtus

bogo

tens

isgr

oup

Hyl

ala

tist

riat

aC

aram

asch

ian

dC

ruz,

2004

H.

pulc

hell

agr

oup,

H.

poly

taen

iacl

ade

Hyp

sibo

asla

tist

riat

usH

ypsi

boas

pulc

hell

usgr

oup,

H.

poly

taen

ius

clad

eH

yla

leal

iB

oker

man

n,19

64H

.m

inim

agr

oup

Den

drop

soph

usle

ali

Den

drop

soph

usm

inim

usgr

oup

Hyl

ale

mai

Riv

ero,

1971

Una

ssig

ned

Hyp

sibo

asle

mai

Hyp

sibo

asbe

nite

zigr

oup

Hyl

ale

ptol

inea

taP.

Bra

unan

dC

.B

raun

,19

77H

.pu

lche

lla

grou

p,H

.po

lyta

enia

clad

eH

ypsi

boas

lept

olin

eatu

sH

ypsi

boas

pulc

hell

usgr

oup,

H.

poly

taen

ius

clad

eH

yla

leuc

oche

ila

Car

amas

chi

and

Nie

mey

er,

2003

H.

albo

punc

tata

grou

pH

ypsi

boas

leuc

oche

ilus

Hyp

sibo

asal

bopu

ncta

tus

grou

pH

yla

leuc

ophy

llat

a(B

eire

is,

1783

)H

.le

ucop

hyll

ata

grou

pD

endr

opso

phus

leuc

ophy

llat

usD

endr

opso

phus

leuc

ophy

llat

usgr

oup

Hyl

ale

ucop

ygia

Cru

zan

dP

eixo

to,

1985

1984

.H

.al

bosi

gnat

aco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Apl

asto

disc

usle

ucop

ygiu

sA

plas

todi

scus

albo

sign

atus

grou

p

Hyl

ali

mai

Bok

erm

ann,

1962

Una

ssig

ned

Den

drop

soph

usli

mai

Den

drop

soph

usm

inut

usgr

oup

Hyl

ali

ndae

Due

llm

anan

dA

ltig

,19

78H

.la

rino

pygi

ongr

oup

Hyl

osci

rtus

lind

aeH

ylos

cirt

usla

rino

pygi

ongr

oup

Hyl

alo

quax

Gai

gean

dS

tuar

t,19

34H

.go

dman

igr

oup

Tla

loco

hyla

loqu

ax—

Hyl

alo

veri

dgei

Riv

ero,

1961

Una

ssig

ned

Mye

rsio

hyla

love

ridg

ei—

Hyl

alu

cian

aeN

apol

ian

dP

imen

ta,

2003

H.

circ

umda

tagr

oup

Bok

erm

anno

hyla

luci

anae

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

alu

ctuo

saP

omba

lan

dH

adda

d,19

93H

.ci

rcum

data

grou

pB

oker

man

nohy

lalu

ctuo

saB

oker

man

nohy

laci

rcum

data

grou

pH

yla

lund

iiB

urm

eist

er,

1856

H.

boan

sgr

oup

Hyp

sibo

aslu

ndii

Hyp

sibo

asfa

ber

grou

pH

yla

lute

ooce

llat

aR

oux,

1927

H.

parv

icep

sgr

oup

Den

drop

soph

uslu

teoo

cell

atus

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

lync

hiR

uiz-

Car

ranz

aan

dA

rdil

a-R

obay

o,19

91H

.bo

gote

nsis

grou

pH

ylos

cirt

usly

nchi

Hyl

osci

rtus

bogo

tens

isgr

oup

Hyl

am

argi

nata

Bou

leng

er,

1887

H.

pulc

hell

agr

oup

Hyp

sibo

asm

argi

natu

sH

ypsi

boas

pulc

hell

usgr

oup

Hyl

am

aria

nita

eC

arri

zo,

1992

H.

pulc

hell

agr

oup

Hyp

sibo

asm

aria

nita

eH

ypsi

boas

pulc

hell

usgr

oup

Hyl

am

arm

orat

a(L

aure

nti,

1768

)H

.m

arm

orat

agr

oup

Den

drop

soph

usm

arm

orat

usD

endr

opso

phus

mar

mor

atus

grou

pH

yla

mar

tins

iB

oker

man

n,19

64H

.m

arti

nsi

grou

pB

oker

man

nohy

lam

arti

nsi

Bok

erm

anno

hyla

mar

tins

igr

oup

Hyl

am

athi

asso

niC

ochr

anan

dG

oin,

1970

H.

mic

roce

phal

agr

oup

Den

drop

soph

usm

athi

asso

niD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

am

elan

argy

rea

Cop

e,18

87H

.m

arm

orat

agr

oup

Den

drop

soph

usm

elan

argy

reus

Den

drop

soph

usm

arm

orat

usgr

oup

Hyl

am

elan

omm

aT

aylo

r,19

40H

.m

ioty

mpa

num

grou

pE

xero

dont

am

elan

omm

aU

nass

igne

d

Page 159: systematic review of the frog family hylidae, with special reference to ...

2005 159FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

am

elan

ople

ura

Bou

leng

er,

1912

H.

pulc

hell

agr

oup

Hyp

sibo

asm

elan

ople

urus

Hyp

sibo

aspu

lche

llus

grou

pH

yla

mel

anor

abdo

ta(S

chne

ider

,17

99)

Una

ssig

ned

Nom

endu

bium

—H

yla

mer

iden

sis

Riv

ero,

1961

H.

labi

alis

grou

pD

endr

opso

phus

mer

iden

sis

Den

drop

soph

usla

bial

isgr

oup

Hyl

am

erid

iana

B.

Lut

z,19

54H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

mer

idia

nus

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

mer

idio

nali

sB

oett

ger,

1874

H.

arbo

rea

grou

pH

yla

mer

idio

nali

sH

yla

arbo

rea

grou

pH

yla

mic

roce

phal

aC

ope,

1886

H.

mic

roce

phal

agr

oup

Den

drop

soph

usm

icro

ceph

alus

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

mic

rode

rma

Pyb

urn,

1977

H.

geog

raph

ica

grou

pH

ypsi

boas

mic

rode

rma

Hyp

sibo

asbe

nite

zigr

oup

Hyl

am

icro

psP

eter

s,18

72H

.pa

rvic

eps

grou

pD

endr

opso

phus

mic

rops

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

mil

iari

a(C

ope,

1886

)H

.tu

berc

ulos

agr

oup

Ecn

omio

hyla

mil

iari

a—

Hyl

am

iner

aW

ilso

n,M

cCra

nie,

and

Wil

liam

s,19

85H

.tu

berc

ulos

agr

oup

Ecn

omio

hyla

min

era

Hyl

am

inim

aA

hl,

1933

H.

min

ima

grou

pD

endr

opso

phus

min

imus

Den

drop

soph

usm

inim

usgr

oup

Hyl

am

inus

cula

Riv

ero,

1971

H.

mic

roce

phal

agr

oup

Den

drop

soph

usm

inus

culu

sD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

am

inut

aP

eter

s,18

72H

.m

inut

agr

oup

Den

drop

soph

usm

inut

usD

endr

opso

phus

min

utus

grou

pH

yla

mio

tym

panu

mC

ope,

1863

H.

mio

tym

panu

mgr

oup

Ecn

omio

hyla

mio

tym

panu

m—

Hyl

am

ixe

Due

llm

an,

1965

H.

mix

omac

ulat

agr

oup

Meg

asto

mat

ohyl

am

ixe

—H

yla

mix

omac

ulat

aT

aylo

r,19

50H

.m

ixom

acul

ata

grou

pM

egas

tom

atoh

yla

mix

omac

ulat

a—

Hyl

am

iyat

aiV

igle

and

Gob

erdh

an-V

igle

,19

90H

.m

inim

agr

oup

Den

drop

soph

usm

iyat

aiD

endr

opso

phus

min

imus

grou

pH

yla

mol

itor

Sch

mid

t,18

57U

nass

igne

dN

omen

dubi

um—

Hyl

am

ulti

fasc

iata

Gun

ther

,18

59‘‘

1858

’’H

.al

bopu

ncta

tagr

oup

Hyp

sibo

asm

ulti

fasc

iatu

sH

ypsi

boas

albo

punc

tatu

sgr

oup

Hyl

am

usic

aB

.L

utz,

1948

H.

albo

fren

ata

com

plex

,H

.al

bom

argi

nata

grou

pA

plas

todi

scus

mus

icus

Apl

asto

disc

usal

bofr

enat

usgr

oup

Hyl

am

ykte

rA

dler

and

Den

nis,

1972

H.

bist

inct

agr

oup

Ple

ctro

hyla

myk

ter

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

ana

hder

eri

B.

Lut

zan

dB

oker

man

n,19

63H

.m

arm

orat

agr

oup

Den

drop

soph

usna

hder

eri

Den

drop

soph

usm

arm

orat

usgr

oup

Hyl

ana

naB

oule

nger

,18

89H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

nanu

sD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

ana

nuza

eB

oker

man

nan

dS

azim

a,19

73H

.ci

rcum

data

grou

pB

oker

man

nohy

lana

nuza

eB

oker

man

nohy

laci

rcum

data

grou

pH

yla

neph

ila

Men

dels

onan

dC

ampb

ell,

1999

H.

taen

iopu

sgr

oup

Cha

radr

ahyl

ane

phil

a—

Hyl

ano

vais

iB

oker

man

n,19

68H

.m

arm

orat

agr

oup

Den

drop

soph

usno

vais

iD

endr

opso

phus

mar

mor

atus

grou

pH

yla

nubi

cola

Due

llm

an,

1964

‘‘19

63’’

H.

mix

omac

ulat

agr

oup

Meg

asto

mat

ohyl

anu

bico

la—

Hyl

aol

ivei

rai

Bok

erm

ann,

1963

H.

deci

pien

sgr

oup

Den

drop

soph

usol

ivei

rai

Den

drop

soph

usm

icro

ceph

alus

grou

p,D

.de

cipi

ens

clad

eH

yla

orna

tiss

ima

Nob

le,

1923

H.

gran

osa

grou

pH

ypsi

boas

orna

tiss

imus

Hyp

sibo

aspu

ncta

tus

grou

pH

yla

pach

aD

uell

man

and

Hil

lis,

1990

H.

lari

nopy

gion

grou

pH

ylos

cirt

uspa

cha

Hyl

osci

rtus

lari

nopy

gion

grou

pH

yla

pach

yder

ma

Tay

lor,

1942

H.

bist

inct

agr

oup

Ple

ctro

hyla

pach

yder

ma

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

apa

drel

una

Kap

lan

and

Rui

z,19

97H

.ga

rago

ensi

sgr

oup

Den

drop

soph

uspa

drel

una

Den

drop

soph

usga

rago

ensi

sgr

oup

Page 160: systematic review of the frog family hylidae, with special reference to ...

160 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

apa

laes

tes

Due

llm

an,

De

La

Riv

a,an

dW

ild,

1997

H.

pulc

hell

agr

oup

Hyp

sibo

aspa

laes

tes

Hyp

sibo

aspu

lche

llus

grou

p

Hyl

apa

llia

taC

ope,

1863

Una

ssig

ned

Nom

endu

bium

—H

yla

palm

eri

Bou

leng

er,

1908

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

palm

eri

Hyl

osci

rtus

bogo

tens

isgr

oup

Hyl

apa

ntos

tict

aD

uell

man

and

Ber

ger,

1982

H.

lari

nopy

gion

grou

pH

ylos

cirt

uspa

ntos

tict

usH

ylos

cirt

usla

rino

pygi

ongr

oup

Hyl

apa

rdal

isS

pix,

1824

H.

boan

sgr

oup

Hyp

sibo

aspa

rdal

isH

ypsi

boas

fabe

rgr

oup

Hyl

apa

rvic

eps

Bou

leng

er,

1882

H.

parv

icep

sgr

oup

Den

drop

soph

uspa

rvic

eps

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

paui

nien

sis

Hey

er,

1977

H.

mic

roce

phal

agr

oup

Den

drop

soph

uspa

uini

ensi

sD

endr

opso

phus

parv

icep

sgr

oup

Hyl

ape

lidn

aD

uell

man

,19

89H

.la

bial

isgr

oup

Den

drop

soph

uspe

lidn

aD

endr

opso

phus

labi

alis

grou

pH

yla

pell

ita

Due

llm

an,

1968

H.

mix

omac

ulat

agr

oup

Meg

asto

mat

ohyl

ape

llit

a—

Hyl

ape

lluc

ens

Wer

ner,

1901

H.

albo

mar

gina

taco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Hyp

sibo

aspe

lluc

ens

Hyp

sibo

aspe

lluc

ens

grou

p

Hyl

ape

nthe

ter

Adl

er,

1965

H.

bist

inct

agr

oup

Ple

ctro

hyla

pent

hete

rP

lect

rohy

labi

stin

cta

grou

pH

yla

perk

insi

Cam

pbel

lan

dB

rodi

e,19

92H

.m

ioty

mpa

num

grou

pE

xero

dont

ape

rkin

siU

nass

igne

dH

yla

phae

ople

ura

Car

amas

chi

and

Cru

z,20

00H

.pu

lche

lla

grou

p,H

.po

lyta

enia

clad

eH

ypsi

boas

phae

ople

ura

Hyp

sibo

aspu

lche

llus

grou

p,H

.po

lyta

eniu

scl

ade

Hyl

aph

anta

smag

oria

Dun

n,19

43H

.tu

berc

ulos

agr

oup

Ecn

omio

hyla

phan

tasm

agor

ia—

Hyl

aph

lebo

des

Ste

jneg

er,

1906

H.

mic

roce

phal

agr

oup

Den

drop

soph

usph

lebo

des

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

phyl

logn

atha

Mel

in,

1941

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

phyl

logn

athu

sH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

pica

doi

Dun

n,19

37H

.pi

ctip

esgr

oup

Isth

moh

yla

pica

doi

Isth

moh

yla

pict

ipes

grou

pH

yla

pice

igul

aris

Rui

z-C

arra

nza

and

Lyn

ch,

1982

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

pice

igul

aris

Hyl

osci

rtus

bogo

tens

isgr

oup

Hyl

api

cta

(Gun

ther

,19

01)

H.

godm

ani

grou

pT

lalo

cohy

lapi

cta

—H

yla

pict

ipes

Cop

e,18

75‘‘

1876

’’H

.pi

ctip

esgr

oup

Isth

moh

yla

pict

ipes

Isth

moh

yla

pict

ipes

grou

pH

yla

pict

urat

aB

oule

nger

,18

99H

.ge

ogra

phic

agr

oup

Hyp

sibo

aspi

ctur

atus

Hyp

sibo

aspu

ncta

tus

grou

pH

yla

pini

ma

Bok

erm

ann

and

Saz

ima,

1973

H.

urug

uaya

grou

pSc

inax

pini

ma

Scin

axru

ber

clad

e,S.

urug

uayu

sgr

oup

Hyl

api

noru

mT

aylo

r,19

37H

.m

ioty

mpa

num

grou

pE

xero

dont

api

noru

mU

nass

igne

dH

yla

plat

ydac

tyla

Bou

leng

er,

1905

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

plat

ydac

tylu

sH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

plic

ata

Bro

cchi

,18

77H

.ex

imia

grou

pH

yla

plic

ata

Hyl

aex

imia

grou

pH

yla

poly

taen

iaC

ope,

1870

‘‘18

69’’

H.

pulc

hell

agr

oup,

H.

poly

taen

iacl

ade

Hyp

sibo

aspo

lyta

eniu

sH

ypsi

boas

pulc

hell

usgr

oup,

H.

poly

taen

ius

clad

eH

yla

pom

bali

Car

amas

chi,

Pim

enta

,an

dF

eio,

2004

H.

geog

raph

ica

grou

pH

ypsi

boas

pom

bali

Hyp

sibo

asse

mil

inea

tus

grou

p

Hyl

apr

aest

ans

Due

llm

anan

dT

rueb

,19

83U

nass

igne

dD

endr

opso

phus

prae

stan

sD

endr

opso

phus

gara

goen

sis

grou

pH

yla

pras

ina

Bur

mei

ster

,18

56H

.pu

lche

lla

grou

pH

ypsi

boas

pras

inus

Hyp

sibo

aspu

lche

llus

grou

pH

yla

psar

olai

ma

Due

llm

anan

dH

illi

s,19

90H

.la

rino

pygi

ongr

oup

Hyl

osci

rtus

psar

olai

mus

Hyl

osci

rtus

lari

nopy

gion

grou

pH

yla

psar

osem

aC

ampb

ell

and

Due

llm

an,

2000

H.

bist

inct

agr

oup

Ple

ctro

hyla

psar

osem

aP

lect

rohy

labi

stin

cta

grou

p

Page 161: systematic review of the frog family hylidae, with special reference to ...

2005 161FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

aps

eudo

mer

idia

naC

ruz,

Car

amas

chi,

and

Dia

s,20

00H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

pseu

dom

erid

ianu

sD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

aps

eudo

pseu

dis

Mir

anda

-Rib

eiro

,19

37H

.ps

eudo

pseu

dis

grou

pB

oker

man

nohy

laps

eudo

pseu

dis

Bok

erm

anno

hyla

pseu

dops

eudi

sgr

oup

Hyl

aps

eudo

pum

aG

unth

er,

1901

H.

pseu

dopu

ma

grou

pIs

thm

ohyl

aps

eudo

pum

aIs

thm

ohyl

aps

eudo

pum

agr

oup

Hyl

apt

ycho

dact

yla

Due

llm

anan

dH

illi

s,19

90H

.la

rino

pygi

ongr

oup

Hyl

osci

rtus

ptyc

hoda

ctyl

usH

ylos

cirt

usla

rino

pygi

ongr

oup

Hyl

apu

gnax

Sch

mid

t,18

57H

.bo

ans

grou

pH

ypsi

boas

pugn

axH

ypsi

boas

fabe

rgr

oup

Hyl

apu

lche

lla

Dum

eril

and

Bib

ron,

1841

H.

pulc

hell

agr

oup

Hyp

sibo

aspu

lche

llus

Hyp

sibo

aspu

lche

llus

grou

pH

yla

puli

doi

(Riv

ero,

1961

)U

nass

igne

dH

ypsi

boas

puli

doi

Hyp

sibo

asbe

nite

zigr

oup

Hyl

apu

ncta

ta(S

chne

ider

,17

99)

H.

punc

tata

grou

pH

ypsi

boas

punc

tatu

sH

ypsi

boas

punc

tatu

sgr

oup

Hyl

aqu

adri

line

ata

(Sch

neid

er,

1799

)U

nass

igne

dN

omen

dubi

um—

Hyl

ara

nice

ps(C

ope,

1862

)H

.al

bopu

ncta

tagr

oup

Hyp

sibo

asra

nice

psH

ypsi

boas

albo

punc

tatu

sgr

oup

Hyl

ara

vida

Car

amas

chi,

Nap

oli,

and

Ber

nard

es,

2001

H.

circ

umda

tagr

oup

Bok

erm

anno

hyla

ravi

daB

oker

man

nohy

laci

rcum

data

grou

p

Hyl

arh

eaN

apol

ian

dC

aram

asch

i,19

99H

.ru

bicu

ndul

agr

oup

Den

drop

soph

usrh

eaD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

rubi

cund

ulus

clad

eH

yla

rhod

opep

laG

unth

er,

1858

H.

mic

roce

phal

agr

oup

Den

drop

soph

usrh

odop

eplu

sD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

arh

ythm

icus

Sen

aris

,an

dA

yarz

ague

na.

2002

Una

ssig

ned

Hyp

sibo

asrh

ythm

icus

Hyp

sibo

asbe

nite

zigr

oup

Hyl

ari

ojan

aK

oslo

wsk

y,18

95H

.pu

lche

lla

grou

pH

ypsi

boas

rioj

anus

Hyp

sibi

oas

pulc

hell

usgr

oup

Hyl

ari

vero

iC

ochr

anan

dG

oin,

1970

H.

min

ima

grou

pD

endr

opso

phus

rive

roi

Den

drop

soph

usm

inim

usgr

oup

Hyl

ari

vula

ris

Tay

lor,

1952

H.

pict

ipes

grou

pIs

thm

ohyl

ari

vula

ris

Isth

moh

yla

pict

ipes

grou

pH

yla

robe

rtm

erte

nsi

Tay

lor,

1937

H.

mic

roce

phal

agr

oup

Den

drop

soph

usro

bert

mer

tens

iD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

aro

bert

soru

mT

aylo

r,19

40H

.bi

stin

cta

grou

pP

lect

rohy

laro

bert

soru

mP

lect

rohy

labi

stin

cta

grou

pH

yla

roes

chm

anni

DeG

rys,

1938

Una

ssig

ned

Nom

endu

bium

—H

yla

rora

ima

Due

llm

anan

dH

oogm

oed,

1992

H.

geog

raph

ica

grou

pH

ypsi

boas

rora

ima

Hyp

sibo

asbe

nite

zigr

oup

Hyl

aro

senb

ergi

Bou

leng

er,

1898

H.

boan

sgr

oup

Hyp

sibo

asro

senb

ergi

Hyp

sibo

asfa

ber

grou

pH

yla

ross

alle

niG

oin,

1959

H.

leuc

ophy

llat

agr

oup

Den

drop

soph

usro

ssal

leni

Den

drop

soph

usle

ucop

hyll

atus

grou

pH

yla

rubi

cund

ula

Rei

nhar

dtan

dL

utke

n,18

62‘‘

1861

’’H

.ru

bicu

ndul

agr

oup

Den

drop

soph

usru

bicu

ndul

usD

endr

opso

phus

mic

roce

phal

usgr

oup,

D.

rubi

cund

ulus

clad

eH

yla

rubr

acyl

aC

ochr

anan

dG

oin,

1970

H.

albo

mar

gina

taco

mpl

ex,

H.

albo

mar

gina

tagr

oup

Hyp

sibo

asru

brac

ylus

Hyp

sibo

aspe

lluc

ens

grou

p

Hyl

aru

fitel

aF

ouqu

ette

,19

61H

.al

bom

argi

nata

com

plex

,H

.al

bom

argi

nata

grou

pH

ypsi

boas

rufit

elus

Hyp

sibo

aspe

lluc

ens

grou

p

Hyl

aru

schi

iW

eygo

ldt

and

Pei

xoto

,19

87H

.pa

rvic

eps

grou

pD

endr

opso

phus

rusc

hii

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

sabr

ina

Cal

dwel

l,19

74H

.bi

stin

cta

grou

pP

lect

rohy

lasa

brin

aP

lect

rohy

labi

stin

cta

grou

pH

yla

salv

aje

Wil

son,

McC

rani

e,an

dW

illi

ams,

1985

H.

tube

rcul

osa

grou

pE

cnom

iohy

lasa

lvaj

e—

Page 162: systematic review of the frog family hylidae, with special reference to ...

162 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

asa

nbor

niS

chm

idt,

1944

H.

mic

roce

phal

agr

oup

Den

drop

soph

ussa

nbor

niD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

asa

nchi

ange

nsis

Pop

e,19

29H

.ar

bore

agr

oup

Hyl

asa

nchi

ange

nsis

Hyl

aar

bore

agr

oup

Hyl

asa

ram

pion

aR

uiz-

Car

ranz

aan

dL

ynch

,19

82H

.la

rino

pygi

ongr

oup

Hyl

osci

rtus

sara

mpi

ona

Hyl

osci

rtus

lari

nopy

gion

grou

pH

yla

sara

yacu

ensi

sS

hrev

e,19

35H

.le

ucop

hyll

ata

grou

pD

endr

opso

phus

sara

yacu

ensi

sD

endr

opso

phus

leuc

ophy

llat

usgr

oup

Hyl

asa

rda

(De

Bet

ta,

1853

)H

.ar

bore

agr

oup

Hyl

asa

rda

Hyl

aar

bore

agr

oup

Hyl

asa

rtor

iS

mit

h,19

51H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

sart

ori

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

savi

gnyi

Aud

ouin

,18

27H

.ar

bore

agr

oup

Hyl

asa

vign

yiH

yla

arbo

rea

grou

pH

yla

saxi

cola

Bok

erm

ann,

1964

H.

pseu

dops

eudi

sgr

oup

Bok

erm

anno

hyla

saxi

cola

Bok

erm

anno

hyla

pseu

dops

eudi

sgr

oup

Hyl

asa

zim

aiC

ardo

soan

dA

ndra

de,

1983

‘‘19

82’’

H.

circ

umda

tagr

oup

Bok

erm

anno

hyla

sazi

mai

Bok

erm

anno

hyla

circ

umda

tagr

oup

Hyl

asc

huba

rti

Bok

erm

ann,

1963

H.

min

ima

grou

pD

endr

opso

phus

schu

bart

iD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

ase

cede

nsB

.L

utz,

1963

H.

pulc

hell

agr

oup

Hyp

sibo

asse

cede

nsH

ypsi

boas

pulc

hell

usgr

oup

Hyl

ase

mig

utta

taA

.L

utz,

1925

H.

pulc

hell

agr

oup

Hyp

sibo

asse

mig

utta

tus

Hyp

sibo

aspu

lche

llus

grou

pH

yla

sem

ilin

eata

Spi

x,18

24H

.ge

ogra

phic

agr

oup

Hyp

sibo

asse

mil

inea

tus

Hyp

sibo

asse

mil

inea

tus

grou

pH

yla

seni

cula

Cop

e,18

68H

.m

arm

orat

agr

oup

Den

drop

soph

usse

nicu

lus

Den

drop

soph

usm

arm

orat

usgr

oup

Hyl

asi

bila

taC

ruz,

Pim

enta

,an

dS

ilva

no,

2003

H.

albo

sign

ata

com

plex

,H

.al

bom

argi

nata

grou

pA

plas

todi

scus

sibi

latu

sA

plas

todi

scus

albo

sign

atus

grou

p

Hyl

asi

bles

ziR

iver

o,19

71H

.gr

anos

agr

oup

Hyp

sibo

assi

bles

ziH

ypsi

boas

punc

tatu

sgr

oup

Hyl

asi

mm

onsi

Due

llm

an,

1989

H.

bogo

tens

isgr

oup

Hyl

osci

rtus

sim

mon

siH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

sim

plex

Boe

ttge

r,19

01H

.ar

bore

agr

oup

Hyl

asi

mpl

exH

yla

arbo

rea

grou

pH

yla

siop

ela

Due

llm

an,

1968

H.

bist

inct

agr

oup

Ple

ctro

hyla

siop

ela

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

asm

arag

dina

Tay

lor,

1940

H.

sum

ichr

asti

grou

pE

xero

dont

asm

arag

dina

Exe

rodo

nta

sum

ichr

asti

grou

pH

yla

smit

hii

Bou

leng

er,

1901

H.

godm

ani

grou

pT

lalo

cohy

lasm

ithi

i—

Hyl

aso

ares

iC

aram

asch

ian

dJi

m,

1983

H.

mar

mor

ata

grou

pD

endr

opso

phus

soar

esi

Den

drop

soph

usm

arm

orat

usgr

oup

Hyl

asq

uire

lla

Bos

c,18

00H

.ci

nere

agr

oup

Hyl

asq

uire

lla

Hyl

aci

nere

agr

oup

Hyl

ast

auff

eror

umD

uell

man

and

Col

oma,

1993

H.

lari

nopy

gion

grou

pH

ylos

cirt

usst

auff

eror

umH

ylos

cirt

usla

rino

pygi

ongr

oup

Hyl

ast

enoc

epha

laC

aram

asch

ian

dC

ruz,

1999

H.

pulc

hell

agr

oup,

H.

poly

taen

iacl

ade

Hyp

sibo

asst

enoc

epha

lus

Hyp

sibo

aspu

lche

llus

grou

p,H

.po

lyta

eniu

scl

ade

Hyl

ast

ingi

Kap

lan,

1994

Una

ssig

ned

Den

drop

soph

usst

ingi

Una

ssig

ned

Hyl

ast

uder

aeC

arva

lho

eS

ilva

,C

arva

lho

eS

ilva

,an

dIz

ecks

ohn,

2003

H.

mic

roce

phal

agr

oup

Den

drop

soph

usst

uder

aeD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

asu

bocu

lari

sD

unn,

1934

H.

parv

icep

sgr

oup

Den

drop

soph

ussu

bocu

lari

sD

endr

opso

phus

parv

icep

sgr

oup

Hyl

asu

mic

hras

ti(B

rocc

hi,

1879

)H

.su

mic

hras

tigr

oup

Exe

rodo

nta

sum

ichr

asti

Exe

rodo

nta

sum

ichr

asti

grou

pH

yla

suri

nam

ensi

sD

audi

n,18

02U

nass

igne

dN

omen

dubi

um—

Hyl

asu

weo

nens

isK

uram

oto,

1980

H.

arbo

rea

grou

pH

yla

suw

eone

nsis

Hyl

aex

imia

grou

pH

yla

taen

iopu

sG

unth

er,

1901

H.

taen

iopu

sgr

oup

Cha

radr

ahyl

ata

enio

pus

Page 163: systematic review of the frog family hylidae, with special reference to ...

2005 163FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Hyl

ata

pich

alac

aK

izir

ian,

Col

oma,

and

Par

edes

-R

ecal

de,

2003

H.

lari

nopy

gion

grou

pH

ylos

cirt

usta

pich

alac

aH

ylos

cirt

usla

rino

pygi

ongr

oup

Hyl

ath

orec

tes

Adl

er,

1965

H.

pict

ipes

grou

pP

lect

rohy

lath

orec

tes

Ple

ctro

hyla

bist

inct

agr

oup

Hyl

ath

ysan

ota

Due

llm

an,

1966

H.

tube

rcul

osa

grou

pE

cnom

iohy

lath

ysan

ota

—H

yla

tica

Sta

rret

t,19

66H

.pi

ctip

esgr

oup

Isth

moh

yla

tica

Isth

moh

yla

pict

ipes

grou

pH

yla

tim

beba

Mar

tins

and

Car

doso

,19

87H

.pa

rvic

eps

grou

pD

endr

opso

phus

tim

beba

Den

drop

soph

uspa

rvic

eps

grou

pH

yla

tint

inna

bulu

mM

elin

,19

41U

nass

igne

dD

endr

opso

phus

tint

inna

bulu

mU

nass

igne

dH

yla

torr

enti

cola

Due

llm

anan

dA

ltig

,19

78H

.bo

gote

nsis

grou

pH

ylos

cirt

usto

rren

tico

laH

ylos

cirt

usbo

gote

nsis

grou

pH

yla

tria

ngul

umG

unth

er,

1869

‘‘18

68’’

H.

leuc

ophy

llat

agr

oup

Den

drop

soph

ustr

iang

ulum

Den

drop

soph

usle

ucop

hyll

atus

grou

pH

yla

trit

aeni

ata

Bok

erm

ann,

1965

H.

rubi

cund

ula

grou

pD

endr

opso

phus

trit

aeni

atus

Den

drop

soph

usm

icro

ceph

alus

grou

p,D

.ru

bicu

ndul

uscl

ade

Hyl

atr

uxA

dler

and

Den

nis,

1972

H.

taen

iopu

sgr

oup

Cha

radr

ahyl

atr

ux—

Hyl

ats

inli

ngen

sis

Liu

and

Hu,

1966

H.

arbo

rea

grou

pH

yla

tsin

ling

ensi

sH

yla

arbo

rea

grou

pH

yla

tube

rcul

osa

Bou

leng

er,

1882

H.

tube

rcul

osa

grou

pE

cnom

iohy

latu

berc

ulos

a—

Hyl

aur

ugua

yaS

chm

idt,

1944

H.

urug

uaya

grou

pSc

inax

urug

uayu

sSc

inax

rube

rcl

ade,

S.ur

ugua

yus

grou

pH

yla

ussu

rien

sis

Nik

olsk

y,19

18H

.ar

bore

agr

oup

Hyl

aus

suri

ensi

sH

yla

arbo

rea

grou

pH

yla

vala

ncif

erF

irsc

hein

and

Sm

ith,

1956

H.

tube

rcul

osa

grou

pE

cnom

iohy

lava

lanc

ifer

—H

yla

vare

lae

Car

rizo

,19

92U

nass

igne

dH

ypsi

boas

vare

lae

Una

ssig

ned

Hyl

ave

rsic

olor

LeC

onte

,18

25H

.ve

rsic

olor

grou

pH

yla

vers

icol

orH

yla

vers

icol

orgr

oup

Hyl

avi

gila

nsS

olan

o,19

71U

nass

igne

dIn

cert

ase

dis

—H

yla

viro

line

nsis

Kap

lan

and

Rui

z,19

97H

.ga

rago

ensi

sgr

oup

Den

drop

soph

usvi

roli

nens

isD

endr

opso

phus

gara

goen

sis

grou

pH

yla

wal

ford

iB

oker

man

n,19

62H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

wal

ford

iD

endr

opso

phus

mic

roce

phal

usgr

oup

Hyl

aw

alke

riS

tuar

t,19

54H

.ex

imia

grou

pH

yla

wal

keri

Hyl

aex

imia

grou

pH

yla

war

reni

Due

llm

anan

dH

oogm

oed,

1992

Una

ssig

ned

Ince

rtae

sedi

s—

Hyl

aw

avri

niP

arke

r,19

36H

.bo

ans

grou

pH

ypsi

boas

wav

rini

Hyp

sibo

asse

mil

inea

tus

grou

pH

yla

wer

neri

Coc

hran

,19

52H

.m

icro

ceph

ala

grou

pD

endr

opso

phus

wer

neri

Den

drop

soph

usm

icro

ceph

alus

grou

pH

yla

wey

gold

tiC

ruz

and

Pei

xoto

,19

87‘‘

1985

’’.

H.

albo

fren

ata

com

plex

,H

.al

bom

argi

nata

grou

pA

plas

todi

scus

wey

gold

tiA

plas

todi

scus

albo

fren

atus

grou

p

Hyl

aw

righ

toru

mT

aylo

r,19

39‘‘

1938

’’H

.ex

imia

grou

pH

yla

wri

ghto

rum

Hyl

aex

imia

grou

pH

yla

xant

host

icta

Due

llm

an,

1968

H.

pict

ipes

grou

pIs

thm

ohyl

axa

ntho

stic

taIs

thm

ohyl

api

ctip

esgr

oup

Hyl

axa

puri

ensi

sM

arti

nsan

dC

ardo

so,

1987

H.

min

uta

grou

pD

endr

opso

phus

xapu

rien

sis

Den

drop

soph

usm

inut

usgr

oup

Hyl

axe

raM

ende

lson

and

Cam

pbel

l,19

94H

.su

mic

hras

tigr

oup

Exe

rodo

nta

xera

Exe

rodo

nta

sum

ichr

asti

grou

pH

yla

yara

cuya

naM

ijar

es-U

rrut

iaan

dR

iver

o,20

00U

nass

igne

dD

endr

opso

phus

yara

cuya

nus

Una

ssig

ned

Hyl

aze

teki

Gai

ge,

1929

H.

pict

ipes

grou

pIs

thm

ohyl

aze

teki

Isth

moh

yla

pict

ipes

grou

pH

yla

zhao

ping

ensi

sT

ang

and

Zha

ng,

1984

H.

arbo

rea

grou

pH

yla

zhao

ping

ensi

sH

yla

arbo

rea

grou

pL

ysap

sus

cara

yaG

alla

rdo,

1964

—L

ysap

sus

cara

ya—

Page 164: systematic review of the frog family hylidae, with special reference to ...

164 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Lys

apsu

sla

evis

Par

ker,

1935

—L

ysap

sus

laev

is—

Lys

apsu

sli

mel

lum

Cop

e,18

62—

Lys

apsu

sli

mel

lum

—N

ycti

man

tis

rugi

ceps

Bou

leng

er,

1882

—N

ycti

man

tis

rugi

ceps

—O

steo

ceph

alus

buck

leyi

(Bou

leng

er,

1882

)—

Ost

eoce

phal

usbu

ckle

yi—

Ost

eoce

phal

usca

brer

ai(C

ochr

anan

dG

oin,

1970

)—

Ost

eoce

phal

usca

brer

ai—

Ost

eoce

phal

usde

ride

nsJu

ngfe

r,R

on,

Sei

pp,

and

Alm

enda

riz,

2000

—O

steo

ceph

alus

deri

dens

Ost

eoce

phal

usel

keju

ngin

gera

e(H

enle

,19

81)

—O

steo

ceph

alus

elke

jung

inge

rae

—O

steo

ceph

alus

exop

htha

lmus

Sm

ith

and

Noo

nan,

2001

—O

steo

ceph

alus

exop

htha

lmus

Ost

eoce

phal

usfu

scif

acie

sJu

ngfe

r,R

on,

Sei

pp,

and

Alm

enda

riz,

2000

—O

steo

ceph

alus

fusc

ifac

ies

Ost

eoce

phal

ushe

yeri

Lyn

ch,

2002

—O

steo

ceph

alus

heye

ri—

Ost

eoce

phal

usla

ngsd

orffi

i(D

umer

ilan

dB

ibro

n,18

41)

—It

apot

ihyl

ala

ngsd

orffi

i—

Ost

eoce

phal

usle

onia

eJu

ngfe

ran

dL

ehr,

2001

—O

steo

ceph

alus

leon

iae

—O

steo

ceph

alus

lepr

ieur

ii(D

umla

ril

and

Bib

ron,

1841

)—

Ost

eoce

phal

usle

prie

urii

Ost

eoce

phal

usm

utab

orJu

ngfe

ran

dH

odl,

2002

—O

steo

ceph

alus

mut

abor

—O

steo

ceph

alus

ooph

agus

Jung

fer

and

Sch

iesa

ri,

1995

—O

steo

ceph

alus

ooph

agus

Ost

eoce

phal

uspe

arso

ni(G

aige

,19

29)

—O

steo

ceph

alus

pear

soni

—O

steo

ceph

alus

plan

icep

sC

ope,

1874

—O

steo

ceph

alus

plan

icep

s—

Ost

eoce

phal

ussu

btil

isM

arti

nsan

dC

ardo

so,

1987

—O

steo

ceph

alus

subt

ilis

—O

steo

ceph

alus

taur

inus

Ste

inda

chne

r,18

62—

Ost

eoce

phal

usta

urin

us—

Ost

eoce

phal

usve

rruc

iger

(Wer

ner,

1901

)—

Ost

eoce

phal

usve

rruc

iger

—O

steo

ceph

alus

yasu

niR

onan

dP

ram

uk,

1999

—O

steo

ceph

alus

yasu

ni—

Ost

eopi

lus

brun

neus

(Gos

se,

1851

)—

Ost

eopi

lus

brun

neus

—O

steo

pilu

scr

ucia

lis

(Har

lan,

1826

)—

Ost

eopi

lus

cruc

iali

s—

Ost

eopi

lus

dom

inic

ensi

s(T

schu

di,

1838

)—

Ost

eopi

lus

dom

inic

ensi

s—

Ost

eopi

lus

mar

iana

e(D

unn,

1926

)—

Ost

eopi

lus

mar

iana

e—

Ost

eopi

lus

pulc

hril

inea

tus

Cop

e,18

70‘‘

1869

’’—

Ost

eopi

lus

pulc

hril

inea

tus

—O

steo

pilu

sse

pten

trio

nali

s(D

umer

ilan

dB

ibro

n,18

41)

—O

steo

pilu

sse

pten

trio

nali

s—

Ost

eopi

lus

vast

us(C

ope,

1871

)—

Ost

eopi

lus

vast

us—

Ost

eopi

lus

wil

deri

(Dun

n,19

25)

—O

steo

pilu

sw

ilde

ri—

Page 165: systematic review of the frog family hylidae, with special reference to ...

2005 165FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Phr

ynoh

yas

cori

acea

(Pet

ers,

1867

)—

Tra

chyc

epha

lus

cori

aceu

s—

Phr

ynoh

yas

hadr

ocep

s(D

uell

man

and

Hoo

gmoe

d,19

92)

—T

rach

ycep

halu

sha

droc

eps

Phr

ynoh

yas

imit

atri

x(M

iran

da-R

ibei

ro,

1926

)—

Tra

chyc

epha

lus

imit

atri

x—

Phr

ynoh

yas

mes

opha

ea(H

ense

l,18

67)

—T

rach

ycep

halu

sm

esop

haeu

s—

Phr

ynoh

yas

resi

nific

trix

(Goe

ldi,

1907

)—

Tra

chyc

epha

lus

resi

nific

trix

—P

hryn

ohya

sve

nulo

sa(L

aure

nti,

1768

)—

Tra

chyc

epha

lus

venu

losu

s—

Phy

llod

ytes

acum

inat

usB

oker

man

n,19

66P

hyll

odyt

eslu

teol

usgr

oup

Phy

llod

ytes

acum

inat

usP

hyll

odyt

eslu

teol

usgr

oup

Phy

llod

ytes

aura

tus

(Bou

leng

er,

1917

)P

.au

ratu

sgr

oup

Phy

llod

ytes

aura

tus

P.

aura

tus

grou

pP

hyll

odyt

esbr

evir

ostr

isP

eixo

toan

dC

ruz,

1988

P.

lute

olus

grou

pP

hyll

odyt

esbr

evir

ostr

isP

.lu

teol

usgr

oup

Phy

llod

ytes

edel

moi

Pei

xoto

,C

aram

asch

i,an

dF

reir

e,20

03P

.lu

teol

usgr

oup

Phy

llod

ytes

edel

moi

P.

lute

olus

grou

p

Phy

llod

ytes

gyri

naet

hes

Pei

xoto

,C

aram

asch

ian

dF

reir

e,20

03P

.gy

rina

ethe

sgr

oup

Phy

llod

ytes

gyri

naet

hes

P.

gyri

naet

hes

grou

p

Phy

llod

ytes

kaut

skyi

Pei

xoto

and

Cru

z,19

88P

.lu

teol

usgr

oup

Phy

llod

ytes

kaut

skyi

P.

lute

olus

grou

pP

hyll

odyt

eslu

teol

us(W

ied-

Neu

wie

d,18

24)

P.

lute

olus

grou

pP

hyll

odyt

eslu

teol

usP

.lu

teol

usgr

oup

Phy

llod

ytes

mel

anom

ysta

xC

aram

asch

i,da

Sil

va,

and

Bri

tto-

Per

eira

,19

92P

.lu

teol

usgr

oup

Phy

llod

ytes

mel

anom

ysta

xP

.lu

teol

usgr

oup

Phy

llod

ytes

punc

tatu

sC

aram

asch

ian

dP

eixo

to,

2004

P.

tube

rcul

osus

grou

pP

hyll

odyt

espu

ncta

tus

P.

tube

rcul

osus

grou

p

Phy

llod

ytes

tube

rcul

osus

Bok

erm

ann,

1966

P.

tube

rcul

osus

grou

pP

hyll

odyt

estu

berc

ulos

usP

.tu

berc

ulos

usgr

oup

Phy

llod

ytes

wuc

here

ri(P

eter

s,18

73)

P.

aura

tus

grou

pP

hyll

odyt

esw

uche

reri

P.

aura

tus

grou

pP

lect

rohy

laac

anth

odes

Due

llm

anan

dC

ampb

ell,

1992

—P

lect

rohy

laac

anth

odes

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

avia

Stu

art,

1952

—P

lect

rohy

laav

iaP

lect

rohy

lagu

atem

alen

sis

grou

pP

lect

rohy

lach

ryso

pleu

raW

ilso

n,M

cCra

nie,

and

Cru

z,19

94—

Ple

ctro

hyla

chry

sopl

eura

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

dasy

pus

McC

rani

ean

dW

ilso

n,19

81—

Ple

ctro

hyla

dasy

pus

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

exqu

isit

aM

cCra

nie

and

Wil

son,

1998

—P

lect

rohy

laex

quis

ita

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

glan

dulo

sa(B

oule

nger

,18

83)

—P

lect

rohy

lagl

andu

losa

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

guat

emal

ensi

sB

rocc

hi,

1877

—P

lect

rohy

lagu

atem

alen

sis

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

hart

weg

iD

uell

man

,19

68—

Ple

ctro

hyla

hart

weg

iP

lect

rohy

lagu

atem

alen

sis

grou

pP

lect

rohy

laix

ilS

tuar

t,19

42—

Ple

ctro

hyla

ixil

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

lace

rtos

aB

umza

hem

and

Sm

ith,

1954

—P

lect

rohy

lala

cert

osa

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

mat

udai

Har

tweg

,19

41—

Ple

ctro

hyla

mat

udai

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Page 166: systematic review of the frog family hylidae, with special reference to ...

166 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Ple

ctro

hyla

poko

mch

iD

uell

man

and

Cam

pbel

l,19

84—

Ple

ctro

hyla

poko

mch

iP

lect

rohy

lagu

atem

alen

sis

grou

p

Ple

ctro

hyla

psil

oder

ma

McC

rani

ean

dW

ilso

n,19

99—

Ple

ctro

hyla

psil

oder

ma

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

pycn

ochi

laR

abb,

1959

—P

lect

rohy

lapy

cnoc

hila

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

quec

chi

Stu

art,

1942

—P

lect

rohy

laqu

ecch

iP

lect

rohy

lagu

atem

alen

sis

grou

pP

lect

rohy

lasa

goru

mH

artw

eg,

1941

—P

lect

rohy

lasa

goru

mP

lect

rohy

lagu

atem

alen

sis

grou

pP

lect

rohy

late

cunu

man

iD

uell

man

and

Cam

pbel

l,19

84—

Ple

ctro

hyla

tecu

num

ani

Ple

ctro

hyla

guat

emal

ensi

sgr

oup

Ple

ctro

hyla

teuc

hest

esD

uell

man

and

Cam

pbel

l,19

92—

Ple

ctro

hyla

teuc

hest

esP

lect

rohy

lagu

atem

alen

sis

grou

p

Pse

udac

ris

brac

hyph

ona

(Cop

e,18

89)

Pse

udac

ris

nigr

ita

clad

eP

seud

acri

sbr

achy

phon

aP

seud

acri

sni

grit

acl

ade

Pse

udac

ris

brim

leyi

Bra

ndt

and

Wal

ker,

1933

P.

nigr

ita

clad

eP

seud

acri

sbr

imle

yiP

.ni

grit

acl

ade

Pse

udac

ris

cada

veri

na(C

ope,

1866

)P

.re

gill

acl

ade

Pse

udac

ris

cada

veri

naP

.re

gill

acl

ade

Pse

udac

ris

clar

kii

(Bai

rd,

1854

)P

.ni

grit

acl

ade

Pse

udac

ris

clar

kii

P.

nigr

ita

clad

eP

seud

acri

scr

ucif

er(W

ied-

Neu

wie

d,18

38)

P.

cruc

ifer

clad

eP

seud

acri

scr

ucif

erP

.cr

ucif

ercl

ade

Pse

udac

ris

feri

arum

(Bai

rd,

1854

)P

.ni

grit

acl

ade

Pse

udac

ris

feri

arum

P.

nigr

ita

clad

eP

seud

acri

sil

lino

ensi

sS

mit

h,19

51P

.or

nata

clad

eP

seud

acri

sil

lino

ensi

sP

.or

nata

clad

eP

seud

acri

sm

acul

ata

(Aga

ssiz

,18

50)

P.

nigr

ita

clad

eP

seud

acri

sm

acul

ata

P.

nigr

ita

clad

eP

seud

acri

sni

grit

a(L

eCon

te,

1825

)P

.ni

grit

acl

ade

Pse

udac

ris

nigr

ita

P.

nigr

ita

clad

eP

seud

acri

soc

ular

is(B

osc

and

Dau

din,

1801

)P

.cr

ucif

ercl

ade

Pse

udac

ris

ocul

aris

P.

cruc

ifer

clad

eP

seud

acri

sor

nata

(Hol

broo

k,18

36)

P.

orna

tacl

ade

Pse

udac

ris

orna

taP

.or

nata

clad

eP

seud

acri

sre

gill

a(B

aird

and

Gir

ard,

1852

)P

.re

gill

acl

ade

Pse

udac

ris

regi

lla

P.

regi

lla

clad

eP

seud

acri

sst

reck

eri

A.

A.

Wri

ght

and

A.

H.

Wri

ght,

1933

P.

orna

tacl

ade

Pse

udac

ris

stre

cker

iP

.or

nata

clad

e

Pse

udac

ris

tris

eria

ta(W

ied-

Neu

wie

d,18

38)

P.

nigr

ita

clad

eP

seud

acri

str

iser

iata

P.

nigr

ita

clad

eP

seud

isbo

lbod

acty

laA

.L

utz,

1925

—P

seud

isbo

lbod

acty

la—

Pse

udis

card

osoi

Kw

et,

2000

—P

seud

isca

rdos

oi—

Pse

udis

fusc

aG

arm

an,

1883

—P

seud

isfu

sca

—P

seud

ism

inut

aG

unth

er,

1858

—P

seud

ism

inut

a—

Pse

udis

para

doxa

(Lin

naeu

s,17

58)

—P

seud

ispa

rado

xa—

Pse

udis

toca

ntin

sC

aram

asch

ian

dC

ruz,

1998

—P

seud

isto

cant

ins

—P

tern

ohyl

ade

ntat

aS

mit

h,19

57—

Smil

isca

dent

ata

—P

tern

ohyl

afo

dien

sB

oule

nger

,18

82—

Smil

isca

fodi

ens

—P

tych

ohyl

aac

roch

orda

Cam

pbel

lan

dD

uell

man

,20

00—

Pty

choh

yla

acro

chor

da—

Page 167: systematic review of the frog family hylidae, with special reference to ...

2005 167FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Pty

choh

yla

eryt

hrom

ma

(Tay

lor,

1937

)—

Pty

choh

yla

eryt

hrom

ma

—P

tych

ohyl

aeu

thys

anot

a(K

ello

gg,

1928

)—

Pty

choh

yla

euth

ysan

ota

—P

tych

ohyl

ahy

pom

ykte

rM

cCra

nie

and

Wil

son,

1993

—P

tych

ohyl

ahy

pom

ykte

r—

Pty

choh

yla

legl

eri

(Tay

lor,

1958

)—

Pty

choh

yla

legl

eri

—P

tych

ohyl

ale

onha

rdsc

hult

zei

(Ahl

,19

34)

—P

tych

ohyl

ale

onha

rdsc

hult

zei

—P

tych

ohyl

am

acro

tym

panu

m(T

anne

r,19

57)

—P

tych

ohyl

am

acro

tym

panu

m—

Pty

choh

yla

panc

hoi

Due

llm

anan

dC

ampb

ell,

1982

—P

tych

ohyl

apa

ncho

i—

Pty

choh

yla

salv

ador

ensi

s(M

erte

ns,

1952

)—

Pty

choh

yla

salv

ador

ensi

s—

Pty

choh

yla

sanc

taec

ruci

sC

ampb

ell

and

Sm

ith,

1992

—P

tych

ohyl

asa

ncta

ecru

cis

Pty

choh

yla

spin

ipol

lex

(Sch

mid

t,19

36)

—P

tych

ohyl

asp

inip

olle

x—

Pty

choh

yla

zoph

odes

Cam

pbel

lan

dD

uell

man

,20

00—

Pty

choh

yla

zoph

odes

Scar

thyl

ago

inor

um(B

oker

man

n,19

64)

—Sc

arth

yla

goin

orum

—Sc

inax

acum

inat

us(C

ope,

1862

)S.

rube

rcl

ade

Scin

axac

umin

atus

S.ru

ber

clad

eSc

inax

agil

is(C

ruz

&P

eixo

to,

1983

)S.

cath

arin

aecl

ade

Scin

axag

ilis

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup.

Scin

axal

bica

ns(B

oker

man

n,19

67)

S.ca

thar

inae

clad

eSc

inax

albi

cans

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axal

catr

az(B

.L

utz,

1973

)S.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axal

catr

azS.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axal

tae

(Dun

n,19

33)

S.ru

ber

clad

eSc

inax

alta

eS.

rube

rcl

ade

Scin

axal

ter

(B.

Lut

z,19

73)

S.ru

ber

clad

eSc

inax

alte

rS.

rube

rcl

ade

Scin

axan

gren

sis

(B.

Lut

z,19

73)

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axan

gren

sis

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axar

duou

s(P

eixo

to,

2001

)S.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axar

duou

sS.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axar

gyre

orna

tus

(Mir

anda

-Rib

eiro

,19

26)

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axar

gyre

orna

tus

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axar

iadn

e(B

oker

man

n,19

67)

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axar

iadn

eS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

arom

othy

ella

Fai

vovi

ch,

2005

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axar

omot

hyel

laS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

atra

tus

(Pei

xoto

,‘‘

1988

’’19

89)

S.ca

thar

inae

clad

e,S.

perp

usil

lus

grou

pSc

inax

atra

tus

S.ca

thar

inae

clad

e,S.

perp

usil

lus

grou

p

Page 168: systematic review of the frog family hylidae, with special reference to ...

168 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Scin

axau

ratu

s(W

ied,

1821

)S.

rube

rcl

ade

Scin

axau

ratu

sS.

rube

rcl

ade

Scin

axba

umga

rdne

ri(R

iver

o,19

61)

S.ru

ber

clad

eSc

inax

baum

gard

neri

S.ru

ber

clad

eSc

inax

bert

hae

(Bar

rio,

1962

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

bert

hae

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axbl

airi

(Fou

quet

tean

dP

ybur

n,19

72)

S.ru

ber

clad

eSc

inax

blai

riS.

rube

rcl

ade

Scin

axbo

esem

ani

(Goi

n,19

66)

S.ru

ber

clad

eSc

inax

boes

eman

iS.

rube

rcl

ade

Scin

axbo

ulen

geri

(Cop

e,18

87)

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axbo

ulen

geri

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axbr

ieni

(De

Wit

te,

1930

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

brie

niS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

cald

arum

(B.

Lut

z,19

68)

S.ru

ber

clad

eSc

inax

cald

arum

S.ru

ber

clad

eSc

inax

cana

stre

nsis

(Car

doso

and

Had

dad,

1982

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

cana

stre

nsis

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axca

rdos

oi(C

arva

lho

eS

ilva

and

Pei

xoto

,19

91)

S.ru

ber

clad

eSc

inax

card

osoi

S.ru

ber

clad

e

Scin

axca

rnev

alli

i(C

aram

asch

ian

dK

iste

umac

her,

1989

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

carn

eval

liS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

cast

rovi

ejoi

De

La

Riv

a,19

93S.

rube

rcl

ade

Scin

axca

stro

viej

oiS.

rube

rcl

ade

Scin

axca

thar

inae

(Bou

leng

er,

1888

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

cath

arin

aeS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

cent

rali

sP

omba

lan

dB

asto

s,19

96S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

cent

rali

sS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

chiq

uita

nus

(De

La

Riv

a,19

90)

S.ru

ber

clad

eSc

inax

chiq

uita

nus

S.ru

ber

clad

eSc

inax

cros

pedo

spil

us(A

.L

utz,

1925

)S.

rube

rcl

ade

Scin

axcr

ospe

dosp

ilus

S.ru

ber

clad

eSc

inax

crue

ntom

mus

(Due

llm

an,

1972

)S.

rube

rcl

ade

Scin

axcr

uent

omm

usS.

rube

rcl

ade

Scin

axcu

rici

caP

ugli

ese,

Pom

bal,

and

Saz

ima,

2004

S.ru

ber

clad

eSc

inax

curi

cica

S.ru

ber

clad

e

Scin

axcu

spid

atus

(A.

Lut

z,19

25)

S.ru

ber

clad

eSc

inax

cusp

idat

usS.

rube

rcl

ade

Scin

axda

nae

(Due

llm

an,

1986

)S.

rube

rcl

ade

Scin

axda

nae

S.ru

ber

clad

eSc

inax

duar

tei

(B.

Lut

z,19

51)

S.ru

ber

clad

eSc

inax

duar

tei

S.ru

ber

clad

eSc

inax

elae

ochr

ous

(Cop

e,18

75)

S.ru

ber

clad

eSc

inax

elae

ochr

ous

S.ru

ber

clad

eSc

inax

eury

dice

(Bok

erm

ann,

1968

)S.

rube

rcl

ade

Scin

axeu

rydi

ceS.

rube

rcl

ade

Scin

axex

iguu

s(D

uell

man

,19

86)

S.ru

ber

clad

eSc

inax

exig

uus

S.ru

ber

clad

eSc

inax

flavi

dus

La

Mar

ca,

2004

S.ru

ber

clad

eSc

inax

flavi

dus

S.ru

ber

clad

eSc

inax

flavo

gutt

atus

(A.

Lut

zan

dB

.L

utz,

1939

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

flavo

gutt

atus

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Page 169: systematic review of the frog family hylidae, with special reference to ...

2005 169FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Scin

axfu

nere

us(C

ope,

1874

)S.

rube

rcl

ade

Scin

axfu

nere

usS.

rube

rcl

ade

Scin

axfu

scom

argi

natu

s(A

.L

utz,

1925

)S.

rube

rcl

ade

Scin

axfu

scom

argi

natu

sS.

rube

rcl

ade

Scin

axfu

scov

ariu

s(A

.L

utz,

1925

)S.

rube

rcl

ade

Scin

axfu

scov

ariu

sS.

rube

rcl

ade

Scin

axga

rbei

(Mir

anda

-Rib

eiro

,19

26)

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axga

rbei

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axgr

anul

atus

(Pet

ers,

1871

)S.

rube

rcl

ade

Scin

axgr

anul

atus

S.ru

ber

clad

eSc

inax

hayi

i(B

arbo

ur,

1909

)S.

rube

rcl

ade

Scin

axha

yii

S.ru

ber

clad

eSc

inax

heye

ri(P

eixo

toan

dW

eygo

ldt,

1986

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

heye

riS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

hiem

alis

(Had

dad

and

Pom

bal,

1987

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

hiem

alis

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axhu

mil

is(B

.L

utz,

1954

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

hum

ilis

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axic

teri

cus

Due

llm

anan

dW

iens

,19

93S.

rube

rcl

ade

Scin

axic

teri

cus

S.ru

ber

clad

eSc

inax

joly

iL

escu

rean

dM

arty

,20

00S.

rube

rcl

ade,

S.ro

stra

tus

grou

pSc

inax

joly

iS.

rube

rcl

ade,

S.ro

stra

tus

grou

p

Scin

axju

reia

(Pom

bal

and

Gor

do,

1991

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

jure

iaS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

kaut

skyi

(Car

valh

oe

Sil

vaan

dP

eixo

to,

1991

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

kaut

skyi

S.ca

thar

inae

Scin

axke

nned

yi(P

ybur

n19

73)

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axke

nned

yiS.

rube

rcl

ade,

S.ro

stra

tus

grou

p

Scin

axli

ndsa

yiP

ybur

n,19

92S.

rube

rcl

ade

Scin

axli

ndsa

yiS.

rube

rcl

ade

Scin

axli

ttor

alis

(Pom

bal

and

Gor

do,

1991

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

litt

oral

isS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

litt

oreu

s(P

exot

o,19

88)

S.ca

thar

inae

clad

e,S.

perp

usil

lus

grou

pSc

inax

litt

oreu

sS.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axlo

ngil

ineu

s(B

.L

utz,

1968

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

long

ilin

eus

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axlu

izot

avio

i(C

aram

asch

ian

dK

iste

umac

her,

1989

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

luiz

otav

ioi

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axm

acha

doi

(Bok

erm

ann

and

Saz

ima,

1973

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

mac

hado

iS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

man

riqu

eiB

arri

o-A

mor

os,

Ore

llan

a,an

dC

haco

n,20

04S.

rube

rcl

ade

Scin

axm

anri

quei

S.ru

ber

clad

e

Scin

axm

arac

aya

(Car

doso

and

Saz

ima,

1980

)S.

rube

rcl

ade

Scin

axm

arac

aya

S.ru

ber

clad

e

Page 170: systematic review of the frog family hylidae, with special reference to ...

170 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Scin

axm

egap

odiu

s(M

iran

da-R

ibei

ro,

1926

)S.

rube

rcl

ade

Scin

axfu

scov

ariu

sS.

rube

rcl

ade

Scin

axm

ello

i(P

eixo

to,

1989

)S.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axm

ello

iS.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axna

sicu

s(C

ope,

1862

)S.

rube

rcl

ade

Scin

axna

sicu

sS.

rube

rcl

ade

Scin

axne

bulo

sus

(Spi

x,18

24)

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axne

bulo

sus

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axob

tria

ngul

atus

(B.

Lut

z,19

73)

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axob

tria

ngul

atus

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axor

eite

sD

uell

man

and

Wie

ns,

1993

S.ru

ber

clad

eSc

inax

orei

tes

S.ru

ber

clad

eSc

inax

pach

ycru

s(M

iran

da-R

ibei

ro,

1937

)S.

rube

rcl

ade

Scin

axpa

chyc

rus

S.ru

ber

clad

eSc

inax

park

eri

(Gai

ge,

1926

)S.

rube

rcl

ade

Scin

axpa

rker

iS.

rube

rcl

ade

Scin

axpe

drom

edin

ae(H

enle

,19

91)

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axpe

drom

edin

aeS.

rube

rcl

ade,

S.ro

stra

tus

grou

p

Scin

axpe

rere

caP

omba

l,H

adda

d,an

dK

asah

ara,

1995

S.ru

ber

clad

eSc

inax

pere

reca

S.ru

ber

clad

e

Scin

axpe

rpus

illu

s(A

.L

utz

and

B.

Lut

z,19

39)

S.ca

thar

inae

clad

e,S.

perp

usil

lus

grou

pSc

inax

perp

usil

lus

S.ca

thar

inae

clad

e,S.

perp

usil

lus

grou

pSc

inax

prob

osci

deus

(Bro

nger

sma,

1933

)S.

rube

rcl

ade,

S.ro

stra

tus

grou

pSc

inax

prob

osci

deus

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axqu

inqu

efas

ciat

us(F

owle

r,19

13)

S.ru

ber

clad

eSc

inax

quin

quef

asci

atus

S.ru

ber

clad

eSc

inax

rank

i(A

ndra

dean

dC

ardo

so,

1987

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

rank

iS.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

rizi

bili

s(B

oker

man

n,19

64)

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axri

zibi

lis

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Scin

axro

stra

tus

(Pet

ers,

1863

)S.

rube

rcl

ade,

S.ro

stra

tus

grou

pSc

inax

rost

ratu

sS.

rube

rcl

ade,

S.ro

stra

tus

grou

p

Scin

axru

ber

(Lau

rent

i,17

68)

S.ru

ber

clad

eSc

inax

rube

rS.

rube

rcl

ade

Scin

axsi

mil

is(C

ochr

an,

1952

)S.

rube

rcl

ade

Scin

axsi

mil

isS.

rube

rcl

ade

Scin

axsq

uali

rost

ris

(A.

Lut

z,19

26)

S.ru

ber

clad

eSc

inax

squa

liro

stri

sS.

rube

rcl

ade

Scin

axst

auff

eri

(Cop

e,18

65)

S.ru

ber

clad

eSc

inax

stau

ffer

iS.

rube

rcl

ade

Scin

axst

rigi

latu

s(S

pix,

1824

)S.

cath

arin

aecl

ade

Scin

axst

rigi

latu

sS.

cath

arin

aecl

ade

Scin

axsu

gill

atus

(D

uell

man

,19

73)

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axsu

gill

atus

S.ru

ber

clad

e,S.

rost

ratu

sgr

oup

Scin

axtr

achy

thor

ax(M

ulle

ran

dH

ellm

ich,

1936

)S.

rube

rcl

ade

Scin

axfu

scov

ariu

sS.

rube

rcl

ade

Scin

axtr

apic

heir

oi(B

.L

utz,

1954

)S.

cath

arin

aecl

ade,

S.ca

thar

inae

grou

pSc

inax

trap

iche

iroi

S.ca

thar

inae

clad

e,S.

cath

arin

aegr

oup

Page 171: systematic review of the frog family hylidae, with special reference to ...

2005 171FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Scin

axtr

ilin

eatu

s(H

oogm

oed

and

Gor

zula

,19

77)

S.ru

ber

clad

eSc

inax

tril

inea

tus

S.ru

ber

clad

eSc

inax

v-si

gnat

us(B

.L

utz,

1968

)S.

cath

arin

aecl

ade,

S.pe

rpus

illu

sgr

oup

Scin

axv-

sign

atus

S.ca

thar

inae

clad

e,S.

perp

usil

lus

grou

pSc

inax

wan

dae

(Pyb

urn

and

Fou

quet

te,

1971

)S.

rube

rcl

ade

Scin

axw

anda

eS.

rube

rcl

ade

Scin

axx-

sign

atus

(Spi

x,18

24)

S.ru

ber

clad

eSc

inax

x-si

gnat

usS.

rube

rcl

ade

Smil

isca

baud

inii

(Dum

eril

and

Bib

ron,

1841

)—

Smil

isca

baud

inii

—Sm

ilis

cacy

anos

tict

a(S

mit

h,19

53)

—Sm

ilis

cacy

anos

tict

a—

Smil

isca

phae

ota

(Cop

e,18

62)

—Sm

ilis

caph

aeot

a—

Smil

isca

pum

a(C

ope,

1885

)—

Smil

isca

pum

a—

Smil

isca

sila

Due

llm

anan

dT

rueb

,19

66—

Smil

isca

sila

—Sm

ilis

caso

rdid

a(P

eter

s,18

63)

—Sm

ilis

caso

rdid

a—

Spha

enor

hync

hus

brom

elic

ola

Bok

erm

ann,

1966

—Sp

haen

orhy

nchu

sbr

omel

icol

a—

Spha

enor

hync

hus

carn

eus

(Cop

e,18

68)

—Sp

haen

orhy

nchu

sca

rneu

s—

Spha

enor

hync

hus

dori

sae

(Goi

n,19

57)

—Sp

haen

orhy

nchu

sdo

risa

e—

Spha

enor

hync

hus

lact

eus

(Dau

din,

1801

)—

Spha

enor

hync

hus

lact

eus

—Sp

haen

orhy

nchu

sor

ophi

lus

(A.

Lut

zan

dB

.L

utz,

1938

)—

Spha

enor

hync

hus

orop

hilu

s—

Spha

enor

hync

hus

palu

stri

sB

oker

man

n,19

66—

Spha

enor

hync

hus

palu

stri

s—

Spha

enor

hync

hus

paul

oalv

ini

Bok

erm

ann,

1973

—Sp

haen

orhy

nchu

spa

uloa

lvin

i—

Spha

enor

hync

hus

plan

icol

a(A

.L

utz

and

B.

Lut

z,19

38)

—Sp

haen

orhy

nchu

spl

anic

ola

Spha

enor

hync

hus

plat

ycep

halu

s(W

erne

r,18

94)

—Sp

haen

orhy

nchu

spl

atyc

epha

lus

—Sp

haen

orhy

nchu

spr

asin

usB

oker

man

n,19

73—

Spha

enor

hync

hus

pras

inus

—Sp

haen

orhy

nchu

ssu

rdus

(Coc

hran

,19

53)

—Sp

haen

orhy

nchu

ssu

rdus

—T

epui

hyla

aeci

i(A

yarz

ague

na,

Sen

aris

,an

dG

orzu

la,

1993

)—

Tep

uihy

laae

cii

Tep

uihy

lace

lsae

Mij

ares

-Urr

utia

,M

anza

nill

a-P

uppo

,an

dL

aM

arca

,19

99—

Tep

uihy

lace

lsae

Tep

uihy

laed

elca

e(A

yarz

ague

na,

Sen

aris

,an

dG

orzu

la,

1993

)—

Tep

uihy

laed

elca

e—

Tep

uihy

laga

lani

(Aya

rzag

uena

,S

enar

is,

and

Gor

zula

,19

93)

—T

epui

hyla

gala

ni—

Tep

uihy

lalu

teol

abri

s(A

yarz

ague

na,

Sen

aris

,an

dG

orzu

la,

1993

)—

Tep

uihy

lalu

teol

abri

s—

Tep

uihy

lari

mar

um(A

yarz

ague

na,

Sen

aris

,an

dG

orzu

la,

1993

)—

Tep

uihy

lari

mar

um—

Page 172: systematic review of the frog family hylidae, with special reference to ...

172 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Tep

uihy

laro

drig

uezi

(Riv

ero,

1968

)—

Tep

uihy

laro

drig

uezi

—T

epui

hyla

talb

erga

eD

uell

man

and

Yos

hpa,

1996

—T

epui

hyla

talb

erga

e—

Tra

chyc

epha

lus

atla

sB

oker

man

n,19

66—

Tra

chyc

epha

lus

atla

s—

Tra

chyc

epha

lus

jord

ani

(Ste

jneg

eran

dT

est,

1891

)—

Tra

chyc

epha

lus

jord

ani

—T

rach

ycep

halu

sni

grom

acul

atus

Tsc

hudi

,18

38—

Tra

chyc

epha

lus

nigr

omac

ulat

us—

Tri

prio

npe

tasa

tus

(Cop

e,18

65)

—T

ripr

ion

peta

satu

s—

Tri

prio

nsp

atul

atus

Gun

ther

,18

82—

Tri

prio

nsp

atul

atus

—X

enoh

yla

euge

nioi

Car

amas

chi,

1998

—X

enoh

yla

euge

nioi

—X

enoh

yla

trun

cata

(Ize

ckso

hn,

1959

)—

Xen

ohyl

atr

unca

ta—

Phy

llom

edus

inae

Aga

lych

nis

anna

e(D

uell

man

,19

63)

—A

galy

chni

san

nae

—A

galy

chni

sca

lcar

ifer

Bou

leng

er,

1902

—C

ruzi

ohyl

aca

lcar

ifer

—A

galy

chni

sca

llid

ryas

(Cop

e,18

62)

—A

galy

chni

sca

llid

ryas

—A

galy

chni

scr

aspe

dopu

s(F

unkh

ouse

r,19

57)

—C

ruzi

ohyl

acr

aspe

dopu

s—

Aga

lych

nis

lito

drya

s(D

uell

man

and

Tru

eb,

1967

)—

Aga

lych

nis

lito

drya

s—

Aga

lych

nis

mor

elet

ii(D

umer

il,

1853

)—

Aga

lych

nis

mor

elet

ii—

Aga

lych

nis

salt

ator

Tay

lor,

1955

—A

galy

chni

ssa

ltat

or—

Aga

lych

nis

spur

rell

iB

oule

nger

,19

14‘‘

1913

’’—

Aga

lych

nis

spur

rell

i—

Hyl

oman

tis

aspe

raP

eter

s,18

73‘‘

1872

’’—

Hyl

oman

tis

aspe

raH

ylom

anti

sas

pera

grou

pH

ylom

anti

sgr

anul

osa

(Cru

z,19

89)

—H

ylom

anti

sgr

anul

osa

Hyl

oman

tis

aspe

ragr

oup

Pac

hym

edus

ada

cnic

olor

(Cop

e,18

64)

—P

achy

med

usa

dacn

icol

or—

Pha

smah

yla

coch

rana

e(B

oker

man

n,19

66)

—P

hasm

ahyl

aco

chra

nae

—P

hasm

ahyl

aex

ilis

(Cru

z,19

80)

—P

hasm

ahyl

aex

ilis

—P

hasm

ahyl

agu

ttat

a(A

.L

utz,

1925

)—

Pha

smah

yla

gutt

ata

—P

hasm

ahyl

aja

ndai

a(B

oker

man

nan

dS

azim

a,19

78)

—P

hasm

ahyl

aja

ndai

a—

Phr

ynom

edus

aap

pend

icul

ata

(A.

Lut

z,19

25)

—P

hryn

omed

usa

appe

ndic

ulat

a—

Phr

ynom

edus

abo

kerm

anni

Cru

z,19

91—

Phr

ynom

edus

abo

kerm

anni

—P

hryn

omed

usa

fimbr

iata

Mir

anda

-Rib

eiro

,19

23—

Phr

ynom

edus

afim

bria

ta—

Phr

ynom

edus

am

argi

nata

(Ize

ckso

hnan

dC

ruz,

1976

)—

Phr

ynom

edus

am

argi

nata

Phr

ynom

edus

ava

nzol

inii

Cru

z,19

91—

Phr

ynom

edus

ava

nzol

inii

—P

hyll

omed

usa

atel

opoi

des

Due

llm

an,

Cad

le,

and

Can

nate

lla,

1988

Una

ssig

ned

Phy

llom

edus

aat

elop

oide

sU

nass

igne

d

Phy

llom

edus

aay

eaye

(B.

Lut

z,19

66)

P.

hypo

chon

dria

lis

grou

pP

hyll

omed

usa

ayea

yeP

.hy

poch

ondr

iali

sgr

oup

Page 173: systematic review of the frog family hylidae, with special reference to ...

2005 173FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

1(C

onti

nued

)

Cur

rent

taxo

nom

yS

peci

esgr

oup

incu

rren

tta

xono

my

New

taxo

nom

yS

peci

esgr

oup

inne

wta

xono

my

Phy

llom

edus

aba

ltea

Due

llm

anan

dT

oft,

1979

P.

peri

neso

sgr

oup

Phy

llom

edus

aba

ltea

P.

peri

neso

sgr

oup

Phy

llom

edus

abi

colo

r(B

odda

ert,

1772

)U

nass

igne

dP

hyll

omed

usa

bico

lor

Una

ssig

ned

Phy

llom

edus

abo

livi

ana

Bou

leng

er,

1902

P.

tars

ius

grou

pP

hyll

omed

usa

boli

vian

aP

.ta

rsiu

sgr

oup

Phy

llom

edus

abu

ckle

yiB

oule

nger

,18

82P

.bu

ckle

yigr

oup

Hyl

oman

tis

buck

leyi

Hyl

oman

tis

buck

leyi

grou

pP

hyll

omed

usa

burm

eist

eri

Bou

leng

er,

1882

P.

burm

eist

eri

grou

pP

hyll

omed

usa

burm

eist

eri

P.

burm

eist

eri

grou

pP

hyll

omed

usa

cam

baD

eL

aR

iva,

2000

P.

tars

ius

grou

pP

hyll

omed

usa

cam

baP

.ta

rsiu

sgr

oup

Phy

llom

edus

ace

ntra

lis

Bok

erm

ann,

1965

P.

hypo

chon

dria

lis

grou

pP

hyll

omed

usa

cent

rali

sP

.hy

poch

ondr

iali

sgr

oup

Phy

llom

edus

aco

eles

tis

(Cop

e,18

74)

Una

ssig

ned

Phy

llom

edus

aco

eles

tis

Una

ssig

ned

Phy

llom

edus

ada

niel

iR

uiz-

Car

ranz

a,H

erna

ndez

-C

amac

ho,

and

Rue

da-A

lmon

acid

,19

88P

.bu

ckle

yigr

oup

Hyl

oman

tis

dani

eli

Hyl

oman

tis

buck

leyi

grou

p

Phy

llom

edus

adi

stin

cta

B.

Lut

z,19

50P

.bu

rmei

ster

igr

oup

Phy

llom

edus

adi

stin

cta

P.

burm

eist

eri

grou

pP

hyll

omed

usa

duel

lman

iC

anna

tell

a,19

82P

.pe

rine

sos

grou

pP

hyll

omed

usa

duel

lman

iP

.pe

rine

sos

grou

pP

hyll

omed

usa

ecua

tori

ana

Can

nate

lla,

1982

P.

peri

neso

sgr

oup

Phy

llom

edus

aec

uato

rian

aP

.pe

rine

sos

grou

pP

hyll

omed

usa

hull

iD

uell

man

and

Men

dels

on,

1995

P.

buck

leyi

grou

pH

ylom

anti

shu

lli

Hyl

oman

tis

buck

leyi

grou

p

Phy

llom

edus

ahy

poch

ondr

iali

s(D

audi

n,18

00)

P.

hypo

chon

dria

lis

grou

pP

hyll

omed

usa

hypo

chon

dria

lis

P.

hypo

chon

dria

lis

grou

pP

hyll

omed

usa

iher

ingi

iB

oule

nger

,18

85P

.bu

rmei

ster

igr

oup

Phy

llom

edus

aih

erin

gii

P.

burm

eist

eri

grou

pP

hyll

omed

usa

lem

urB

oule

nger

,18

82P

.bu

ckle

yigr

oup

Hyl

oman

tis

lem

urH

ylom

anti

sbu

ckle

yigr

oup

Phy

llom

edus

am

egac

epha

la(M

iran

da-R

ibei

ro,

1926

)P

.hy

poch

ondr

iali

sgr

oup

Phy

llom

edus

am

egac

epha

laP

.hy

poch

ondr

iali

sgr

oup

Phy

llom

edus

am

edin

aiF

unkh

ouse

r,19

62P

.bu

ckle

yigr

oup

Hyl

oman

tis

med

inai

Hyl

oman

tis

buck

leyi

grou

pP

hyll

omed

usa

orea

des

Bra

ndao

,20

02P

.hy

poch

ondr

iali

sgr

oup

Phy

llom

edus

aor

eade

sP

.hy

poch

ondr

iali

sgr

oup

Phy

llom

edus

apa

llia

taP

eter

s,18

73‘‘

1872

’’U

nass

igne

dP

hyll

omed

usa

pall

iata

Una

ssig

ned

Phy

llom

edus

ape

rine

sos

Due

llm

an,

1973

P.

peri

neso

sgr

oup

Phy

llom

edus

ape

rine

sos

P.

peri

neso

sgr

oup

Phy

llom

edus

aps

ilop

ygio

nC

anna

tell

a,19

80P

.bu

ckle

yigr

oup

Hyl

oman

tis

psil

opyg

ion

Hyl

oman

tis

buck

leyi

grou

pP

hyll

omed

usa

rohd

eiM

erte

ns,

1926

P.

hypo

chon

dria

lis

grou

pP

hyll

omed

usa

rohd

eiP

.hy

poch

ondr

iali

sgr

oup

Phy

llom

edus

asa

uvag

iiB

oule

nger

,18

82P

.ta

rsiu

sgr

oup

Phy

llom

edus

asa

uvag

iiP

.ta

rsiu

sgr

oup

Phy

llom

edus

ata

rsiu

s(C

ope,

1868

)P

.ta

rsiu

sgr

oup

Phy

llom

edus

ata

rsiu

sP

.ta

rsiu

sgr

oup

Phy

llom

edus

ate

trap

loid

eaP

omba

lan

dH

adda

d,19

92P

.bu

rmei

ster

igr

oup

Phy

llom

edus

ate

trap

loid

eaP

.bu

rmei

ster

igr

oup

Phy

llom

edus

ato

mop

tern

a(C

ope,

1868

)U

nass

igne

dP

hyll

omed

usa

tom

opte

rna

Una

ssig

ned

Phy

llom

edus

atr

init

atis

Mer

tens

,19

26U

nass

igne

dP

hyll

omed

usa

trin

itat

isU

nass

igne

dP

hyll

omed

usa

vail

lant

iiB

oule

nger

,18

82U

nass

igne

dP

hyll

omed

usa

vail

lant

iiU

nass

igne

dP

hyll

omed

usa

venu

sta

Due

llm

anan

dT

rueb

,19

67U

nass

igne

dP

hyll

omed

usa

venu

sta

Una

ssig

ned

Page 174: systematic review of the frog family hylidae, with special reference to ...

174 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 2

LOCALITY DATA AND GENBANK ACCESSIONS

The table on the following pages lists all spec-imens, collection numbers, localities, and Gen-Bank accessions of the sequences included in thisanalysis. The current taxonomy of hylids isused here, as these names were used for theGenBank submission; see appendix 1 for thenew taxonomy. All species followed by an aster-isk (*) correspond to sequences retrieved fromGenBank. In a few cases, the tissues have separatenumbers of official tissue collections. These aregiven as footnotes. The list includes collection ab-breviations for (1) vouchers and or tissues em-ployed in this project, (2) preserved specimens re-ferred to in this paper, and (3) vouchers from se-quences retrieved from GenBank, followed by anasterisk (*), with their locality data taken fromDarst and Cannatella (2004).

Collection abbreviations are as follows: AF,Laboratorio de Citogenetica de Vertebrados, In-stituto de Biociencias, Universidade de Sao Paulo(to be accesioned in MZUSP); AM, AustralianMuseum, Sidney, Australia; AM-CC, AmbroseMonell Cryo Collection; AMNH, American Mu-seum of Natural History, New York; BMNH,British Museum (Natural History), London;CFBH, Collection Celio F.B. Haddad, Universi-dade Estadual Paulista, Rio Claro, Sao Paulo, Bra-zil; CWM, Field number of Charles W. Myers (tobe accessioned in AMNH); DFCH-USFQ, Univ-ersidad San Francisco de Quito, Quito, Ecuador;DLR, field numbers of Ignacio De la Riva (to beaccessioned in the Museo Nacional de CienciasNaturales, Madrid, Spain); IRSNB, Institut Royaldes Sciences Naturelles de Belgique, Bruxelles;ITH, field numbers used in the project Levanta-mento da Fauna de Vertebrados Terrestres do areasob influencia da Linha de Transmissao (LT) Ita-bera-Tijuco Preto III (to be accessioned inMZUSP); IWK, field numbers used by MaureenA. Donnelly (to be accessioned in the Herpeto-logical Collection of the Florida InternationalUniversity); JF, field numbers of Julian Faivovich(to be accessioned in MACN); JPC, field num-bers of Janalee P. Caldwell; KRL, field numbersof Karen Lips; KU, University of Kansas, Mu-seum of Natural History, Lawrence, KS; LSUMZH, tissue collection, Louisiana State UniversityMuseum of Zoology, Baton Rouge, LA; MACN,Museo Argentino de Ciencias Naturales ‘‘Bernar-dino Rivadavia’’, Buenos Aires, Argentina;MAD, field numbers of Maureen Donnelly;

MCN, Museo de Ciencias Naturales de la Univ-ersidad Nacional de Salta, Salta, Argentina; MCP,Museu de Ciencias e Tecnologia da PontificiaUniversidade Catolica de Rio Grande do Sul, Bra-zil; MCZ, Museum of Comparative Zoology,Harvard University, Cambridge, MA; MJH, fieldnumbers of Martin J. Henzl; MLP-A, Museo deLa Plata, La Plata, Argentina; MLP-DB, Collec-tion Diego Baldo, at MLP; MNCN ADN, collec-tion of DNA samples of the Museo Nacional deCiencias Naturales, Madrid, Spain; MNHN. Mu-seum National d’Histoire Naturelle, Paris; MNK,Museo ‘‘Noel Kempf Mercado’’, Santa Cruz, Bo-livia; MRT, field numbers of Miguel Trefaut Ro-drigues (to be accesioned in MZUSP); MVZ, Mu-seum of Vertebrate Zoology, University of Cali-fornia, Berkeley, CA; MVZFC, MVZ frozen tis-sue collection; MZFC, Museo de Zoologıa de laFacultad de Ciencias, Universidad Nacional Au-tonoma de Mexico; MZUSP, Museu de Zoologia,Universidade de Sao Paulo, Sao Paulo, Brazil;NHMG, Naturhistoriska Museet, Goteborg, Swe-den; NMP6V, National Museum, Prague, CzechRepublic; QCAZ, Museo de Zoologıa de la Pon-tificia Universidad Catolica del Ecuador; QULC,Queen’s University Laboratory Collection, King-ston, Canada; RdS, field numbers of Rafael de Sa;RNF, field numbers of Robert N. Fisher; ROM,Royal Ontario Museum, Toronto, Canada; RWM,field numbers of Roy W. McDiarmid (specimensto be accessioned in USNM); SAMA, South Aus-tralia Museum, Adelaide, South Australia; SIUC-H, Department of Zoology and Center for Sys-tematic Biology, Southern Illinois University atCarbondale, IL; TMSA, Transvaal Museum, Pre-toria, South Africa; TNHC, Texas Memorial Mu-seum, Texas Natural History Collection, Austin,TX; UMMZ, University of Michigan, Museum ofZoology, Ann Arbor, MI; USNM, National Mu-seum of Natural History, Smithsonian Institution,Washington DC; UTA, University of Texas at Ar-lington, TX; ZFMK-H, tissue collection of theZoologisches Forschungsinstitut und Museum Al-exander Koenig, Bonn, Germany; ZMB, Zoolo-gisches Museum–Universitat Humboldt, Berlin;ZSM, Zoologisches Staatssammlung, Munich,Germany; ZUEC, Museu de Historia Natural,Universidade de Campinas, Campinas, Sao Paulo,Brazil; ZUFRJ, Departamento de Zoologia, Insti-tuto de Biologia, Universidade Federal do Rio deJaneiro, Rio de Janeiro, Brazil.

Page 175: systematic review of the frog family hylidae, with special reference to ...

2005 175FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

LIS

TO

FS

PE

CIM

EN

S,

CO

LL

EC

TIO

NN

UM

BE

RS,

LO

CA

LIT

IES,

AN

DG

EN

BA

NK

AC

CE

SS

ION

SO

FS

EQ

UE

NC

ES

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

LS

UM

ZH

-216

4A

cris

crep

itan

sA

Y84

3559

AY

8437

82A

Y84

4533

AY

8443

58A

Y84

4019

AY

8447

62A

Y84

4194

US

A:

Ala

bam

a:D

eK

alb

Co.

:po

wer

line

acce

ss,

0.1

mi

Wof

Loo

kout

Mt.

Boy

sC

amp

Rd.

AM

NH

A-1

6842

2A

cris

gryl

lus

AY

8435

60A

Y84

3783

AY

8445

34A

Y84

4359

AY

8440

20A

Y84

4763

—U

SA

:F

lori

da:

Oka

loos

aC

o.:

Egl

inA

FB

,J.

R.

Wal

ton

Pon

d.30

841.

599N

,86

828.

369W

EN

S10

039

Ano

thec

asp

inos

aA

Y84

3566

AY

8437

88A

Y84

4540

AY

8443

63A

Y84

4022

AY

8447

68A

Y84

4198

Mex

ico:

Oax

aca:

Ixtl

ande

Juar

ez:

San

tiag

oC

omal

tepe

c,V

ista

Her

mos

aC

FB

H27

15A

para

sphe

nodo

nbr

unoi

AY

8435

67A

Y84

3789

AY

8445

41A

Y84

4364

AY

8440

23A

Y84

4769

AY

8441

99B

razi

l:E

spır

ito

San

to:

Ara

cruz

CF

BH

3001

Apl

asto

disc

usco

chra

nae

AY

8435

68A

Y84

3790

AY

8445

42A

Y84

4365

AY

8440

24A

Y84

4770

AY

8442

00B

razi

l:S

anta

Cat

arin

a:R

anch

oQ

ueim

ado

MA

CN

3779

1A

plas

todi

scus

perv

irid

isA

Y84

3569

AY

8437

91A

Y84

4543

AY

8443

66A

Y84

4025

AY

8447

71A

Y84

4201

Arg

enti

na:

Mis

ione

s:G

uara

ni:

San

Vic

ente

:C

ampo

Ane

xoIN

TA

‘‘C

uart

elR

ioV

icto

ria’

’M

AC

N38

644

Arg

ente

ohyl

asi

emer

siA

Y84

3570

AY

8437

92A

Y84

4544

AY

8443

67A

Y84

4026

AY

8447

72A

Y84

4202

Arg

enti

na:

Cor

rien

tes:

Bel

laV

ista

:In

ters

ecci

onR

.N.

12y

Rio

San

taL

ucia

CF

BH

2968

Cor

ytho

man

tis

gree

ning

iA

Y84

3578

AY

8438

00A

Y84

4551

AY

8443

74A

Y84

4030

AY

8447

79A

Y84

4209

Bra

zil:

Ala

goas

:R

epre

sade

Xin

go,

Pir

anha

sM

VZ

2071

93a

Due

llm

anoh

yla

rufio

culi

sA

Y54

9315

AY

5493

68A

Y84

4556

AY

8443

77A

Y84

4033

AY

8447

82A

Y84

4212

Cos

taR

ica:

Gua

naca

ste:

Vol

can

Cac

aoU

TA

A-5

0812

Due

llm

anoh

yla

sora

lia

AY

8435

84A

Y84

3806

AY

8445

57A

Y84

4378

AY

8440

34A

Y84

4783

—G

uate

mal

a:Iz

abal

:M

oral

es,

Sie

rra

deC

aral

,F

inca

Que

brad

as–C

erro

Poz

ode

Agu

aC

FB

H59

15H

yla

sp.

1(a

f.H

.eh

rhar

dti)

AY

8436

69A

Y84

3913

AY

8446

60A

Y84

4456

—A

Y84

4875

—B

razi

l:S

aoP

aulo

:U

batu

ba(P

icin

guab

a)

Page 176: systematic review of the frog family hylidae, with special reference to ...

176 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

US

NM

3030

22H

yla

aril

dae

AY

8436

04A

Y84

3825

AY

8445

78A

Y84

4392

AY

8440

49A

Y84

4803

AY

8442

23B

razi

l:S

aoP

aulo

:N

ear

Sal

esop

olis

,E

stac

oB

iolo

gica

deB

orac

eia

AF

0068

Hyl

aw

eygo

ldti

AY

8436

85A

Y84

3931

AY

8446

78A

Y84

4467

—A

Y84

4887

—B

razi

l:E

spır

ito

San

to:

Dom

ingo

sM

arti

ns:

Sao

Pau

lodo

Ara

caU

SN

M28

4519

Hyl

aal

bom

argi

nata

AY

5493

16A

Y54

9369

AY

8445

68A

Y84

4384

—A

Y84

4794

AY

8442

18B

razi

l:P

erna

mbu

co:

Nea

rC

arau

rucu

,on

way

toS

erra

dos

Cav

alos

KU

2027

34H

yla

pell

ucen

s*A

Y32

6058

——

——

——

Ecu

ador

:P

ichi

ncha

:1.

8km

SS

ES

anJu

an,

3420

mK

RL

798

Hyl

aru

fitel

aA

Y84

3662

AY

8439

05A

Y84

4652

—A

Y84

4105

AY

8448

67A

Y84

4282

Pan

ama:

Coc

le:

El

Cop

e:P

arqu

eN

acio

nal

‘‘O

mar

Tor

rijo

s’’

CF

BH

3184

Hyl

aal

bosi

gnat

aA

Y84

3596

AY

8438

17A

Y84

4570

AY

8443

85A

Y84

4042

AY

8447

96A

Y84

4219

Bra

zil:

San

taC

atar

ina:

Sao

Ben

todo

Sul

(Rio

Ver

mel

ho)

CF

BH

3909

Hyl

aca

llip

ygia

AY

8436

14A

Y84

3840

AY

8445

92A

Y84

4402

AY

8440

58A

Y84

4813

AY

8442

36B

razi

l:M

inas

Ger

ais:

Mon

teV

erde

AF

0070

Hyl

aca

vico

laA

Y84

3617

AY

8438

43A

Y84

4594

AY

8444

05—

AY

8448

14—

Bra

zil:

Esp

ırit

oS

anto

:D

omin

gos

Mar

tins

US

NM

3030

38H

yla

leuc

opyg

iaA

Y84

3638

AY

8438

73A

Y84

4622

AY

8444

25A

Y84

4084

AY

8448

40A

Y84

4261

Bra

zil:

Sao

Pau

lo:

Nea

rS

ales

opol

is,

Est

acao

Bio

logi

cade

Bor

acei

aZ

UE

C12

053

Hyl

aal

bopu

ncta

taA

Y54

9317

AY

5493

70A

Y84

4569

—A

Y84

4041

AY

8447

95—

Bra

zil:

Sao

Pau

lo:

Cam

pina

sM

JH56

4H

yla

lanc

ifor

mis

AY

8436

36A

Y84

3870

AY

8446

19—

AY

8440

81A

Y84

4837

AY

8442

58P

eru:

Lor

eto:

Alp

ahua

yoA

MN

HA

-141

040b

Hyl

am

ulti

fasc

iata

AY

8436

48A

Y84

3887

AY

8446

33A

Y84

4436

AY

8440

93A

Y84

4851

AY

8442

70G

uyan

a:D

emer

ara:

Cei

baS

tati

on,

Mad

ewin

iR

iver

,ca

.3

mi

(lin

ear)

ET

imeh

riA

irpo

rt

Page 177: systematic review of the frog family hylidae, with special reference to ...

2005 177FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MA

CN

3779

5H

yla

rani

ceps

AY

8436

57A

Y84

3900

AY

8446

46—

AY

8441

03A

Y84

4863

—A

rgen

tina

:S

anta

Fe:

Ver

a:E

a.‘‘

Las

Gam

as’’

RO

M40

304

Hyl

aan

nect

ans

AY

8436

00A

Y84

3821

AY

8445

74A

Y84

4388

AY

8440

45A

Y84

4800

—V

ietn

am:

Lao

Cai

:S

aP

aN

/AH

yla

arbo

rea

AY

8436

01A

Y84

3822

AY

8445

75A

Y84

4389

AY

8440

46—

AY

8442

21P

ettr

ade

LS

UM

ZH

-230

Hyl

aja

poni

caA

Y84

3633

AY

8438

66A

Y84

4615

AY

8444

20A

Y84

4078

AY

8448

33A

Y84

4255

Japa

n:H

iros

him

aP

refe

ctur

e:H

iros

him

aci

tyY

asuf

utui

chi-

cho,

Ait

aN

/Ac

Hyl

asa

vign

yiA

Y84

3665

AY

8439

07A

Y84

4654

—A

Y84

4107

—A

Y84

4284

Yem

en:

Yar

im(2

813

m)

AM

NH

A-1

6516

3H

yla

arm

ata

AY

5493

21A

Y54

9374

AY

8445

79A

Y84

4393

AY

8440

50A

Y84

4804

AY

8442

24B

oliv

ia:

San

taC

ruz:

Cab

alle

ro:

Can

ton

San

Juan

:A

mbo

roN

atio

nal

Par

kA

MN

H-A

1651

32d

Hyl

ach

araz

ani

AY

8436

18A

Y84

3844

AY

8445

95A

Y84

4406

AY

8440

61—

AY

8442

39B

oliv

ia:

La

Paz

:B

auti

sta

Saa

vedr

a:C

anto

nC

hara

zani

,st

ream

2R

WM

1768

8H

yla

inpa

rque

siA

Y84

3672

—A

Y84

4663

—A

Y84

4114

AY

8448

76A

Y84

4291

Ven

ezue

la:

Am

azon

as:

Cer

rode

laN

ebli

naJA

C22

650

Hyl

abi

stin

cta

AY

8436

09A

Y84

3834

AY

8445

87A

Y84

4399

AY

8440

54—

AY

8442

30M

exic

o:O

axac

a:M

po.

Cui

catl

an,

Tut

epet

ongo

,16

19m

JAC

2116

7H

yla

calt

hula

AY

8436

15A

Y84

3841

AY

8445

93A

Y84

4403

AY

8440

59—

AY

8442

37M

exic

o:O

axac

a:C

arre

tera

Coc

onal

es-

Zac

atep

ec,

1360

mR

WM

1774

6H

yla

boan

sA

Y84

3610

AY

8438

35A

Y84

4588

—A

Y84

4055

AY

8448

09A

Y84

4231

Ven

ezue

la:

Am

azon

as:

Can

oA

gua

Bla

nca:

3.5

kmS

EN

ebli

naba

seca

mp

onR

ioB

aria

CF

BH

2966

Hyl

acr

epit

ans

AY

8436

21A

Y84

3850

AY

8446

01A

Y84

4412

AY

8440

67—

—B

razi

l:A

lago

as:

Mun

icıp

iode

Pir

anha

s:R

epre

sade

Xin

go

Page 178: systematic review of the frog family hylidae, with special reference to ...

178 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MA

CN

3700

0H

yla

fabe

rA

Y54

9334

AY

5493

87A

Y84

4607

——

AY

8448

25—

Arg

enti

na:

Mis

ione

s:G

uara

ni:

San

Vic

ente

:C

ampo

Ane

xoIN

TA

‘‘C

uart

elR

ioV

icto

ria’

’C

FB

H40

00H

yla

lund

iiA

Y84

3639

AY

8438

74A

Y84

4623

—A

Y84

4085

AY

8448

41A

Y84

4262

Bra

zil:

Sao

Pau

lo:

Rio

Cla

ro(I

tape

)U

SN

M30

3046

Hyl

apa

rdal

isA

Y84

3651

AY

8438

91A

Y84

4637

—A

Y84

4096

AY

8448

55—

Bra

zil:

Sao

Pau

lo:

near

Sal

esop

olis

,E

stac

aoB

iolo

gica

deB

orac

eia

SIU

CH

-707

9H

yla

coly

mba

AY

8436

20A

Y84

3848

AY

8445

99A

Y84

4410

AY

8440

65A

Y84

4818

AY

8442

43P

anam

a:C

ocle

:P

arqu

eN

acio

nal

El

Cop

eS

IUC

H-6

924

Hyl

apa

lmer

iA

Y84

3650

AY

8438

90A

Y84

4636

AY

8444

39A

Y84

4095

AY

8448

54A

Y84

4273

Pan

ama:

El

Cop

e:P

arqu

eN

acio

nal

‘‘O

mar

Tor

rijo

s’’

UT

AA

-507

71H

yla

brom

elia

cia

AY

8436

12A

Y84

3837

AY

8445

90A

Y84

4401

AY

8440

56A

Y84

4811

AY

8442

33G

uate

mal

a:H

uehu

eten

ango

:S

ierr

ade

los

Cuc

hum

atan

es:

Fin

caC

hibl

ac(n

owA

ldea

Bue

nos

Air

es)

N/A

(AM

CC

1256

27)

Hyl

aan

ders

onii

AY

8435

98A

Y84

3819

AY

8445

72—

AY

8440

44A

Y84

4798

—U

SA

:F

lori

da:

San

taR

osa

Co.

:C

o.R

d.19

1N

ofM

unso

nM

VZ

1453

85e

Hyl

aci

nere

aA

Y54

9327

AY

5493

80A

Y84

4597

AY

8444

08A

Y84

4063

AY

8448

16A

Y84

4241

US

A:

Tex

as:

Tra

vis

Co.

Aus

tin,

Mun

icip

alG

olf

Cou

rse

AM

NH

A-1

6840

4H

yla

grat

iosa

AY

8436

30A

Y84

3862

AY

8446

11A

Y84

4418

AY

8440

76A

Y84

4829

AY

8442

52U

SA

:F

lori

da:

San

taR

osa

Co.

:C

o.R

d.19

1N

ofM

unso

n.30

853.

289N

,86

853.

269W

AM

NH

A-1

6842

7H

yla

squi

rell

aA

Y84

3678

AY

8439

23A

Y84

4670

AY

8444

62A

Y84

4119

AY

8448

82A

Y84

4295

US

A:

Flo

rida

:A

lach

uaC

o.:

Co.

Rd.

346

1.2

mi

121,

2983

0.11

9N,

8282

5.62

9W

Page 179: systematic review of the frog family hylidae, with special reference to ...

2005 179FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

US

NM

3030

32H

yla

asta

rtea

AY

5493

22A

Y54

9375

AY

8445

80—

——

AY

8442

25B

razi

l:S

aoP

aulo

:ne

arS

ales

opol

is,

Est

acao

Bio

logi

cade

Bor

acei

aC

FB

H36

21H

yla

circ

umda

taA

Y54

9328

AY

5493

81A

Y84

4598

AY

8444

09A

Y84

4064

AY

8448

17A

Y84

4242

Bra

zil:

San

taC

atar

ina:

Sao

Ben

todo

Sul

US

NM

3030

36H

yla

hyla

xA

Y54

9338

AY

5493

91A

Y84

4614

AY

8444

19A

Y84

4077

AY

8448

32A

Y84

4254

Bra

zil:

Sao

Pau

lo:

near

Sal

esop

olis

,E

stac

aoB

iolo

gica

deB

orac

eia

CF

BH

5766

Hyl

asp

.3

AY

8436

73A

Y84

3916

AY

8446

64—

AY

8441

15—

—B

razi

l:R

iode

Jane

iro:

Ang

rado

sR

eis

CF

BH

5917

Hyl

asp

.4

AY

8436

74A

Y84

3917

AY

8446

65A

Y84

4458

AY

8441

16A

Y84

4877

—B

razi

l:S

aoP

aulo

:U

batu

ba:

Pic

ingu

aba

DF

CH

-US

FQ

899

Hyl

aca

rnif

exA

Y84

3616

AY

8438

42—

AY

8444

04A

Y84

4060

—A

Y84

4238

Ecu

ador

:P

ichi

ncha

:T

anda

yapa

CF

BH

5418

Hyl

abe

rtha

lutz

aeA

Y84

3607

AY

8438

31A

Y84

4584

AY

8443

97A

Y84

4052

AY

8448

07A

Y84

4228

Bra

zil:

Rio

deJa

neir

o:D

uque

deC

axia

sU

MM

Z77

55H

yla

aren

icol

orA

Y84

3603

AY

8438

24A

Y84

4577

AY

8443

91A

Y84

4048

AY

8448

02—

US

A:

Ari

zona

:G

ila

Co.

:H

oust

oncr

eek

just

NH

wy

260,

appr

ox.

4m

iE

ofP

ayso

nU

TA

A-5

4763

Hyl

aeu

phor

biac

eaA

Y84

3625

AY

8438

55A

Y84

4606

—A

Y84

4072

AY

8448

23A

Y84

4248

Mex

ico:

Oax

aca:

Car

rete

raM

itla

-Ayu

tla,

1950

mM

ZF

C48

14H

yla

exim

iaA

Y84

3626

AY

8438

56—

—A

Y84

4073

AY

8448

24A

Y84

4249

Mex

ico:

Pue

bla:

Chi

gnah

uapa

n,20

kmS

AM

NH

A-1

6840

6H

yla

wal

keri

AY

8436

84A

Y84

3930

AY

8446

77A

Y84

4466

AY

8441

25—

—P

ettr

ade

NM

P6V

7125

0H

yla

calc

arat

aA

Y84

3613

AY

8438

39—

——

—A

Y84

4235

Per

u:A

ngui

lla,

50km

Wof

Iqui

tos

MA

D44

0H

yla

fasc

iata

AY

5493

35A

Y54

9388

AY

8446

08—

——

—G

uyan

a:Iw

okra

ma:

Cow

fly

cam

p,80

mA

MN

H-A

1410

54f

Hyl

age

ogra

phic

aA

Y84

3628

——

——

——

Guy

ana:

War

niab

oC

reek

,4

mi

(by

rd)

SW

Dub

ulay

Ran

chho

use

RO

M39

582

Hyl

aka

naim

aA

Y84

3634

AY

8438

68A

Y84

4617

AY

8444

22A

Y84

4079

AY

8448

35—

Guy

ana:

Mou

ntA

yang

anna

Page 180: systematic review of the frog family hylidae, with special reference to ...

180 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

NM

P6V

7125

8/1

Hyl

am

icro

derm

aA

Y84

3644

AY

8438

81—

——

—A

Y84

4267

Per

u:A

ngui

lla,

50km

Wof

Iqui

tos

KU

2027

37H

yla

pict

urat

a*A

Y32

6055

——

——

——

Ecu

ador

:P

ichi

ncha

:T

inal

andi

a:15

.5km

SE

San

toD

omin

gode

los

Col

orad

os,

700

mR

OM

3962

4H

yla

rora

ima

AY

8436

60A

Y84

3903

AY

8446

50A

Y84

4448

AY

8441

04A

Y84

4866

AY

8442

80G

uyan

a:M

ount

Aya

ngan

naC

FB

H54

24H

yla

sem

ilin

eata

AY

8437

78A

Y84

3779

AY

8439

09A

Y84

4656

AY

8444

53A

Y84

4108

AY

8448

71A

Y84

4286

Bra

zil:

Rio

deJa

neir

o:D

uque

deC

axia

sR

dS60

6H

yla

pict

aA

Y84

3654

AY

8438

94A

Y84

4640

AY

8444

42A

Y84

4099

AY

8448

58A

Y84

4276

Bel

ize:

Sta

nnC

reek

Dis

tric

t:C

oksc

omb

Bas

inW

ildl

ife

San

tuar

yU

TA

A-5

4773

Hyl

asm

ithi

iA

Y84

3668

AY

8439

12A

Y84

4659

—A

Y84

4111

AY

8448

74—

Mex

ico:

Oax

aca:

Sie

rra

Mad

rede

lS

ur;

Car

rete

raP

ochu

tla,

288

mM

AD

085

Hyl

agr

anos

aA

Y54

9336

AY

8438

61A

Y84

4610

——

AY

8448

28—

Guy

ana:

Iwok

ram

a:M

uri

Scr

ubca

mp,

80m

RO

M39

570

Hyl

ale

mai

AY

8436

37A

Y84

3871

AY

8446

20A

Y84

4423

AY

8440

82A

Y84

4838

AY

8442

59G

uyan

a:M

ount

Aya

ngan

naR

OM

3956

1H

yla

sibl

eszi

AY

8436

67A

Y84

3911

AY

8446

58A

Y84

4455

AY

8441

10A

Y84

4873

AY

8442

88G

uyan

a:M

ount

Aya

ngan

naQ

UL

C97

005

Hyl

ala

bial

isA

Y84

3635

AY

8438

69A

Y84

4618

—A

Y84

4080

AY

8448

36A

Y84

4257

Col

ombi

a:P

arqu

eN

atur

alN

acio

nal

Chi

ngaz

aK

U20

2760

Hyl

apa

cha*

AY

3260

57—

——

——

—E

cuad

or:

Azu

ay:

2km

SS

EP

alm

as,

2340

mK

U20

2732

Hyl

apa

ntos

tict

a*A

Y32

6052

——

——

——

Ecu

ador

:N

apo:

18km

ES

anta

Bar

bara

QC

AZ

1670

4H

yla

tapi

chal

aca

AY

5636

25A

Y84

3925

AY

8446

72—

AY

8441

21—

AY

8442

97E

cuad

or:

Zam

ora-

Chi

nchi

pe:

Res

erva

Tap

icha

laca

:ro

adbe

twee

nY

anga

naan

dV

alla

doli

d

Page 181: systematic review of the frog family hylidae, with special reference to ...

2005 181FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

RdS

790

Hyl

aeb

racc

ata

AY

8436

24A

Y84

3853

AY

8446

04A

Y84

4415

AY

8440

70A

Y84

4822

AY

8442

47B

eliz

e:S

tann

Cre

ekD

istr

ict:

Cok

scom

bB

asin

Wil

dlif

eS

antu

ary

(cap

tive

-ra

ised

tadp

oles

from

adul

tsco

llec

ted

inth

islo

cali

ty)

MJH

7143

Hyl

asa

raya

cuen

sis

AY

8436

64—

—A

Y84

4451

—A

Y84

4869

—P

eru:

Hua

nuco

:R

ioL

lull

apic

his:

Pan

guan

aM

JH38

44H

yla

tria

ngul

umA

Y84

3680

AY

8439

26A

Y84

4673

AY

8444

64A

Y84

4122

—A

Y84

4298

Bra

zil:

Acr

e:L

ago

Cat

alao

:Il

haX

ibor

ena

AF

414

Hyl

am

arti

nsi

AY

8436

41A

Y84

3878

AY

8446

26—

AY

8440

86A

Y84

4844

AY

8442

64B

razi

l:M

inas

Ger

ais:

San

taB

arba

raM

JH71

16H

yla

mar

mor

ata

AY

8436

40A

Y84

3877

—A

Y84

4428

——

—P

eru:

Hua

nuco

:R

ioL

lull

apic

his:

Pan

guan

aC

FB

H57

61H

yla

seni

cula

AY

8436

66A

Y84

3910

AY

8446

57A

Y84

4454

AY

8441

09A

Y84

4872

AY

8442

87B

razi

l:R

iode

Jane

iro:

Ang

rado

sR

eis

MR

T59

46H

yla

bipu

ncta

taA

Y84

3608

AY

8438

32A

Y84

4585

—A

Y84

4053

AY

8448

08A

Y84

4229

Bra

zil:

Bah

ia:

Juss

ari:

Ser

rado

Tei

mos

oU

TA

A-5

0632

Hyl

am

icro

ceph

ala

AY

8436

43A

Y84

3880

AY

8446

28A

Y84

4430

—A

Y84

4846

AY

8442

66H

ondu

ras:

Atl

anti

da:

Cor

dill

era

Nom

bre

deD

ios,

Ald

eaR

ioV

iejo

MA

CN

3778

5H

yla

nana

AY

5493

46A

Y84

3888

AY

8446

34A

Y84

4437

—A

Y84

4852

AY

8442

71A

rgen

tina

:E

ntre

Rio

s:D

epto

.Is

las

del

Ibic

uyM

HZ

462

Hyl

arh

odop

epla

AY

8436

58—

AY

8446

47A

Y84

4446

—A

Y84

4864

—P

eru:

Lor

eto:

Jena

roH

erre

raM

AC

N38

638

Hyl

asa

nbor

niA

Y84

3663

AY

8439

06A

Y84

4653

AY

8444

50A

Y84

4106

AY

8448

68A

Y84

4283

Arg

enti

na:

Ent

reR

ios:

Dep

to.

Isla

sde

lIb

icuy

:R

uta

12vi

eja,

entr

eB

razo

Lar

goy

Arr

oyo

Luc

iano

MJH

129

Hyl

aw

alfo

rdi

AY

8436

83A

Y84

3929

AY

8446

76—

—A

Y84

4886

—B

razi

l:U

nkno

wn

JPC

1077

2gH

yla

miy

atai

AY

8436

47A

Y84

3886

AY

8446

32A

Y84

4435

AY

8440

92A

Y84

4850

—E

cuad

or:

Suc

umbi

os

Page 182: systematic review of the frog family hylidae, with special reference to ...

182 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MA

CN

3379

9H

yla

min

uta

AY

5493

45A

Y54

9398

—A

Y84

4432

AY

8440

89—

—A

rgen

tina

:M

isio

nes:

Gua

rani

:S

anV

icen

te:

Cam

poA

nexo

INT

A‘‘

Cua

rtel

Rio

Vic

tori

a’’

UT

AA

-562

83H

yla

arbo

resc

ande

nsA

Y84

3602

AY

8438

23A

Y84

4576

AY

8443

90A

Y84

4047

AY

8448

01A

Y84

4222

Mex

ico:

Pue

bla:

Sie

rra

Neg

ra,

1833

mU

TA

A-5

4762

Hyl

acy

clad

aA

Y84

3622

AY

8438

51A

Y84

4602

AY

8444

13A

Y84

4068

AY

8448

20A

Y84

4245

Mex

ico:

Oax

aca:

Sie

rra

Mix

e,2.

0m

iW

Tot

onte

pec,

2045

mU

TA

A-5

4766

Hyl

am

elon

omm

aA

Y84

3642

AY

8438

79A

Y84

4627

AY

8444

29A

Y84

4087

AY

8448

45A

Y84

4265

Mex

ico:

Oax

aca:

Sie

rra

Mad

rede

lS

ur;

Car

rete

raP

ochu

tla,

681m

JAC

2243

8H

yla

mio

tym

panu

mA

Y84

3645

AY

8438

84A

Y84

4630

AY

8444

33A

Y84

4090

AY

8448

48—

Mex

ico:

Pue

bla:

Sie

rra

Nor

te,

Cue

tzal

an,

Hot

elV

illa

sC

uetz

alan

,12

50m

UT

AA

-547

21H

yla

perk

insi

AY

8436

53A

Y84

3893

AY

8446

39A

Y84

4441

AY

8440

98A

Y84

4857

AY

8442

75G

uate

mal

a:H

uehu

eten

ango

:B

aril

las,

Ald

eaN

ucaq

uexi

sJA

C21

583

Hyl

am

ixe

AY

8436

46A

Y84

3885

AY

8446

31A

Y84

4434

AY

8440

91A

Y84

4849

AY

8442

69M

exic

o:O

axac

a:S

ierr

aM

ixe;

Mun

.S

anti

ago

Zac

atep

ec:

carr

eter

aZ

acat

epec

-Jes

usC

arra

nza,

28m

ide

entr

onqu

eco

nca

rret

era

aT

oton

tepe

c,80

3m

MJH

7101

Hyl

abr

evif

rons

AY

8436

11A

Y84

3836

AY

8445

89A

Y84

4400

—A

Y84

4810

AY

8442

32P

eru:

Hua

nuco

:R

ioL

lull

apic

his:

angu

ana

CF

BH

S/N

Hyl

agi

esle

riA

Y84

3629

AY

8438

60—

AY

8444

17A

Y84

4075

AY

8448

27A

Y84

4251

Bra

zil:

Sao

Pau

lo:

Uba

tuba

:P

icin

guab

a

Page 183: systematic review of the frog family hylidae, with special reference to ...

2005 183FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

AM

NH

A-1

3931

5H

yla

parv

icep

sA

Y84

3652

AY

8438

92A

Y84

4638

AY

8444

40A

Y84

4097

AY

8448

56A

Y84

4274

Bra

zil:

Acr

e:C

entr

oE

xper

imen

tal

daU

nive

rsid

ade

doA

cre

atkm

23on

Rio

Bra

nco-

Por

toV

elho

Roa

dM

VZ

1497

50h

Hyl

ari

vula

ris

AY

8436

59A

Y84

3902

AY

8446

49—

AY

8441

17—

—C

osta

Ric

a:H

ered

ia:

‘‘C

hom

pipe

’’vi

cini

tyof

Vol

can

Ban

baJA

C22

24H

yla

sp.

5(a

ff.

H.

thor

ecte

s)A

Y84

3675

AY

8439

18A

Y84

4666

AY

8444

59A

Y84

4118

AY

8448

78—

Mex

ico:

Gue

rrer

o:C

arre

tera

Nue

vaD

elhi

-L

aG

uita

rra,

1900

mC

FB

H56

42H

yla

sp.

6(a

ff.

H.

pseu

dops

eudi

s)A

Y84

3676

AY

8439

19A

Y84

4667

AY

8444

60A

Y84

4101

AY

8448

79A

Y84

4292

Bra

zil:

Bah

ia:

Mun

icıp

iode

Len

cois

:R

ioG

risa

nte,

Ser

rado

Sin

cora

,C

hapa

daD

iam

anti

naM

VZ

1497

64H

yla

pseu

dopu

ma

AY

8436

56A

Y84

3897

AY

8446

43A

Y84

4444

AY

8440

75A

Y84

4861

AY

8442

77C

osta

Ric

a:P

unta

Are

nas:

Mon

teve

rde

ML

PA21

38H

yla

andi

naA

Y54

9319

AY

5493

72A

Y84

4573

AY

8443

87—

AY

8447

99—

Arg

enti

na:

Tuc

uman

:T

afide

lV

alle

DL

R41

19H

yla

balz

ani

AY

5493

23A

Y54

9376

AY

8445

82A

Y84

4395

—A

Y84

4806

AY

8442

26B

oliv

ia:

Dep

to.

La

Paz

:P

rov.

Nor

yung

as:

Ser

rani

aB

ella

vist

aC

FB

H33

56H

yla

bisc

hoffi

AY

5493

24A

Y54

9377

AY

8445

86A

Y84

4398

——

—B

razi

l:S

anta

Cat

arin

a:R

anch

oQ

ueim

ado

ML

P-D

B10

84H

yla

cain

gua

AY

5493

26A

Y54

9379

AY

8445

91—

AY

8440

57A

Y84

4812

AY

8442

34A

rgen

tina

:M

isio

nes:

Pos

adas

MA

CN

3769

2H

yla

cord

obae

AY

5493

30A

Y54

9383

AY

8446

00A

Y84

4411

AY

8440

66A

Y84

4819

AY

8442

44A

rgen

tina

:S

anL

uis:

Dep

to.

Cha

cabu

co:

Vil

laE

lena

:A

rroy

o‘‘

La

cale

ra’’

MA

CN

3779

4H

yla

sp.

7(a

ff.

H.

sem

igut

tata

)A

Y54

9359

AY

5494

12—

——

AY

8448

80—

Arg

enti

na:

Mis

ione

s:S

anV

icen

te:

Cam

poA

nexo

INT

A‘‘

Cua

rtel

Rio

Vic

tori

a’’

Page 184: systematic review of the frog family hylidae, with special reference to ...

184 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MZ

US

P11

1556

Hyl

ala

tist

riat

aA

Y54

9360

AY

5494

13A

Y84

4668

——

—A

Y84

4293

Bra

zil:

Min

asG

erai

s:M

unic

ıpio

Itam

onte

sC

FB

H35

99H

yla

eric

aeA

Y54

9332

AY

5493

85A

Y84

4605

AY

8444

16A

Y84

4071

——

Bra

zil:

Goi

as:

Alt

oP

arai

sode

Goi

asC

FB

H33

86H

yla

guen

ther

iA

Y84

3631

AY

5493

90A

Y84

4612

——

AY

8448

30A

Y84

4253

Bra

zil:

Rio

Gra

nde

doS

ul:

Ter

rade

Are

iaC

FB

H36

25H

yla

joaq

uini

AY

5493

39A

Y54

9392

AY

8446

16A

Y84

4421

—A

Y84

4834

AY

8442

56B

razi

l:S

anta

Cat

arin

a:U

rubi

ciC

FB

H38

48H

yla

lept

olin

eata

AY

5493

41A

Y54

9394

AY

8446

21A

Y84

4424

AY

8440

83A

Y84

4839

AY

8442

60B

razi

l:S

anta

Cat

arin

a:M

unic

ipio

deS

aoD

omin

gos

CF

BH

3098

Hyl

am

argi

nata

AY

5493

42A

Y54

9395

AY

8446

24A

Y84

4426

—A

Y84

4842

AY

8442

63B

razi

l:R

ioG

rand

edo

Sul

:S

aoF

ranc

iso

deP

aula

MV

0249

Hyl

am

aria

nita

eA

Y54

9344

AY

5493

97A

Y84

4625

AY

8444

27—

AY

8448

43—

Arg

enti

na:

Sal

ta:

Bar

itu

CF

BH

5752

Hyl

apo

lyta

enia

AY

8436

55A

Y84

3895

AY

8446

41A

Y84

4443

—A

Y84

4859

—B

razi

l:R

iode

Jane

iro:

Itat

iaia

:M

arin

gaC

FB

H33

88H

yla

pras

ina

AY

5493

47A

Y54

9400

AY

8446

42—

AY

8441

00A

Y84

4860

—B

razi

l:S

anta

Cat

arin

a:R

ioV

erm

elho

MA

CN

3778

8H

yla

pulc

hell

aA

Y54

9352

AY

5494

05A

Y84

4644

AY

8444

45A

Y84

4102

AY

8448

62A

Y84

4278

Arg

enti

na:

Bue

nos

Air

es:

Car

ilo

MA

CN

3750

9H

yla

rioj

ana

AY

5493

55A

Y54

9408

AY

8446

48A

Y84

4447

—A

Y84

4865

AY

8442

79A

rgen

tina

:L

aR

ioja

:S

anog

asta

:E

lH

uaco

deA

rrib

aC

FB

H35

79H

yla

sem

igut

tata

AY

5493

57A

Y54

9410

AY

8446

55A

Y84

4452

—A

Y84

4870

AY

8442

85B

razi

l:P

aran

a:P

iraq

uara

MA

CN

3779

2H

yla

punc

tata

AY

5493

53A

Y54

9406

AY

8446

45—

——

—A

rgen

tina

:C

haco

:R

esis

tenc

ia:

Cam

ino

aIs

lade

lC

erri

to,

altu

raP

eaje

Gra

l.B

elgr

ano

IT-H

0653

Hyl

aru

bicu

ndul

aA

Y84

3661

AY

8439

04A

Y84

4651

AY

8444

49—

—A

Y84

4281

Bra

zil:

Sao

Pau

lo:

Bur

iJA

C21

736

Hyl

ach

imal

apa

AY

8436

19A

Y84

3845

AY

8445

96A

Y84

4407

AY

8440

62A

Y84

4815

AY

8442

40M

exic

o:C

hiap

as:

Col

onia

Rod

ulfo

Fig

uero

a,E

lC

arri

zal,

1475

m

Page 185: systematic review of the frog family hylidae, with special reference to ...

2005 185FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

JAC

2237

1H

yla

xera

AY

8436

86A

Y84

3932

AY

8446

79A

Y84

4468

AY

8441

26A

Y84

4888

AY

8443

00M

exic

o:P

uebl

a:C

arre

tera

Tex

cala

-Z

apot

itla

nS

alin

as,

5227

ftJA

C21

531

Hyl

ane

phil

aA

Y84

3649

AY

8438

89A

Y84

4635

AY

8444

38A

Y84

4094

AY

8448

53A

Y84

4272

Mex

ico:

Oax

aca:

Col

onia

Rod

ulfo

Fig

uero

a,E

lC

arri

zal,

1475

mJA

C24

443

Hyl

ata

enio

pus

AY

8436

79A

Y84

3924

AY

8446

71A

Y84

4463

AY

8441

20A

Y84

4883

AY

8442

96M

exic

o:P

uebl

a:S

ierr

aN

orte

,C

uetz

alan

,H

otel

Vil

las

Cue

tzal

an,

1250

mU

TA

A-5

1838

Hyl

ade

ndro

phas

ma

AY

8436

23A

Y84

3852

AY

8446

03A

Y84

4414

AY

8440

69A

Y84

4821

AY

8442

46G

uate

mal

a:H

uehu

eten

ango

:F

inca

San

Fra

ncis

co,

near

Ald

eaY

alam

bojo

chS

IUC

H-0

6998

Hyl

am

ilia

ria

AY

8437

76A

Y84

3777

AY

8438

82A

Y84

4629

AY

8444

31A

Y84

4088

AY

8448

47A

Y84

4268

Pan

ama:

Coc

le:

El

Cop

e:P

arqu

eN

acio

nal

Om

arT

orri

jos

CF

BH

5788

Hyl

aur

ugua

yaA

Y84

3681

AY

8439

27A

Y84

4674

—A

Y84

4123

AY

8448

84A

Y84

4299

Bra

zil:

Rio

Gra

nde

doS

ul:

Cam

bara

doS

ulA

MN

HA

-168

423

Hyl

aav

ivoc

aA

Y84

3605

AY

8438

28A

Y84

4581

AY

8443

94A

Y84

4051

AY

8448

05—

US

A:

Flo

rida

:A

lach

uaC

o.:

Loc

hloo

saW

ildl

ife

Mgm

tar

eane

arR

iver

Sty

x.29

831.

259N

,82

813.

049

AM

NH

A-1

6842

5H

yla

fem

oral

isA

Y84

3627

AY

8438

59A

Y84

4609

—A

Y84

4074

AY

8448

26A

Y84

4250

US

A:

Flo

rida

:O

kalo

osa

Co.

:U

SH

wy

90at

Yel

low

Riv

erfl

oodp

lain

UM

FS

5545

Hyl

ave

rsic

olor

AY

8436

82A

Y84

3928

AY

8446

75A

Y84

4465

AY

8441

24A

Y84

4885

—P

ettr

ade

CW

M19

512

Hyl

asp

.8

AY

8436

71A

Y84

3915

AY

8446

62—

AY

8441

13—

AY

8442

90V

enez

uela

:B

oliv

ar:

Cer

roG

uana

y

Page 186: systematic review of the frog family hylidae, with special reference to ...

186 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

CF

BH

5652

Hyl

asp

.9

(aff

.H

.al

vare

ngai

)A

Y84

3677

AY

8439

22A

Y84

4669

AY

8444

61—

AY

8448

81A

Y84

4294

Bra

zil:

Bah

ia:

Mun

icıp

iode

Len

cois

:R

ioG

risa

nte,

Ser

rado

Sin

cora

,C

hapa

daD

iam

anti

naC

FB

H57

97H

yla

ance

psA

Y84

3597

AY

8438

18A

Y84

4571

AY

8443

86A

Y84

4043

AY

8447

97A

Y84

4220

Bra

zil:

Esp

ırit

oS

anto

:L

inha

res

(Pov

oaca

o)U

SN

M30

2435

Hyl

abe

nite

ziA

Y84

3606

AY

8438

30A

Y84

4583

AY

8443

96—

—A

Y84

4227

Bra

zil:

Ror

aim

a:V

illa

Pac

arai

ma,

bord

erm

arke

rB

V(B

razi

l–V

enez

uela

)8

AM

NH

A-1

6840

5H

yla

heil

prin

iA

Y84

3632

AY

8438

64A

Y84

4613

——

AY

8448

31—

Pet

trad

eN

MP

6V71

202/

2H

yla

sp.

2A

Y84

3670

AY

8439

14A

Y84

4661

AY

8444

57A

Y84

4112

—A

Y84

4289

Per

u:50

kmW

ofIq

uito

sN

/Ai

Lys

apsu

sla

evis

AY

8436

96A

Y84

3941

AY

8446

89A

Y84

4476

AY

8441

33A

Y84

4896

AY

8443

05G

uyan

a:S

outh

ern

Rup

unun

iS

avan

ah:

Ais

halt

on(o

nK

uban

awan

Cre

ek)

MA

CN

3864

5L

ysap

sus

lim

ellu

mA

Y84

3697

AY

8439

42A

Y84

4690

AY

8444

77—

AY

8448

97—

Arg

enti

na:

Cor

rien

tes:

Bel

laV

ista

:In

ters

ecci

onR

.N.

12y

Rio

San

taL

ucia

N/A

Nyc

tim

anti

sru

gice

psA

Y84

3780

AY

8437

81A

Y84

3945

——

——

—E

cuad

or:

Nap

o:Ja

tun

Sac

ha(e

ggs

laid

inca

ptiv

ity

from

adul

tsco

llec

ted

ther

e)JP

C13

178j

Ost

eoce

phal

usca

brer

aiA

Y84

3705

AY

8439

50A

Y84

4696

AY

8444

81A

Y84

4136

AY

8449

02A

Y84

4310

Bra

zil:

Acr

e:5

kmN

Por

toW

alte

r,in

land

from

Rio

Juru

aM

AC

N38

643

Ost

eoce

phal

usla

ngsd

orffi

iA

Y84

3706

AY

8439

51A

Y84

4697

AY

8444

82A

Y84

4137

AY

8449

03A

Y84

4311

Arg

enti

na:

Mis

ione

s:G

ener

alB

elgr

ano:

10km

NB

erna

rdo

deIr

igoy

en:

Sal

toA

ndre

sito

Page 187: systematic review of the frog family hylidae, with special reference to ...

2005 187FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

AM

NH

A-1

3125

4O

steo

ceph

alus

lepr

ieur

iiA

Y54

9361

AY

8439

52A

Y84

4698

AY

8444

83A

Y84

4138

AY

8449

04A

Y84

4312

Ven

ezue

la:

Am

azon

as:

Neb

lina

Bas

eC

amp

onR

ioM

awar

inum

a(5

Rio

Bar

ia),

140

mM

NH

N20

01.0

828

Ost

eoce

phal

usoo

phag

usA

Y84

3708

AY

8439

53A

Y84

4699

AY

8444

84A

Y84

4139

——

Fre

nch

Guy

ana:

Kaw

road

:04

842N

/528

18W

AM

NH

-A13

1245

Ost

eoce

phal

usta

urin

usA

Y84

3709

AY

8439

54A

Y84

4700

AY

8444

85A

Y84

4140

AY

8449

05A

Y84

4313

Ven

ezue

la:

Am

azon

as:

Neb

lina

Bas

eC

amp

onR

ioM

awar

inum

a(5

Rio

Bar

ia),

140

MN

/AO

steo

pilu

scr

ucia

lis

AY

8437

10A

Y84

3955

——

——

AY

8443

14Ja

mai

ca:

Man

ches

ter

Par

ish:

Man

devi

lle

(egg

sla

idin

capt

ivit

yfr

omad

ults

coll

ecte

dth

ere)

AM

NH

A-1

6841

0O

steo

pilu

sdo

min

icen

sis

AY

8437

11A

Y84

3956

AY

8447

01A

Y84

4486

AY

8441

41—

AY

8443

15P

ettr

ade

US

NM

3178

30O

steo

pilu

sse

pten

trio

nali

sA

Y84

3712

AY

8439

57—

AY

8444

87A

Y84

4142

AY

8449

06A

Y84

4316

Cub

a:G

uant

anam

o:G

uant

anam

oB

ayA

MN

HA

-168

415

Ost

eopi

lus

vast

usA

Y84

3713

AY

8439

58—

—A

Y84

4143

AY

8449

07A

Y84

4317

Pet

trad

eM

NH

N20

01.0

814

Phr

ynoh

yas

hadr

ocep

sA

Y84

3717

AY

8439

62A

Y84

4704

AY

8444

90A

Y84

4146

—A

Y84

4319

Fre

nch

Guy

ana:

Kaw

road

:04

8429

N,

5281

89W

CF

BH

5780

Phr

ynoh

yas

mes

opha

eaA

Y84

3718

AY

8439

63A

Y84

4705

AY

8444

91A

Y84

4147

AY

8449

10A

Y84

4320

Bra

zil:

Rio

deJa

neir

o:P

arat

iA

MN

H-A

1312

01k

Phr

ynoh

yas

resi

nifr

icti

xA

Y84

3719

AY

8439

64A

Y84

4706

AY

8444

92A

Y84

4148

AY

8449

11A

Y84

4321

Ven

ezue

la:

Am

azon

as:

Neb

lina

base

cam

pon

Rio

Maw

arin

uma,

140

mA

MN

H-A

1411

42P

hryn

ohya

sve

nulo

saA

Y54

9362

AY

5494

15A

Y84

4707

AY

8444

93A

Y84

4149

AY

8449

12A

Y84

4322

Guy

ana:

Dub

ulay

Ran

chon

the

Ber

bice

Riv

er,

200

ftN

/Al

Phy

llod

ytes

lute

olus

AY

8437

21A

Y84

3965

AY

8447

08A

Y84

4494

AY

8441

50A

Y84

4913

AY

8443

24B

razi

l:E

spır

ito

San

to:

Set

iba,

Gua

rapa

riM

RT

6144

Phy

llod

ytes

sp.

AY

8437

22A

Y84

3966

AY

8447

09—

AY

8441

51A

Y84

4914

AY

8443

25B

razi

l:B

ahia

:U

ruci

-Una

Page 188: systematic review of the frog family hylidae, with special reference to ...

188 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MV

Z14

9403

Ple

ctro

hyla

glan

dulo

saA

Y84

3730

AY

8439

67A

Y84

4718

AY

8445

00A

Y84

4159

AY

8449

23A

Y84

4331

Gua

tem

ala:

San

Mar

cos:

ridg

eab

ove

El

Rin

con

UT

AA

-551

40P

lect

rohy

lagu

atem

alen

sis

AY

8437

31A

Y84

3976

AY

8447

19A

Y84

4501

AY

8441

60A

Y84

4924

AY

8443

32G

uate

mal

a:G

uate

mal

a:D

onJu

sto:

San

taR

osal

ia:

km12

.5ca

rret

era

aE

lS

alva

dor

JAC

2170

7P

lect

rohy

lam

atud

aiA

Y84

3732

AY

8439

77A

Y84

4720

AY

8445

02A

Y84

4161

AY

8449

25A

Y84

4333

Mex

ico:

Chi

apas

:ca

min

oC

olon

iaR

odul

foF

igue

roa,

Dia

zO

rdaz

–1.

4m

ide

Rod

ulfo

Fig

uero

aR

NF

2424

Pse

udac

ris

cada

veri

naA

Y84

3734

AY

8439

78A

Y84

4722

—A

Y84

4162

—A

Y84

4334

US

A:

Cal

ifor

nia:

San

Die

goC

o:A

nza

Bor

rego

N/A

Pse

udac

ris

cruc

ifer

AY

8437

35A

Y84

3980

AY

8447

23—

AY

8441

63A

Y84

4927

—P

ettr

ade

AM

NH

A-1

6847

2P

seud

acri

soc

ular

isA

Y84

3736

AY

8439

81A

Y84

4724

—A

Y84

4164

——

US

A:

Flo

rida

:C

olum

bia

Co.

,S

R25

02

mi

WI-

10R

NF

3255

Pse

udac

ris

regi

lla

AY

8437

37A

Y84

3982

AY

8447

25A

Y84

4504

AY

8441

65—

—U

SA

:C

alif

orni

a:S

anD

iego

Co.

:B

owde

nC

anyo

nA

MN

HA

-168

468

Pse

udac

ris

tris

eria

taA

Y84

3738

AY

8439

83A

Y84

4726

—A

Y84

4166

AY

8449

28A

Y84

4335

US

A:

Uta

h:C

ache

:A

mal

gaM

AC

N37

786

Pse

udis

min

uta

AY

8437

39A

Y84

3984

—A

Y84

4505

—A

Y84

4929

AY

8443

36A

rgen

tina

:E

ntre

Rio

s:D

epto

.Is

las

del

Ibic

uy:

Rut

a12

viej

aM

AC

N38

642

Pse

udis

para

doxa

AY

8437

40A

Y84

3985

AY

8447

27A

Y84

4506

AY

8441

67—

AY

8443

37A

rgen

tina

:C

orri

ente

s:D

epto

.B

ella

vist

a:C

amin

oS

anR

oque

-B

ella

vist

aM

VZ

1329

95P

tern

ohyl

afo

dien

sA

Y84

3743

AY

8439

86A

Y84

4730

AY

8445

08A

Y84

4169

AY

8449

32A

Y84

4339

Mex

ico:

Son

ora:

Vic

init

yA

lam

osU

TA

A-5

4786

Pty

choh

yla

euth

ysan

ota

AY

8437

44A

Y84

3989

AY

8447

31A

Y84

4509

AY

8441

70A

Y84

4933

AY

8443

40M

exic

o:C

hiap

as:

Cer

roE

lB

aul,

Col

onia

Rod

ulfo

Fig

uero

a,13

07m

Page 189: systematic review of the frog family hylidae, with special reference to ...

2005 189FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

EN

S84

86P

tych

ohyl

ahy

pom

ykte

rA

Y84

3745

AY

8439

90A

Y84

4732

——

——

Gua

tem

ala:

Izab

al

UT

AA

-547

82P

tych

ohyl

ale

onha

rdsc

hult

zei

AY

8437

46A

Y84

3991

AY

8447

33A

Y84

4510

AY

8441

71A

Y84

4934

AY

8443

41M

exic

o:O

axac

a:S

ierr

aM

adre

del

Sur

;C

arre

tera

Poc

hutl

a,68

1m

US

NM

5143

81P

tych

ohyl

asp

inip

olle

xA

Y84

3748

AY

8439

92A

Y84

4735

AY

8445

12A

Y84

4173

AY

8449

36A

Y84

4343

Hon

dura

s:A

tlan

tida

:P

arqu

eN

acio

nal

Pic

oB

onit

o,Q

uebr

ada

deO

ro(t

ribu

tary

ofR

ioV

iejo

)U

TA

A-5

4784

Pty

choh

yla

zoph

odes

AY

8437

49A

Y84

3994

AY

8447

36A

Y84

4513

AY

8441

74A

Y84

4937

AY

8443

44M

exic

o:O

axac

a:S

ierr

aM

ixe;

Mun

.S

anti

ago

Zac

atep

ec,

carr

eter

aZ

acat

epec

–Jes

usC

arra

nza,

1182

mJA

C21

606

Pty

choh

yla

sp.

AY

8437

47A

Y84

3993

AY

8447

34A

Y84

4511

AY

8441

72A

Y84

4935

AY

8443

42M

exic

o:O

axac

a:S

ierr

aM

ixe

QU

LC

2340

Scar

thyl

ago

inor

umA

Y84

3752

AY

8439

97A

Y84

4738

AY

8445

14—

AY

8449

38—

Bra

zil:

Am

azon

as:

Igar

ape

Nov

aE

mpr

esa

MA

CN

3864

9Sc

inax

acum

inat

usA

Y84

3753

AY

8439

98A

Y84

4739

AY

8445

15A

Y84

4176

AY

8449

39—

Arg

enti

na:

Cor

rien

tes:

Pas

ode

laP

atri

aM

LPA

2137

Scin

axbe

rtha

eA

Y84

3754

AY

8439

99A

Y84

4740

——

AY

8449

40A

Y84

4345

Arg

enti

na:

Bue

nos

Air

es:

Ata

laya

MV

Z20

7215

mSc

inax

boul

enge

riA

Y84

3755

AY

8440

00A

Y84

4741

AY

8445

16A

Y84

4177

——

Cos

taR

ica:

Gua

naca

ste:

ca.

0.2

kmW

Cos

taR

ica

Hw

y1

onfi

rst

pave

dro

ad10

kmN

entr

ance

San

taR

osa

Nat

iona

lP

ark

alon

gH

wy

1M

CP

3734

Scin

axca

thar

inae

AY

8437

56A

Y84

4001

AY

8447

42A

Y84

4517

—A

Y84

4941

AY

8443

46B

razi

l:R

ioG

rand

eD

oS

ul:

Pro

-Mat

a

Page 190: systematic review of the frog family hylidae, with special reference to ...

190 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MV

Z20

3919

nSc

inax

elae

ochr

ous

AY

8437

57A

Y84

4002

AY

8447

43A

Y84

4518

AY

8441

78A

Y84

4942

—C

osta

Ric

a:H

ered

ia:

Sta

rkey

9sW

oods

,1.

5–3.

0km

ER

ioF

rio

Rd.

,at

1km

NW

entr

ance

Est

acio

nB

iolo

gica

La

Sel

vaJF

1973

Scin

axfu

scov

ariu

sA

Y84

3758

AY

8440

03A

Y84

4744

AY

8445

19A

Y84

4179

AY

8449

43A

Y84

4347

Arg

enti

na:

Mis

ione

s:G

uara

ni:

San

Vic

ente

:C

ampo

Ane

xoIN

TA

‘‘C

uart

elR

ioV

icto

ria’

’M

AC

N38

650

Scin

axna

sicu

sA

Y84

3759

AY

8440

04A

Y84

4745

AY

8445

20A

Y84

4180

—A

Y84

4348

Arg

enti

na:

Bue

nos

Air

es:

Bar

ader

o:E

stan

cia

‘‘E

lR

eton

o’’

IWK

109

Scin

axru

ber

AY

5493

65A

Y54

9418

AY

8447

46A

Y84

4521

AY

8441

81A

Y84

4944

—G

uyan

a:Iw

okra

ma:

Mur

iS

crub

cam

pM

AC

N38

241

Scin

axsq

uali

rost

ris

AY

8437

60—

AY

8447

47A

Y84

4522

AY

8441

82A

Y84

4945

AY

8443

49A

rgen

tina

:E

ntre

Rio

s:D

epto

.Is

las

del

Ibic

uy:

Rut

a12

viej

a,en

tre

Bra

zoL

argo

yA

rroy

oL

ucia

noU

TA

A-5

0749

Scin

axst

auff

eri

AY

8437

61A

Y84

4006

AY

8447

48A

Y84

4523

AY

8441

83—

—G

uate

mal

a:Z

acap

a:2.

9km

ST

ecul

utan

,on

road

toH

uit

MV

Z13

3014

oSm

ilis

caba

udin

iiA

Y54

9366

AY

8440

07A

Y84

4749

——

AY

8449

46—

Mex

ico:

Son

ora:

10.6

mi

W(b

yro

ad)

Ala

mos

JAC

2262

4Sm

ilis

cacy

anos

tict

aA

Y84

3763

AY

8440

08A

Y84

4750

AY

8445

24A

Y84

4184

AY

8449

47A

Y84

4350

Mex

ico:

Ver

acru

z:M

po.

San

And

res

Tux

tla,

Vol

can

San

Mar

tin,

Mar

tire

sde

Chi

cago

RdS

786

Smil

isca

phae

ota

AY

8437

64A

Y84

4009

AY

8447

51—

AY

8441

85A

Y84

4948

AY

8443

51C

apti

vera

ised

from

bree

ding

adul

tsat

Bal

tim

ore

Nat

iona

lA

quar

ium

Page 191: systematic review of the frog family hylidae, with special reference to ...

2005 191FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

VC

R17

9Sm

ilis

capu

ma

AY

8437

65A

Y84

4010

AY

8447

52A

Y84

4525

AY

8441

86A

Y84

4949

—C

osta

Ric

a:P

rovi

ncia

Her

edia

:C

hila

mat

e(1

5km

WP

uert

oV

iejo

):R

eser

va‘‘

El

Vej

uco’

’M

JH46

Spha

enor

hync

hus

dori

sae

AY

8437

66A

Y84

4011

AY

8447

53A

Y84

4526

AY

8441

87—

—B

razi

l:A

maz

onas

:M

anau

s:L

ago

Jana

uri

US

NM

1521

36Sp

haen

orhy

nchu

sla

cteu

sA

Y54

9367

AY

8440

12A

Y84

4754

AY

8445

27A

Y84

4188

—A

Y84

4352

Per

u:M

adre

deD

ios:

30km

(air

line

)S

SW

Pue

rto

Mal

dona

do,

Tam

bopa

taR

eser

veM

NH

NP

1998

-311

Tep

uihy

laed

elca

eA

Y84

3770

——

AY

8445

30—

——

Ven

ezue

la:

Est

ado

Bol

ivar

:A

uyan

tepu

i,20

15m

UM

MZ

2189

14T

rach

ycep

halu

sjo

rdan

iA

Y84

3771

AY

8440

15A

Y84

4758

AY

8445

31A

Y84

4190

AY

8449

53A

Y84

4356

No

data

N/A

lT

rach

ycep

halu

sni

grom

acul

atus

AY

8437

72A

Y84

4016

AY

8447

59—

AY

8441

91—

—B

razi

l:E

spır

ito

San

to:

Set

iba,

Gua

rapa

riR

dS74

9T

ripr

ion

peta

satu

sA

Y84

3774

AY

8440

17A

Y84

4761

AY

8445

32A

Y84

4193

AY

8449

55A

Y84

4357

Bel

ize:

Hum

min

gbir

dH

wy,

9.5

kmfr

omW

este

rnH

ighw

aytu

rnpo

int

(cap

tive

-ra

ised

tadp

oles

,fr

omad

ults

coll

ecte

din

this

loca

lity

)N

/Al

Xen

ohyl

atr

unca

taA

Y84

3775

AY

8440

18—

——

——

Bra

zil:

Rio

deJa

neir

o:R

esti

nga

deM

aric

aH

ylid

ae,

Hem

iphr

acti

nae

Cry

ptob

atra

chus

sp.*

AY

3260

50—

——

——

—C

olom

bia:

San

tand

er:

Mun

icip

ioS

anG

il:

7km

byro

adS

WS

anG

ilC

FB

H57

20F

lect

onot

ussp

.A

Y84

3589

AY

8438

09A

Y84

4562

AY

8443

79A

Y84

4038

AY

8447

88A

Y84

4215

Bra

zil:

San

taC

atar

ina:

San

toA

mar

oda

Impe

ratr

iz

Page 192: systematic review of the frog family hylidae, with special reference to ...

192 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

KR

L79

9G

astr

othe

caco

rnut

aA

Y84

3591

AY

8438

11—

—A

Y84

4040

——

Pan

ama:

Coc

le:

El

Cop

e:P

arqu

eN

acio

nal

‘‘O

mar

Tor

rijo

s’’

JLG

90G

astr

othe

cafis

sipe

sA

Y84

3592

—A

Y84

4564

AY

8443

81—

AY

8447

90—

Bra

zil:

Esp

ırit

oS

anto

:S

etib

a,G

uara

pari

MN

K52

86G

astr

othe

cacf

.m

arsu

piat

aA

Y84

3590

AY

8438

10A

Y84

4563

AY

8443

80A

Y84

4039

AY

8447

89—

Bol

ivia

:S

anta

Cru

z:C

abal

lero

:C

anto

nS

anJu

an:

Am

boro

Nar

iona

lP

ark

TN

HC

6249

2G

astr

othe

caps

eust

es*

AY

3260

51—

——

——

—E

cuad

or:

Chi

mbo

razo

:3.

3km

ST

ixan

,29

90m

MJH

3689

Hem

iphr

actu

she

lioi

AY

8435

94A

Y84

3813

AY

8445

66A

Y84

4382

—A

Y84

4792

—P

eru:

Uca

yali

:3

kmS

km65

onC

arre

tera

Fed

eric

oB

asad

reat

Ivit

aA

MN

HA

-164

211

Stef

ania

evan

siA

Y84

3767

—A

Y84

4755

—A

Y84

4189

AY

8449

50A

Y84

4353

Guy

ana:

Iwok

ram

a:P

akat

auC

reek

(85

m,

4845

9N,

5980

19W

)M

NH

N20

02.6

92St

efan

iasc

hube

rti

AY

8437

68A

Y84

4013

AY

8447

56A

Y84

4528

—A

Y84

4951

AY

8443

54V

enez

uela

:E

stad

oB

oliv

ar:

Auy

ante

pui,

2325

mH

ylid

ae,

Phy

llom

edus

inae

KR

L80

0A

galy

chni

sca

lcar

ifer

AY

8435

62A

Y84

3785

AY

8445

36—

——

AY

8441

96P

anam

a:C

ocle

:E

lC

ope:

Par

que

Nac

iona

l‘‘

Om

arT

orri

jos’

’R

dS53

7A

galy

chni

sca

llid

ryas

AY

8435

63—

AY

8445

37—

—A

Y84

4765

—B

eliz

e:S

tann

Cre

ekD

istr

ict:

Cok

scom

bB

asin

Wil

dlif

eS

antu

ary

QC

AZ

1321

7A

galy

chni

sli

todr

yas*

AY

3260

43—

——

——

—E

cuad

or:

Unk

now

n

Page 193: systematic review of the frog family hylidae, with special reference to ...

2005 193FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MV

Z20

3768

Aga

lych

nis

salt

ator

*A

Y32

6044

——

——

——

Cos

taR

ica:

Her

edia

:S

tark

ey9s

Woo

ds:

1.5–

3.0

kmE

Rio

Fri

oR

dat

1km

NW

entr

ance

toE

stac

ion

Bio

logi

caL

aS

elva

ZU

FR

J79

26H

ylom

anti

sgr

anul

osa

AY

8436

87A

Y84

3933

AY

8446

80A

Y84

4469

AY

8441

27A

Y84

4889

AY

8443

01B

razi

l:P

erna

mbu

co:

Jaqu

eira

JAC

2200

9P

achy

med

usa

dacn

icol

orA

Y84

3714

AY

8439

59A

Y84

4702

AY

8444

88A

Y84

4144

AY

8449

08A

Y84

4318

Mex

ico:

Gue

rrer

o:C

arre

tera

Tie

rra

Col

orad

a-A

yutl

a,18

7m

CF

BH

7307

Pha

smah

yla

coch

rana

eA

Y84

3715

AY

8439

60—

——

——

Bra

zil:

Min

asG

erai

s:P

ocos

deC

alda

sC

FB

H57

56P

hasm

ahyl

agu

ttat

aA

Y84

3716

AY

8439

61A

Y84

4703

AY

8444

89A

Y84

4145

AY

8449

09—

Bra

zil:

Sao

Pau

lo:

Uba

tuba

:P

icin

guab

aA

MN

HA

1684

59P

hyll

omed

usa

bico

lor

AY

8437

23A

Y84

3968

AY

8447

10A

Y84

4495

AY

8441

52A

Y84

4915

—P

ettr

ade

AM

NH

-A14

1109

pP

hyll

omed

usa

hypo

chon

dria

lis

AY

8437

24A

Y84

3969

AY

8447

11A

Y84

4496

AY

8441

53A

Y84

4916

—G

uyan

a:D

ubul

ayR

anch

onth

eB

erbi

ceR

iver

KR

L95

5P

hyll

omed

usa

lem

urA

Y84

3687

AY

8439

70A

Y84

4712

—A

Y84

4154

AY

8449

17—

Pan

ama:

Coc

le:

El

Cop

e:P

arqu

eN

acio

nal

‘‘O

mar

Tor

rijo

s’’

KU

2054

20P

hyll

omed

usa

pall

iata

*A

Y32

6046

——

——

——

Per

u:M

adre

deD

ios:

Cuz

coA

maz

onic

oM

JH67

Phy

llom

edus

ata

rsiu

sA

Y84

3726

AY

8439

71A

Y84

4713

—A

Y84

4155

AY

8449

18A

Y84

4326

Bra

zil:

Am

azon

as:

Man

aus:

Res

erva

Duk

eM

AC

N37

796

Phy

llom

edus

ate

trap

loid

eaA

Y84

3727

AY

8439

72A

Y84

4714

—A

Y84

4156

AY

8449

19A

Y84

4327

Arg

enti

na:

Mis

ione

s:G

uara

ni:

San

Vic

ente

:C

ampo

Ane

xoIN

TA

‘‘C

uart

elR

ioV

icto

ria’

’M

JH70

76P

hyll

omed

usa

tom

opte

rna

AY

8437

28A

Y84

3973

AY

8447

15A

Y84

4497

AY

8441

57A

Y84

4920

AY

8443

28P

eru:

Hua

nuco

:R

ioL

lull

apic

his:

Pan

guan

a

Page 194: systematic review of the frog family hylidae, with special reference to ...

194 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

AM

NH

-A16

6288

qP

hyll

omed

usa

vail

lant

iA

Y54

9363

AY

5494

16A

Y84

4716

AY

8444

98A

Y84

4158

AY

8449

21A

Y84

4329

Guy

ana:

Ber

bice

Riv

erca

mp

atca

.18

mi

(lin

ear)

SW

Kw

akw

ani

(ca.

2m

ido

wnr

iver

from

Kur

undi

Riv

er)

confl

uenc

e),

200

ftH

ylid

ae,

Pel

odry

adin

aeS

AM

1690

6C

yclo

rana

aust

rali

sA

Y84

3580

AY

8438

02A

Y84

4553

AY

8443

76—

——

Aus

tral

ia:

No

data

TN

HC

5193

6L

itor

iaar

faki

ana*

AY

3260

39—

——

——

—P

apua

New

Gui

nea:

Mad

ang:

ca.

10km

NW

Sim

bai,

Kai

ronk

Vil

lage

,20

00m

AM

5274

4L

itor

iaau

rea

AY

8436

91A

Y84

3937

AY

8446

84—

AY

8441

30A

Y84

4892

—N

ewC

aled

onia

:P

rovi

nce

Nor

d:V

alle

Pha

aye,

Nom

acR

iver

,8

kmE

Pou

mA

MN

HA

-168

409

Lit

oria

caer

ulea

AY

8436

92A

Y84

3938

AY

8446

85—

AY

8441

31A

Y84

4893

—P

ettr

ade

SA

MA

1226

0L

itor

iafr

eicy

neti

AY

8436

93A

Y84

3939

AY

8446

86A

Y84

4473

—A

Y84

4894

—A

ustr

alia

:N

ewS

outh

Wal

es:

16km

ER

etre

atN

/AL

itor

iain

fraf

rena

taA

Y84

3694

AY

8439

40A

Y84

4687

AY

8444

74—

—A

Y84

4304

Pet

trad

eS

AM

A17

215

Lit

oria

mei

rian

aA

Y84

3695

—A

Y84

4688

AY

8444

75A

Y84

4132

AY

8448

95—

Aus

tral

ia:

Wes

tern

Aus

tral

ia:

Bla

ckR

ock,

near

Kun

unur

raS

AM

A45

336

Nyc

tim

iste

spu

lche

rA

Y84

3701

AY

8439

46A

Y84

4692

—A

Y84

4134

——

Pap

uaN

ewG

uine

a:M

agid

obo,

SH

PA

MN

HA

-828

22r

Nyc

tim

yste

sku

bori

AY

8437

02A

Y84

3947

AY

8446

93A

Y84

4479

——

—P

apua

New

Gui

nea:

Mor

oba:

Wau

AM

NH

A-8

2845

sN

ycti

mys

tes

nari

nosu

sA

Y84

3703

AY

8439

48A

Y84

4694

—A

Y84

4135

—A

Y84

4308

Pap

uaN

ewG

uine

a:T

ambu

lA

llop

hryn

idae

MA

D15

12A

llop

hryn

eru

thve

niA

Y84

3564

AY

8437

86A

Y84

4538

AY

8443

61—

AY

8447

66—

Guy

ana:

Kab

ocal

ica

mp

(101

m,

4817

.109

N,

5883

0.56

9W)

Page 195: systematic review of the frog family hylidae, with special reference to ...

2005 195FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

DP

L39

32t

Ast

ylos

tern

idae

Tri

chob

atra

chus

robu

stus

AY

8437

73—

AY

8447

60—

AY

8441

92A

Y84

4954

—C

amer

oon:

Sou

thw

est

Pro

vinc

e:nn

hill

sout

hof

Man

yem

enB

ufon

idae

MV

Z22

3279

Ate

lopu

sva

rius

*A

Y32

5996

——

——

——

Cos

taR

ica:

Sou

thof

Las

Alt

uras

MA

CN

3863

9B

ufo

aren

arum

AY

8435

73A

Y84

3795

AY

8445

47A

Y84

4370

—A

Y84

4775

AY

8442

05A

rgen

tina

:S

anL

uis,

ruta

20en

tre

Bar

das

Bla

ncas

ykm

330

MJH

7095

Den

drop

hryn

iscu

sm

inut

usA

Y84

3582

AY

8438

04A

Y84

4555

——

——

Per

u:H

uanu

co:

Rio

Llu

llap

ichi

s:P

angu

ana

N/A

Dyd

inam

ipus

sjoe

sted

ti*

AY

3259

91—

——

——

—C

amer

oon:

Unk

now

n

MA

CN

3853

1M

elan

ophr

ynis

cus

klap

penb

achi

AY

8436

99A

Y84

3944

—A

Y84

4478

—A

Y84

4899

AY

8443

06A

rgen

tina

:C

haco

:pr

oxim

idad

esde

Res

iste

ncia

QC

AZ

4580

Oso

rnop

hryn

egu

acam

ayo*

AY

3260

36—

——

——

—E

cuad

or:

Nap

o:L

ago

Sum

aco,

Vol

can

Sum

aco

N/A

Ped

osti

bes

hoss

i*A

Y32

5993

——

——

——

Mal

aysi

a:P

ahan

g:K

rau

Wil

dlif

eR

eser

ve,

Peh

ang

mai

nre

sear

chfi

eld

stat

ion,

ca.

13km

NW

Kua

laK

rau

atco

nflue

nce

Kra

uan

dL

ompa

tR

iver

sT

NH

C62

001

Schi

smad

erm

aca

rens

*A

Y32

5997

——

——

——

Tan

zani

a:D

odom

an

Bra

chyc

epha

lida

eN

/AB

rach

ycep

halu

sep

hipp

ium

*A

Y32

6008

——

——

——

Bra

zil:

noda

ta

Cen

trol

enid

aeS

IUC

H-7

053

Cen

trol

ene

pros

oble

pon

AY

8435

74A

Y84

3796

AY

8445

48A

Y84

4371

—A

Y84

4776

AY

8442

06P

anam

a:C

ocle

:E

lC

ope:

Par

que

Nac

iona

l‘‘

Om

arT

orri

jos’

Page 196: systematic review of the frog family hylidae, with special reference to ...

196 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MN

K52

42C

ochr

anel

labe

jara

noi

AY

8435

76A

Y84

3798

AY

8445

49A

Y84

4372

AY

8440

29A

Y84

4777

AY

8442

08B

oliv

ia:

San

taC

ruz:

Cab

alle

ro:

Can

ton

San

Juan

:A

mbo

roN

atio

nal

Par

kC

FB

H57

29H

yali

noba

trac

hium

eury

gnat

hum

AY

8435

95A

Y84

3814

AY

8445

67A

Y84

4383

—A

Y84

4793

AY

8442

17B

razi

l:M

inas

Ger

ais:

Itam

onte

sD

endr

obat

idae

US

NM

-FS

5205

5C

olos

teth

usta

lam

anca

eA

Y84

3577

AY

8437

99A

Y84

4550

AY

8443

73—

AY

8447

78—

Pan

ama:

Boc

asde

lT

oro

US

NM

3131

8D

endr

obat

esau

ratu

sA

Y84

3581

AY

8438

03A

Y84

4554

—A

Y84

4032

AY

8447

81A

Y84

4211

Pan

ama:

Boc

asde

lT

oro

TN

HC

6248

8P

hyll

obat

esbi

colo

r*A

Y32

6031

——

——

——

No

data

Hel

eoph

ryni

dae

TM

SA

8415

7H

eleo

phry

nepu

rcel

liA

Y84

3593

AY

8438

12A

Y84

4565

——

AY

8447

91A

Y84

4216

Sou

thA

fric

a:W

este

rnC

ape

Pro

vinc

e:C

edar

berg

Mou

ntai

nR

ange

:he

adof

Kro

mR

iver

Hem

isot

idae

TN

HC

6248

9H

emis

usm

arm

orat

um*

AY

3260

70—

AY

3643

97—

——

—S

eeD

arst

and

Can

nate

lla

(200

4)an

dB

iju

and

Bos

suyt

(200

3)L

epto

dact

ylid

ae,

Cer

atop

hryi

nae

JF92

9C

erat

ophr

yscr

anw

elli

AY

8435

75A

Y84

3797

——

——

AY

8442

07A

rgen

tina

:S

anta

Fe:

Ver

a:E

a.‘‘

Las

Gam

as’’

JF18

91O

dont

ophr

ynus

amer

ican

usA

Y84

3704

AY

8439

49A

Y84

4695

AY

8444

80—

AY

8449

01A

Y84

4309

Arg

enti

na:

Bue

nos

Air

es:

Esc

obar

:L

oma

Ver

de:

Ea.

‘‘L

osC

ipre

ses’

’L

epto

dact

ylid

ae,

Cyc

lora

mph

inae

ML

PA14

14C

ross

odac

tylu

ssc

hmid

tiA

Y84

3579

AY

8438

01A

Y84

4552

AY

8443

75A

Y84

4031

AY

8447

80A

Y84

4210

Arg

enti

na:

Mis

ione

s:A

rist

obul

ode

lV

alle

:B

alne

ario

Cun

apir

u

Page 197: systematic review of the frog family hylidae, with special reference to ...

2005 197FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

AM

NH

-A16

5195

Lep

toda

ctyl

idae

,E

leut

hero

dact

ylin

aeE

leut

hero

dact

ylus

pluv

ican

orus

AY

8435

86—

AY

8445

59—

AY

8440

35A

Y84

4785

AY

8442

13B

oliv

ia:

San

taC

ruz:

Cab

alle

ro:

Can

ton

San

Juan

:A

mbo

roN

atio

nal

Par

kK

U20

2519

Ele

uthe

roda

ctyl

usth

ymel

ensi

s*A

Y32

6009

——

——

——

Ecu

ador

:C

arch

i:12

kmW

Tufi

no,

3520

mA

MN

H-A

1651

08P

hryn

opus

sp.

AY

8437

20—

——

——

AY

8443

23B

oliv

ia:

La

Paz

:B

auti

sta

Saa

vedr

a:C

anto

nC

hara

zani

Lep

toda

ctyl

idae

,L

epto

dact

ylin

aeA

MN

H-A

1663

12A

deno

mer

asp

.A

Y84

3561

AY

8437

84A

Y84

4535

AY

8443

60A

Y84

4021

—A

Y84

4195

Guy

ana:

Ber

ebic

eR

iver

cam

pat

ca.

18m

i(l

inea

r)S

WK

wak

wan

i(c

a.2

mi

dow

nriv

erfr

omK

urun

diR

iver

confl

uenc

e)M

JH70

82E

dalo

rhin

ape

rezi

AY

8435

85A

Y84

3807

AY

8445

58—

—A

Y84

4764

—P

eru:

Hua

nuco

:R

ioL

lull

apic

his:

Pan

guan

aM

AC

N38

648

Lep

toda

ctyl

usoc

ella

tus

AY

8436

88A

Y84

3934

AY

8446

81A

Y84

4470

—A

Y84

4784

AY

8443

02A

rgen

tina

:B

ueno

sA

ires

:E

scob

ar:

Lom

aV

erde

:E

stab

leci

mie

nto

‘‘L

osC

ipre

ses’

’M

AC

N38

641

Lim

nom

edus

am

acro

glos

saA

Y84

3689

AY

8439

35A

Y84

4682

AY

8444

71A

Y84

4128

AY

8448

90—

Arg

enti

na:

Mis

ione

s:A

rist

obul

ode

lV

alle

:B

alne

ario

Cun

apir

uA

MN

H-A

1664

26L

itho

dyte

sli

neat

usA

Y84

3690

AY

8439

36A

Y84

4683

AY

8444

72A

Y84

4129

—A

Y84

4303

Guy

ana:

Ber

ebic

eR

iver

cam

pat

ca.

18m

i(l

inea

r)S

WK

wak

wan

i(c

a2.

mi

dow

nriv

erfr

omK

urun

diR

iver

confl

uenc

e)

Page 198: systematic review of the frog family hylidae, with special reference to ...

198 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORYA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

MA

CN

3864

0P

hysa

laem

uscu

vier

iA

Y84

3729

AY

8439

75A

Y84

4717

AY

8444

99—

AY

8449

22A

Y84

4330

Arg

enti

na:

Mis

ione

s:G

uara

ni:

San

Vic

ente

:C

ampo

Ane

xoIN

TA

‘‘C

uart

elR

ioV

icto

ria’

’A

MN

H-A

1391

18P

leur

odem

abr

achy

ops

AY

8437

33A

Y84

3979

AY

8447

21A

Y84

4503

—A

Y84

4926

—G

uyan

a:S

outh

ern

Rup

unun

iS

avan

na,

Ais

halt

on(o

nK

uban

awau

Cre

ek)

MA

CN

3864

7P

seud

opal

udic

ola

falc

ipes

AY

8437

41A

Y84

3987

AY

8447

28A

Y84

4507

AY

8441

68A

Y84

4930

—A

rgen

tina

:C

orri

ente

s:Y

apey

uL

epto

dact

ylid

ae,

Tel

mat

obii

nae

MA

CN

3794

2A

lsod

esga

rgol

aA

Y84

3565

AY

8437

87A

Y84

4539

AY

8443

62—

AY

8447

67A

Y84

4197

Arg

enti

na:

Neu

quen

:A

lum

ine:

Str

eam

10km

WP

rim

eros

Pin

osM

AC

N37

905

Ate

logn

athu

spa

tago

nicu

sA

Y84

3571

AY

8437

93A

Y84

4545

AY

8443

68A

Y84

4027

AY

8447

73A

Y84

4203

Arg

enti

na:

Neu

quen

:C

atan

Lil

:L

agun

ade

lB

urro

MA

CN

3800

8B

atra

chyl

ale

ptop

usA

Y84

3572

AY

8437

94A

Y84

4546

AY

8443

69A

Y84

4028

AY

8447

74A

Y84

4204

Arg

enti

na:

Chu

but:

Cus

ham

en:

Lag

oP

uelo

MA

CN

3798

0E

upso

phus

calc

arat

usA

Y84

3587

AY

8438

08A

Y84

4560

—A

Y84

4036

AY

8447

86A

Y84

4214

Arg

enti

na:

Neu

quen

:H

uili

ches

:T

erm

asde

Epu

lafq

uen

AM

NH

-A16

5114

Tel

mat

obiu

ssp

.A

Y84

3769

AY

8440

14A

Y84

4757

AY

8445

29—

AY

8449

52A

Y84

4355

Bol

ivia

:L

aP

az:

Bau

tist

aS

aave

dra:

Can

ton

Cha

raza

niM

ante

llid

aeA

MN

HA

-167

581

Man

tida

ctyl

usfe

mor

alis

AY

8436

98A

Y84

3943

——

—A

Y84

4898

—M

adag

asca

r:A

ntsi

rana

na:

Am

banj

a:R

amen

aR

iver

cam

p,T

sara

tana

naR

eser

ve(7

30m

)M

icro

hyli

dae

AM

NH

A-1

6739

5Sc

aphi

ophr

yne

mar

mor

ata

AY

8437

51—

AY

3643

90—

AY

8441

75—

—M

adag

asca

r:A

ntsi

rana

na:

Voh

emna

r:S

orat

aM

ount

ain

(132

0m

)

Page 199: systematic review of the frog family hylidae, with special reference to ...

2005 199FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAEA

PP

EN

DIX

2(C

onti

nued

)

Vou

cher

Spe

cies

12S

-tR

NA

vali

ne-1

6SC

ytoc

hrom

eb

Rho

dops

inex

on1

RA

G-1

Tyr

osin

ase

Sev

enth

inab

sent

ia28

SL

ocal

ity

N/A

Kal

oula

conj

unct

a*A

Y32

6064

——

——

——

Phi

lipp

ines

:N

egro

sIs

land

:C

ity

ofD

umag

uete

Myo

batr

achi

dae,

Lim

nody

nast

inae

TN

HC

6107

5L

imno

dyna

stes

salm

ini*

AY

3260

71—

——

——

—N

oda

ta

SA

MA

1239

1N

eoba

trac

hus

sude

lli

AY

8437

00—

AY

8446

91—

—A

Y84

4900

AY

8443

07A

ustr

alia

:N

ewS

outh

Wal

es:

30km

NK

enm

ore

Myo

batr

achi

dae,

Myo

batr

achi

nae

SA

MA

7329

3P

seud

ophr

yne

bibr

oni

AY

8437

42A

Y84

3988

AY

8447

29—

—A

Y84

4931

AY

8443

38A

ustr

alia

:S

outh

Aus

tral

ia:

Sof

Par

aR

eser

voir

Res

erve

Ran

idae

AM

NH

A-1

6123

0F

ejer

vary

ali

mno

char

isA

Y84

3588

—A

Y84

4561

—A

Y84

4037

AY

8447

87—

Vie

tnam

:N

ghe

An

Pro

vinc

e:C

onC

uong

Dis

tric

t:B

ong

Khe

Com

mun

eN

/AP

laty

man

tis

sp.*

AY

3260

61—

——

——

—S

olom

onIs

land

sN

/AR

ana

tem

pora

ria*

AY

3260

63—

——

——

—N

oda

taR

haco

phor

idae

AM

NH

-A16

1418

Rha

coph

orus

bipu

ncta

tus

AY

8437

50A

Y84

3996

AY

8447

37—

——

—V

ietn

am:

Ha

Tin

h:H

uong

Son

Dis

tric

t:H

uon

Son

Res

erve

(Rao

An

regi

on):

top

ofP

o-M

um

ount

ain

aV

ZF

C14

248.

bA

MC

C10

1446

.c

ZF

MK

H-0

74.

dA

MC

C10

7369

.e

MV

Z11

676.

fA

MC

C10

1481

.g

LS

UM

ZH

-129

39.

hM

VZ

FC

1124

8.iA

MC

C10

1720

.jL

SU

MZ

H-1

3720

.k

AM

CC

1014

63.

lT

obe

acce

ssio

ned

inC

FB

Hco

llec

tion

.m

MV

ZF

C14

296.

nM

VZ

FC

1445

7.o

MV

ZF

C12

876.

pA

MC

C10

1463

.q

AM

CC

1070

20.

rL

SU

MZ

H-1

0864

.sL

SU

MZ

H-9

970.

tA

MC

C12

4743

.u

Obt

aine

dby

Bij

uan

dB

ossu

yt(2

003)

;vo

uche

rof

unkn

own

prov

enan

ce.

Page 200: systematic review of the frog family hylidae, with special reference to ...

200 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 3

MORPHOLOGICAL CHARACTERS

Based on Burton’s (2004) collection of obser-vations on hylid foot musculature, we built a dataset. Burton (2004) included two appendices, Aand B, with the taxa he examined for the differentcharacters. In the text, however, it is not imme-diately clear which of the appendices he refers toin some cases. Burton (personal commun.) gra-ciously provided us with a precise list of the ap-pendix to which each character refers. This infor-mation is reproduced below in a character list thatincludes a brief discussion when relevant. Burton(2004) numbered his characters as a continuationof Duellman’s (2001) character list. We are notincorporating Duellman’s (2001) characters be-cause he only summarized character states for thehylid subfamilies without any reference to the in-dividual taxa, therefore assuming monophyly.

Character List

0 (Burton’s char. 25): Insertions of the m. flexordigitorum brevis superficialis. (0) Three inser-tions. (1) Two insertions.

1 (Burton’s char. 26): Structure of the tendonof the m. flexor digitorum brevis superficialis. (0)Undivided. (1) Divided along its length into a me-dial tendon, from which arises tendo superficialisIV, and a lateral tendon from which arise tendinessuperficiales III and V, with cross tendons be-tween the divisions. (2) Divided along its lengthinto a medial tendon, from which arise tendo su-perficialis IV and m. lumbricalis longus digiti V,and a lateral tendon from which arise tendo su-perficialis V and m. lumbricalis longus digiti IV.

2 (Burton’s char. 27): Structure of the terminiof tendines superficiales. (0) Tendon neither ex-panded nor bifurcated. (1) Tendon bifid.

3 (Burton’s char. 28): Origin of the tendo su-perficialis hallucis. (0) Tendo superficialis hallucisarises from the mediodistal corner of the aponeu-rosis plantaris. (1) (Burton’s char. 28.2). The ten-do superficialis hallucis tapers from an expandedcorner of the aponeurosis plantaris; fibers of them. transversus plantae distalis originating on dis-tal tarsal 2–3 insert on the lateral side of the ten-don. (2) (Burton’s char. 28.3). The tendo superfi-cialis hallucis arises from the aponeurosis, but theorigin is proximal to that of the m. lumbricalisbrevis hallucis, so that the tendo passes at an an-gle across that muscle as it passes along the toe,neither along its marginor straight along the mus-cle. (3) (Burton’s char. 28.4). The tendo superfi-cialis hallucis comes from a massive muscle thatarises from distal tarsal 2–3. COMMENT: Burton(2004: 218) included within this character a state

(1) pertaining to the morphology of the tendo su-perficialis hallucis, not to its origin. For this rea-son, we consider it to be a different character andthat is why we excluded it here.

4 (Burton’s char. A): Structure of m. contrahen-tis hallucis. (0) Present and conspicuous. (1) Ab-sent or reduced.

5 (Burton’s char. B): Origin of m. contrahentishallucis (if present). (0) Origin on distal tarsal 1.(1) Origin on distal tarsal 2–3.

6 (Burton’s char. 29): Presence or absence ofm. flexor teres hallucis. (0) Absent. (1) Present.

7 (Burton’s char. 30): Presence or absence ofm. abductor brevis plantae hallucis. (0) Present.(1) Absent. COMMENT: Burton (2004: 219) includ-ed states pertaining to presence or absence, aswell as structure, in the same character. FollowingHawkins et al. (1997) and Strong and Lipscomb(1999), we consider them as two different char-acters.

8 (Burton’s char. 30): Structure of the m. ab-ductor brevis plantae hallucis. (0) Narrow. (1)Broad.

9 (Burton’s char. 31): Origin of tendo superfi-cialis pro digiti II. (0) Tendon arising from thedistal edge of the aponeurosis plantaris. (1) Ten-don arising from a deep, triangular muscle, whichoriginates on the distal tarsal 2–3. (2) Tendonbroad at the base, acting as a point of insertion ofa portion of the m. transversus plantae distalis, sothat the tendo superficialis pro digiti II appears tobe the tendon of insertion of the m. transversusplantae distalis.

10 (Burton’s char. 32): Origin of tendo super-ficialis pro digiti III. (0) Tendo superficialis prodigiti III arising from the m. flexor digitorumbrevis superficialis, but with the distal margin ofthe aponeurosis wrapped around the tendon. (1)Tendo superficialis pro digiti III arising from the.flexor digitorum brevis superficialis, with no con-tribution from the aponeurosis plantaris. (2) Tendosuperficialis pro digiti III arising in part from m.flexor digitorum brevis superficialis or the tendosuperficialis pro digiti IV, and in part by a super-ficial tendon (from which also cutaneous tendonsarise) that emerges from centrally on the plantarsurface of the aponeurosis plantaris. (3) Tendo su-perficialis pro digiti III arising entirely from themargin of the aponeurosis plantaris. (4) Tendo su-perficialis pro digiti III arising entirely from thesuperficial tendon.

11 (Burton’s char. 33): Origin of m. flexor ossismetatarsi II. (0) Tendon arising from the condyleof the fibulare alone, in common with the tendon

Page 201: systematic review of the frog family hylidae, with special reference to ...

2005 201FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

of origin of the m. flexor ossis metatarsi III. (1)Tendon arising from distal tarsal 2–3 only. (2)Muscle with two origins—a long distal sectionarising from a tendon on the distal condyle of thefibulare, and a short proximal section arising fromdistal tarsal 2–3.

12 (Burton’s char. D): Accessory tendon of or-igin of the m. lumbricalis longus digiti III. (0)Absent. (1) Present.

13 (Burton’s char. 34): Number of tendons ofinsertion of m. lumbricalis longissimus digiti IV.(0) Two tendons. (1) One tendon.

14 (Burton’s char. 35, refers to taxa listed onhis appendix B): Relationship between the originof m. flexor ossis metatarsi IV and the joint ten-don of origin of m. flexores ossum metatarsorumII and III varies. (0) The tendons are adjacent attheir origins. (1) The tendons cross each other.COMMENT: Burton (2004: 222) included a thirdstate in this character, whose taxonomic distribu-tion does not match any of the taxa included inthis study.

15 (Burton’s char. F): Structure of m. flexor os-sis metatarsi IV. (0) Inserting on metatarsus IVonly. (1) Inserting on both metatarsi IV and V.

16 (Burton’s char. 36): Length variation of them. flexor ossis metatarsi IV. (0) Very short, in-serting on the proximal two thirds of metatarsalIV or less only. (1) Extending the entire length ofMetatarsal IV.

17 (Burton’s char. 37, refers to taxa listed in hisappendix A): Tendons of insertion of m. lumbri-calis longus digiti V. (0) One tendon. (1) Two ten-dons arising equally from both sides of an undi-vided muscle. (2) Two tendons arising from twoequal muscle slips. (3) (Burton’s char. 37.4). Twotendons, the medial of which arises from a small,distal slip. COMMENT: The state 3 of this characterdescribed by Burton is present only in Cochra-nella siren, a taxon not included in this analysis.

18 (Burton’s char. 38, refers to taxa listed in hisappendix A): Number of slips of the medial m.lumbricalis brevis digiti V. (0) Two slips. (1) Oneslip. COMMENT: Burton included a third state thatis present in Gastrophryne, a taxon not includedin this analysis.

19 (Burton’s char. 39, refers to taxa listed inboth appendices): Presence or absence of a tendonfrom the m. flexor digitorum brevis superficialisto the medial slip of the medial m. lumbricalisbrevis digiti V. (0) Absent. (1) Present.

20 (Burton’s char. 40): Insertion of the lateralslip of the medial m. lumbricalis brevis digiti V.(0) Insertion by tendon onto the basal phalanx. (1)Insertion pennate.

21 (Burton’s char. 41, refers to taxa listed in hisappendix A): Width and orientation of the m.transversus metatarsus II. (0) Narrow, occupying

less than 80% of the length of metatarsus II. (1)Broad, occupying the entire length of metatarsusII. (2) Oblique, with a narrow, proximal connec-tion onto metatarsus III, and a broad, distal con-nection to metatarsus II. COMMENT: Burton (inlitt., 19 July 2004) warned us that the numbers ofthe metatarsals in the description of state 2 ofchars. 41 and 42 were accidentally reversed in hispaper; this reversal is corrected here.

22 (Burton’s char. 42): Position of m. transver-sus metatarsus III. (0) Relatively distal, not oc-cupying the proximal 15% of either metatarsus.(1) Proximal. (2) Oblique, with a narrow, proxi-mal connection onto metatarsus IV, and a broad,distal connection to metatarsus III.

23 (Burton’s char. 43, refers to taxa listed in hisappendix A): Breadth of m. transversus metatar-sus III. (0) Narrow, extending less than 70% ofthe length of metatarsus III. (1) Broad, occupyingmore than 75% of the length of metatarsus III.

24 (Burton’s char. 44): Presence or absenceof m. transversus metatarsus IV. (0) Present. (1)Absent. COMMENTS: Burton included presence,absence, and several modifications within a sin-gle character. We are unsure as to the definitionsand limits of the states describing the differentorigins and insertions of the muscle when pre-sent, and thus we only score its presence or ab-sence.

25 (Burton’s char. 45): Relationship of the m.flexor ossis metatarsi IV with m. transversusmetatarsus IV, if present. (0) M. flexor ossis meta-tarsi IV dorsal to m. transversus metatarsus IV.(1) M. flexor ossis metatarsi IV ventral to m.transversus metatarsus IV.

26 (Burton’s char. 46, refers to taxa listed in hisappendix A): Nature of origin of m. extensor dig-itorum comunis longus. (0) Fibrous origin fromthe medial surface of the m. tarsalis anticus. (1)A long, straplike tendon arising on the lateral sideof the distal end of the tibiofibula, close to theorigin of the m. tarsalis anticus.

27 (Burton’s char. 47, refers to taxa listed in hisappendix A): Nature of insertion of m. extensordigitorum comunis longus. (0) Flat tendon ontothe fascia of one or more dorsal superficial mus-cles. (1) Strong tendon(s) directly to the dorsa ofone or more metatarsi.

28 (Burton’s char. 48): Insertion of m. extensordigitorum comunis longus on metatarsal II. (0)Present. (1) Absent. COMMENTS: Burton definedthe states of character 48 in a complex way, com-bining the different points of insertions into singlestates. We consider it more informative and lessredundant to consider the different points of in-sertion as different characters. The insertion onmetatarsal III is uninformative in the present con-

Page 202: systematic review of the frog family hylidae, with special reference to ...

202 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

text, since it is reported absent only in Stefaniascalae, a taxon not included in the analysis.

29 (Burton’s char. 48): Insertion of m. extensordigitorum comunis longus on metatarsal IV. (0)Present. (1) Absent.

30 (Burton’s char. 49): Origins of the m. exten-sor brevis medius hallucis and m. extensor brevismedius digiti II. (0) Separate origins. (1) Adjacentorigins.

31 (Burton’s char. G): Insertion of the m. ex-tensor brevis medius hallucis. (0) Insertion in thebasal phalanx of digit I only. (1) Insertion by aflat tendon onto the base of the basal phalanx ofdigit I, plus a strong, narrow tendon that passesalong the medial margin of digit II, inserting onthe basal phalanx.

32 (Burton’s char. 50, refers to taxa listed in hisappendix A): Position and nature of insertions ofm. abductor brevis dorsalis digiti V. (0) Insertionpennate, along the proximal half of the lateralmargin of metatarsal V, displacing the origins ofmm. extensores breves profundi digiti V, so thatthe lateral m. extensor brevis profundus originateson the mediodorsal surface of the metatarsal V.(1) Insertion by a short tendon to the dorsum ofthe metatarsal V. COMMENT: Burton described athird state that is present in Hyperolius, a taxonnot included in this analysis.

33 (Burton’s char. 51, refers to taxa listed onhis appendix A): Nature of the origin of the m.extensor brevis superficialis digiti III on the distalend of the fibulare. (0) Fibrous origin. (1) Originby a flat tendon.

34 (Burton’s char. 52, refers to taxa listed in hisappendix A): Number of insertions of m. extensorbrevis superficialis digiti III. (0) Single insertiononto the dorsum of the m. extensor brevis mediusdigiti III. (1) Single insertion via a long tendonproximally on the dorsum of basal phalanx III. (2)Two insertions, a flat tendon onto basal phalanxIII, as state 1, and a pennate insertion on meta-tarsus III.

35 (Burton’s char. 53, refers to taxa listed in hisappendix A): Presence or absence of m. extensorbrevis medius digiti III. (0) Present. (1) Absent.

36 (Burton’s char. 54): Number of slips in them. extensor brevis superficialis digiti IV. (0) Twoorigins, two separate muscles. (1) One origin, bel-ly undivided.

37 (Burton’s char. 55, refers to taxa listed in hisappendix A): Nature of the origin of the mm. ex-tensores breves superficiales digiti IV. (0) Bothorigins pennate. (1) (Burton’s char. 55.2): Bothorigins from long, flat tendons. COMMENT: Burtondescribed a third state present in Rhacophorusmaculatus, a taxon not included here.

Characters C and E were not included becausethe taxonomic distribution of their states is irrel-evant for hylids. Character 56 was excluded be-cause it actually includes several characters (pres-ence or absence of mm. extensores breves distalesin each digit), and there is no information as towhich of the slips (medial or lateral) is present.

Morphological Synapomorphies Common toAll Trees

(node numbers as in figs. 2–5)

Allophryne ruthveni, 10: 2 → 4. Anotheca spi-nosa, 3: 0 → 1. Cyclorana australis, 17: 3 → 0.Dendropsophus sarayacuensis, 6: 1 → 0. Hyla eu-phorbiacea, 28: 1 → 0. Hypsiboas calcaratus, 3:1 → 0. Hypsiboas granosus, 9: 2 → 0. Hypsiboaspellucens, 3: 1 → 0, 9: 2 → 0. Hypsiboas pictur-atus, 6: 0 → 1. Hypsiboas punctatus, 3: 1 → 0.Hypsiboas raniceps, 5: 0 → 1. Hypsiboas rufite-lus, 6: 0 → 1. Litoria aurea, 21: 0 → 1. Litoriafreycineti, 18: 0 → 1, 28: 1 → 0. Osteopilus sep-tentrionalis, 6: 0 → 1, 29: 1 → 0. Osteopilus vas-tus, 31: 1 → 0. Plectrohyla guatemalensis, 12: 0→ 1. Scarthyla goinorum, 25: 0 → 1. Node 289,1: 0 → 1, 10: 2 → 1. Node 337, 21: 0 → 2. Node338, 1: 1 → 0. Node 352, 11: 0 → 1. Node 372,3: 0 → 1. Node 375, 1: 1 → 0. Node 390, 28: 1→ 0. Node 422, 10: 1 → 0, 14: 1 → 0, 16: 1 →0, 19: 1 → 0. 22: 1 → 2. Node 462, 28: 1 → 0.Node 465, 33: 1 → 0. Node 498, 21: 0 → 1. Node507, 7: 0 → 1.

APPENDIX 4

ADDITIONAL COMMENTS ON SOME SPECIES

Hyla albovittata Lichtenstein and Martens,1856: Lichtenstein and Martens (1856) describedthis species from ‘‘Brazil’’, without further data.Subsequently, it was not included in Nieden’s(1923) catalog; Duellman (1977) stated that theholotype was unknown; however, the holotype ishoused at the Zoologisches Museum–Universitat

Humboldt, Berlin. The specimen (ZMB 3140), anadult male, is in a remarkably good state of pres-ervation, retaining details of pattern and colora-tion. On study, it is evident that it is a junior syn-onym of Hyla pulchella Dumeril and Bibron,1841.

Hyla auraria Peters, 1873: This species was de-

Page 203: systematic review of the frog family hylidae, with special reference to ...

2005 203FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

scribed in detail based on a single specimen re-ported as coming from ‘‘angeblich aus Sudamer-ika’’ (Peters, 1873). Subsequently, Boulenger(1882) presented a brief description without fur-ther comment. Duellman (1977) reported that theholotype was ‘‘formerly at ZSM, now lost.’’Duellman (in Frost 1985) stated that the name hasnever been associated with a population of an-urans. However, the holotype is extant. The ho-lotype of H. auraria (ZSM 1175/0), presumablya female (it lacks vocal slits), is in relatively goodstate of preservation, but it is very faded. Wecould not associate it with any known species ofHylinae nor could we associate it with any of thegenera recognized in this work.

Hyla palliata Cope, 1863: Cope (1863) de-scribed this species, stating that it was a specimenfrom the Page collection, with provenance ‘‘Par-aguay’’.32 He also provided the Smithsonian Mu-seum number 6225. The species was not includedin the list of type specimens of the USNM (Coch-ran, 1961). According to Heyer (personal com-mun. to J.F., 21 Jan. 2004), the USNM catalogentry indicates that there were originally twospecimens cataloged as 6225, and in a card fileinitiated by Cochran of missing type specimens,there is a card indicating that the specimens couldnot be found in 1957. Because the specimens hadnot been found since, Heyer noted, ‘‘the most rea-sonable conclusion is that the specimens are in-deed lost.’’ The description provided by Cope in-dicates a character combination that could be in-dicative of a species of Hypsiboas (no species ofBokermannohyla are known for the area surveyedby the Page expedition): ‘‘All the digits of pos-terior extremity palmate to penultimate phalanx;of the anterior the three external are one thirdwebbed. Metacarpus of inner digit with a largetubercle.’’ Nevertheless, in the absence of otherevidence, we prefer to consider this species as anomen dubium.

Hyloscirtus estevesi (Rivero, 1968): This spe-cies was originally described as a member of theCentrolenidae by Rivero (1968), and was later(Rivero, 1985) included in the Centrolenella pul-idoi species group. Savage (in Frost, 1985) con-sidered this species to be a member of the Hyli-dae, and it was not included in the taxonomic re-arrangement of Centrolenidae by Ruiz-Carranzaand Lynch (1991). Myers and Donnelly (1997)and Frost (2002) considered it as incerta sedis.However, La Marca (1992) listed it as a centro-

32 Although the provenance is ‘‘Paraguay’’, thisshould be taken in a very wide sense, since the Pageexpedition travelled from Buenos Aires, through the Pa-rana river up to Corumba, State of Matto Grosso, Brazil(Page, 1859).

lenid, and later (La Marca, 1997; 1998) employedthe combination Hyalinobatrachium estevesi, mis-takenly attributing it to Ruiz-Carranza and Lynch(1991). The study of its holotype (MCZ 72498)indicates that it is a juvenile of an unidentifiedspecies that we associate with the Hyloscirtus bo-gotensis species group. While it could well be ajuvenile of either H. jahni or H. platydactylus, andtherefore a potential junior synonym of either ofthese species, we tentatively recognize it as a val-id species pending additional work.

Hypsiboas pulidoi (Rivero, 1968): This specieswas described from ‘‘Monte Duida, 2000 pies,Territorio Amazonas, Venezuela’’ as a Centrolen-idae by Rivero (1968). Later Rivero (1985) in-cluded in its own species group, the Centrolenellapulidoi group. Savage (in Frost, 1985) consideredthis species to be a hylid. Furthermore, Rivero(1985: 361) stated that ‘‘the resemblance of C.pulidoi with some specimens with the same col-oration of H. benitezi (with which it is syntopic)is so remarkable that for some time it was thoughtto consider them synonyms, but C. pulidoi hasfused tarsal bones, a different coloration, and theeyes are red in living specimens’’ (freely trans-lated from the Spanish). This species was not in-cluded in the taxonomic rearrangement of Centro-lenidae by Ruiz-Carranza and Lynch (1991), butAyarzaguena (1992) and La Marca (1992) stilllisted it as a centrolenid, and Gorzula and Senaris(1999) referred to it as ‘‘Centrolenella’’ pulidoi.Duellman (1999) employed the combination Hylapulidoi without further comment; Myers and Don-nelly (1997) and Frost (2002) considered it as in-certae sedis. The study of the holotype (MCZ72499), a female according to Rivero (1968), in-dicates that it is a species close to Hypsiboas ben-itezi. The specimen has a slightly enlarged pre-pollex, similar to the situation seen in females ofH. benitezi. Considering its small size (20.3 mm),we are unsure as to whether it is an adult femaleor a juvenile. We tentatively consider this speciesas valid, pending a careful comparison with ju-veniles of Hypsiboas benitezi. The only apparentdifference between Hypsiboas benitezi and H.pulidoi is that the latter has a red iris (Rivero,1968), whereas the iris of the former was de-scribed by Myers and Donnelly (1997) as ‘‘lightbronzy brown with fine balck venation.’’ How-ever, this issue should be addressed cautiously,because as noted by Myers and Donnelly (1997),at least two species are probably confounded un-der the name H. benitezi, and these authors de-scribed specimens from Tamacuari, that they con-sidered morphologically different from the topo-types, and iris coloration in topotypic material re-mains undescribed.

Scinax dolloi (Werner, 1903): Werner (1903)

Page 204: systematic review of the frog family hylidae, with special reference to ...

204 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

described H. dolloi, based on two specimens,whose provenance was stated as Brazil, adding‘‘unfortunately it is unknown with more preci-sion’’ (from the German). The species was in-cluded in Nieden (1923) with a brief description,and without additional comments by Bokermann(1966b), Gorham (1974), and Duellman (1977).B. Lutz (1973) included it as a ‘‘doubtful spe-cies’’. Duellman (in Frost, 1985, 2002) stated thatthe name had not been associated with any knownpopulation.

Lang (1990) included it on the list of type spec-imens housed at the Institut Royal des SciencesNaturelles in Brussels, Belgium, commenting that‘‘although the original type-description lists spe-cifically that no specific locality is know the reg-ister has ‘Haut Maringa, Bresil’ as locality data’’.The two syntypes (IRSNB 6481) are in a fairlygood state of preservation, and their study showsthat they clearly belong to the genus Scinax, and,within it, they seem to be related to the ruberclade (Faivovich, 2002). Scinax dolloi is morpho-logically close to Scinax hayii and S. perereca.While its exact status remains to be elucidated, inthe meantime we consider it a valid species ofScinax.

Scinax karenanneae Pyburn, 1993: Pyburn(1993) described this species from ‘‘near Timbo,Department of Vaupes, Colombia’’. Although theoriginal description and accompanying figuressuggest that the species is superficially very sim-ilar to many species of Scinax, Pyburn (1993)ruled out the possibility that this species belongedto Scinax due to the sperm with a single tail fil-ament. Problems with the interpretation of spermmorphology data have been discussed earlier, andin this particular case the poorly known taxonom-ic distribution of this character state in Hylinaeprecludes any interpretation of polarity.

The paratypes of Hyla karenanneae (UTA A-3768–79) show the synapomorphies of Scinaxlisted by Faivovich (2002) that can be seen with-out deep dissections. Therefore, we propose itsinclusion in Scinax. This species has a large sub-gular vocal sac, which in the phylogenetic anal-ysis of Scinax of Faivovich (2002) optimized asa synapomorphy of a clade composed by S. stauf-feri, S. cruentommus, S. fuscomarginatus, and anundescribed species from northern Brazil.

Scinax megapodius: This species was figuredby Miranda-Ribeiro (1926), but formally de-scribed only later (Miranda-Ribeiro, 1937). Orig-inally described from the localities of Sao Luiz deCaceres and Porto Esperidiao, Matto Grosso (Mi-

randa-Ribeiro, 1937), this species was considereda synonym of Hyla fuscovaria by Lutz (1973).However, Fouquette and Delahoussaye (1977)consider it a valid species, based on differencesin sperm morphology from H. fuscovaria. On thatbasis, they included it in their Ololygon cathari-nae group. Almeida and Cardoso (1985) present-ed an analysis of intraspecific variation amongspermatozoa of O. fuscovaria, and suggested thatthe differences observed among O. fuscovaria andO. megapodia were the same as those seen amongdifferent specimens of the same population of O.fuscovarius. Without comment, Duellman andWiens (1992) considered Hyla megapodia to be asynonym of Scinax fuscovarius, as did Lavilla(1992). Based on the lack of comments by theseauthors, Frost (2002) continued recognition ofScinax megapodius as a valid species. Based onthe results of Almeida and Cardoso (1985), andconsidering that there is no published evidencethat Scinax megapodius is different from S. fus-covarius, following Lutz (1973), we treat it as ajunior synonym of the latter.

Scinax trachythorax: This species was describedby Muller and Hellmich (1936) from the localityof ‘‘Apa-Bergland (San Luis)’’, Paraguay, also re-ferred as ‘‘Estancia San Luis de la Sierra, Apa-Bergland’’ (Muller and Hellmich, 1936: 114). Lutz(1973) considered this species a junior synonym ofHyla fuscovaria. Fouquette and Delahoussaye(1977) considered it a valid species, based on dif-ferences in sperm morphology from H. fuscovaria,and recognized it as Ololygon trachthorax. Almei-da and Cardoso (1985) presented an analysis ofintraspecific variation in spermatozoa of O. fusco-varia, and suggested that the differences observedamong O. fuscovaria and O. trachythorax were thesame as those seen among different specimenswithin the same population of O. fuscovaria. How-ever, O. trachythorax was recognized as a validspecies by Duellman and Wiens (1992), who em-ployed the combination Scinax trachythorax. Lav-illa (1992) considered it a synonym of S. fusco-varius, as did De la Riva et al. (2000), who ex-plicitly followed Lutz (1973) and Cei (1980). (Thispublication did not incorporate changes introducedby Fouquette and Delahoussaye [1977]; Cei [1987]later recognized S. trachythorax as a valid species.)Considering the comments of Almeida and Car-doso (1985), and in light of the absence of anypublished diagnostic character state between S. fus-covarius and S. trachythorax, following Lutz(1973), we tentatively consider the latter a juniorsynonym of the former.

Page 205: systematic review of the frog family hylidae, with special reference to ...

2005 205FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5SYNAPOMORPHIES INVOLVING DNA SEQUENCES, FOR ALL TAXONOMIC GROUPS OF HYLIDAE WITH THE EXCEPTION OF SPECIES

GROUPS WHOSE MONOPHYLY WAS NOT TESTED IN THIS ANALYSIS

Hylidae

Cytochrome bPos. 14: T → A12SPos. 646: A → TPos. 1270: G → APos. 1423: T → AtRNA valinePos. 6: A → GPos. 105: T → C16SPos. 162: T → CPos. 172: T → APos. 369: C → GapPos. 399: A → TPos. 483: C → APos. 1458: Gap → APos. 1649: Gap → TPos. 1842: CT → APos. 1883: G → CPos. 1948: A → TPos. 1951: T → APos. 2381: Gap → TPos. 2844: C → APos. 2866: Gap → APos. 3032: C → TPos. 3230: C → TPos. 3234: T → A28SPos. 249: Gap → CPos. 505: Gap → GPos. 783: Gap → CPos. 1049: C → GRAG-1Pos. 6 A → TPos. 65 T → CRhodopsinPos. 281: C → TPos. 296: C → TPos. 316: T → ASIAPos. 331: G → ATyrosinasePos. 160: C → TPos. 470: T → APos. 483: A → T

Hylinae

12SPos. 733: T → APos. 1296: T → CPos. 1409: A → GPos. 1426: T → C16SPos. 392: C → APos. 665: T → APos. 1237: A → GapPos. 1705: T → CPos. 1718: A → CPos. 2058: C → APos. 2875: A → TPos. 3173: A → GPos. 3239: T → APos. 3274: A → GPos. 3301: T → C28SPos. 863: Gap → GRAG-1Pos. 2: A → CPos. 53: G → A

Pos. 341: T → CPos. 410: C → ARhodopsinPos. 194: T → CSIAPos. 169: A → TTyrosinasePos. 73: T → APos. 150: T → CPos. 270: A → GPos. 300: C → APos. 324: A → GPos. 348: T → CPos. 376: G → TPos. 511: A → G

Cophomantini

Cytochrome bPos. 13: A → TPos. 153: C → TPos. 238: T → A12SPos. 159: C → APos. 297: T → CPos. 379: A → GPos. 436: T → CPos. 571: A → CTPos. 622: C → TPos. 636: G → APos. 716: A → CTPos. 729: T → CPos. 838: A → TPos. 1002: C → TPos. 1066: C → TPos. 1203: Gap → TPos. 1264: G → APos. 1266: A → TPos. 1332: G → APos. 1343: CT → GapPos. 1374: C → TPos. 1412: C → TPos. 1509: A → G16SPos. 294: A → CPos. 498: T → CPos. 876: A → GPos. 877: G → APos. 1049: T → CPos. 1228: A → CPos. 1402: A → GapPos. 1530: A → CPos. 1616: Gap → CPos. 1795: T → APos. 1874: T → CPos. 1925: A → CPos. 1998: A → CPos. 2605: G → APos. 2711: C → GapPos. 2736: A → GapPos. 2802: T → CPos. 2866: A → CPos. 3018: T → APos. 3027: T → GPos. 3328: A → T28SPos. 150: A → CPos. 152: C → TPos. 153: T → GPos. 178: G → APos. 211: Gap → C

Pos. 212: Gap → TPos. 230: Gap → APos. 302: G → APos. 343: Gap → APos. 344: Gap → GPos. 654: Gap → TPos. 1032: C → GRAG-1Pos. 357 C → TRhodopdsinPos. 93: C → TPos. 163: C → TSIAPos. 112: C → TPos. 304: T → CTyrosinasePos. 174: G → APos. 258: A → TPos. 508: T → GPos. 532: T → CAplastodiscus

Cytochrome bPos. 31: A → GPos. 79: A → CPos. 137: C → APos. 220: T → CPos. 310: C → A12SPos. 117: A → TPos. 152: A → GapPos. 174: G → APos. 206: A → TPos. 392: T → CPos. 414: C → TPos. 558: C → APos. 571: CT → APos. 655: Gap → APos. 823: A → TPos. 880: A → CPos. 1116: A → TPos. 1187: T → CPos. 1330: A → GPos. 1397: A → GapPos. 1408: A → GPos. 1427: T → CPos. 1431: T → CPos. 1539: C → TPos. 1573: A → GPos. 1590: Gap → AtRNA valinePos. 6: G → APos. 105: C → T16SPos. 376: A → TPos. 399: T → CPos. 664: A → TPos. 800: C → TPos. 803: C → TPos. 974: A → CPos. 984: T → APos. 1298: C → TPos. 1403: Gap → CPos. 1710: T → GPos. 1788: Gap → TPos. 1842: A → GapPos. 2019: A → TPos. 2030: A → GPos. 2105: A → CPos. 2130: C → TPos. 2240: A → G

Pos. 2280: A → TPos. 2289: A → GPos. 2301: G → APos. 2313: T → CPos. 2392: A → GapPos. 2398: A → TPos. 2551: A → GPos. 2563: T → CPos. 2820: A → CPos. 3032: T → CPos. 3148: G → APos. 3287: T → CPos. 3322: C → TPos. 3330: A → CPos. 3486: A → G28SPos. 390: C → TRAG-1Pos. 125 A → GPos. 284 A → GPos. 419 C → TSIAPos. 391: C → TTyrosinasePos. 6: G → APos. 130: C → TPos. 157: C → GPos. 233: C → TPos. 315: C → APos. 330: T → CPos. 513: G → A

Aplastodiscus albofrenatus group

Cytochrome bPos. 10: A → TPos. 23: T → CPos. 101: C → TPos. 109: A → GPos. 111: C → GPos. 132: A → GPos. 135: G → CPos. 239: C → TPos. 250: T → CPos. 259: C → TPos. 268: T → CPos. 290: C → TPos. 322: C → APos. 334: A → G12SPos. 37: T → CPos. 94: Gap → TPos. 218: Gap → TPos. 251: G → APos. 264: C → TPos. 333: C → TPos. 460: T → APos. 462: T → CPos. 484: A → TPos. 550: T → CPos. 587: T → CPos. 625: G → APos. 641: A → GPos. 654: T → CPos. 692: T → CPos. 696: A → GPos. 788: A → GPos. 802: T → CPos. 830: A → GPos. 835: T → CPos. 943: A → G

Page 206: systematic review of the frog family hylidae, with special reference to ...

206 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 1036: C → GapPos. 1094: A → GPos. 1105: A → CPos. 1128: T → APos. 1141: T → CPos. 1211: T → CPos. 1217: T → CPos. 1402: A → CPos. 1413: C → APos. 1417: G → TPos. 1441: C → APos. 1496: T → CPos. 1674: A → TPos. 1688: A → GPos. 1762: A → GPos. 1763: T → CPos. 1775: T → CtRNA valinePos. 55: A → CPos. 56: T → C16SPos. 74: Gap → APos. 234: T → APos. 355: C → TPos. 483: A → TPos. 517: A → TPos. 566: A → TPos. 702: A → GPos. 763: G → APos. 808: T → CPos. 839: C → TPos. 864: C → TPos. 908: T → APos. 1021: T → APos. 1092: A → TPos. 1203: A → GapPos. 1211: A → GapPos. 1360: A → CPos. 1574: A → TPos. 1643: A → GPos. 1654: T → GapPos. 1688: T → CPos. 1799: C → APos. 1823: A → TPos. 1888: C → TPos. 1900: C → TPos. 1945: G → APos. 1962: A → GPos. 1981: Gap → TPos. 2059: A → CPos. 2285: A → TPos. 2308: C → TPos. 2406: T → APos. 2457: G → APos. 2515: A → TPos. 2545: G → APos. 2663: A → GapPos. 2664: A → GapPos. 2672: T → GapPos. 2685: A → GapPos. 2704: G → GapPos. 2742: T → GapPos. 2780: A → GapPos. 2844: A → GPos. 2875: A → GapPos. 2901: T → GapPos. 2906: T → GapPos. 2929: C → GapPos. 2946: G → TPos. 3010: A → TPos. 3054: CT → G

Pos. 3056: T → GPos. 3071: A → TPos. 3088: A → TPos. 3118: T → CPos. 3145: C → APos. 3310: A → TPos. 3516: T → GRAG-1Pos. 428 A → TSIAPos. 280: C → TPos. 349: T → A

Aplastodiscus albosignatus group

Cytochrome bPos. 49: A → CPos. 339: A → CPos. 376: T → APos. 405: CG → T12SPos. 227: T → CPos. 452: T → APos. 521: A → TPos. 611: A → GPos. 875: C → APos. 908: A → TPos. 958: A → GPos. 1048: T → APos. 1579: C → TPos. 1589: C → APos. 1645: C → TPos. 1674: A → C16SPos. 94: C → TPos. 308: A → GapPos. 378: Gap → CPos. 419: Gap → APos. 648: G → TPos. 667: A → CPos. 668: CT → APos. 780: A → GPos. 887: C → TPos. 985: G → APos. 1049: C → TPos. 1174: T → APos. 1278: C → GPos. 1503: C → APos. 1742: Gap → CPos. 1780: T → CPos. 1795: A → CPos. 2029: T → APos. 2115: T → APos. 2195: T → CPos. 2400: Gap → GPos. 2663: A → TPos. 3299: C → TPos. 3321: A → TTyrosinasePos. 25: T → APos. 166: G → AAplastodiscus perviridis group

Cytochrome bPos. 46: C → TPos. 64: T → APos. 161: A → GPos. 183: A → TPos. 189: C → TPos. 201: T → CPos. 229: C → TPos. 362: T → APos. 399: C → T

12SPos. 103: Gap → GPos. 132: Gap → CPos. 164: T → GapPos. 169: A → GPos. 310: T → CPos. 368: A → GPos. 615: T → APos. 646: T → APos. 650: T → CPos. 880: C → TPos. 1036: C → TPos. 1326: G → APos. 1392: C → TPos. 1626: Gap → GtRNA valinePos. 58: T → C16SPos. 136: A → GapPos. 336: C → TPos. 589: T → CPos. 618: A → GPos. 636: T → CPos. 656: T → CPos. 749: C → TPos. 876: G → APos. 968: G → APos. 979: C → TPos. 1277: G → APos. 1286: A → GPos. 1314: A → GPos. 1649: C → TPos. 1718: C → TPos. 1788: T → CPos. 1799: C → TPos. 1819: A → TPos. 1953: T → CPos. 2364: A → GapPos. 2381: T → CPos. 2552: T → CPos. 2616: A → TPos. 2802: C → GapPos. 2821: Gap → TPos. 3004: A → GapPos. 3077: T → CPos. 3181: G → APos. 3266: C → TPos. 3281: A → GPos. 3297: A → CPos. 3516: T → CRAG-1Pos. 311 C → TTyrosinasePos. 438: C → T

Bokermannohyla

Cytochrome bPos. 116: C → TPos. 361: T → GapPos. 370: Gap → APos. 376: T → C12SPos. 140: C → GapPos. 171: G → GapPos. 181: Gap → TPos. 322: C → TPos. 729: C → TPos. 890: A → CPos. 943: A → GPos. 1084: T → CPos. 1145: T → A

Pos. 1243: A → CTPos. 1338: Gap → CPos. 1342: A → GPos. 1366: C → GapPos. 1369: T → GPos. 1568: A → TPos. 1599: A → GPos. 1630: A → CtRNA valinePos. 78: T → APos. 109: T → C16SPos. 0: G → APos. 166: Gap → APos. 443: C → ATPos. 731: C → GapPos. 749: C → TPos. 829: C → TPos. 860: G → APos. 1041: Gap → CPos. 1103: T → GapPos. 1129: G → APos. 1330: C → APos. 1436: A → GapPos. 1757: T → CPos. 1783: C → TPos. 1865: T → APos. 1985: A → CPos. 1998: C → GPos. 2041: A → TPos. 2059: A → TPos. 2570: A → GPos. 2618: T → GapPos. 2694: T → CPos. 2697: T → CPos. 2966: A → TPos. 3027: G → APos. 3173: G → GapPos. 3324: T → CPos. 3330: A → GapPos. 3425: C → T28SPos. 443: G → GapRAG-1Pos. 251 G → APos. 380 T → CRhodopsinPos. 78: G → CPos. 93: T → APos. 220: G → ATyrosinasePos. 31: A → GPos. 300: A → GPos. 315: C → GPos. 357: T → CPos. 387: T → CPos. 403: G → APos. 506: C → GBokermannohyla circumdata group

Cytochrome bPos. 49: A → CPos. 109: A → GPos. 120: A → GPos. 201: A → CPos. 330: C → TPos. 334: A → TPos. 356: T → CPos. 367: C → TPos. 399: C → T12SPos. 33: G → A

Page 207: systematic review of the frog family hylidae, with special reference to ...

2005 207FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 69: C → TPos. 131: T → CPos. 227: T → CPos. 370: A → TPos. 512: T → CPos. 547: A → TPos. 729: T → APos. 823: A → GPos. 869: C → TPos. 1024: C → TPos. 1144: T → GPos. 1272: G → APos. 1348: T → CPos. 1408: A → GPos. 1427: T → CPos. 1645: A → C16SPos. 11: T → CPos. 411: C → TPos. 498: C → TPos. 630: T → APos. 692: A → GPos. 726: A → GPos. 751: C → APos. 887: T → APos. 1049: C → TPos. 1085: T → CPos. 1492: T → APos. 1649: T → APos. 1654: T → APos. 1688: T → CPos. 1880: A → CPos. 2110: C → TPos. 2176: C → TPos. 2209: Gap → CPos. 2229: C → TPos. 2611: Gap → APos. 2825: T → APos. 2866: C → TPos. 3222: T → CPos. 3516: T → C28SPos. 240: Gap → CPos. 498: Gap → G

Bokermannohyla pseudopseudisgroup

Cytochrome bPos. 76: A → GPos. 111: C → TPos. 135: G → APos. 140: A → TPos. 253: C → TPos. 334: A → CPos. 347: A → TPos. 374: C → TPos. 381: C → T12SPos. 83: A → GPos. 159: A → TPos. 164: T → CPos. 297: C → TPos. 370: A → GPos. 452: T → CPos. 615: T → CPos. 1048: T → APos. 1181: Gap → APos. 1317: C → APos. 1326: G → A16SPos. 285: Gap → C

Pos. 286: Gap → CPos. 691: G → APos. 702: A → GPos. 774: T → APos. 960: G → APos. 974: A → TPos. 1140: A → TPos. 1607: A → GPos. 1710: T → GPos. 1953: T → APos. 2025: C → TPos. 2229: C → APos. 2250: C → TPos. 2262: G → APos. 2330: C → TPos. 2473: T → APos. 2518: A → GPos. 2608: Gap → TPos. 2646: G → APos. 2856: T → APos. 3097: C → APos. 3380: T → CPos. 3381: T → APos. 3403: C → TRAG-1Pos. 365: T → CPos. 422: T → CPos. 428: A → C

Hyloscirtus

Cytochrome bPos. 14: A → CTPos. 101: C → AGPos. 134: C → TPos. 302: A → CPos. 322: C → A12SPos. 460: T → CPos. 462: T → APos. 490: Gap → CPos. 565: A → GapPos. 636: A → TPos. 817: G → APos. 842: Gap → CPos. 1174: C → APos. 1211: T → APos. 1440: C → APos. 1532: Gap → CTtRNA valinePos. 82: C → TPos. 89: A → CPos. 99: G → A16SPos. 254: T → GapPos. 272: T → ACPos. 325: Gap → TPos. 427: T → APos. 576: T → CPos. 602: A → CPos. 854: A → TPos. 889: A → GPos. 914: C → APos. 949: T → CPos. 1062: A → GapPos. 1192: Gap → CPos. 1577: A → TPos. 1587: T → APos. 1616: C → APos. 1631: T → GPos. 1673: AC → GapPos. 1705: C → A

Pos. 1718: C → GapPos. 1985: A → TPos. 2258: A → TPos. 2544: G → APos. 2756: Gap → TPos. 3140: C → APos. 3288: A → TPos. 3326: T → C28SPos. 303: Gap → TPos. 346: Gap → CPos. 391: Gap → TPos. 744: Gap → TRAG-1Pos. 257 C → TPos. 338 C → TPos. 425 G → ARhodopdsinPos. 256: C → TTyrosinasePos. 3: C → TPos. 72: C → TPos. 257: C → T

Hyloscirtus armatus group

Cytochrome bPos. 3: C → TPos. 23: T → CPos. 67: C → TPos. 127: C → TPos. 135: G → APos. 167: C → TPos. 178: C → TPos. 189: C → TPos. 248: C → APos. 290: C → APos. 369: T → C12SPos. 22: G → APos. 26: A → GPos. 176: A → TPos. 194: T → CPos. 227: T → CPos. 411: T → CPos. 414: C → TPos. 455: AC → TPos. 547: A → TPos. 558: C → TPos. 793: T → CPos. 835: T → CPos. 869: C → TPos. 1043: C → TPos. 1084: T → CPos. 1095: C → TPos. 1100: G → APos. 1101: C → TPos. 1141: C → TPos. 1153: T → GPos. 1187: T → CPos. 1203: T → APos. 1303: A → TPos. 1446: A → CPos. 1515: A → TPos. 1574: Gap → APos. 1575: Gap → CPos. 1630: A → TPos. 1636: C → APos. 1649: A → CtRNA valinePos. 95: C → T16S

Pos. 139: Gap → APos. 175: Gap → CPos. 220: A → TPos. 244: A → TPos. 498: C → TPos. 543: T → CPos. 726: A → TPos. 731: C → TPos. 767: A → CPos. 822: A → TPos. 862: C → TPos. 996: A → TPos. 1104: Gap → APos. 1140: AC → TPos. 1175: Gap → APos. 1491: A → TPos. 1503: C → APos. 1534: A → CPos. 1572: T → CPos. 1688: C → APos. 1780: T → CPos. 1865: T → APos. 1894: T → APos. 1897: T → CPos. 1928: C → APos. 1949: T → APos. 1961: A → GPos. 2122: G → APos. 2308: T → APos. 2432: A → GPos. 2461: C → TPos. 2476: C → TPos. 2552: T → CPos. 3059: A → TPos. 3140: A → TPos. 3280: A → CPos. 3281: A → TPos. 3288: T → CPos. 3375: T → APos. 3431: C → TPos. 3442: C → T28SPos. 302: A → GPos. 1000: G → GapRhodopdsinPos. 63: G → APos. 135: C → TPos. 270: A → TPos. 279: C → ATyrosinasePos. 47: A → GPos. 52: C → TPos. 56: A → CPos. 109: C → TPos. 167: G → TPos. 170: A → CPos. 188: G → APos. 258: T → APos. 273: C → GPos. 279: C → TPos. 297: C → TPos. 343: G → APos. 344: T → CPos. 529: C → T

Hyloscirtus bogotensis group

Cytochrome bPos. 126: G → APos. 153: T → CPos. 168: A → TPos. 220: T → C

Page 208: systematic review of the frog family hylidae, with special reference to ...

208 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 232: C → APos. 253: C → TPos. 338: T → CPos. 376: T → A12SPos. 28: A → GPos. 45: T → CPos. 68: A → GPos. 110: A → GapPos. 152: A → GPos. 164: T → CPos. 295: A → CPos. 447: Gap → CPos. 550: T → CPos. 619: G → TPos. 622: T → APos. 650: T → CPos. 767: C → TPos. 991: Gap → APos. 1094: A → GPos. 1118: C → TPos. 1270: A → GPos. 1307: T → CPos. 1509: G → APos. 1521: G → APos. 1568: A → TPos. 1657: G → AtRNA valinePos. 55: A → GPos. 80: T → GapPos. 85: G → GapPos. 90: A → GapPos. 98: A → G16SPos. 12: C → TPos. 107: A → GapPos. 392: A → CPos. 411: C → GapPos. 452: T → GapPos. 665: A → GPos. 691: G → APos. 876: G → APos. 891: G → APos. 904: A → TPos. 947: C → TPos. 952: A → TPos. 969: A → GPos. 1049: C → GapPos. 1480: T → CPos. 1534: A → TPos. 1780: T → APos. 1819: A → GapPos. 1948: T → CPos. 1998: C → APos. 2041: A → TPos. 2125: T → CPos. 2457: G → APos. 2533: T → CPos. 2663: A → GapPos. 2664: A → GapPos. 2672: C → GapPos. 2719: CT → APos. 2820: A → GapPos. 2856: T → GPos. 2966: A → CPos. 2990: A → CPos. 3039: A → TPos. 3048: A → GapPos. 3063: G → APos. 3106: T → CPos. 3385: T → C

Pos. 3458: T → CPos. 3524: C → TPos. 3538: G → ARAG-1Pos. 4 C → APos. 5 A → GPos. 143 G → APos. 168 G → APos. 169 T → CPos. 170 G → APos. 305 C → TPos. 311 C → TPos. 323 T → CRhodopdsinPos. 133: C → TPos. 135: C → APos. 291: G → APos. 308: T → ATyrosinasePos. 183: A → GPos. 214: C → TPos. 220: A → GPos. 294: C → TPos. 299: A → CPos. 315: C → TPos. 342: C → T

Hyloscirtus larinopygion group

12SPos. 65: C → TPos. 454: T → CPos. 490: C → TPos. 601: T → CPos. 908: A → TPos. 1113: T → CPos. 1116: A → TPos. 1174: A → TPos. 1216: C → APos. 1321: T → CPos. 1407: G → APos. 1409: G → APos. 1426: C → TPos. 1429: C → TPos. 1678: A → GtRNA valinePos. 12: C → T16SPos. 347: C → TPos. 742: T → APos. 819: T → 4Pos. 911: A → GPos. 920: G → APos. 1092: A → TPos. 1228: C → 4Pos. 1265: A → GPos. 1325: A → CPos. 1510: A → GPos. 1561: C → TPos. 2103: A → TPos. 2395: A → CPos. 2450: T → CPos. 2768: CT → APos. 3287: T → C

Hypsiboas

Cytochrome bPos. 376: T → A12SPos. 45: T → CPos. 476: C → APos. 650: T → APos. 958: A → G

Pos. 1048: T → APos. 1107: C → TPos. 1407: G → APos. 1429: C → T16SPos. 163: Gap → TPos. 188: A → TPos. 272: T → APos. 876: G → APos. 996: A → GPos. 1169: Gap → TPos. 1692: Gap → APos. 1894: T → CPos. 1978: Gap → APos. 2182: Gap → APos. 2217: T → GapPos. 2812: T → CPos. 3086: A → TPos. 3166: C → APos. 3239: A → CPos. 3249: A → T28SPos. 355: Gap → CPos. 358: Gap → CPos. 57: C → TPos. 373: C → TTyrosinasePos. 257: C → TPos. 288: C → TPos. 407: T → A

Hypsiboas albopunctatus group

Cytochrome bPos. 63: T → CPos. 76: A → TPos. 109: A → GPos. 126: C → APos. 128: T → CPos. 153: T → CPos. 180: C → APos. 253: C → TPos. 271: T → CPos. 327: A → TPos. 415: C → T12SPos. 131: T → CPos. 227: T → CPos. 650: A → CPos. 1045: T → APos. 1158: Gap → CPos. 1159: Gap → CPos. 1217: T → CPos. 1376: T → CPos. 1573: A → TPos. 1670: C → T16SPos. 107: A → GapPos. 173: Gap → APos. 308: A → GapPos. 998: C → TPos. 1092: A → TPos. 1125: A → GPos. 1129: G → APos. 1183: A → GapPos. 1300: A → GPos. 1419: T → APos. 1737: C → APos. 1757: C → TPos. 1810: T → APos. 1840: Gap → TPos. 2187: A → T

Pos. 2203: A → TPos. 2694: T → CPos. 2846: Gap → CPos. 3054: T → CPos. 3189: G → APos. 3222: T → GapPos. 3516: T → A

Hypsiboas faber group

Cytochrome bPos. 173: A → TPos.186: A → G12SPos. 131: T → C16SPos. 11: T → CPos. 206: A → TPos. 347: C → APos. 367: C → APos. 573: A → TPos. 663: A → CPos. 775: C → TPos. 780: C → APos. 821: T → CPos. 904: T → APos. 1421: Gap → APos. 1458: A → TPos. 1510: A → GapPos. 1673: A → TPos. 1874: T → CPos. 2381: T → APos. 2602: G → TPos. 2663: A → TPos. 2820: A → CPos. 2977: A → TPos. 2995: A → CPos. 3081: A → TPos. 3351: Gap → ARAG-1Pos. 1 C → ASIAPos. 283: G → A

Hypsiboas pellucens group

12SPos. 42: T → CPos. 183: A → TPos. 297: C → TPos. 319: A → TPos. 320: A → TPos. 342: T → CPos. 392: T → CPos. 455: C → TPos. 541: T → CPos. 550: T → CPos. 641: A → TPos. 646: T → APos. 661: G → APos. 673: C → TPos. 716: C → GapPos. 731: Gap → APos. 767: T → CPos. 841: A → TPos. 1023: T → CPos. 1122: A → TPos. 1187: T → CPos. 1203: T → APos. 1214: Gap → APos. 1233: G → APos. 1316: A → GPos. 1321: T → C

Page 209: systematic review of the frog family hylidae, with special reference to ...

2005 209FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 1337: T → CPos. 1369: T → GPos. 1392: C → TPos. 1441: A → CPos. 1445: C → TPos. 1549: A → TPos. 1579: C → TPos. 1605: A → TPos. 1630: A → CtRNA valinePos. 101: A → G16SPos. 12: C → TPos. 136: A → TPos. 206: A → GapPos. 334: Gap → APos. 498: C → APos. 573: A → TPos. 610: A → TPos. 691: G → APos. 736: C → APos. 761: T → CPos. 790: G → APos. 826: A → GPos. 836: A → CPos. 839: C → TPos. 892: G → APos. 904: T → APos. 911: A → GPos. 928: T → GPos. 946: C → TPos. 980: T → CPos. 1013: T → APos. 1062: C → TPos. 1173: Gap → CPos. 1235: C → APos. 1245: Gap → GPos. 1261: T → CPos. 1345: T → APos. 1389: A → TPos. 1458: A → GapPos. 1468: A → TPos. 1480: A → TPos. 1510: A → CPos. 1532: T → CPos. 1607: A → GapPos. 1628: Gap → TPos. 1641: Gap → APos. 1727: A → TPos. 1813: A → CPos. 1847: A → CPos. 1932: C → APos. 1953: A → TPos. 2029: T → CPos. 2030: G → APos. 2035: C → APos. 2077: A → TPos. 2086: C → TPos. 2091: A → CPos. 2094: A → CPos. 2109: Gap → APos. 2117: A → GapPos. 2267: T → APos. 2308: C → TPos. 2450: T → CPos. 2510: T → CPos. 2517: G → APos. 2518: A → GPos. 2525: A → TPos. 2538: C → TPos. 2569: T → C

Pos. 2583: A → GPos. 2613: T → APos. 2618: T → APos. 2656: A → GPos. 2719: C → TPos. 2906: T → CPos. 2953: A → GPos. 2956: A → TPos. 3041: G → APos. 3077: T → APos. 3093: T → CPos. 3111: A → GPos. 3166: A → CPos. 3234: T → APos. 3249: T → CPos. 3285: G → APos. 3286: C → TPos. 3426: A → TPos. 3454: T → GPos. 3518: Gap → T

Hypsiboas pulchellus group

Cytochrome bPos. 26: T → APos. 126: C → TPos. 145: C → TPos. 214: C → TPos. 330: C → TPos. 347: A → C12SPos. 180: C → TPos. 601: T → APos. 650: A → TPos. 1317: A → TPos. 1423: A → TPos. 1645: C → TtRNA valinePos. 4: A → TPos. 101: A → G16SPos. 71: A → CPos. 130: T → CPos. 254: T → APos. 566: A → TPos. 602: A → TPos. 667: A → CPos. 702: A → TPos. 732: A → GPos. 788: C → TPos. 1169: T → APos. 1235: C → APos. 1315: T → APos. 1436: A → TPos. 1468: A → CPos. 1572: T → APos. 1579: Gap → CPos. 1607: A → TPos. 1705: T → GPos. 1810: T → CPos. 1813: A → CPos. 1878: C → TPos. 1887: C → TPos. 1952: T → APos. 2025: C → TPos. 2089: A → TPos. 2262: G → APos. 2588: C → TPos. 2754: Gap → CPos. 2825: T → APos. 2856: T → APos. 2866: C → A

Pos. 2985: T → APos. 3239: C → GapRhodopsinPos. 10: G → ATyrosinasePos. 91: C → TPos. 154: C → TPos. 177: C → TPos. 178: C → GPos. 182: G → TPos. 211: C → GPos. 444: G → A

Hypsiboas punctatus group

Cytochrome bPos. 49: A → CPos. 109: A → CPos. 192: T → CPos. 253: C → T12SPos. 268: T → CPos. 1045: T → GapPos. 1317: C → T16SPos. 56: C → GapPos. 272: A → GPos. 294: C → TPos. 543: T → CPos. 920: G → APos. 1103: T → GapPos. 1259: CT → APos. 1654: T → CPos. 1878: C → TPos. 1887: C → TPos. 2308: C → TPos. 2719: C → GapPos. 2742: T → GapPos. 2753: A → GapPos. 2768: C → GapPos. 2906: T → APos. 2975: C → GapPos. 2982: C → GapPos. 2995: A → GapPos. 3054: T → APos. 3140: C → TPos. 3222: T → GapPos. 3516: T → A

Hypsiboas semilineatus group

Cytochrome bPos. 1: A → TPos. 46: C → TPos. 63: T → CPos. 76: A → TPos. 153: T → CPos. 167: C → TPos. 180: C → TPos. 181: T → APos. 195: A → CPos. 232: C → TPos. 280: C → TPos. 290: C → APos. 347: A → CPos. 353: T → CPos. 374: C → TPos. 381: C → T12SPos. 33: G → APos. 271: T → APos. 332: C → APos. 348: T → APos. 370: A → C

Pos. 414: C → TPos. 528: A → CPos. 602: A → TPos. 619: G → APos. 650: A → TPos. 673: C → TPos. 677: A → TPos. 765: A → GPos. 774: A → GPos. 797: G → APos. 815: T → CPos. 836: T → CPos. 875: C → TPos. 1001: A → CPos. 1215: A → TPos. 1330: A → TPos. 1336: C → TPos. 1372: G → APos. 1378: A → TPos. 1392: C → TPos. 1413: C → TPos. 1439: C → APos. 1670: C → AtRNA valinePos. 94: C → APos. 95: C → T16SPos. 134: Gap → APos. 211: Gap → TPos. 294: C → APos. 323: C → APos. 472: A → GapPos. 579: A → TPos. 580: A → TPos. 606: C → APos. 611: A → GPos. 654: T → APos. 679: C → TPos. 732: A → GPos. 819: T → GapPos. 911: A → GPos. 914: C → TPos. 1004: T → GPos. 1021: T → APos. 1160: C → APos. 1242: T → APos. 1246: T → APos. 1325: A → CPos. 1436: A → TPos. 1510: A → TPos. 1530: C → TPos. 1596: A → TPos. 1616: C → APos. 1692: A → CPos. 1727: A → CPos. 1799: C → APos. 1847: A → TPos. 1895: A → TPos. 1922: C → APos. 1950: T → APos. 1970: A → TPos. 2035: C → APos. 2086: C → TPos. 2089: A → CPos. 2125: T → APos. 2156: C → APos. 2182: A → TPos. 2229: C → APos. 2310: A → CPos. 2313: T → APos. 2406: T → Gap

Page 210: systematic review of the frog family hylidae, with special reference to ...

210 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 2441: C → APos. 2454: A → TPos. 2457: G → APos. 2551: A → CPos. 2672: T → GapPos. 2856: T → APos. 2929: C → GapPos. 2953: A → GapPos. 3014: A → GPos. 3125: A → TPos. 3127: C → TPos. 3199: C → TPos. 3249: T → GapPos. 3291: A → GPos. 3330: A → T28SPos. 355: C → GapPos. 431: G → GapRhodopsinPos. 155: T → CPos. 270: A → TPos. 271: G → CPos. 308: T → CSIAPos. 151: C → TPos. 241: G → CPos. 253: T → CPos. 268: A → GPos. 313: G → APos. 322: C → TTyrosinasePos. 70: T → GPos. 96: G → APos. 156: C → TPos. 174: A → GPos. 260: C → APos. 262: T → CPos. 299: A → CPos. 417: C → GPos. 429: C → TPos. 475: C → TPos. 514: G → A

Myersiohyla

12SPos. 39: A → GPos. 271: T → CPos. 342: T → CPos. 356: T → CPos. 392: T → CPos. 452: T → CPos. 547: A → CPos. 615: T → APos. 672: C → APos. 835: T → CPos. 1043: C → TPos. 1645: A → GapPos. 1674: A → CtRNA valinePos. 56: T → C16SPos. 94: C → APos. 272: T → GPos. 392: A → TPos. 434: A → TPos. 517: A → CPos. 606: C → TPos. 777: A → CPos. 848: A → TPos. 1043: Gap → CPos. 1062: A → C

Pos. 1160: T → APos. 1278: T → CPos. 1614: A → CPos. 1865: T → CPos. 1951: A → TPos. 2127: G → APos. 2203: A → TPos. 2392: A → CPos. 2398: A → CPos. 2449: T → APos. 2509: C → TPos. 2566: T → CPos. 2618: T → APos. 2780: A → GapPos. 2812: T → CPos. 2856: T → CPos. 2906: T → CPos. 2997: C → GapPos. 3041: G → GapPos. 3056: T → CPos. 3106: T → CPos. 3222: T → CPos. 3287: T → CPos. 3385: T → C

Dendropsophini 1 Hylini 1

Lophiohylini

Cytochrome bPos. 11: A → CPos. 376: T → A12SPos. 1174: C → TPos. 1440: C → APos. 1670: T → C16SPos. 107: A → TPos. 399: T → CPos. 853: T → APos. 854: A → TPos. 914: C → APos. 1062: A → TPos. 1436: A → TPos. 1468: T → APos. 1847: A → GPos. 2267: T → APos. 2844: A → TPos. 2966: A → T28SPos. 233: G → GapRAG-1Pos. 5 A → GPos. 125 A → GRhodopsinPos. 10: A → GPos. 105: G → APos. 316: A → GTyrosinasePos. 210: G → APos. 407: T → APos. 408: T → APos. 506: C → G

Dendropsophini

Cytochrome bPos. 137: T → CPos. 201: A → TPos. 220: T → C12SPos. 451: T → CPos. 547: A → CPos. 641: A → GapPos. 841: A → C

Pos. 869: C → T16SPos. 162: C → TPos. 259: Gap → APos. 1799: A → CPos. 2025: C → TPos. 2680: A → TPos. 2820: A → GapPos. 3173: G → GapPos. 3230: T → APos. 3326: T → C28SPos. 400: T → CPos. 419: C → GPos. 1014: G → GapRhodopsinPos. 256: C → TTyrosinasePos. 145: T → CPos. 303: A → G

Dendropsophus

Cytochrome bPos. 3: C → APos. 183: A → TPos. 253: T → CPos. 369: T → ACPos. 414: T → C12SPos. 636: G → APos. 869: T → CPos. 1008: T → CPos. 1267: A → TPos. 1402: A → GPos. 1407: G → APos. 1429: C → T16SPos. 299: Gap → TPos. 392: A → CPos. 551: T → GapPos. 573: A → TPos. 579: A → TPos. 686: G → APos. 761: T → CPos. 777: A → CPos. 876: A → GPos. 877: G → APos. 979: C → TPos. 1469: Gap → TPos. 1949: A → CPos. 2080: A → GPos. 2156: A → CPos. 2217: T → CPos. 2244: T → CPos. 2583: A → GPos. 2802: T → CPos. 3048: T → CPos. 3230: A → C

Dendropsophus leucophyllatus group

Cytochrome bPos. 36: T → CPos. 71: C → APos. 116: C → TPos. 125: C → TPos. 134: C → TPos. 153: C → TPos. 173: A → TPos. 253: C → TPos. 405: A → C12SPos. 37: T → C

Pos. 159: C → TPos. 678: Gap → CPos. 716: A → CPos. 729: C → TPos. 838: T → APos. 897: A → CPos. 943: A → GPos. 965: T → APos. 1011: A → TPos. 1094: T → CPos. 1270: A → GPos. 1273: A → GPos. 1402: G → APos. 1581: Gap → APos. 1675: A → TPos. 1678: T → C16SPos. 1308: T → CPos. 1480: T → CPos. 1491: T → CPos. 1878: C → TPos. 1922: C → APos. 2086: C → TPos. 2091: A → TPos. 2105: A → TPos. 2107: C → TPos. 2378: Gap → APos. 2618: T → APos. 2652: T → CPos. 2780: T → CPos. 2859: Gap → GPos. 2866: A → TPos. 2982: A → CPos. 3059: A → TPos. 3166: C → TPos. 3181: G → APos. 3268: C → TPos. 3287: T → CPos. 3326: C → APos. 3452: A → G28SPos. 295: Gap → GPos. 330: Gap → CPos. 413: Gap → GPos. 544: T → GPos. 569: A → CPos. 763: Gap → CPos. 764: Gap → CPos. 974: Gap → CPos. 975: Gap → CPos. 1025: Gap → GPos. 1032: C → GRAG-1Pos. 77 T → CPos. 215 G → TPos. 245 C → TRhodopsinPos. 115: T → CPos. 262: G → APos. 281: C → TSIAPos. 112: C → TPos. 113: C → TPos. 175: C → TTyrosinasePos. 73: G → APos. 120: C → TPos. 121: C → TPos. 170: A → CPos. 174: A → GPos. 382: A → C

Page 211: systematic review of the frog family hylidae, with special reference to ...

2005 211FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 507: T → C

Dendropsophus marmoratus group

Cytochrome bPos. 11: C → APos. 97: A → TPos. 103: C → TPos. 109: G → APos. 204: C → APos. 220: C → TPos. 311: A → C12SPos. 10: A → GPos. 28: A → GPos. 44: A → GPos. 145: C → TPos. 173: G → APos. 319: A → TPos. 347: T → CPos. 370: A → GPos. 528: A → CPos. 651: C → TPos. 672: C → APos. 769: G → APos. 821: C → TPos. 1233: G → APos. 1509: A → GPos. 1539: T → CPos. 1561: A → TtRNA valinePos. 95: C → T16SPos. 188: A → GapPos. 206: C → APos. 259: A → GapPos. 347: A → CPos. 443: C → TPos. 580: A → GPos. 606: C → APos. 625: T → CPos. 660: Gap → GPos. 667: A → CPos. 668: T → CPos. 767: A → CPos. 818: C → GapPos. 996: A → GPos. 1015: T → APos. 1826: C → APos. 1839: T → APos. 1894: T → CPos. 1895: A → GPos. 2161: A → CPos. 2229: T → APos. 2250: C → TPos. 2268: C → APos. 2313: T → CPos. 2356: Gap → APos. 2381: T → CPos. 2551: A → GPos. 2652: T → CPos. 2663: T → CPos. 2704: G → APos. 2812: T → APos. 2875: C → APos. 2889: A → GPos. 2966: T → CPos. 3046: C → TPos. 3054: T → APos. 3056: T → GPos. 3118: C → APos. 3130: A → T

Pos. 3326: C → TPos. 3425: C → TPos. 3455: G → APos. 3485: T → CPos. 3491: C → TPos. 3549: A → GRAG-1Pos. 17 A → GPos. 77 T → CPos. 230 C → T

Dendropsophus microcephalus group

Cytochrome bPos. 140: A → CPos. 241: A → TPos. 277: T → CPos. 330: T → CPos. 334: A → GPos. 381: C → T12SPos. 140: C → TPos. 338: T → CPos. 427: T → CPos. 515: C → GapPos. 553: Gap → CPos. 654: T → CPos. 875: C → T16SPos. 192: C → APos. 254: T → GapPos. 299: T → APos. 392: C → APos. 443: C → APos. 464: Gap → CPos. 573: T → CPos. 580: A → CPos. 914: A → CPos. 1183: A → GapPos. 1402: A → TPos. 1727: T → APos. 1737: T → CPos. 1839: CT → APos. 1880: CT → APos. 1950: T → APos. 1951: A → TPos. 2080: G → APos. 2112: T → CPos. 2151: T → CPos. 2250: C → TPos. 2663: T → APos. 2713: T → GapPos. 2719: T → CPos. 2736: A → CPos. 2966: T → APos. 3032: T → APos. 3051: Gap → APos. 3054: T → A

Dendropsophus parviceps group

Cytochrome bPos. 76: A → CPos. 105: A → CPos. 244: A → TPos. 331: C → TPos. 420: A → C12SPos. 28: A → GPos. 142: C → TPos. 174: G → APos. 528: A → CPos. 1630: A → CPos. 1640: T → A

16SPos. 220: C → GPos. 427: T → APos. 876: G → APos. 980: C → TPos. 1176: Gap → CPos. 1281: T → CPos. 1423: Gap → APos. 1491: T → GapPos. 1519: T → CPos. 1532: A → CPos. 2151: T → APos. 2376: C → TPos. 2618: T → APos. 3313: T → CTyrosinasePos. 438: C → TPos. 471: C → T

Lysapsus

Cytochrome bPos. 111: C → APos. 149: A → CPos. 180: C → APos. 238: CT → APos. 265: C → APos. 274: C → TPos. 334: A → GPos. 420: AC → T12SPos. 10: G → APos. 115: A → TPos. 148: C → APos. 615: T → CPos. 716: A → GPos. 733: A → TPos. 890: A → TPos. 1561: T → C16SPos. 254: T → GapPos. 370: Gap → CPos. 580: A → GPos. 848: A → TPos. 1077: C → APos. 1468: C → TPos. 1705: C → GapPos. 1744: Gap → APos. 1824: C → TPos. 1826: C → APos. 2192: Gap → CPos. 2229: T → CPos. 2395: T → CPos. 2831: Gap → APos. 2913: T → APos. 2966: T → APos. 2982: T → APos. 3081: A → GPos. 3266: C → TPos. 3280: A → CPos. 3297: T → ARAG-1Pos. 34 C → TPos. 149 A → CPos. 164 G → APos. 221 T → CPos. 326 G → APos. 392 T → GRhodopsinPos. 87: A → GPos. 185: C → ASIA

Pos. 289: C → TPos. 331: A → G

Pseudis

Cytochrome bPos. 119: A → CPos. 192: T → CPos. 290: C → APos. 369: T → APos. 399: C → T12SPos. 36: T → GPos. 227: T → CPos. 235: AT → CPos. 452: T → C16SPos. 162: T → CPos. 236: Gap → APos. 434: T → CPos. 517: A → GPos. 854: T → CPos. 1300: A → GPos. 1928: CT → APos. 1953: T → APos. 1955: A → CPos. 2091: T → CPos. 2127: G → APos. 2179: C → TPos. 2240: A → GPos. 2697: T → APos. 2768: C → TRAG-1Pos. 5 G → APos. 20 G → APos. 169 T → APos. 251 G → A

Scarthyla goinorum

Cytochrome bPos. 6: C → TPos. 10: A → TPos. 39: T → CPos. 49: C → TPos. 52: A → CPos. 57: C → APos. 67: C → TPos. 68: C → TPos. 91: T → CPos. 108: T → GPos. 145: C → TPos. 158: A → TPos. 164: C → TPos. 189: C → TPos. 201: T → APos. 202: G → APos. 204: C → APos. 211: T → CPos. 262: A → GPos. 271: C → TPos. 292: T → CPos. 311: A → CPos. 319: C → TPos. 331: C → TPos. 376: A → CPos. 415: C → T12SPos. 13: G → APos. 22: G → APos. 24: A → CPos. 28: A → GPos. 33: A → GPos. 61: C → T

Page 212: systematic review of the frog family hylidae, with special reference to ...

212 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 98: T → CPos. 117: A → CPos. 159: C → APos. 169: A → TPos. 183: A → GPos. 231: C → TPos. 295: A → CPos. 320: A → GPos. 452: T → GPos. 454: T → CPos. 550: T → CPos. 571: A → TPos. 600: A → TPos. 646: T → APos. 650: T → CPos. 675: A → TPos. 716: A → CPos. 761: T → APos. 814: C → TPos. 838: A → TPos. 900: T → GPos. 1010: T → CPos. 1026: T → CPos. 1084: T → CPos. 1122: T → CPos. 1145: T → CPos. 1211: CT → APos. 1266: A → GPos. 1270: A → GPos. 1332: G → APos. 1342: A → GapPos. 1366: C → APos. 1374: C → TPos. 1392: T → CPos. 1405: A → GPos. 1431: T → CPos. 1439: C → TPos. 1517: A → TPos. 1521: G → APos. 1531: C → TPos. 1579: A → TPos. 1589: T → APos. 1615: Gap → TPos. 1657: G → GapPos. 1659: C → TPos. 1762: A → GtRNA valinePos. 22: Gap → TPos. 39: C → TPos. 82: C → TPos. 99: G → A16SPos. 3: A → CPos. 56: C → GapPos. 254: T → APos. 301: Gap → CPos. 355: C → TPos. 383: T → APos. 427: T → CPos. 452: T → CPos. 483: A → CPos. 634: A → TPos. 636: T → CPos. 667: A → GPos. 668: T → CPos. 686: G → APos. 689: A → TPos. 809: T → CPos. 814: T → APos. 844: A → CPos. 848: A → C

Pos. 853: A → TPos. 854: T → APos. 892: G → APos. 946: C → TPos. 952: A → CPos. 996: A → GPos. 1057: T → GapPos. 1062: T → GPos. 1085: T → CPos. 1092: T → CPos. 1103: T → CPos. 1113: A → CPos. 1118: A → CPos. 1125: T → CPos. 1188: Gap → TPos. 1189: Gap → TPos. 1200: A → TPos. 1211: A → TPos. 1235: C → APos. 1247: Gap → APos. 1248: Gap → GPos. 1249: Gap → APos. 1278: T → CPos. 1329: Gap → CPos. 1332: A → CPos. 1337: T → GapPos. 1424: Gap → CPos. 1436: T → GPos. 1451: T → GPos. 1480: T → GapPos. 1506: Gap → APos. 1532: C → APos. 1585: A → GPos. 1587: T → CPos. 1607: A → GPos. 1614: A → CPos. 1649: A → GapPos. 1654: A → TPos. 1673: A → TPos. 1727: A → TPos. 1757: T → GapPos. 1795: T → GPos. 1799: C → APos. 1823: T → CPos. 1865: T → APos. 1874: T → APos. 1887: T → CPos. 1894: T → CPos. 1971: C → TPos. 1997: G → CPos. 1999: Gap → TPos. 2019: A → TPos. 2057: A → CPos. 2058: A → TPos. 2059: A → TPos. 2069: A → TPos. 2070: A → CPos. 2086: C → TPos. 2089: C → GPos. 2112: T → APos. 2250: C → TPos. 2288: A → GPos. 2308: T → CPos. 2310: A → CPos. 2315: A → GPos. 2364: A → GapPos. 2407: Gap → CPos. 2510: T → APos. 2518: A → TPos. 2544: G → APos. 2548: T → C

Pos. 2566: T → CPos. 2575: G → APos. 2588: C → TPos. 2604: G → APos. 2605: G → APos. 2618: T → CPos. 2680: T → APos. 2768: C → APos. 2789: C → APos. 2866: A → GapPos. 2889: A → GapPos. 2929: C → GapPos. 2946: G → GapPos. 2956: C → GapPos. 2966: T → GapPos. 3036: T → CPos. 3054: T → CPos. 3071: A → TPos. 3125: A → TPos. 3127: T → APos. 3138: A → TPos. 3202: Gap → TPos. 3260: C → TPos. 3285: G → TPos. 3287: T → CPos. 3290: A → GPos. 3292: C → APos. 3318: T → CPos. 3357: A → TPos. 3375: T → APos. 3380: T → APos. 3429: T → CPos. 3451: A → GPos. 3487: T → CPos. 3491: C → ARAG-1Pos. 5 G → TPos. 29 G → APos. 137 T → CPos. 173 C → TPos. 182 A → GPos. 200 C → APos. 260 C → TPos. 297 T → CPos. 368 C → TPos. 395 T → CRhodopsinPos. 54: A → TPos. 135: C → GPos. 181: A → GPos. 244: G → TPos. 299: T → APos. 305: C → TSIAPos. 21: A → GPos. 169: T → APos. 385: T → C

Scinax

Cytochrome bPos. 97: A → CPos. 192: T → C12SPos. 333: C → APos. 636: G → APos. 745: Gap → CPos. 1113: C → TPos. 1147: A → GPos. 1245: T → APos. 1267: A → TPos. 1670: C → A

tRNA valinePos. 5: T → CPos. 87: G → TPos. 107: A → G16SPos. 234: T → CPos. 349: Gap → APos. 376: A → CPos. 606: C → APos. 611: A → GPos. 914: A → TPos. 1088: Gap → CPos. 1118: A → TPos. 1183: A → GapPos. 1219: A → TPos. 1324: A → CPos. 1332: A → GPos. 1389: T → APos. 1472: Gap → TPos. 1510: A → TPos. 1587: T → APos. 1807: A → CPos. 1826: C → TPos. 1847: G → TPos. 1861: T → CPos. 1987: Gap → TPos. 2156: A → TPos. 2406: T → APos. 2443: Gap → APos. 2660: C → TPos. 2829: Gap → APos. 2856: T → CPos. 2889: A → GPos. 2906: T → CPos. 2975: A → CPos. 2982: T → CPos. 3035: C → TPos. 3036: T → GPos. 3056: T → CPos. 3090: G → APos. 3175: Gap → APos. 3199: A → CPos. 3268: C → TPos. 3283: A → GPos. 3294: T → CPos. 3361: Gap → CT28SPos. 219: Gap → APos. 238: G → CPos. 322: Gap → APos. 327: T → APos. 394: Gap → TPos. 397: Gap → TPos. 403: Gap → GPos. 542: Gap → APos. 558: G → TPos. 569: A → CPos. 1144: C → APos. 1145: G → ARAG-1Pos. 4 C → GPos. 11 A → GPos. 116 C → GPos. 165 C → APos. 169 T → CPos. 170 G → APos. 185 T → CPos. 194 G → APos. 410 A → CPos. 425 G → ARhodopsin

Page 213: systematic review of the frog family hylidae, with special reference to ...

2005 213FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 10: G → APos. 123: T → CSIAPos. 211: C → TPos. 218: C → TPos. 241: G → CPos. 250: C → TPos. 280: C → T

Scinax catharinae clade

Cytochrome bPos. 3: C → APos. 10: A → GPos. 53: G → APos. 109: G → CPos. 152: T → CPos. 199: G → APos. 239: C → TPos. 244: A → GPos. 288: A → TPos. 299: T → CPos. 327: C → TPos. 353: C → TPos. 359: A → TPos. 376: A → C12SPos. 227: T → GapPos. 241: T → APos. 297: T → CPos. 414: C → TPos. 460: T → APos. 659: Gap → CPos. 965: T → CPos. 1122: T → CPos. 1307: T → CPos. 1392: T → APos. 1422: G → APos. 1441: C → AtRNA valinePos. 59: C → TPos. 69: G → A16SPos. 76: Gap → APos. 254: T → CPos. 279: Gap → GPos. 367: T → GapPos. 383: T → CPos. 736: T → CPos. 742: T → CPos. 836: A → TPos. 1052: Gap → CPos. 1078: Gap → APos. 1174: T → GapPos. 1348: Gap → APos. 1534: C → TPos. 1544: G → APos. 1718: C → APos. 1737: T → APos. 1842: A → CPos. 1883: C → APos. 1948: G → CPos. 1985: A → CPos. 1997: G → APos. 2027: A → TPos. 2054: C → TPos. 2086: C → TPos. 2110: A → CPos. 2112: T → CPos. 2205: T → CPos. 2208: A → CPos. 2266: T → C

Pos. 2310: A → TPos. 2376: A → GPos. 2422: C → TPos. 2584: A → TPos. 2600: G → APos. 2616: A → TPos. 2768: C → TPos. 2789: C → TPos. 2802: T → APos. 2866: A → CPos. 2913: T → CPos. 2946: G → GapPos. 2997: C → TPos. 3127: T → APos. 3138: A → GPos. 3146: T → APos. 3249: A → GPos. 3277: G → APos. 3295: T → CPos. 3297: T → APos. 3431: C → T28SPos. 1467: G → GapPos. 1476: Gap → CRhodopsinPos. 135: C → TPos. 145: C → TPos. 202: T → CPos. 291: G → TPos. 292: T → ASIAPos. 72: T → CPos. 199: G → APos. 292: G → CPos. 382: G → APos. 397: T → A

Scinax ruber clade

Cytochrome bPos. 241: A → T12SPos. 42: T → CPos. 250: A → CPos. 600: A → GPos. 642: Gap → APos. 650: T → CPos. 654: T → CPos. 673: C → GPos. 729: T → APos. 759: A → CPos. 869: T → CPos. 958: A → GPos. 1135: G → APos. 1144: T → APos. 1153: T → GPos. 1509: A → GtRNA valinePos. 95: C → T16SPos. 58: C → TPos. 107: T → APos. 427: T → APos. 517: A → TPos. 726: A → CPos. 1203: T → APos. 1246: T → CPos. 1337: T → CPos. 1438: Gap → APos. 1529: A → CPos. 1530: A → TPos. 1614: A → G

Pos. 1795: T → CPos. 1874: T → CPos. 1951: A → TPos. 2029: T → CPos. 2030: G → APos. 2163: Gap → TPos. 2267: A → TPos. 2672: A → TPos. 2674: T → CPos. 2719: T → CPos. 2753: T → CPos. 3027: A → CPos. 3054: T → CPos. 3075: T → APos. 3166: C → TPos. 3516: A → T28SPos. 381: Gap → TPos. 393: Gap → GPos. 395: Gap → CPos. 396: Gap → CPos. 415: Gap → GRhodopsinPos. 120: C → TPos. 160: C → TPos. 244: G → T

Sphaenorhynchus

Cytochrome bPos. 17: A → TPos. 26: T → APos. 36: A → CPos. 45: C → TPos. 49: C → TPos. 68: C → TPos. 115: C → TPos. 214: C → TPos. 244: A → TPos. 289: C → TPos. 331: C → TPos. 356: T → CPos. 381: C → T12SPos. 36: A → TPos. 68: A → CPos. 196: G → APos. 206: A → TPos. 251: G → APos. 256: C → TPos. 319: A → GPos. 343: T → CPos. 484: A → TPos. 521: T → APos. 672: C → APos. 743: A → TPos. 760: C → TPos. 765: G → APos. 769: G → APos. 821: C → TPos. 965: T → APos. 1052: A → TPos. 1113: C → GapPos. 1123: Gap → APos. 1233: G → APos. 1245: T → CPos. 1332: G → APos. 1343: CT → GapPos. 1366: C → TPos. 1374: C → TPos. 1409: G → APos. 1412: C → A

Pos. 1415: Gap → TPos. 1426: C → TPos. 1496: T → CPos. 1539: T → APos. 1651: A → TPos. 1761: T → CtRNA valinePos. 39: C → TPos. 56: T → CPos. 74: A → TPos. 75: A → T16SPos. 12: C → TPos. 255: Gap → GPos. 548: A → TPos. 771: T → APos. 780: C → APos. 818: C → APos. 827: T → CPos. 829: C → TPos. 860: G → APos. 902: T → APos. 950: C → TPos. 1010: G → APos. 1019: C → TPos. 1204: Gap → APos. 1331: T → CPos. 1347: Gap → APos. 1389: T → CPos. 1419: T → APos. 1443: T → GPos. 1458: A → TPos. 1503: C → TPos. 1510: A → TPos. 1800: Gap → TPos. 1826: C → APos. 1839: T → APos. 1883: C → APos. 1948: GT → APos. 2019: A → TPos. 2043: A → TPos. 2086: C → TPos. 2098: G → GapPos. 2108: Gap → TPos. 2120: A → TPos. 2544: G → APos. 2551: A → TPos. 2672: A → TPos. 2975: A → TPos. 3059: A → CPos. 3081: A → GPos. 3145: T → APos. 3166: C → APos. 3277: G → APos. 3299: C → TPos. 3313: T → APos. 3425: C → TPos. 3455: G → ARAG-1Pos. 15 C → APos. 44 A → GPos. 47 C → TPos. 58 A → GPos. 64 A → GPos. 89 T → CPos. 164 G → APos. 194 G → APos. 248 A → CPos. 272 C → TPos. 275 C → TPos. 317 T → C

Page 214: systematic review of the frog family hylidae, with special reference to ...

214 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 332 G → APos. 357 C → TPos. 365 T → CPos. 371 A → CPos. 386 T → APos. 398 A → TPos. 410 A → CPos. 425 G → ARhodopsinPos. 45: C → TPos. 93: C → TPos. 160: C → TPos. 220: G → TPos. 224: G → TPos. 235: C → TPos. 272: C → TPos. 290: C → TPos. 308: T → APos. 314: C → TTyrosinasePos. 7: T → APos. 10: A → CPos. 11: C → TPos. 20: T → APos. 72: C → TPos. 139: A → GPos. 183: A → GPos. 197: C → TPos. 209: T → CPos. 210: A → GPos. 211: C → APos. 276: T → CPos. 288: C → TPos. 291: G → CPos. 294: C → TPos. 330: T → CPos. 333: A → GPos. 375: T → CPos. 376: T → GPos. 393: C → TPos. 406: C → APos. 408: A → CPos. 423: T → CPos. 424: G → APos. 447: A → GPos. 472: Gap → TPos. 478: G → GapPos. 481: T → CPos. 508: T → CPos. 513: G → A

Xenohyla

Cytochrome bPos. 6: C → TPos. 10: A → GPos. 32: A → GPos. 49: C → APos. 52: A → TPos. 88: C → TPos. 108: A → GPos. 137: C → TPos. 164: C → TPos. 170: A → TPos. 199: G → APos. 201: T → CPos. 229: C → TPos. 262: A → CPos. 271: C → TPos. 277: T → CPos. 290: C → TPos. 292: T → C

Pos. 313: A → GPos. 322: C → APos. 353: C → TPos. 362: T → GPos. 402: T → CPos. 411: T → CPos. 420: A → T12SPos. 13: G → APos. 140: C → TPos. 148: C → APos. 159: C → APos. 171: G → TPos. 320: A → CPos. 379: A → GPos. 455: C → TPos. 499: Gap → TPos. 528: A → GPos. 547: C → GapPos. 600: A → GPos. 645: Gap → APos. 654: T → GapPos. 683: A → CPos. 733: T → GPos. 774: A → GPos. 815: T → CPos. 817: G → APos. 927: A → TPos. 1043: C → TPos. 1094: A → TPos. 1278: G → APos. 1303: A → GPos. 1321: T → APos. 1376: A → GPos. 1399: A → GPos. 1434: T → CPos. 1441: C → APos. 1549: AT → CPos. 1649: A → TPos. 1670: C → TtRNA valinePos. 46: T → GPos. 75: A → CPos. 76: A → GPos. 86: T → C16SPos. 130: C → TPos. 191: Gap → TPos. 192: C → APos. 259: A → GPos. 272: T → CPos. 323: C → APos. 336: C → APos. 427: T → APos. 434: A → TPos. 472: T → APos. 498: T → CPos. 543: T → CPos. 654: T → CPos. 668: T → APos. 718: T → CPos. 742: T → CPos. 755: A → CPos. 767: A → TPos. 775: T → GPos. 784: C → APos. 792: A → GPos. 821: T → APos. 854: T → CPos. 900: T → CPos. 908: T → C

Pos. 1025: T → CPos. 1160: T → CPos. 1174: T → APos. 1183: A → CPos. 1246: T → CPos. 1259: T → CPos. 1272: T → APos. 1274: A → GPos. 1309: Gap → CPos. 1324: A → GPos. 1436: T → GPos. 1443: T → CPos. 1534: C → APos. 1741: C → TPos. 1896: A → CPos. 1925: A → TPos. 2027: A → TPos. 2028: G → CPos. 2089: C → TPos. 2112: T → CPos. 2115: A → TPos. 2130: C → TPos. 2154: T → APos. 2161: A → TPos. 2229: T → GPos. 2240: A → GPos. 2262: AG → TPos. 2616: A → CPos. 2618: T → CPos. 2664: A → TPos. 2694: T → CPos. 2801: Gap → TPos. 2865: Gap → CPos. 2956: A → GPos. 3018: T → APos. 3027: T → CPos. 3056: T → CPos. 3086: T → APos. 3234: T → CPos. 3426: A → GPos. 3454: T → CPos. 3487: T → C

Hylini

Cytochrome bPos. 29: Gap → CPos. 31: A → CPos. 33: C → GapPos. 57: C → APos. 90: T → APos. 101: C → TPos. 126: G → TPos. 127: C → TPos. 137: T → APos. 353: C → T12SPos. 117: A → CTPos. 140: C → TPos. 148: C → TPos. 432: T → APos. 455: C → TPos. 528: A → TPos. 594: A → GPos. 595: A → TPos. 716: A → TPos. 1008: T → CPos. 1094: A → TPos. 1211: T → CPos. 1265: C → TPos. 1417: G → TPos. 1422: G → A

Pos. 1649: A → TPos. 1670: C → APos. 1678: A → CtRNA valinePos. 39: C → A28SPos. 150: A → TPos. 153: T → CPos. 342: C → GPos. 400: T → GapPos. 454: G → CPos. 516: G → CPos. 563: G → CPos. 569: A → TPos. 863: G → GapPos. 870: G → GapPos. 876: A → GapPos. 1003: Gap →GPos. 1017: Gap →TPos. 1080: Gap →GPos. 1103: G → CRAG-1Pos. 1: C → TPos. 101: T → CPos. 114: T → APos. 115: C → GPos. 143: G → CPos. 151: A → CPos. 169: T → CPos. 178: A → GPos. 194: G → APos. 359: A → CPos. 374: G → ARhodopsinPos. 12: A → GPos. 220: G → APos. 271: C → GPos. 281: T → CPos. 287: C → TSIAPos. 280: C → TPos. 349: T → ATyrosinasePos. 6: G → APos. 33: T → APos. 86: A → CPos. 160: T → CPos. 175: A → 4Pos. 180: 4 → TPos. 394: C → APos. 454: C → GPos. 455: T → C

Acris

Cytochrome bPos. 40: A → GPos. 63: C → GapPos. 68: C → TPos. 125: T → CPos. 137: A → CPos. 152: T → CPos. 155: A → CPos. 201: A → CPos. 207: C → TPos. 223: A → CPos. 302: A → TPos. 306: A → CPos. 311: A → CPos. 362: A → TPos. 369: A → TPos. 387: T → A

Page 215: systematic review of the frog family hylidae, with special reference to ...

2005 215FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 396: A → CPos. 408: C → T12SPos. 142: C → TPos. 206: A → CPos. 229: Gap → APos. 233: Gap → APos. 332: A → CPos. 457: T → APos. 547: A → TPos. 670: A → TPos. 778: A → CPos. 841: A → TPos. 864: C → TPos. 908: A → CPos. 927: A → TPos. 965: C → TPos. 1245: T → APos. 1307: T → APos. 1332: G → APos. 1423: A → TPos. 1568: A → TPos. 1649: T → CPos. 1674: A → CtRNA valinePos. 6: G → APos. 39: A → TPos. 105: C → T16SPos. 172: A → CPos. 188: A → CPos. 272: G → APos. 443: C → GPos. 452: T → CPos. 459: T → CPos. 498: T → CPos. 517: T → CPos. 784: C → TPos. 848: C → APos. 853: A → GPos. 914: A → CPos. 950: C → APos. 1077: T → APos. 1235: C → APos. 1265: A → TPos. 1325: A → GapPos. 1375: Gap → CPos. 1480: T → GapPos. 1673: A → TPos. 1699: A → TPos. 1807: A → CPos. 1819: A → TPos. 1870: A → CPos. 1949: A → TPos. 1965: T → APos. 2030: G → APos. 2072: T → CPos. 2080: A → GPos. 2122: T → GPos. 2179: C → TPos. 2203: T → CPos. 2233: T → APos. 2244: T → CPos. 2250: C → TPos. 2253: A → TPos. 2381: T → CPos. 2422: C → TPos. 2577: G → TPos. 2676: A → TPos. 2787: T → APos. 2889: A → C

Pos. 2982: T → CPos. 3140: C → TPos. 3280: A → TRAG-1Pos. 5 G → APos. 71 G → APos. 125 G → APos. 170 G → APos. 359 C → TPos. 422 T → CRhodopsinPos. 21: C → TPos. 54: A → GPos. 60: T → CPos. 166: C → TPos. 211: G → ASIAPos. 160: T → CPos. 247: C → GPos. 259: A → TPos. 268: A → GPos. 397: T → ATyrosinasePos. 9: T → CPos. 10: A → CPos. 20: T → CPos. 25: T → CPos. 28: T → CPos. 34: T → CPos. 43: T → CPos. 73: A → GPos. 102: A → GPos. 127: T → CPos. 150: C → TPos. 167: G → APos. 168: T → CPos. 169: G → CPos. 180: T → CPos. 195: A → GPos. 204: A → CPos. 215: G → CPos. 231: A → CPos. 254: A → GPos. 307: A → GPos. 312: T → CPos. 315: A → GPos. 321: C → GPos. 330: T → CPos. 352: C → TPos. 384: A → GPos. 387: T → CPos. 407: A → GPos. 447: A → GPos. 453: T → CPos. 491: C → APos. 493: T → GPos. 496: A → GPos. 507: T → C

Anotheca spinosa

Cytochrome bPos. 10: A → TPos. 24: G → APos. 52: A → TPos. 53: G → APos. 57: A → CPos. 91: T → CPos. 155: A → GPos. 167: T → CPos. 170: A → TPos. 173: A → G

Pos. 183: C → TPos. 189: C → TPos. 212: T → APos. 213: G → APos. 214: C → TPos. 217: A → GPos. 247: C → TPos. 248: C → APos. 249: T → CPos. 256: A → TPos. 290: C → TPos. 299: T → CPos. 316: C → TPos. 353: T → CPos. 359: A → GPos. 363: A → GPos. 376: A → GPos. 408: C → TPos. 417: G → C12SPos. 9: T → CPos. 22: G → APos. 45: C → TPos. 83: G → APos. 88: C → TPos. 102: T → CPos. 174: A → GPos. 271: C → APos. 313: C → TPos. 347: T → CPos. 383: G → APos. 389: T → CPos. 391: A → TPos. 414: C → APos. 422: Gap → TPos. 423: Gap → TPos. 432: A → GapPos. 455: C → TPos. 460: T → CPos. 480: A → GPos. 489: G → GapPos. 512: T → APos. 600: T → GPos. 602: A → TPos. 608: A → GPos. 611: A → GPos. 654: T → CPos. 661: A → GPos. 686: G → APos. 726: A → TPos. 788: G → APos. 797: T → CPos. 802: C → TPos. 900: T → GPos. 928: A → GPos. 958: A → GPos. 963: Gap → TPos. 995: T → CPos. 1002: C → TPos. 1023: T → CPos. 1043: C → TPos. 1095: C → TPos. 1096: G → APos. 1100: G → APos. 1101: T → GPos. 1113: T → CPos. 1177: C → TPos. 1194: T → CPos. 1211: T → CPos. 1215: A → CPos. 1265: T → C

Pos. 1273: A → GPos. 1274: T → CPos. 1278: G → APos. 1296: C → TPos. 1317: C → TPos. 1366: C → TPos. 1378: G → APos. 1385: G → APos. 1408: A → GPos. 1427: T → CPos. 1434: T → CPos. 1439: C → APos. 1449: G → APos. 1544: Gap → TPos. 1585: A → TPos. 1645: T → CPos. 1649: T → CPos. 1651: A → TPos. 1664: A → GPos. 1670: T → CPos. 1674: A → CPos. 1693: C → TPos. 1699: Gap → TtRNA valinePos. 46: T → CPos. 55: A → GPos. 99: G → A16SPos. 94: C → TPos. 118: C → TPos. 130: C → TPos. 206: T → CPos. 272: G → APos. 536: C → TPos. 559: T → CPos. 566: T → CPos. 610: T → CPos. 611: A → GPos. 668: T → CPos. 699: A → GapPos. 712: A → GapPos. 742: T → APos. 771: T → CPos. 818: C → TPos. 821: A → TPos. 876: A → GPos. 952: A → GPos. 959: G → APos. 1022: A → CPos. 1025: T → CPos. 1085: A → GapPos. 1121: Gap → TPos. 1140: A → TPos. 1183: A → GPos. 1223: T → CPos. 1246: T → CPos. 1278: C → TPos. 1292: T → GPos. 1510: A → GPos. 1529: A → GPos. 1548: T → CPos. 1600: C → APos. 1607: C → TPos. 1635: Gap → CPos. 1710: T → APos. 1718: T → CPos. 1727: A → CPos. 1813: T → CPos. 2032: A → GapPos. 2039: G → APos. 2059: A → C

Page 216: systematic review of the frog family hylidae, with special reference to ...

216 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 2071: T → CPos. 2130: T → CPos. 2138: Gap → CPos. 2156: C → TPos. 2169: A → GPos. 2170: A → GPos. 2217: T → CPos. 2229: T → CPos. 2262: G → APos. 2267: A → GPos. 2280: A → TPos. 2364: A → GapPos. 2392: A → GPos. 2518: A → GPos. 2524: T → CPos. 2544: A → GPos. 2615: A → GPos. 2655: A → GPos. 2660: C → TPos. 2694: T → CPos. 2719: T → CPos. 2768: T → CPos. 2787: T → CPos. 2960: T → GPos. 3014: T → CPos. 3036: T → APos. 3039: A → GPos. 3071: A → GPos. 3094: T → CPos. 3281: A → CPos. 3282: T → CPos. 3297: C → TPos. 3321: A → GPos. 3324: T → CPos. 3363: Gap → TPos. 3380: A → TPos. 3419: G → APos. 3458: T → CPos. 3462: C → TRAG-1Pos. 11 A → GPos. 77 T → CPos. 89 T → CPos. 149 A → CPos. 179 A → GPos. 185 G → TPos. 263 G → APos. 293 G → APos. 395 C → TRhodopsinPos. 28: A → TPos. 57: C → TPos. 89: A → TPos. 93: C → APos. 114: C → TSIAPos. 21: A → GPos. 292: G → CTyrosinasePos. 0: A → TPos. 6: A → TPos. 46: G → CPos. 97: G → APos. 124: T → CPos. 139: A → CPos. 164: A → GPos. 194: A → GPos. 357: C → TPos. 418: G → APos. 426: C → APos. 484: T → C

Pos. 526: C → TPos. 537: T → G

Bromeliohyla bromeliacia

Cytochrome bPos. 62: T → CPos. 63: C → TPos. 76: C → TPos. 116: C → TPos. 149: A → TPos. 161: A → GPos. 183: A → TPos. 186: A → GPos. 241: A → GPos. 283: C → TPos. 286: C → TPos. 331: T → GapPos. 359: A → GPos. 369: A → CPos. 381: C → TPos. 405: CT → APos. 420: A → G12sPos. 28: A → GPos. 180: C → TPos. 206: A → TPos. 310: T → CPos. 370: T → CPos. 412: T → CPos. 421: A → CPos. 438: A → TPos. 452: T → CPos. 454: T → CPos. 455: T → CPos. 512: T → CPos. 541: A → TPos. 627: Gap → TPos. 631: Gap → GPos. 641: A → CPos. 736: C → TPos. 1002: C → TPos. 1094: T → CPos. 1136: A → GPos. 1187: C → TPos. 1233: G → APos. 1374: C → TPos. 1407: G → APos. 1429: C → TPos. 1455: T → CPos. 1469: Gap → TPos. 1496: T → CPos. 1639: Gap → TtRNA valinePos. 2: A → TPos. 55: A → CPos. 74: C → GPos. 94: C → TPos. 98: A → G16SPos. 8: A → GPos. 111: Gap → APos. 152: Gap → TPos. 162: C → TPos. 383: A → GPos. 459: T → GPos. 589: C → TPos. 618: A → GPos. 640: A → TPos. 648: G → APos. 736: T → CPos. 754: A → G

Pos. 763: G → APos. 780: C → TPos. 788: C → TPos. 890: G → APos. 941: G → APos. 948: C → TPos. 979: C → TPos. 1085: A → GPos. 1187: A → TPos. 1211: A → GapPos. 1235: C → GapPos. 1289: A → GPos. 1314: A → GPos. 1328: A → GPos. 1332: G → APos. 1468: A → TPos. 1561: C → TPos. 1574: A → TPos. 1596: A → TPos. 1673: A → GPos. 1757: CT → APos. 1799: A → TPos. 1861: C → TPos. 1925: A → TPos. 1975: A → CPos. 1985: A → TPos. 2029: T → CPos. 2063: A → GPos. 2094: A → GPos. 2110: A → GPos. 2151: C → TPos. 2201: Gap → CPos. 2202: Gap → APos. 2233: T → CPos. 2312: T → APos. 2423: A → CPos. 2450: C → TPos. 2620: C → TPos. 2655: A → GPos. 2697: T → CPos. 2753: A → GPos. 2856: T → CPos. 3010: C → TPos. 3143: A → GPos. 3199: A → TPos. 3291: A → GPos. 3303: C → TPos. 3310: A → TPos. 3320: G → APos. 3324: T → CPos. 3326: T → CPos. 3425: C → TPos. 3455: G → APos. 3458: T → C28sPos. 561: C → APos. 812: C → ARAG-1Pos. 179: A → GRhodopsinPos. 9: C → TPos. 95: C → TPos. 154: C → TPos. 244: G → TPos. 268: A → TPos. 279: C → ASIAPos. 133: C → APos. 256: A → GTyrosinasePos. 106: C → T

Pos. 112: C → TPos. 127: T → CPos. 176: A → GPos. 197: T → APos. 254: A → GPos. 263: C → TPos. 267: C → TPos. 269: C → TPos. 297: C → TPos. 299: A → CPos. 300: A → GPos. 354: G → C

Charadrahyla

Cytochrome bPos. 128: A → TPos. 274: T → CPos. 353: T → C12SPos. 183: A → GPos. 328: G → APos. 337: C → TPos. 454: T → CPos. 571: A → CPos. 1002: C → TPos. 1010: T → APos. 1061: T → CPos. 1113: C → GapPos. 1116: C → TPos. 1236: T → CPos. 1343: T → CPos. 1383: C → APos. 1441: C → APos. 1461: C → TtRNA valinePos. 61: C → T16SPos. 2: T → CPos. 130: C → TPos. 452: T → CPos. 770: Gap → CPos. 780: C → GapPos. 1174: T → CPos. 1265: A → GPos. 1328: A → GPos. 1330: C → TPos. 1332: G → TPos. 1643: T → APos. 1673: A → CPos. 1817: A → TPos. 1861: C → APos. 1870: A → CPos. 2253: A → GPos. 2268: C → APos. 2461: C → TPos. 2569: T → CPos. 2616: A → TPos. 2694: T → CPos. 2780: A → GapPos. 2802: T → APos. 2913: T → CPos. 3010: C → APos. 3111: G → APos. 3118: C → APos. 3130: A → TPos. 3154: A → GPos. 3389: C → TPos. 3425: C → TSIAPos. 175: C → TPos. 376: T → C

Page 217: systematic review of the frog family hylidae, with special reference to ...

2005 217FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

TyrosinasePos. 86: C → APos. 102: A → GPos. 172: A → GPos. 432: T → C

Duellmanohyla

Cytochrome bPos. 229: C → TPos. 277: T → CPos. 292: T → CPos. 313: T → CPos. 366: T → CPos. 376: T → CPos. 399: T → C12SPos. 13: A → GPos. 22: G → APos. 131: T → GapPos. 272: A → GPos. 414: C → TPos. 427: C → TPos. 726: A → GapPos. 1010: T → APos. 1333: A → CPos. 1405: A → GPos. 1408: A → GPos. 1412: C → TPos. 1427: T → CPos. 1431: T → CPos. 1500: Gap → A16SPos. 172: A → CPos. 234: A → GapPos. 272: G → TPos. 376: T → CPos. 755: T → APos. 949: T → CPos. 1160: T → CPos. 1699: A → CPos. 1826: T → CPos. 2164: Gap → TPos. 2308: C → TPos. 2551: A → GPos. 2742: T → APos. 2787: A → GapPos. 3054: A → GPos. 3222: T → CPos. 3249: T → CPos. 3375: T → CPos. 3487: T → CRAG-1Pos. 35 A → GRhodopsinPos. 28: A → TSIAPos. 175: C → TPos. 241: G → ATyrosinasePos. 70: T → GPos. 517: T → CPos. 527: A → G

Ecnomiohyla

Cytochrome bPos. 49: C → TPos. 136: C → TPos. 152: T → CPos. 176: C → TPos. 183: A → TPos. 189: C → TPos. 229: C → T

Pos. 369: A → T12SPos. 102: T → CPos. 164: C → APos. 322: C → TPos. 427: C → T16SPos. 1118: A → CPos. 1183: T → APos. 1230: Gap → TPos. 1235: C → APos. 1491: A → TPos. 1585: A → GPos. 1741: C → TPos. 1870: A → TPos. 1925: A → TPos. 2069: T → APos. 2089: A → CPos. 2190: C → GapPos. 2229: T → CPos. 2441: C → TPos. 2457: G → APos. 3056: C → APos. 3173: G → APos. 3222: T → GapPos. 3249: T → CPos. 3285: G → APos. 3315: A → TRAG-1Pos. 242 G → ARhodopsinPos. 28: A → TPos. 281: C → TPos. 316: A → G

Exerodonta

Cytochrome bPos. 71: A → CPos. 115: C → TPos. 232: C → APos. 247: C → TPos. 256: A → TPos. 334: A → GPos. 411: T → C12SPos. 227: T → CPos. 322: C → APos. 370: A → GPos. 392: T → CPos. 594: G → TPos. 673: T → CPos. 760: C → APos. 1376: A → GPos. 1392: T → APos. 1585: A → GPos. 1601: T → APos. 1602: T → APos. 1636: A → TPos. 1649: T → CPos. 1651: A → G16SPos. 151: Gap → TPos. 284: Gap → APos. 434: A → TPos. 443: C → TPos. 755: A → TPos. 758: A → CPos. 853: A → TPos. 890: G → APos. 948: C → TPos. 1153: A → C

Pos. 1160: T → CPos. 1351: Gap → APos. 1389: T → APos. 1468: A → TPos. 1534: C → TPos. 1587: T → CPos. 1817: A → TPos. 1819: A → TPos. 1839: T → CPos. 2024: G → APos. 2067: A → TPos. 2130: T → APos. 2263: C → TPos. 2615: A → CPos. 2676: A → TPos. 2780: A → CPos. 2812: T → APos. 2929: C → TPos. 2946: G → GapPos. 3081: A → TPos. 3234: A → TPos. 3290: A → GPos. 3426: G → TPos. 3439: T → CPos. 3454: C → A28SPos. 544: G → CRAG-1Pos. 32 A → GPos. 128 T → CPos. 155 T → CPos. 248 A → GPos. 293 G → APos. 413 T → CRhodopsinPos. 232: C → TPos. 259: C → TPos. 281: C → TPos. 299: T → CSIAPos. 81: C → TPos. 106: C → APos. 205: T → CPos. 211: C → TPos. 331: G → APos. 376: T → CTyrosinasePos. 4: C → TPos. 105: G → CPos. 179: A → GPos. 257: C → TPos. 327: T → CPos. 514: G → C

Exerodonta sumichrastigroup

Cytochrome bPos. 24: G → APos. 45: C → TPos. 126: T → CPos. 153: C → TPos. 167: C → TPos. 176: C → TPos. 189: C → TPos. 198: T → CPos. 214: C → TPos. 217: A → GPos. 241: A → GPos. 296: C → TPos. 331: C → TPos. 366: T → C

Pos. 367: C → TPos. 380: C → TPos. 383: T → CPos. 417: A → C12SPos. 24: A → GPos. 115: A → TPos. 159: A → TPos. 231: T → CPos. 241: T → CPos. 333: C → APos. 452: T → CPos. 541: T → CPos. 558: A → CPos. 594: T → CPos. 641: A → GPos. 733: A → TPos. 778: A → GPos. 869: C → TPos. 1043: C → TPos. 1211: C → TPos. 1549: A → TPos. 1625: T → C16SPos. 107: C → APos. 234: T → CPos. 472: C → APos. 656: T → CPos. 708: A → GPos. 718: T → CPos. 736: T → CPos. 758: C → TPos. 774: T → GPos. 780: C → TPos. 834: A → GPos. 862: T → CPos. 914: A → TPos. 1574: A → TPos. 1699: A → CPos. 1727: A → TPos. 1826: T → CPos. 2057: T → CPos. 2069: T → CPos. 2200: T → CPos. 2248: A → GPos. 2381: T → APos. 2587: T → CPos. 2615: C → TPos. 2715: Gap → TPos. 2982: T → CPos. 2995: A → CPos. 3010: C → TPos. 3087: Gap → CPos. 3125: T → CPos. 3209: T → CPos. 3230: T → ARAG-1Pos. 392 T → ARhodopsinPos. 9: C → TPos. 36: G → APos. 133: C → TPos. 167: A → CSIAPos. 21: A → GPos. 205: C → ATyrosinasePos. 420: A → G

Hyla

Cytochrome b

Page 218: systematic review of the frog family hylidae, with special reference to ...

218 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 11: C → APos. 67: C → TPos. 250: T → CPos. 417: G → A12SPos. 560: Gap → TPos. 778: A → GPos. 814: C → TPos. 1101: T → CPos. 1346: T → CPos. 1549: A → Gap16SPos. 543: T → CPos. 780: C → APos. 1103: A → TPos. 1246: T → APos. 1436: T → APos. 1713: Gap → APos. 1925: T → CPos. 2267: A → TPos. 2787: T → GapPos. 2812: T → APos. 2858: Gap → CRhodopsinPos. 316: A → GTyrosinasePos. 73: G → APos. 484: T → CPos. 493: T → C

Hyla arborea group

Cytochrome bPos. 145: C → TPos. 271: C → T12SPos. 13: A → GPos. 34: T → CPos. 152: T → APos. 169: T → CPos. 268: T → CPos. 455: C → TPos. 880: C → GPos. 1039: Gap → TPos. 1043: C → APos. 1365: Gap → CPos. 1561: A → T16SPos. 664: A → TPos. 718: T → CPos. 1057: T → CPos. 1389: T → APos. 1402: A → CPos. 1799: A → CPos. 2089: A → CPos. 2820: A → CPos. 2856: T → APos. 3239: A → GapPos. 3282: T → CRAG-1Pos. 4 C → TPos. 380 C → TPos. 395 C → TRhodopsinPos. 93: C → APos. 245: G → TPos. 262: G → ATyrosinasePos. 29: C → APos. 31: A → CPos. 120: A → TPos. 186: C → A

Pos. 245: C → TPos. 315: G → A

Hyla cinerea group

Cytochrome bPos. 53: G → APos. 108: G → APos. 125: T → CPos. 149: A → TPos. 183: A → TPos. 214: C → TPos. 286: C → TPos. 338: T → CPos. 366: T → C12SPos. 597: T → CPos. 1105: A → TPos. 1113: T → CPos. 1422: G → APos. 1589: C → A16SPos. 107: C → APos. 177: Gap → CPos. 272: G → APos. 517: T → CPos. 521: A → TPos. 1603: T → CPos. 1699: T → CPos. 1874: T → CPos. 2058: C → APos. 2156: C → APos. 2161: A → TPos. 2280: A → TRAG-1Pos. 83 A → GPos. 284 A → GSIAPos. 250: C → TPos. 20: T → GPos. 257: C → TPos. 506: G → A

Hyla eximia group

Cytochrome bPos. 153: T → CPos. 167: T → CPos. 238: T → C16SPos. 162: T → CPos. 566: T → CPos. 1376: T → CPos. 1842: A → GPos. 2107: A → GPos. 2620: C → T

Hyla versicolor group

Cytochrome bPos. 49: C → GPos. 103: C → TPos. 108: G → APos. 161: A → GPos. 214: C → TPos. 286: C → TPos. 289: C → TPos. 313: C → TPos. 356: C → TPos. 383: A → TPos. 417: A → C12SPos. 285: A → TPos. 352: G → APos. 560: T → Gap

Pos. 565: T → CPos. 571: A → CPos. 738: A → TPos. 1278: G → APos. 1579: A → GapPos. 1671: Gap → T16SPos. 521: A → TPos. 573: A → TPos. 822: A → TPos. 906: T → CPos. 965: C → TPos. 1092: A → GPos. 1167: A → TPos. 1203: T → CPos. 1223: C → TPos. 1718: C → TPos. 1741: C → APos. 1749: T → CPos. 1799: A → TPos. 1807: A → GPos. 1925: C → TPos. 2057: C → TPos. 2089: A → TPos. 2177: C → TPos. 2233: T → CPos. 2280: A → GPos. 2508: T → CPos. 2997: C → TPos. 3010: C → TPos. 3140: C → TPos. 3389: C → TPos. 3524: C → TPos. 3538: G → ARhodopsinPos. 316: G → ASIAPos. 211: C → TTyrosinasePos. 120: A → T

Isthmohyla

Cytochrome bPos. 68: T → CPos. 91: T → CPos. 167: T → CPos. 247: C → TPos. 265: C → TPos. 376: A → C12SPos. 117: C → TPos. 169: T → APos. 348: T → CPos. 550: T → APos. 565: T → CPos. 726: A → TPos. 1002: C → TtRNA valinePos. 4: A → G16SPos. 323: C → TPos. 355: T → CPos. 559: T → CPos. 580: T → CPos. 611: A → GPos. 1015: T → APos. 1657: Gap → CPos. 1727: A → CPos. 1865: C → TPos. 2043: A → TPos. 2107: A → G

Pos. 2112: CT → APos. 2156: C → TPos. 2208: AT → CPos. 2217: T → CPos. 2544: A → GPos. 2776: A → GapPos. 2820: A → TPos. 2982: T → CPos. 3056: C → TPos. 3111: G → APos. 3154: A → GPos. 3173: T → CPos. 3237: T → APos. 3281: A → GPos. 3282: T → CRhodopsinPos. 93: C → TPos. 124: C → A

Megastomatohyla mixe

Cytochrome bPos. 10: C → APos. 46: C → TPos. 49: C → APos. 57: A → GPos. 101: T → APos. 109: G → APos. 125: T → CPos. 137: C → TPos. 145: C → TPos. 164: C → TPos. 168: A → GPos. 184: A → CPos. 204: C → APos. 214: C → TPos. 223: A → CPos. 238: T → APos. 241: A → CPos. 292: T → CPos. 302: A → GPos. 327: C → APos. 338: T → CPos. 366: T → CPos. 383: A → TPos. 414: T → APos. 415: C → T12SPos. 34: T → CPos. 61: C → TPos. 68: A → CPos. 69: C → TPos. 110: A → GapPos. 183: A → TPos. 269: A → TPos. 326: A → GPos. 339: T → CPos. 434: G → APos. 440: A → GPos. 451: T → CPos. 452: T → APos. 480: A → GPos. 521: T → CPos. 558: A → GapPos. 579: Gap → GPos. 619: G → TPos. 646: C → TPos. 650: T → GPos. 726: A → CPos. 736: C → APos. 738: A → CPos. 769: G → A

Page 219: systematic review of the frog family hylidae, with special reference to ...

2005 219FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 821: C → TPos. 835: T → CPos. 869: C → TPos. 908: A → CPos. 989: A → GPos. 1036: C → TPos. 1043: C → APos. 1048: T → CPos. 1067: C → TPos. 1089: T → CPos. 1105: A → GapPos. 1122: T → CPos. 1128: T → CPos. 1144: T → CPos. 1244: A → GPos. 1245: T → CPos. 1278: G → APos. 1327: A → GPos. 1366: C → TPos. 1392: T → APos. 1405: A → GPos. 1408: A → GPos. 1412: C → TPos. 1418: A → CPos. 1427: T → CPos. 1431: T → CPos. 1439: C → TPos. 1455: T → CPos. 1537: Gap → TPos. 1561: A → CPos. 1568: A → GPos. 1651: A → TPos. 1664: A → TtRNA valinePos. 39: A → GPos. 46: T → CPos. 59: C → TPos. 69: G → APos. 76: AG → T16SPos. 0: G → APos. 107: C → TPos. 130: C → APos. 234: A → TPos. 294: A → GapPos. 323: C → TPos. 376: A → TPos. 418: T → CPos. 600: Gap → APos. 630: A → TPos. 636: T → CPos. 665: A → TPos. 702: A → GPos. 731: T → CPos. 784: C → APos. 807: G → APos. 818: C → TPos. 839: C → TPos. 876: A → GPos. 906: T → APos. 908: T → APos. 954: G → APos. 968: G → APos. 1012: T → GapPos. 1092: T → APos. 1153: A → CPos. 1167: T → CPos. 1228: A → GapPos. 1253: Gap → CPos. 1259: T → CPos. 1310: C → A

Pos. 1331: A → TPos. 1332: G → APos. 1405: T → APos. 1480: C → APos. 1544: A → GPos. 1572: T → CPos. 1574: A → TPos. 1614: A → GPos. 1727: A → TPos. 1740: Gap → TPos. 1768: A → GapPos. 1861: C → TPos. 1865: C → APos. 1928: C → TPos. 1932: T → CPos. 1977: G → CPos. 1997: G → APos. 2054: C → APos. 2068: C → TPos. 2070: A → CPos. 2107: A → CPos. 2110: A → TPos. 2130: T → APos. 2177: C → TPos. 2298: C → TPos. 2398: A → CPos. 2450: C → TPos. 2544: A → GPos. 2588: C → TPos. 2605: G → APos. 2669: A → GPos. 2683: Gap → APos. 2691: C → TPos. 2787: T → GapPos. 2812: T → CPos. 2906: T → APos. 2946: G → TPos. 2990: A → GapPos. 2997: C → GapPos. 3004: A → TPos. 3014: T → GapPos. 3036: T → CPos. 3127: T → CPos. 3143: A → GPos. 3145: T → CPos. 3236: Gap → TPos. 3268: C → TPos. 3278: C → TPos. 3287: T → CPos. 3298: G → APos. 3385: T → CPos. 3426: G → APos. 3454: C → TPos. 3486: A → GPos. 3545: A → G28sPos. 205: A → GPos. 569: T → CPos. 779: Gap → CPos. 780: Gap → CPos. 1073: G → APos. 1078: C → ARAG-1Pos. 117: A → GPos. 137: T → CPos. 155: T → CPos. 179: A → GRhodopsinPos. 28: A → TPos. 39: A → GPos. 135: C → T

Pos. 205: C → TPos. 219: C → TPos. 256: C → TSIAPos. 6: G → APos. 127: A → GPos. 211: C → TPos. 235: G → APos. 259: A → GPos. 322: C → TPos. 373: C → TTyrosinasePos. 19: T → GPos. 26: C → APos. 96: A → GPos. 133: AC → GPos. 179: A → GPos. 191: A → GPos. 261: A → GPos. 307: A → GPos. 308: A → CPos. 394: A → GPos. 456: G → CPos. 484: T → CPos. 511: G → A

Plectrohyla

Cytochrome bPos. 45: C → TPos. 189: C → TPos. 238: T → APos. 310: A → CPos. 402: T → C12SPos. 9: T → CPos. 502: Gap → CPos. 601: A → GPos. 650: T → CPos. 1113: C → TPos. 1118: C → TPos. 1579: A → G16SPos. 188: A → TPos. 459: T → APos. 654: T → APos. 906: T → APos. 1085: T → APos. 1103: T → CPos. 1741: C → TPos. 1826: T → CPos. 1948: T → CPos. 2039: G → APos. 2154: C → APos. 2229: T → APos. 2267: A → TPos. 2820: A → TPos. 2985: T → CPos. 3326: T → C28SPos. 525: G → GapRAG-1Pos. 362 C → APos. 395 T → CSIAPos. 3: T → CPos. 142: C → GPos. 148: C → TTyrosinasePos. 37: C → TPos. 58: G → APos. 86: C → A

Pos. 172: A → GPos. 300: A → GPos. 324: G → APos. 416: A → GPos. 475: C → T

Plectrohyla bistincta group

Cytochrome bPos. 101: T → AGPos. 204: A → TPos. 319: C → TPos. 356: T → C12SPos. 295: A → CPos. 427: C → TPos. 512: T → APos. 1002: C → TPos. 1005: C → A16SPos. 517: T → CPos. 1219: A → TPos. 1223: C → TPos. 1618: Gap → TPos. 1649: T → APos. 2190: C → ARAG-1Pos. 74 T → C

Plectrohyla guatemalensisgroup

Cytochrome bPos. 3: C → TPos. 111: C → TPos. 131: A → GPos. 229: C → TPos. 244: A → TPos. 271: C → TPos. 383: T → CPos. 396: A → G12SPos. 180: C → TPos. 251: G → APos. 646: C → TPos. 751: A → CPos. 1270: A → GPos. 1307: T → CPos. 1321: T → APos. 1521: G → APos. 1659: C → TtRNA valinePos. 110: T → A16SPos. 12: C → TPos. 355: C → TPos. 498: T → CPos. 691: G → APos. 767: A → GPos. 839: C → TPos. 1092: T → APos. 1458: T → CPos. 1718: T → CPos. 2057: T → CPos. 2240: A → GPos. 2854: Gap → CPos. 3010: C → TPos. 3027: T → CPos. 3242: Gap → T28SPos. 891: C → T

Pseudacris

Cytochrome b

Page 220: systematic review of the frog family hylidae, with special reference to ...

220 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 36: A → CTPos. 39: T → CPos. 71: A → CPos. 153: C → TPos. 189: C → TPos. 253: T → CPos. 274: T → CPos. 319: C → TPos. 327: C → APos. 354: A → GPos. 383: A → T12SPos. 556: Gap → APos. 838: A → TPos. 843: T → CPos. 1113: C → TtRNA valinePos. 59: C → TPos. 69: G → A16SPos. 664: A → TPos. 1085: T → APos. 1211: A → GapPos. 1223: C → GapPos. 1561: C → TPos. 1710: T → CPos. 2025: C → TPos. 2112: T → APos. 2836: Gap → TPos. 3035: C → TPos. 3208: Gap → T28SPos. 464: G → TPos. 525: G → GapPos. 909: C → ATyrosinasePos. 191: A → GPos. 283: G → TPos. 324: G → APos. 382: A → CPos. 396: A → C

Ptychohyla

Cytochrome bPos. 111: C → T12SPos. 1113: C → TPos. 1422: A → G16SPos. 308: A → GPos. 1298: C → TPos. 1532: C → TPos. 1953: T → APos. 2143: Gap → TPos. 2785: T → CPos. 3278: C → TPos. 3298: G → A

Smilisca

Cytochrome bPos. 119: CT → APos. 198: T → APos. 274: T → CPos. 280: C → TPos. 330: C → TPos. 383: A → TPos. 411: T → C12SPos. 206: A → GPos. 231: T → APos. 244: A → TPos. 330: C → T

Pos. 336: G → APos. 386: A → TPos. 566: Gap → APos. 600: T → APos. 729: T → APos. 880: C → APos. 1101: T → CPos. 1316: A → TPos. 1330: A → TPos. 1614: T → GapPos. 1632: Gap → CPos. 1678: T → CtRNA valinePos. 39: A → G16SPos. 443: T → APos. 853: A → GPos. 906: T → CPos. 1103: A → TPos. 1235: A → TPos. 1468: A → CPos. 1743: Gap → TPos. 2117: A → TPos. 2267: A → TPos. 2820: A → CPos. 2849: A → TPos. 3127: T → CSIAPos. 232: A → GPos. 292: G → A

Tlalocohyla

Cytochrome bPos. 90: A → TPos. 128: A → TPos. 158: C → TPos. 244: A → TPos. 259: C → TPos. 322: A → CPos. 330: C → TPos. 381: C → TPos. 387: T → A12SPos. 40: C → TPos. 61: C → APos. 131: T → CPos. 231: T → APos. 297: T → CPos. 348: T → CPos. 353: G → APos. 378: G → APos. 437: C → TPos. 521: T → GPos. 528: A → CPos. 582: C → APos. 970: A → CPos. 1001: A → CPos. 1122: T → APos. 1265: T → CPos. 1346: T → APos. 1417: T → CPos. 1531: C → Gap16SPos. 188: A → CPos. 323: C → APos. 336: C → APos. 399: A → TPos. 459: T → APos. 589: C → TPos. 634: T → APos. 718: T → C

Pos. 777: A → CPos. 853: A → TPos. 874: T → CPos. 906: T → CPos. 982: A → GPos. 1024: C → TPos. 1183: T → APos. 1275: G → APos. 1376: T → GapPos. 1451: T → CPos. 1458: T → APos. 1870: A → TPos. 1874: T → APos. 1878: C → APos. 1928: C → APos. 1948: T → APos. 1994: A → TPos. 2008: C → TPos. 2059: A → TPos. 2069: T → APos. 2151: T → CPos. 2200: T → APos. 2398: A → TPos. 2587: T → CPos. 2785: A → CPos. 2913: T → CPos. 2975: A → TPos. 3056: C → APos. 3118: C → TPos. 3260: C → TPos. 3291: A → GPos. 3318: T → CPos. 3357: A → TPos. 3428: C → TPos. 3429: T → CPos. 3451: A → GRhodopsinPos. 185: C → APos. 262: G → APos. 296: T → GPos. 300: C → TSIAPos. 3: T → CPos. 289: A → CPos. 340: A → GTyrosinasePos. 0: A → CPos. 6: A → GPos. 26: C → GPos. 49: C → TPos. 118: T → CPos. 155: C → GPos. 170: A → CPos. 171: G → CPos. 177: A → CPos. 254: A → GPos. 327: T → CPos. 453: T → CPos. 466: A → C

Triprion

Cytochrome bPos. 2: C → TPos. 23: T → CPos. 39: C → TPos. 68: T → CPos. 79: A → GPos. 88: C → TPos. 94: C → TPos. 126: T → GPos. 127: T → C

Pos. 137: C → TPos. 140: A → CPos. 145: C → TPos. 149: A → GPos. 153: T → CPos. 158: C → TPos. 164: C → TPos. 176: C → TPos. 180: C → TPos. 204: C → APos. 241: A → GPos. 265: C → TPos. 286: C → TPos. 311: A → GPos. 367: C → TPos. 399: C → T12SPos. 13: A → GPos. 38: T → CPos. 41: T → CPos. 70: C → TPos. 117: C → APos. 149: Gap → APos. 169: T → APos. 227: T → CPos. 326: A → GPos. 352: A → GPos. 532: Gap → CPos. 547: T → CPos. 550: T → CPos. 565: T → CPos. 582: T → GPos. 716: A → CPos. 733: T → APos. 738: A → GPos. 778: A → GPos. 814: C → TPos. 864: C → GapPos. 869: C → TPos. 880: C → TPos. 1105: C → TPos. 1122: T → CPos. 1362: T → CPos. 1402: A → TPos. 1405: A → GPos. 1423: A → CPos. 1431: T → CPos. 1440: T → APos. 1441: C → TPos. 1549: A → CPos. 1561: A → TPos. 1761: C → TPos. 1762: G → AtRNA valinePos. 4: A → GPos. 59: C → TPos. 69: G → APos. 90: A → GPos. 101: A → GPos. 108: T → C16SPos. 162: T → GPos. 434: A → TPos. 517: T → CPos. 543: T → CPos. 630: A → GPos. 656: T → CPos. 726: A → TPos. 780: C → TPos. 839: T → CPos. 890: A → G

Page 221: systematic review of the frog family hylidae, with special reference to ...

2005 221FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 914: A → GPos. 1103: A → GPos. 1174: T → CPos. 1259: T → CPos. 1436: T → APos. 1443: T → CPos. 1480: T → CPos. 1650: Gap → CPos. 1737: C → TPos. 1741: C → APos. 1817: A → GPos. 1948: T → CPos. 1953: T → CPos. 2063: A → GPos. 2089: A → TPos. 2142: C → APos. 2587: T → CPos. 2613: A → GPos. 2849: A → GPos. 2913: T → CPos. 2985: T → CPos. 3081: A → TPos. 3209: G → APos. 3249: C → TPos. 3326: C → TRAG-1Pos. 68: A → CPos. 107: A → GPos. 122: A → GPos. 302: C → TSIAPos. 48: C → TPos. 106: C → ATyrosinasePos. 12: C → TPos. 22: G → APos. 49: C → TPos. 248: G → TPos. 268: C → TPos. 312: C → TPos. 394: A → CPos. 401: G → APos. 416: G → APos. 432: C → TPos. 450: C → GPos. 456: G → CPos. 481: G → TPos. 493: T → CPos. 506: G → APos. 514: G → A

Hylini 1 Lophiohylini

Cytochrome bPos. 14: A → TPos. 97: A → CPos. 310: C → A12SPos. 231: A → TPos. 761: T → CPos. 890: A → CPos. 965: T → CPos. 1116: A → C16SPos. 272: T → GPos. 383: T → APos. 848: A → CPos. 906: A → TPos. 1223: Gap → CPos. 1796: Gap → APos. 1817: T → APos. 2057: A → CT

Pos. 2151: T → CPos. 2618: T → APos. 2787: Gap → T28SPos. 249: C → GapPos. 327: T → GapSIAPos. 331: A → GTyrosinasePos. 315: C → APos. 429: T → CPos. 481: T → G

Lophiohylini

Cytochrome bPos. 3: C → APos. 36: A → CPos. 265: C → APos. 268: A → CPos. 302: A → C12SPos. 24: A → TPos. 285: A → CPos. 593: T → CPos. 672: C → APos. 771: C → TPos. 817: G → APos. 908: A → TPos. 1589: T → AtRNA valinePos. 6: G → APos. 105: C → T16SPos. 138: Gap → ACPos. 573: A → TPos. 736: T → APos. 758: A → TPos. 814: T → APos. 836: A → CPos. 878: C → TPos. 978: G → APos. 1160: T → APos. 1174: T → CPos. 1419: T → CPos. 1470: Gap → CPos. 1710: T → CPos. 1789: Gap → TPos. 1842: A → GapPos. 1880: A → TPos. 1953: T → APos. 2041: A → CPos. 2091: T → CPos. 2110: A → TPos. 2156: A → CPos. 2525: A → TPos. 2694: T → APos. 2889: A → CPos. 3004: A → CPos. 3297: T → A28SPos. 390: C → TPos. 532: Gap → APos. 544: G → CRAG-1Pos. 89 T → CPos. 233 A → GPos. 248 A → CPos. 317 T → CPos. 341 C → TPos. 371 A → TSIA

Pos. 36: T → CPos. 145: A → GPos. 148: C → TPos. 211: C → TPos. 235: G → APos. 373: C → TTyrosinasePos. 0: AC → TPos. 4: C → GPos. 212: G → APos. 268: C → TPos. 333: A → TPos. 372: T → CPos. 396: A → G

Aparasphenodon brunoi

Cytochrome bPos. 42: T → CPos. 71: A → GPos. 76: C → APos. 97: C → TPos. 105: A → GPos. 108: G → APos. 152: C → TPos. 164: C → TPos. 167: C → TPos. 183: C → TPos. 214: C → TPos. 223: A → TPos. 235: A → GPos. 247: C → TPos. 250: C → TPos. 296: C → TPos. 327: C → TPos. 330: C → TPos. 331: C → TPos. 367: C → TPos. 396: A → GPos. 399: C → TPos. 414: C → TPos. 415: C → TPos. 420: C → A12sPos. 10: A → GPos. 66: G → APos. 68: A → CPos. 159: C → GPos. 183: A → CPos. 194: T → CPos. 206: A → TPos. 227: C → TPos. 452: T → CPos. 521: T → CPos. 550: C → TPos. 594: A → CPos. 646: C → TPos. 693: G → APos. 864: C → GapPos. 965: C → TPos. 970: A → CPos. 1043: C → TPos. 1270: A → GPos. 1392: T → APos. 1402: G → CPos. 1599: C → TPos. 1636: C → TPos. 1670: C → T16SPos. 1085: T → CPos. 1310: C → TPos. 1325: C → T

Pos. 1468: A → GPos. 1470: C → TPos. 1718: T → CPos. 1737: T → CPos. 1795: C → TPos. 1874: C → APos. 1878: T → CPos. 1928: T → CPos. 1998: A → CPos. 2027: A → GPos. 2028: G → APos. 2029: T → CPos. 2063: A → GPos. 2072: T → CPos. 2130: C → TPos. 2151: C → TPos. 2203: A → CPos. 2240: A → GPos. 2253: A → GPos. 2395: A → GPos. 2566: C → TPos. 2568: C → TPos. 2844: G → CPos. 2856: A → TPos. 2866: A → TPos. 2982: C → TPos. 2990: C → TPos. 3014: T → CPos. 3032: T → CPos. 3127: T → CPos. 3189: G → A

Argenteohyla siemersi

Cytochrome bPos. 3: C → TPos. 17: A → GPos. 57: A → GPos. 63: C → TPos. 76: C → TPos. 108: G → CPos. 109: G → APos. 128: A → GPos. 186: A → GPos. 223: A → GPos. 238: T → APos. 239: C → TPos. 292: T → APos. 311: A → GPos. 319: C → TPos. 334: G → APos. 344: A → GPos. 378: T → CPos. 396: A → TPos. 408: A → T12SPos. 36: A → GPos. 133: Gap → APos. 141: Gap → TPos. 159: C → APos. 285: C → APos. 492: Gap → TPos. 493: Gap → TPos. 672: A → CPos. 673: C → TPos. 880: A → TPos. 1010: T → CPos. 1084: T → CPos. 1309: A → TPos. 1346: T → CPos. 1392: T → CPos. 1413: A → T

Page 222: systematic review of the frog family hylidae, with special reference to ...

222 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 1422: G → APos. 1589: A → CPos. 1674: C → TtRNA valinePos. 72: G → APos. 98: G → A16SPos. 0: G → APos. 11: C → TPos. 138: A → TPos. 172: A → CPos. 308: A → GPos. 356: T → CPos. 452: T → CPos. 726: A → CPos. 827: T → CPos. 831: A → TPos. 839: C → TPos. 1022: G → APos. 1049: T → CPos. 1062: T → CPos. 1278: T → CPos. 1443: T → CPos. 1458: A → GPos. 1510: A → GPos. 1649: T → CPos. 1795: C → APos. 1874: C → TPos. 1944: A → GPos. 2016: T → CPos. 2024: G → APos. 2091: C → TPos. 2125: T → CPos. 2187: A → GPos. 2203: A → TPos. 2233: T → CPos. 2250: C → APos. 2263: C → TPos. 2267: T → CPos. 2285: A → GPos. 2345: C → TPos. 2392: A → TPos. 2416: G → APos. 2450: C → TPos. 2728: Gap → APos. 2889: C → GapPos. 3039: A → GPos. 3059: A → CPos. 3116: Gap → GPos. 3199: A → GPos. 3285: G → APos. 3397: Gap → G28SPos. 262: C → GapPos. 505: G → GapPos. 532: A → TRAG-1Pos. 6: T → CPos. 128 T → GPos. 183 C → GPos. 324 G → CPos. 380 C → TSIAPos. 205: T → GTyrosinasePos. 91: C → TPos. 284: C → TPos. 312: T → CPos. 324: G → APos. 339: C → APos. 351: C → T

Pos. 416: A → G

Corythomantis greenengi

Cytochrome bPos. 10: A → CPos. 45: C → TPos. 60: A → GPos. 67: C → TPos. 71: A → CPos. 126: G → APos. 127: C → TPos. 155: A → GPos. 211: C → TPos. 268: T → APos. 274: C → TPos. 327: C → APos. 381: C → TPos. 393: C → TPos. 411: T → C12SPos. 18: T → CPos. 24: T → CPos. 34: T → CPos. 152: A → CPos. 250: A → TPos. 440: A → GPos. 452: T → CPos. 454: T → CPos. 460: T → APos. 576: A → TPos. 593: C → TPos. 683: A → GPos. 729: T → CPos. 775: G → APos. 814: C → TPos. 864: C → TPos. 875: C → APos. 965: C → TPos. 1048: T → CPos. 1144: T → CPos. 1194: A → CPos. 1297: T → CPos. 1307: T → CPos. 1315: A → CPos. 1316: A → GPos. 1376: A → GPos. 1509: A → GPos. 1585: A → T16SPos. 3: A → GPos. 107: T → APos. 138: A → CPos. 220: C → TPos. 411: C → APos. 452: T → APos. 543: T → CPos. 606: C → APos. 622: Gap → CPos. 625: T → CPos. 634: T → GapPos. 665: A → CPos. 667: A → GPos. 668: T → CPos. 736: A → TPos. 751: C → APos. 758: T → CPos. 777: A → TPos. 787: T → CPos. 844: A → TPos. 863: C → TPos. 890: G → A

Pos. 997: C → TPos. 1025: T → CPos. 1049: T → GapPos. 1080: Gap → APos. 1085: T → CPos. 1174: C → APos. 1261: G → TPos. 1267: Gap → GPos. 1451: T → GPos. 1530: A → GPos. 1614: A → TPos. 1620: T → CPos. 1654: A → TPos. 1705: T → APos. 1741: T → APos. 1817: A → GapPos. 1844: Gap → CPos. 1865: T → APos. 1893: G → APos. 1952: T → CPos. 2025: C → TPos. 2034: A → GPos. 2041: CT → GPos. 2043: A → TPos. 2058: A → CPos. 2068: T → CPos. 2107: A → TPos. 2120: A → TPos. 2122: T → CPos. 2130: C → TPos. 2154: T → CPos. 2156: C → TPos. 2190: A → GPos. 2229: A → TPos. 2525: T → APos. 2812: T → APos. 2872: Gap → CPos. 3014: T → APos. 3032: T → CPos. 3125: A → T28SPos. 563: G → TPos. 569: A → TRAG-1Pos. 59 G → APos. 110 C → TPos. 131 G → APos. 197 T → CPos. 201 A → CPos. 233 G → APos. 398 A → CRhodopsinPos. 9: C → TPos. 135: C → TPos. 219: C → TSIAPos. 27: G → APos. 100: A → TPos. 151: C → APos. 241: G → ATyrosinasePos. 58: G → APos. 144: G → CPos. 230: C → TPos. 257: C → TPos. 270: G → APos. 321: C → TPos. 342: C → TPos. 360: G → TPos. 435: C → TPos. 450: C → T

Pos. 475: C → T

Itapotihyla langsdorffii

Cytochrome bPos. 13: A → CPos. 14: T → APos. 17: A → CPos. 24: G → APos. 36: C → GPos. 63: C → TPos. 91: T → CPos. 115: C → TPos. 158: C → GPos. 227: A → TPos. 241: A → CPos. 244: A → TPos. 259: C → TPos. 277: T → CPos. 296: C → TPos. 299: T → CPos. 319: C → TPos. 327: C → TPos. 334: A → CPos. 344: A → GPos. 363: A → GPos. 383: A → TPos. 396: A → CPos. 420: A → G12SPos. 18: T → CPos. 26: A → GPos. 33: A → GPos. 36: A → TPos. 148: C → TPos. 169: A → CPos. 206: A → GPos. 297: T → APos. 452: T → CPos. 541: C → APos. 594: A → GPos. 615: T → CPos. 650: T → CPos. 672: A → GPos. 683: A → GPos. 743: A → TPos. 761: C → TPos. 880: A → TPos. 989: A → GPos. 1008: T → CPos. 1010: T → APos. 1048: T → APos. 1118: C → APos. 1269: T → CPos. 1321: T → CPos. 1343: T → CPos. 1392: T → CPos. 1422: G → APos. 1429: C → APos. 1439: C → TPos. 1631: Gap → TPos. 1649: A → GapPos. 1761: T → C16SPos. 172: A → CPos. 347: C → TPos. 355: C → APos. 376: A → TPos. 498: T → CPos. 548: A → CPos. 634: A → CPos. 753: A → T

Page 223: systematic review of the frog family hylidae, with special reference to ...

2005 223FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 757: A → GPos. 848: C → APos. 863: C → TPos. 1004: G → APos. 1077: T → GPos. 1211: A → GPos. 1228: A → CPos. 1246: T → APos. 1259: T → APos. 1278: T → CPos. 1419: C → APos. 1443: T → GPos. 1468: A → GPos. 1727: A → GapPos. 1823: T → CPos. 1932: T → APos. 1949: A → GPos. 2043: A → CPos. 2059: A → CPos. 2089: C → TPos. 2110: T → CPos. 2112: T → APos. 2115: A → TPos. 2130: C → TPos. 2156: C → TPos. 2176: C → TPos. 2525: T → CPos. 2669: A → TPos. 2844: T → APos. 2901: T → CPos. 2956: A → GPos. 2997: C → GPos. 3010: T → APos. 3014: T → APos. 3018: T → CPos. 3032: T → CPos. 3239: A → GPos. 3287: T → A28SPos. 312: C → TPos. 1482: G → CPos. 1483: T → GRAG-1Pos. 4 C → TPos. 44 A → GPos. 71 G → APos. 173 C → TPos. 311 C → TPos. 357 C → TRhodopsinPos. 316: G → ATyrosinasePos. 104: G → APos. 148: C → TPos. 203: G → APos. 270: G → APos. 297: C → TPos. 399: A → TPos. 444: G → APos. 459: C → TPos. 471: C → T

Nyctimantis rugiceps

Cytochrome bPos. 10: A → CPos. 39: C → TPos. 45: C → TPos. 53: G → APos. 57: A → TPos. 62: G → APos. 91: T → C

Pos. 101: T → APos. 140: A → GPos. 145: T → GPos. 150: T → CPos. 161: A → GPos. 170: A → CPos. 189: C → TPos. 201: T → CPos. 213: G → CPos. 217: T → APos. 232: A → CPos. 238: T → GPos. 262: A → CPos. 268: T → APos. 274: C → TPos. 290: C → TPos. 299: T → CPos. 316: C → TPos. 347: A → GPos. 365: T → CPos. 366: T → CPos. 376: T → CPos. 383: A → GPos. 390: A → GPos. 394: A → GPos. 408: A → G16SPos. 996: A → GPos. 1103: T → CPos. 1153: C → TPos. 1228: A → GPos. 1242: T → CPos. 1246: T → GPos. 1443: T → GapPos. 1503: A → GPos. 1574: A → TPos. 1602: T → CPos. 1607: T → GPos. 1654: A → GapPos. 1727: A → TPos. 1766: Gap → CPos. 1826: C → TPos. 1894: T → CPos. 1925: C → TPos. 1960: A → GPos. 2030: G → APos. 2034: A → GPos. 2091: C → APos. 2094: A → GPos. 2115: A → GPos. 2117: T → CPos. 2200: A → GPos. 2229: A → GPos. 2233: T → GPos. 2265: T → CPos. 2279: T → APos. 2288: A → GPos. 2315: A → GPos. 2461: C → TPos. 2508: T → CPos. 2518: A → CPos. 2525: T → CPos. 2544: G → APos. 2564: T → CPos. 2570: A → TPos. 2616: A → GPos. 2643: A → GPos. 2694: A → GPos. 2737: Gap → TPos. 2889: C → APos. 2937: A → T

Pos. 2966: C → TPos. 2975: A → GPos. 2997: C → TPos. 3081: A → TPos. 3106: T → APos. 3138: A → GPos. 3230: C → TPos. 3239: A → TPos. 3272: Gap → TPos. 3285: G → TPos. 3326: C → TPos. 3406: T → CPos. 3425: C → TPos. 3486: A → G

Osteocephalus

12SPos. 46: A → TPos. 386: A → TPos. 521: T → CPos. 646: T → CPos. 673: T → GapPos. 675: A → CPos. 1327: A → GPos. 1579: G → TtRNA valinePos. 98: G → A16SPos. 367: T → APos. 498: T → APos. 576: A → TPos. 616: A → GPos. 1015: T → APos. 1741: T → CPos. 1813: T → APos. 1839: C → APos. 1847: A → TPos. 1948: C → APos. 2019: A → TPos. 2041: C → APos. 2058: A → TPos. 2059: A → CPos. 2080: A → CPos. 2117: T → CPos. 2244: T → APos. 2308: T → CPos. 2450: C → TPos. 2508: T → CPos. 2509: C → TPos. 2538: C → TPos. 2780: A → TPos. 3018: T → ARAG-1Pos. 127 T → C

Osteopilus

Cytochrome bPos. 127: C → TPos. 128: A → CTPos. 201: A → CPos. 299: T → C12SPos. 36: A → GPos. 110: A → CPos. 131: T → APos. 368: A → GPos. 592: C → TPos. 781: A → CPos. 864: C → TPos. 1245: C → TPos. 1683: C → A16S

Pos. 580: A → CPos. 625: T → GPos. 780: C → APos. 839: C → APos. 853: A → TPos. 1353: A → TPos. 1470: C → APos. 1607: T → CPos. 1789: T → APos. 1823: T → CPos. 2089: C → APos. 2233: T → CPos. 2820: A → TPos. 3054: T → CPos. 3516: A → CRAG-1Pos. 58 A → GPos. 230 C → TPos. 266 C → TPos. 404 T → CPos. 425 G → ATyrosinasePos. 43: T → CPos. 127: T → CPos. 157: C → TPos. 218: G → APos. 294: C → TPos. 357: T → CPos. 381: C → TPos. 396: G → APos. 444: G → TPos. 526: C → T

Phyllodytes

Cytochrome bPos. 10: A → CPos. 33: C → TPos. 46: C → TPos. 48: Gap → APos. 53: G → GapPos. 68: C → APos. 71: A → CPos. 79: A → CPos. 111: C → TPos. 136: C → TPos. 183: A → TPos. 199: G → APos. 201: A → TPos. 214: C → TPos. 223: A → TPos. 241: A → TPos. 244: A → CPos. 246: A → GPos. 290: C → TPos. 331: CT → APos. 402: T → CPos. 403: G → APos. 414: T → A12SPos. 22: G → APos. 34: T → CPos. 45: T → CPos. 46: A → TPos. 61: C → APos. 251: G → APos. 278: C → TPos. 281: A → CPos. 293: G → APos. 313: C → TPos. 322: C → APos. 348: T → C

Page 224: systematic review of the frog family hylidae, with special reference to ...

224 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 427: C → APos. 455: C → GapPos. 480: A → GPos. 521: T → CPos. 547: A → GapPos. 601: A → CPos. 619: G → APos. 621: A → GPos. 670: A → GPos. 816: A → TPos. 864: C → TPos. 1061: T → APos. 1128: T → CPos. 1135: G → APos. 1177: C → TPos. 1187: C → TPos. 1233: G → APos. 1316: A → GPos. 1383: C → APos. 1405: A → GPos. 1431: T → CPos. 1509: A → GPos. 1602: T → APos. 1640: T → CPos. 1664: A → CPos. 1692: G → AtRNA valinePos. 56: T → CPos. 61: C → TPos. 76: A → GPos. 77: A → TPos. 94: C → T16SPos. 2: T → CPos. 12: C → APos. 130: C → APos. 367: AT → CPos. 383: A → CPos. 452: T → CPos. 483: A → TPos. 536: C → TPos. 579: A → GPos. 592: T → CPos. 623: Gap → CPos. 625: T → CPos. 658: A → GapPos. 668: T → GapPos. 691: G → APos. 780: C → TPos. 784: C → TPos. 941: G → CPos. 960: G → APos. 968: G → APos. 969: A → GPos. 1009: G → APos. 1085: T → APos. 1140: A → TPos. 1223: C → APos. 1259: T → CPos. 1289: A → GPos. 1480: T → CPos. 1585: A → GPos. 1592: G → CPos. 1603: T → CPos. 1673: A → CPos. 1699: A → CPos. 1839: T → CPos. 1925: A → TPos. 1928: C → GPos. 2030: G → APos. 2058: A → C

Pos. 2139: Gap → CPos. 2268: C → APos. 2284: G → APos. 2312: T → APos. 2319: T → CPos. 2441: C → GapPos. 2450: C → TPos. 2457: G → APos. 2477: C → TPos. 2484: T → CPos. 2496: G → APos. 2503: C → APos. 2518: A → GPos. 2551: A → GPos. 2568: C → TPos. 2652: T → CPos. 2711: C → TPos. 2800: Gap → CPos. 2856: T → APos. 2982: T → APos. 3039: A → TPos. 3041: G → APos. 3127: T → CPos. 3166: C → GapPos. 3173: G → APos. 3189: G → APos. 3267: Gap → TPos. 3277: G → APos. 3299: C → TPos. 3439: T → CPos. 3447: G → APos. 3449: C → APos. 3458: T → C28SPos. 260: Gap → CPos. 261: Gap → CPos. 283: Gap → TPos. 318: Gap → APos. 440: Gap → GPos. 441: Gap → GPos. 484: C → GPos. 738: Gap → GPos. 741: Gap → CPos. 925: Gap → GPos. 1048: Gap → GRhodopsinPos. 10: G → APos. 279: C → APos. 296: T → CPos. 311: C → TSIAPos. 106: C → TPos. 250: C → TTyrosinasePos. 22: G → APos. 43: T → CPos. 52: C → TPos. 73: A → GPos. 103: G → APos. 127: T → CPos. 157: C → APos. 177: C → TPos. 209: T → CPos. 215: G → APos. 233: C → APos. 256: G → APos. 282: A → CPos. 285: C → TPos. 343: G → APos. 345: G → TPos. 490: G → A

Pos. 507: T → GPos. 529: C → TPos. 537: T → G

Tepuihyla edelcae

12SPos. 26: A → GPos. 231: T → APos. 251: G → APos. 449: Gap → CPos. 451: T → CPos. 452: T → CPos. 454: T → CPos. 528: A → TPos. 594: A → GPos. 696: A → GPos. 875: C → APos. 970: A → CPos. 989: A → GPos. 999: T → CPos. 1010: T → CPos. 1144: T → CPos. 1211: T → CPos. 1309: C → GPos. 1441: T → CPos. 1602: T → APos. 1640: T → CPos. 1683: C → T16SPos. 56: C → GapPos. 162: C → TPos. 220: T → APos. 336: C → APos. 376: A → TPos. 383: C → GPos. 411: C → TPos. 589: T → CPos. 630: A → GPos. 668: T → APos. 671: A → GPos. 718: T → CPos. 736: A → GPos. 742: T → APos. 754: A → GPos. 755: A → GPos. 758: T → CPos. 814: A → TPos. 890: G → APos. 996: A → GPos. 1012: T → CPos. 1018: T → CPos. 1057: C → TPos. 1082: Gap → CPos. 1160: A → CPos. 1174: C → TPos. 1328: A → GPos. 1419: C → TPos. 1436: T → CPos. 1470: C → TPos. 1534: T → CPos. 1699: A → TPos. 1705: T → GPos. 1727: A → TPos. 1783: C → TPos. 1796: A → TPos. 1799: A → TPos. 1823: T → APos. 1880: T → CPos. 1883: C → TPos. 1894: T → CPos. 2039: G → A

Pos. 2063: A → GPos. 2067: A → GPos. 2154: T → CPos. 2177: C → TPos. 2217: T → CPos. 2395: A → TPos. 2533: T → CPos. 2564: T → CPos. 2566: T → CPos. 2616: A → GPos. 2676: A → GPos. 3010: T → APos. 3027: T → CPos. 3056: T → CPos. 3077: T → CPos. 3111: G → APos. 3138: A → GPos. 3140: C → TPos. 3166: C → TPos. 3222: C → TPos. 3234: T → APos. 3287: T → CPos. 3295: T → CPos. 3298: G → APos. 3439: T → CRAG-1Pos. 419: C → T

Trachycephalus

Cytochrome bPos. 36: C → APos. 173: A → CPos. 201: A → CPos. 247: C → T12SPos. 169: A → TPos. 838: A → TPos. 880: A → CPos. 1636: C → GapPos. 1674: C → T16SPos. 130: C → APos. 188: AT → CPos. 718: T → APos. 836: C → APos. 1259: T → CPos. 1443: T → CPos. 1470: C → APos. 1534: T → CPos. 2229: A → CPos. 2525: T → CPos. 2753: A → CPos. 2827: Gap → TPos. 3287: T → CRAG-1Pos. 6 T → CPos. 125 G → APos. 242 G → ARhodopsinPos. 96: T → CPos. 154: C → APos. 160: C → TPos. 209: C → TPos. 220: G → ATyrosinasePos. 70: T → APos. 251: C → TPos. 351: C → TPos. 456: G → APos. 490: G → APos. 497: C → A

Page 225: systematic review of the frog family hylidae, with special reference to ...

2005 225FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 511: G → A

Phyllomedusinae

Cytochrome bPos. 11: A → CPos. 53: G → APos. 71: A → TPos. 78: C → GapPos. 88: C → TPos. 126: G → APos. 134: C → TPos. 136: C → TPos. 204: C → T12SPos. 13: G → APos. 22: G → A

Pos. 83: A → G

Pos. 235: A → T

Pos. 278: C → T

Pos. 281: A → T

Pos. 293: G → A

Pos. 313: C → A

Pos. 389: T → A

Pos. 528: A → T

Pos. 602: A → C

Pos. 641: AT → G

Pos. 658: A → G

Pos. 672: C → A

Pos. 771: C → T

Pos. 775: G → A

Pos. 814: C → T

Pos. 817: G → A

Pos. 838: A → T

Pos. 900: T → A

Pos. 965: T → C

Pos. 1166: Gap → C

Pos. 1321: T → C

Pos. 1392: T → C

Pos. 1439: C → T

Pos. 1568: A → T

tRNA valine

Pos. 57: C → T

Pos. 76: A → C

16S

Pos. 403: Gap → A

Pos. 427: T → C

Pos. 579: A → G

Pos. 616: A → C

Pos. 626: Gap → C

Pos. 664: A → T

Pos. 758: A → T

Pos. 807: G → A

Pos. 861: A → C

Pos. 890: A → G

Pos. 904: A → T

Pos. 948: T → C

Pos. 1167: A → T

Pos. 1758: Gap → A

Pos. 1799: A → T

Pos. 1819: A → T

Pos. 1948: T → C

Pos. 2045: A → C

Pos. 2069: A → T

Pos. 2070: A → C

Pos. 2127: G → A

Pos. 2154: T → A

Pos. 2161: A → T

Pos. 2179: C → T

Pos. 2203: A → T

Pos. 2396: Gap → C

Pos. 2669: A → T

Pos. 2768: C → T

Pos. 2906: T → C

Pos. 2953: A → G

Pos. 3041: G → A

Pos. 3097: A → C

Pos. 3126: A → T

Pos. 3145: T → A

Pos. 3222: T → C

Pos. 3234: A → Gap

Pos. 3285: G → A

Pos. 3292: C → T

Pos. 3429: T → C

Pos. 3451: A → G

28S

Pos. 223: Gap → G

Pos. 232: Gap → G

Pos. 327: T → G

Pos. 505: G → T

Pos. 558: G → T

Pos. 564: Gap → A

Pos. 825: Gap → C

Pos. 876: A → C

Pos. 934: Gap → T

Rhodopsin

Pos. 10: A → G

Pos. 16: A → T

Pos. 18: G → T

Pos. 93: C → T

Pos. 105: G → A

Pos. 145: C → T

Agalychnis

12S

Pos. 73: T → C

Pos. 159: C → T

Pos. 164: T → C

Pos. 277: A → T

Pos. 550: T → A

Pos. 558: T → C

Pos. 599: T → C

Pos. 864: C → T

Pos. 1144: T → C

Pos. 1321: C → T

Pos. 1539: C → T

tRNA valine

Pos. 39: T → C

16S

Pos. 220: T → A

Pos. 479: Gap → A

Pos. 536: C → T

Pos. 904: T → C

Pos. 2151: T → C

Pos. 2312: T → A

Pos. 3097: C → T

Pos. 3111: G → A

Pos. 3290: A → T

Cruziohyla calcarifer

Cytochrome b

Pos. 10: A → C

Pos. 13: A → C

Pos. 33: C → T

Pos. 64: C → T

Pos. 105: A → C

Pos. 108: A → C

Pos. 115: C → T

Pos. 116: C → T

Pos. 137: T → A

Pos. 144: C → T

Pos. 152: T → C

Pos. 158: C → G

Pos. 183: C → A

Pos. 202: G → A

Pos. 214: C → T

Pos. 265: C → T

Pos. 271: C → T

Pos. 290: C → T

Pos. 306: A → G

Pos. 313: A → G

Pos. 327: C → T

Pos. 334: A → C

Pos. 347: A → C

Pos. 362: A → C

Pos. 411: T → C

Pos. 415: C → T

12S

Pos. 61: C → T

Pos. 73: T → C

Pos. 88: C → T

Pos. 98: T → Gap

Pos. 142: C → T

Pos. 152: A → C

Pos. 173: G → A

Pos. 206: A → T

Pos. 231: A → Gap

Pos. 280: C → T

Pos. 291: G → A

Pos. 319: A → T

Pos. 359: A → T

Pos. 370: A → T

Pos. 391: C → T

Pos. 512: T → C

Pos. 521: T → C

Pos. 550: T → A

Pos. 599: T → C

Pos. 613: C → T

Pos. 646: T → C

Pos. 673: C → T

Pos. 692: T → C

Pos. 729: T → A

Pos. 776: G → A

Pos. 812: C → T

Pos. 862: Gap → T

Pos. 869: C → A

Pos. 875: C → G

Pos. 908: A → C

Pos. 1002: C → T

Pos. 1061: T → C

Pos. 1116: A → T

Pos. 1144: T → C

Pos. 1194: A → C

Pos. 1307: T → A

Pos. 1408: A → C

Pos. 1600: Gap → C

Pos. 1670: T → C

tRNA valine

Pos. 3: A → T

Pos. 11: G → A

Pos. 54: C → T

16S

Pos. 3: A → Gap

Pos. 4: A → C

Pos. 14: Gap → C

Pos. 51: Gap → C

Pos. 107: A → C

Pos. 118: A → C

Pos. 172: A → C

Pos. 294: A → G

Pos. 347: C → T

Pos. 355: C → T

Pos. 443: T → A

Pos. 452: T → C

Pos. 539: Gap → A

Pos. 544: Gap → C

Pos. 573: A → Gap

Pos. 586: Gap → C

Pos. 592: T → C

Pos. 634: A → G

Pos. 665: T → G

Pos. 668: T → A

Pos. 692: A → T

Pos. 718: T → C

Pos. 763: G → A

Pos. 767: A → T

Pos. 784: C → T

Pos. 788: C → T

Pos. 798: T → C

Pos. 827: T → C

Pos. 920: G → A

Page 226: systematic review of the frog family hylidae, with special reference to ...

226 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

APPENDIX 5(Continued)

Pos. 972: T → A

Pos. 1008: A → C

Pos. 1049: T → A

Pos. 1153: A → T

Pos. 1174: T → A

Pos. 1235: C → T

Pos. 1242: C → T

Pos. 1468: T → A

Pos. 1480: T → C

Pos. 1491: A → C

Pos. 1572: T → C

Pos. 1631: T → C

Pos. 1783: C → T

Pos. 1817: T → C

Pos. 1823: T → C

Pos. 1826: T → A

Pos. 1887: T → C

Pos. 1925: A → G

Pos. 2016: T → C

Pos. 2018: T → A

Pos. 2039: G → A

Pos. 2064: C → T

Pos. 2208: A → C

Pos. 2217: T → A

Pos. 2250: C → T

Pos. 2379: Gap → T

Pos. 2391: Gap → C

Pos. 2406: T → C

Pos. 2450: C → T

Pos. 2517: G → A

Pos. 2566: T → C

Pos. 2581: C → T

Pos. 2605: G → A

Pos. 2616: A → T

Pos. 2652: T → C

Pos. 2664: A → T

Pos. 2671: Gap → C

Pos. 2711: C → T

Pos. 2741: Gap → C

Pos. 2856: T → A

Pos. 2913: T → C

Pos. 2985: T → C

Pos. 3010: T → A

Pos. 3032: T → A

Pos. 3048: A → T

Pos. 3071: A → T

Pos. 3083: T → C

Pos. 3088: A → G

Pos. 3195: Gap → T

Pos. 3199: A → C

Pos. 3303: C → T

Pos. 3310: A → T

Pos. 3316: A → T

Pos. 3320: G → A

Pos. 3357: A → T

Pos. 3431: C → T

Pos. 3432: A → G

Pos. 3458: T → C

Pos. 3499: C → T

Pos. 3516: A → G

28S

Pos. 207: Gap → G

Pos. 208: C → T

Pos. 238: G → Gap

Pos. 306: T → G

Pos. 373: C → T

Pos. 390: C → T

Pos. 509: G → Gap

Pos. 511: C → T

Pos. 516: G → A

Pos. 653: C → T

Rhodopsin

Pos. 6: T → C

Pos. 9: C → T

Pos. 314: C → T

Hylomantis

Cytochrome b

Pos. 33: C → T

Pos. 98: C → T

Pos. 126: A → G

Pos. 170: T → C

Pos. 204: T → C

Pos. 250: T → A

Pos. 274: C → T

Pos. 316: T → C

Pos. 402: T → C

12S

Pos. 83: G → A

Pos. 251: G → A

Pos. 528: T → A

Pos. 875: C → T

Pos. 1549: A → C

tRNA valine

Pos. 98: A → G

16S

Pos. 50: Gap → C

Pos. 252: Gap → T

Pos. 347: C → T

Pos. 399: T → Gap

Pos. 452: T → C

Pos. 459: T → C

Pos. 625: T → C

Pos. 774: T → A

Pos. 1160: T → A

Pos. 1242: C → T

Pos. 1278: T → C

Pos. 1334: A → T

Pos. 1737: T → C

Pos. 1783: C → T

Pos. 2112: T → Gap

Pos. 2605: G → A

Pos. 2616: A → T

Pos. 2866: A → Gap

Pos. 2875: A → Gap

Pos. 2906: C → Gap

Pos. 2946: A → C

Pos. 3277: G → A

Pos. 3375: T → C

Rhodopsin

Pos. 305: C → T

Pachymedusa dacnicolor

12S

Pos. 28: A → G

Pos. 33: A → G

Pos. 49: C → T

Pos. 117: A → T

Pos. 307: G → A

Pos. 370: A → G

Pos. 381: C → T

Pos. 386: A → T

Pos. 414: C → T

Pos. 427: A → G

Pos. 434: G → A

Pos. 451: T → C

Pos. 480: A → G

Pos. 519: Gap → G

Pos. 601: C → T

Pos. 646: T → C

Pos. 658: G → A

Pos. 672: A → C

Pos. 733: T → A

Pos. 736: A → T

Pos. 750: C → T

Pos. 780: C → T

Pos. 835: T → C

Pos. 908: A → C

Pos. 1105: A → T

Pos. 1128: T → C

Pos. 1153: T → G

Pos. 1166: C → T

Pos. 1187: C → T

Pos. 1233: G → A

Pos. 1307: T → C

Pos. 1317: A → G

Pos. 1426: T → C

Pos. 1429: C → A

Pos. 1439: T → C

Pos. 1509: A → G

Pos. 1622: Gap → G

Pos. 1630: A → T

Pos. 1761: T → C

tRNA valine

Pos. 6: G → A

Pos. 34: Gap → T

Pos. 55: A → C

Pos. 84: T → C

Pos. 95: C → T

Pos. 105: C → T

16S

Pos. 94: A → Gap

Pos. 130: A → G

Pos. 272: T → A

Pos. 323: C → T

Pos. 493: Gap → G

Pos. 513: Gap → A

Pos. 580: A → G

Pos. 654: T → A

Pos. 663: T → A

Pos. 667: A → T

Pos. 772: Gap → A

Pos. 777: C → Gap

Pos. 807: A → G

Pos. 818: C → T

Pos. 872: C → T

Pos. 959: A → G

Pos. 983: G → A

Pos. 1034: G → Gap

Pos. 1049: T → A

Pos. 1167: T → A

Pos. 1208: Gap → A

Pos. 1268: C → T

Pos. 1281: T → C

Pos. 1370: Gap → T

Pos. 1371: Gap → T

Pos. 1468: T → C

Pos. 1491: A → T

Pos. 1699: T → A

Pos. 1855: A → T

Pos. 2007: A → T

Pos. 2033: A → T

Pos. 2041: A → T

Pos. 2049: G → A

Pos. 2054: T → C

Pos. 2060: C → T

Pos. 2070: C → A

Pos. 2105: A → G

Pos. 2107: C → T

Pos. 2552: T → C

Pos. 2606: A → G

Pos. 2717: Gap → T

Pos. 2797: Gap → C

Pos. 2844: A → T

Pos. 2913: T → G

Pos. 3071: A → T

Pos. 3083: T → C

Pos. 3121: A → T

Pos. 3181: G → A

Pos. 3189: G → T

Pos. 3199: A → T

Pos. 3249: G → Gap

Pos. 3260: C → Gap

Pos. 3266: C → T

Pos. 3268: C → T

Pos. 3291: A → T

Page 227: systematic review of the frog family hylidae, with special reference to ...

2005 227FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

APPENDIX 5(Continued)

Pos. 3439: T → C

Pos. 3504: C → T

Pos. 3507: C → T

SIA

Pos. 93: C → T

Pos. 220: G → A

Phasmahyla

Cytochrome b

Pos. 10: A → C

Pos. 36: A → T

Pos. 99: T → C

Pos. 137: T → A

Pos. 173: A → T

Pos. 207: C → T

Pos. 248: C → T

Pos. 250: T → A

Pos. 280: C → T

Pos. 356: C → T

Pos. 362: A → T

Pos. 380: C → T

12S

Pos. 61: C → T

Pos. 69: C → T

Pos. 142: C → T

Pos. 173: G → A

Pos. 281: T → A

Pos. 319: A → T

Pos. 432: T → A

Pos. 518: Gap → C

Pos. 547: A → T

Pos. 600: T → C

Pos. 835: T → C

Pos. 861: Gap → C

Pos. 908: A → C

Pos. 989: A → T

Pos. 1036: C → T

Pos. 1048: T → A

Pos. 1058: Gap → T

Pos. 1164: Gap → T

Pos. 1233: G → A

Pos. 1454: G → A

Pos. 1549: A → T

Pos. 1645: T → C

tRNA valine

Pos. 59: C → T

Pos. 69: G → A

Pos. 82: C → T

16S

Pos. 162: C → T

Pos. 343: Gap → T

Pos. 355: C → T

Pos. 580: A → C

Pos. 668: T → A

Pos. 718: T → A

Pos. 751: C → T

Pos. 761: T → C

Pos. 780: C → T

Pos. 822: A → T

Pos. 861: C → A

Pos. 1085: T → A

Pos. 1324: A → T

Pos. 1510: A → T

Pos. 1534: A → Gap

Pos. 1606: Gap → A

Pos. 1699: T → Gap

Pos. 1705: T → A

Pos. 1787: C → T

Pos. 1874: T → C

Pos. 1878: C → T

Pos. 1932: T → C

Pos. 1951: A → T

Pos. 1964: C → T

Pos. 2018: T → A

Pos. 2026: A → C

Pos. 2028: G → A

Pos. 2030: G → T

Pos. 2057: A → T

Pos. 2059: A → T

Pos. 2112: T → A

Pos. 2345: C → T

Pos. 2381: T → A

Pos. 2398: C → T

Pos. 2416: G → A

Pos. 2422: C → T

Pos. 2552: T → C

Pos. 2566: T → C

Pos. 2581: C → T

Pos. 2583: A → G

Pos. 2586: C → T

Pos. 2674: C → T

Pos. 2711: C → T

Pos. 2975: A → T

Pos. 3036: T → A

Pos. 3059: A → C

Pos. 3111: G → A

Pos. 3140: C → T

Pos. 3199: A → G

Pos. 3230: T → C

Pos. 3323: A → T

Pos. 3375: T → Gap

Pos. 3484: G → A

Pos. 3491: C → A

Pos. 3551: C → T

Phyllomedusa

12S

Pos. 65: C → A

Pos. 251: G → A

Pos. 313: A → T

Pos. 327: A → T

Pos. 391: C → T

Pos. 434: G → A

Pos. 530: Gap → C

Pos. 864: C → A

Pos. 1066: C → T

Pos. 1130: Gap → C

Pos. 1177: T → Gap

Pos. 1585: T → A

Pos. 1614: A → T

tRNA valine

Pos. 98: A → G

16S

Pos. 348: Gap → A

Pos. 427: C → T

Pos. 483: T → C

Pos. 573: A → T

Pos. 610: T → C

Pos. 634: A → T

Pos. 1025: T → C

Pos. 1077: T → A

Pos. 1153: A → C

Pos. 1274: A → G

Pos. 1737: T → C

Pos. 1819: T → A

Pos. 1897: T → C

Pos. 2045: C → T

Pos. 2094: A → Gap

Pos. 2107: C → A

Pos. 2203: T → C

Pos. 2217: T → C

Pos. 2233: T → A

Pos. 2285: A → G

Pos. 2567: T → C

Pos. 2664: A → T

Pos. 3143: G → A

RAG-1

Pos. 68 A → G

Rhodopsin

Pos. 133: C → T

Pos. 305: C → T

Pos. 314: C → T

SIA

Pos. 148: C → T

Tyrosinase

Pos. 2: T → C

Pos. 444: C → T

Pelodryadinae

Cytochrome b

Pos. 62: G → T

Pos. 164: C → T

12S

Pos. 61: C → A

Pos. 169: A → Gap

Pos. 194: T → C

Pos. 432: T → A

Pos. 619: G → A

Pos. 621: A → G

Pos. 661: A → G

Pos. 880: A → C

Pos. 1174: C → T

Pos. 1303: A → T

Pos. 1317: A → T

Pos. 1670: T → A

tRNA valine

Pos. 98: A → G

16S

Pos. 265: Gap → A

Pos. 459: T → A

Pos. 643: Gap → A

Pos. 821: T → A

Pos. 902: T → A

Pos. 914: C → A

Pos. 959: A → G

Pos. 1077: T → A

Pos. 1085: T → A

Pos. 1235: C → A

Pos. 1324: A → C

Pos. 1447: Gap → C

Pos. 1725: Gap → T

Pos. 1896: A → C

Pos. 1900: C → T

Pos. 1945: G → A

Pos. 2112: T → A

Pos. 2200: T → A

Pos. 2224: A → T

Pos. 2267: T → A

Pos. 2268: C → A

Pos. 2381: T → A

Pos. 2676: A → T

Pos. 2719: T → C

Pos. 2860: Gap → A

Pos. 3086: T → A

Pos. 3181: G → A

Pos. 3260: C → T

Pos. 3274: A → T

Pos. 3280: A → T

Pos. 3297: T → A

RAG-1

Pos. 8 A → G

Pos. 89 T → C

Pos. 134 C → T

Pos. 350 C → T

Pos. 410 C → T

Rhodopsin

Pos. 99: G → A

Pos. 270: A → T

Tyrosinase

Pos. 273: C → G

Pos. 282: A → C

Pos. 449: C → G

Pos. 455: T → C

Pos. 456: G → A

Page 228: systematic review of the frog family hylidae, with special reference to ...

228 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Note added in proof

While this paper was in press, two relevant contributions were published, eachone describing a new species of Hyla. Kohler et al. (2005) described Hyla coffea,and tentatively assigned it to the Hyla microcephala group. For these reasons, weinclude this species in the resurrected genus Dendropsophus, as Dendropsophuscoffea (Kohler, Jungfer, and Reichle, 2005) new comb. We follow the authors intentatively assigning it to the Dendropsophus microcephalus group, increasing thenumber of species currently included in this group to 31. Carvalho e Silva andCarvalho e Silva (2005) described as Hyla eugenioi the species that we included inthis paper as Hyla sp. 1 (aff. H. ehrhardti). Therefore, we include this species inAplastodiscus, as Aplastodiscus eugenioi (Carvalho e Silva and Carvalho e Silva,2005) new comb. Following our results, and the authors’ assigning the species tothe former Hyla albofrenata complex of the H. albomarginata group, we considerit a member of the Aplastodiscus albofrenatus group, increasing to seven the numberof species of the group. Carvalho e Silva and Carvalho e Silva (2005) also noticedthat the species of the former Hyla albofrenata complex of the H. albomarginatagroup (now the Aplastodiscus albofrenatus group) have a red-orange iris, while spe-cies of the former H. albosignata complex (now the Aplastodiscus albosignatusgroup) have a characteristic ring (red externally, gray internally).

ReferencesCarvalho e Silva, A.M.P.T., and S.P. Carvalho e Silva. 2005. New species of the

Hyla albofrenata group, from the states of Rio de Janeiro and Sao Paulo, Brazil(Anura, Hylidae). Journal of Herpetology 38: 73–81.

Kohler, J., K.H. Jungfer, and S. Reichle. 2005. Another new species of small Hyla(Anura, Hylidae) from amazonian sub-andean forest of western Bolivia. Journalof Herpetology 39: 43–50.

Page 229: systematic review of the frog family hylidae, with special reference to ...

2005 229FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

INDEX

Numbers in bold indicate pages where only species groups are mentioned.

Acris barbouri 127crepitans 10, 32, 99, 152, 175gryllus 10, 32, 99, 152, 175

Adenomera sp. 10, 197Agalychnis annae 19, 113, 172

calcarifer 11, 19, 54, 113, 114, 172, 192callidryas 11, 19, 113, 172, 182craspedopus 11, 54, 114, 172litodryas 11, 19, 113, 172, 192moreletii 19, 113, 172saltator 11, 19, 113, 172, 193spurrelli 19, 113, 172

Allophryne ruthveni 12, 14, 194Alsodes gargola 12, 50, 198Amphodus wuchereri 109Anotheca spinosa 10, 32, 41, 74, 99, 152, 175,

215Aparasphenodon bokermanni 38, 108, 152

brunoi 10, 38, 108, 123, 152, 175, 222venezolanus 38, 108, 152

Aplastodiscus albofrenatus 82, 152, 153, 156,159, 163, 205albosignatus 82, 152, 154, 157, 158, 162, 206arildae 82, 153callipygius 82, 154cavicola 82, 154cochranae 10, 41, 78, 82, 152, 175ehrhardti 82, 156flumineus 82, 156ibirapitanga 82, 156leucopygius 82, 158musicus 82, 159perviridis 10, 41, 60, 75, 78, 80, 82, 152, 175,

206sibilatus 82, 162weygoldti 82, 163

Argenteohyla siemersi 10, 38, 73, 152, 175, 222siemersi pederseni 38

Atelognathus patagonicus 12, 198Atelopus varius 12, 195

Batrachyla leptopus 12, 198Bokermannohyla ahenea 83, 152

alvarengai 84, 153astartea 83, 153caramaschii 83, 154carvalhoi 83, 154circumdata 82, 83, 87, 123, 128, 152, 153, 154,

155, 156, 157, 158, 159, 161, 162, 207claresignata 83, 155clepsydra 83, 155feioi 83, 155gouveai 83, 155

hylax 83, 157ibitiguara 84, 157ibitipoca 83, 157izecksohni 83, 157langei 83, 123, 158lucianae 83, 158luctuosa 83, 158martinsi 83, 123, 158nanuzae 83, 123, 159, 159pseudopseudis 83, 84, 123, 153, 157, 161, 162,

207ravida 83, 161saxicola 84, 162sazimai 83, 123, 162

Brachycephalus ephippium 12, 14, 49, 195Bromeliohyla bromeliacia 99, 154, 216

dendroscarta 99, 155Bufo arenarum 12, 195

marmoratus 90

Calamita melanorabdotus 111quadrilineatus 111

Calyptahyla crucialis 39, 73Centrolene prosoblepon 12, 14, 195Centrolenella pulidoi 203Ceratophrys cranwelli 12, 50, 196Charadrahyla altipotens 99, 104, 153

chaneque 100, 104, 155nephila 100, 159taeniopus 100, 162trux 100, 163

Cinclidium granulatum 85Cochranella bejaranoi 12, 14, 196

siren 201Colostethus talamancae 12, 14, 196Cophomantis punctillata 85Corythomantis greeningi 10, 38, 108, 109, 152,

175, 222Crossodactylus schmidti 12, 50, 196Cruziohyla calcarifer 113, 114, 118, 172, 226

craspedopus 113, 114, 172Cryptobatrachus sp. 11, 191Cyclorana australis 12, 19, 194

brevipes 19platicephala 19

Dendrobates auratus 12, 14, 196tinctorius 86

Dendrophryniscus minutus 12, 195Dendropsophus acreanus 91, 152

allenorum 93, 153amicorum 93, 153anataliasiasi 92, 153anceps 91, 123, 153

Page 230: systematic review of the frog family hylidae, with special reference to ...

230 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Dendropsophus (continued)aperomeus 92, 121, 153araguaya 92, 153battersbyi 93, 121, 153berthalutzae 92, 154bifurcus 91, 154bipunctatus 92, 154bogerti 90, 154bokermanni 93, 154branneri 92, 154brevifrons 93, 154cachimbo 92, 154carnifex 90, 154cerradensis 92, 155columbianus 90, 121, 154, 155cruzi 92, 155decipiens 92, 154, 155, 157, 159delarivai 93, 121, 155dutrai 91, 156ebraccatus 91, 118, 156elegans 91, 156elianeae 92, 156garagoensis 90, 91, 121, 128, 156, 159, 160,

163gaucheri 93, 156giesleri 93, 123, 156grandisonae 93, 156gryllatus 92, 156haddadi 92, 157haraldschultzi 93, 157jimi 92, 157joannae 92, 157koechlini 93, 157labialis 91, 121, 123, 158, 159, 160leali 92, 158leucophyllatus 91, 153, 154, 156, 158, 161,

162, 163, 210limai 93, 158luteoocellatus 93, 158marmoratus 91, 152, 156, 158, 159, 162, 211mathiassoni 92, 158melanargyreus 91, 158meridensis 91, 159meridianus 92, 159microcephalus 91, 92, 118, 153, 154, 155, 156,

157, 158, 159, 161, 162, 163, 211microps 93, 159minimus 92, 158, 159, 161minusculus 92, 159minutus 92, 93, 123, 153, 155, 158, 159, 163miyatai 92, 159nadhereri 91, 159nanus 92, 159novaisi 91, 159oliveirai 92, 159padreluna 90, 159

parviceps 93, 153, 154, 156, 157, 158, 159,160, 161, 162, 163, 211

pauiniensis 93, 160pelidna 91, 160phlebodes 92, 119, 160praestans 90, 121, 160pseudomeridianus 92, 160rhea 92, 161rhodopeplus 92, 161riveroi 92, 161robertmertensi 92, 119, 161rossalleni 91, 161rubicundulus 92, 153, 154, 155, 156, 157, 161,

163ruschii 93, 161sanborni 92, 161sarayacuensis 91, 162sartori 92, 119, 162schubarti 93, 162seniculus 91, 123, 162soaresi 91, 162stingi 93, 121, 162studerae 92, 162subocularis 93, 119, 162timbeba 93, 163tintinnabulum 93, 163triangulum 91, 163tritaeniatus 92, 163virolinensis 90, 163walfordi 92, 163werneri 92, 163xapuriensis 93, 163yaracuyanus 93, 121, 163

Duellmanohyla chamulae 32, 69, 100, 152ignicolor 32, 69, 100, 152lythrodes 32, 69, 100, 124, 152rufioculis 10, 32, 100, 124, 152, 175salvavida 32, 69, 100, 152schmidtorum 32, 69, 100, 152soralia 10, 32, 69, 100, 152, 175uranochroa 32, 100, 124, 152

Dydinamipus sjoestedti 12, 195

Ecnomiohyla echinata 100, 156fimbrimembra 100, 124, 156miliaria 100, 124, 159minera 100, 159miotympanum 100, 159phantasmagoria 100, 160salvaje 100, 161thysanota 100, 124, 162tuberculosa 100, 119, 163valancifer 100, 163

Edalorhina perezi 12, 197Eleutherodactylus pluvicanorus 12, 197

thymelensis 12, 197Eupsophus calcaratus 12, 50, 198

Page 231: systematic review of the frog family hylidae, with special reference to ...

2005 231FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

Exerodonta abdivita 101, 152bivocata 101, 154catracha 101, 154chimalapa 101, 155juanitae 101, 157melanomma 101, 158perkinsi 101, 160pinorum 101, 160smaragdina 101, 162sumichrasti 100, 101, 155, 162, 164, 218xera 100, 164

Fejervarya limnocharis 12, 199Flectonotus sp. 11, 17, 191

Garbeana garbei 94Gastrotheca cf. marsupiata 11, 192

cornuta 11, 16, 192coronata 99fissipes 11, 16, 192marsupiata 11, 16nicefori 16ovifera 11, 16plumbea 16pseustes 11, 15, 192riobambae 15

Heleophryne purcelli 12, 13, 196Hemiphractus helioi 11, 16, 49, 192Hemisus marmoratus 12, 196Hyalinobatrachium eurignathum 12, 14, 196

estevesi 85, 152, 203taylori 20

Hyla abdivita 34, 101, 152acreana 29, 152ahenea 23, 152albofrenata 10, 21, 41, 45, 54, 56, 60, 76, 78,

80, 152, 153, 156, 159, 163alboguttata 111, 152albolineata 21albomarginata 10, 12, 21, 22, 24, 26, 41, 45,

54, 56, 57, 59, 60, 61, 75, 76, 78, 85, 86, 87,152, 153, 154, 156, 157, 159, 160, 161, 162,163, 176

albonigra 25, 152, 158albopunctata 10, 21, 22, 26, 45, 56, 59, 60, 61,

75, 76, 85, 86, 152, 158, 159, 161, 176albopunctulata 21, 26, 27, 152albosignata 10, 21, 22, 41, 45, 54, 56, 60, 76,

78, 80, 152, 154, 157, 158, 162, 176albovittata 152, 202alemani 24, 76, 88, 152allenorum 30, 31, 64, 153altipotens 35, 153alvarengai 23, 25, 26, 59, 82, 83, 153alytolylax 27, 153ameibothalame 33, 153americana 153

amicorum 31, 153anataliasiasi 31, 92, 153anceps 11, 31, 65, 90, 91, 153, 186andersonii 11, 32, 35, 36, 66, 72, 102, 153, 178andina 10, 25, 76, 153, 183angustilineata 35, 153annectans 10, 33, 102, 153, 177aperomea 30, 153araguaya 31, 92, 153arborea 10, 32, 33, 34, 66, 72, 101, 102, 124,

125, 127, 153, 155, 157, 159, 161, 162, 163,177, 218

arborescandens 10, 34, 66, 68, 104, 153, 182arboricola 34, 102, 153arenicolor 10, 32, 33, 34, 35, 102, 153, 179arianae 21arildae 10, 21, 22, 153, 176armata 10, 26, 27, 40, 57, 84, 153, 155, 177aromatica 10, 40, 54, 59, 76, 89, 153, 157astartea 10, 23, 74, 153, 179atlantica 25, 88, 153aurantiaca 97auraria 111, 153, 202, 203aurata 94avivoca 10, 32, 36, 102, 153, 185balzani 10, 25, 76, 153, 183battersbyi 31, 153baudinii 106beckeri 25, 87, 153benitezi 11, 26, 60, 86, 153, 186berthalutzae 10, 27, 28, 29, 92, 154, 179bifurca 28, 154biobeba 22, 23bipunctata 10, 29, 31, 90, 154, 181bischoffi 10, 24, 25, 88, 154, 183bistincta 10, 33, 37, 66, 68, 70, 104, 153, 154,

155, 158, 159, 160, 161, 162, 177bivocata 34, 101, 154boans 10, 21, 22, 23, 26, 54, 56, 57, 59, 60, 61,

75, 86, 87, 88, 154, 155, 156, 158, 160, 161,163, 177

bocourti 34, 102, 154bogerti 27, 154bogotensis 10, 21, 26, 27, 57, 76, 80, 84, 153,

154, 155, 157, 158, 160, 162, 163bokermanni 30, 31, 64, 154branneri 29, 31, 154brevifrons 10, 30, 31, 64, 154, 182bromeliacia 10, 33, 66, 69, 70, 74, 99, 154,

155, 178buriti 25, 87, 154cachimbo 31, 92, 154cadaverina 36caingua 10, 25, 154, 183calcarata 10, 24, 56, 57, 86, 154, 179callipeza 27, 154callipleura 25, 154

Page 232: systematic review of the frog family hylidae, with special reference to ...

232 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hyla (continued)callipygia 10, 21, 22, 154, 176calthula 10, 33, 154, 177calvicollina 33, 68, 154calypsa 34, 71, 154caramaschii 23, 154carnifex 10, 27, 154, 179carvalhoi 23, 76, 154catharinae 42catracha 34, 101, 154caucana 27, 154cavicola 10, 21, 22, 155, 176celata 33, 154cembra 33, 155cerradensis 31, 92, 155cf. callipleura 25chaneque 35, 155charadricola 33, 68, 155charazani 10, 26, 76, 155, 177chimalapa 11, 35, 100, 155, 184chinensis 32, 33, 102, 155chlorostea 40, 111, 121, 155chryses 33, 68, 155chrysoscelis 32, 36, 102, 155cinerea 10, 32, 33, 35, 36, 66, 101, 102, 155,

156, 162, 178, 218cipoensis 25, 87, 155circumdata 10, 21, 22, 23, 24, 25, 26, 49, 54,

59, 60, 76, 82, 152, 153, 154, 155, 156, 157,158, 159, 161, 162, 179

claresignata 20, 21, 23, 59, 60, 74, 82, 155clepsydra 23, 76, 155columbiana 10, 27, 31, 65, 154, 155colymba 27, 155, 178cordobae 10, 21, 25, 155, 183crassa 33, 155crepitans 10, 21, 22, 23, 25, 56, 61, 85, 87, 155,

177crucialis 109crucifer 36, 105cruzi 29, 155cyanomma 33, 155cyclada 10, 34, 66, 68, 104, 155, 182cymbalum 25, 155dasynota 90debilis 34, 103, 155decipiens 10, 27, 28, 29, 61, 65, 91, 92, 154,

155, 157, 159delarivai 30, 155dendrophasma 35, 66, 68, 100, 106, 155, 185dendroscarta 33, 69, 155dentei 24, 86, 156denticulenta 27, 155dolloi 96, 156, 203dutrai 29, 156ebraccata 10, 28, 61, 65, 156, 181echinata 35, 156

ehrhardti 21, 22, 156elegans 28, 64, 156elianeae 31, 92, 156elongata 29, 31ericae 10, 25, 61, 156, 184euphorbiacea 10, 32, 34, 102, 156, 179exastis 23, 87, 156eximia 10, 32, 33, 34, 35, 36, 49, 66, 72, 101,

102, 124, 125, 153, 154, 156, 157, 160, 162,163, 179, 218

faber 10, 20, 22, 23, 25, 45, 56, 61, 76, 87,156, 178

fasciata 10, 24, 56, 57, 76, 86, 156, 179feioi 23, 156femoralis 10, 32, 33, 36, 49, 66, 102, 156, 185fimbrimembra 35, 156fluminea 21, 156freicanecae 25, 156frontalis 90fuentei 26, 156fusca 111, 156fuscovaria 204garagoensis 20, 27, 28, 31, 65, 66, 74, 90, 156,

159, 163gaucheri 30, 31, 156geographica 10, 21, 24, 26, 54, 56, 57, 59, 60,

61, 75, 76, 85, 86, 88, 89, 154, 155, 156,157, 159, 160, 161, 162, 179

giesleri 28, 30, 31, 63, 156, 182godmani 10, 34, 41, 66, 67, 70, 104, 107, 156,

158, 160, 162goiana 21, 25, 76, 87, 156goinorumgouveai 23, 156graeceae 35, 156grandisonae 30, 31, 156granosa 10, 21, 24, 26, 54, 56, 57, 60, 76, 80,

85, 86, 88, 152, 156, 160, 162, 180gratiosa 10, 33, 66, 101, 102, 157, 178gryllata 29, 156guentheri 11, 25, 157, 184guibei 24haddadi 28, 29, 92, 157hadroceps 39hallowelli 33, 102, 157haraldschultzi 31, 157hazelae 34, 68, 71, 104, 157heilprini 11, 26, 39, 56, 60, 61, 86, 157, 186helenae 111, 157hobbsi 25, 88, 157hutchinsi 24, 86, 157hylax 10, 23, 49, 157, 179hypochondrialis 116hypselops, 157ibirapitanga 22, 157ibitiguara 24, 83, 157ibitipoca 23, 157

Page 233: systematic review of the frog family hylidae, with special reference to ...

2005 233FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

imitator 111, 157immaculata 33, 102, 157inframaculata 111, 157infucata 35, 157infulata 85inparquesi 10, 40, 57, 76, 78, 80, 89, 157, 177insolita 34, 71, 102, 157intermedia 33, 102, 157izecksohni 23, 157jahni 27, 76, 78, 157japonica 10, 32, 33, 66, 72, 102, 124, 157, 177jimi 31, 92, 157joannae 29, 157joaquini 11, 21, 25, 61, 76, 157, 184juanitae 34, 68, 101, 157kanaima 10, 24, 57, 59, 80, 89, 157, 180karenanneae 96, 158, 206koechlini 30, 31, 157labedactyla 33, 68, 158labialis 10, 27, 28, 64, 65, 158, 159, 160, 180lactea 97lancasteri 29, 34, 71, 103, 158lanciformis 10, 22, 86, 158, 176langei 24, 158langsdorffii 22, 109, 158larinopygion 10, 26, 27, 40, 57, 78, 84, 155,

158, 159, 160, 161, 162lascinia 27, 158latistriata 11, 25, 87, 158, 184leali 29, 30, 158lemai 11, 26, 60, 78, 158, 180leonhardschultzei 106leptolineata 11, 25, 87, 158, 184leucocheila 22, 158leucophyllata 10, 27, 30, 63, 64, 65, 66, 154,

156, 158, 161, 162, 163leucopygia 10, 21, 22, 28, 60, 76, 158, 176limai 31, 93, 158lindae 27, 158loquax 34, 104, 104, 158loveridgei 40, 158lucianae 23, 158luctuosa 23, 158lundii 10, 22, 23, 56, 61, 76, 87, 158, 178luteola 109luteoocellata 30, 31, 158lynchi 27, 158marginata 11, 21, 25, 61, 76, 158, 184marianae 39, 158marianitae 11, 21, 25, 158, 184marmorata 11, 27, 28, 29, 31, 63, 64, 66, 152,

156, 158, 159, 162, 181martinsi 21, 24, 25, 54, 59, 82, 158, 181mathiassoni 29, 158maxima 22megapodia 205, 158melanargyrea 29, 158

melanomma 10, 34, 66, 68, 158, 182melanopleura 21, 25, 61, 159melanorabdota 158meridensis 28, 159meridiana 29, 159meridionalis 32, 33, 102, 127, 159microcephala 10, 27, 28, 29, 30, 31, 61, 63, 64,

65, 66, 91, 92, 154, 156, 157, 158, 159, 160,161, 162, 163, 181

microderma 10, 24, 57, 60, 86, 159, 180microps 28, 29, 30, 31, 63, 64, 159miliaria 11, 35, 66, 68, 69, 70, 71, 155, 156,

159, 185minera 35, 159minima 10, 27, 30, 65, 153, 158, 159, 161, 162minuscula 29, 159minuta 10, 27, 29, 30, 31, 64, 65, 93, 155, 159,

182miocenica 127miofloridiana 127miotympanum 10, 33, 34, 35, 68, 69, 70, 71,

100, 152, 153, 154, 155, 157, 158, 159, 160,182

mixe 10, 34, 70, 103, 104, 159, 182mixomaculata 34, 66, 68, 70, 74, 101, 103, 104,

159, 160miyatai 30, 159, 181molitor 111, 159moraviensis 29multifasciata 10, 22, 45, 76, 86, 159, 176musica 21, 159mykter 33, 159nadhereri 29, 64, 65, 159nana 10, 29, 31, 63, 65, 92, 159, 181nanuzae 23, 159nephila 11, 35, 70, 159, 185novaisi 29, 159nubicola 34, 159ocularis 105oliveirai 27, 28, 29, 92, 159ornatissima 24, 88, 159pacha 10, 12, 27, 159, 180pachyderma 33, 159padreluna 28, 65, 66, 159palaestes 25, 61, 76, 160palliata 111, 160, 203palmata 85palmeri 10, 27, 78, 160, 178pantosticta 10, 27, 160, 180pardalis 10, 21, 22, 23, 56, 61, 87, 160, 178parviceps 10, 27, 28, 29, 30, 31, 63, 64, 65, 66,

153, 154, 156, 157, 158, 159, 160, 161, 162,163, 183

pauiniensis 30, 31, 160pelidna 28, 160pellita 34, 160pellucens 10, 21, 22, 24, 56, 87, 160, 176

Page 234: systematic review of the frog family hylidae, with special reference to ...

234 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hyla (continued)pentheter 33, 160perkinsi 34, 66, 68, 160, 182phaeopleura 25, 87, 160phantasmagoria 35, 69, 160phlebodes 29, 65, 92, 160phyllognatha 27, 76, 160picadoi 33, 34, 160piceigularis 27, 160picta 10, 34, 41, 70, 107, 160, 180pictipes 10, 33, 34, 66, 70, 71, 74, 102, 103,

104, 154, 155, 157, 158, 160, 161, 162, 163picturata 10, 24, 57, 60, 88, 160, 180pinima 40, 62, 94, 160pinorum 10, 34, 68, 100, 101, 160platydactyla 27, 28, 76, 78, 160plicata 34, 102, 160polytaenia 11, 25, 59, 61, 76, 87, 153, 154, 155,

156, 158, 160, 162, 184pombali 24, 88, 160praestans 27, 31, 90, 160prasina 11, 21, 25, 76, 160, 184psarolaima 27, 160psarosema 33, 160pseudomeridiana 29, 161pseudopseudis 10, 21, 23, 24, 25, 54, 59, 82,

83, 157, 161, 162pseudopuma 10, 34, 35, 66, 70, 71, 74, 102,

153, 156, 157, 161, 183ptychodactyla 27, 161pugnax 21, 22, 23, 161pulchella 11, 21, 25, 27, 54, 56, 59, 60, 61, 75,

76, 85, 152, 153, 154, 155, 156, 157, 158,159, 160, 161, 162, 184, 202

pulchrilineata 39pulidoi 86, 161, 203punctata 11, 21, 25, 26, 54, 56, 57, 59, 60, 76,

80, 85, 86, 88, 153, 157, 161, 184quadrilineata 161raniceps 10, 21, 22, 24, 26, 76, 161, 177ravida 23, 161regilla 36, 105rhea 31, 92, 161rhodopepla 10, 29, 31, 161, 181rhodoporus 25rhythmicus 26, 86, 119, 161riojana 11, 21, 25, 161, 184riveroi 30, 161rivularis 10, 34, 35, 70, 71, 103, 161, 183robertmertensi 29, 161robertsorum 33, 161rodriguezi 110roeschmanni 111, 161roraima 10, 24, 57, 60, 86, 161, 180rosenbergi 22, 23, 161rossalleni 28, 30, 161rubeola 25

rubicundula 11, 27, 29, 30, 31, 61, 65, 91, 92,153, 154, 155, 156, 157, 161, 163, 184

rubra 42, 61rubracyla 21, 24, 87, 161rufitela 10, 21, 22, 56, 76, 87, 161, 176ruschii 30, 31, 64, 161sabrina 33, 68, 161salvadorensissalvaje 35, 71, 161sanborni 11, 29, 31, 65, 92, 162, 181sanchiangensis 33, 102, 161sarampiona 27, 162sarayacuensis 28, 65, 162, 181sarda 33, 102, 162sartori 29, 162savignyi 10, 32, 33, 102, 162, 177saxicola 24, 25, 162sazimai 23, 162schubarti 29, 30, 31, 162secedens 24, 25, 162semiguttata 11, 25, 61, 162, 184semilineata 10, 21, 24, 57, 76, 85, 88, 89, 162,

180senicula 10, 29, 64, 65, 90, 162, 181septentrionalis 39, 109, 162sibilata 22, 162sibleszi 10, 24, 60, 76, 162, 180siemersi 108simmonsi 27, 162simplex 33, 102, 162sioplea 33, 162smaragdina 35, 100, 162smithii 10, 34, 107, 162, 180soaresi 29, 64, 65, 162sp. 1 (aff. H. ehrhardti) 10, 22, 60, 175sp. 2, 11, 60, 78, 186sp. 3, 10, 23, 24, 179sp. 4, 10, 23, 49, 179sp. 5 (aff. H. thorectes) 10, 35, 71, 183sp. 6 (aff. H. pseudopseudis) 11, 24, 83, 183sp. 7 (aff. H. semiguttata) 10, 183sp. 8, 11, 60, 185sp. 9 (aff. H. alvarengai) 11, 82, 83, 186spinosa 99squirella 10, 33, 66, 102, 162, 178staufferorum 27, 162stenocephala 25, 87, 162stingi 31, 162strigilata 94studerae 29, 162subocularis 30, 31, 162sumichrasti 11, 35, 66, 68, 100, 101, 155, 162,

163surinamensis 111suweonensis 32, 33, 102, 162swanstoni 127, 162

Page 235: systematic review of the frog family hylidae, with special reference to ...

2005 235FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

taeniopus 11, 35, 66, 68, 70, 99, 100, 153, 155,159, 162, 163, 185

tapichalaca 10, 27, 57, 163, 180thorectes 35, 66, 71, 102, 103, 104, 162thysanota 35, 162tica 35, 163timbeba 30, 31, 162tintinnabulum 31, 163torrenticola 27, 163triangulum 28, 163, 181triseriata 105tritaeniata 31, 92, 163truncata 43, 98trux 35, 70, 163tsinlingensis 33, 102, 163tuberculosa 11, 35, 66, 68, 69, 71, 74, 100, 156,

159, 160, 161, 162, 163uranochroa 100uruguaya 11, 40, 61, 62, 94, 95, 160, 163, 185ussuriensis 33, 102, 163valancifer 35, 163varelae 26, 163vasta 39versicolor 11, 32, 35, 36, 49, 66, 72, 101, 102,

153, 155, 163, 185, 218vigilans 40, 111, 121, 163viridis 101virolinensis 28, 65, 163walfordi 10, 29, 163, 181walkeri 10, 34, 102, 163, 179warreni 41, 111, 119, 121, 163wavrini 23, 88, 163werneri 29, 31, 163weygoldti 10, 21, 22, 163, 176wilderi 39wrightorum 34, 102, 163xanthosticta 35, 163xapuriensis 30, 163xera 11, 35, 100, 163, 185yaracuyana 32, 163zonata 111zeteki 33, 35, 71, 103, 163zhaopingensis 102, 163

Hylella tenera 90Hylomantis aspera 19, 114, 115, 171

buckleyi 115, 173danieli 115, 173granulosa 11, 19, 114, 115, 116, 172, 193hulli 115, 173lemur 115, 173medinai 115, 173psilopygion 115, 173

Hylonomus bogotensis 84Hylopsis platycephalus 97Hyloscirtus albopunctulatus 84, 152

alytolylax 84, 153armatus 83, 84, 153, 155, 207

bogotensis 83, 84, 152, 153, 154, 155, 157,158, 160, 162, 163, 203, 208

callypeza 84, 154caucanus 85, 154charazani 84, 155colymba 84, 155denticulentus 85, 155estevesi 85, 152, 203jahni 85, 157, 203larinopygion 83, 85, 155, 158, 159, 160, 161,

162, 208lascinius 85, 158lindae 85, 158lynchi 85, 158pacha 85, 159palmeri 85, 160pantostictus 85, 160phyllognathus 85, 160piceigularis 85, 160platydactylus 85, 160, 203psarolaimus 85, 160ptychodactylus 85, 161sarampiona 85, 162simmonsi 85, 162staufferorum 85, 162tapichalaca 85, 162torrenticola 85, 163

Hypsiboas albomarginatus 87, 152alboniger 88, 152albopunctatus 86, 123, 124, 152, 154, 155, 156,

157, 158, 159, 161, 208alemani 88, 152andinus 88, 153atlanticus 88, 153balzani 88, 153beckeri 88, 153, 204benitezi 87, 119, 153, 157, 158, 159, 161, 203bischoffi 88, 154boans 89, 118, 154buriti 88, 154caingua 88, 154calcaratus 86, 154callipleura 88, 154cipoensis 88, 155cordobae 88, 155crepitans 87, 123cymbalum 88, 123dentei 86, 123ericae 88, 156exastis 87, 156faber 87, 123, 152, 155, 156, 159, 160, 161,

208fasciatus 86, 156freicanecae 88, 156fuentei 89, 156geographicus 89, 156goianus 88, 156

Page 236: systematic review of the frog family hylidae, with special reference to ...

236 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Hypsiboas (continued)granosus 88, 156guentheri 88, 157heilprini 86, 124, 157hobbsi 88, 157hutchinsi 87, 88, 119, 157hypselops 111joaquini 88, 157lanciformis 86, 158latistriatus 88, 158lemai 87, 158leptolineatus 88, 158leucocheilus 86, 158lundii 87, 158marginatus 88, 158marianitae 88, 158melanopleurus 88, 158microderma 87, 88, 119, 121, 159miliarius 100multifasciatus 86, 159ornatissimus 88, 159palaestes 88, 159pardalis 87, 160pellucens 87, 160, 161, 209phaeopleura 88, 160picturatus 88, 121, 160polytaenius 87, 88, 153, 154, 155, 158, 160,

162pombali 89, 160prasinus 88, 160pugnax 87, 119, 161pulchellus 87, 88, 121, 123, 152, 153, 154, 155,

156, 157, 158, 159, 160, 161, 162, 209pulidoi 87, 161, 204punctatus 88, 152, 153, 156, 157, 159, 160,

161, 162, 209raniceps 86, 124, 161rhythmicus 87, 119, 161riojanus 88, 161roraima 87, 161rosenbergi 87, 119, 161rubracylus 87, 161rufitelus 87, 118, 161secedens 88, 162semiguttatus 88, 162semilineatus 87, 88, 89, 154, 156, 160, 162,

163, 209sibleszi 88, 119, 162stenocephalus 88, 162varelae 89, 163wavrini 89, 163

Isthmohyla angustilineata 103, 153calypsa 103, 154debilis 103, 155graeceae 103, 156infucata 103, 157

insolita 103, 157lancasteri 103, 158picadoi 103, 160pictipes 103, 154, 155, 157, 158, 160, 161, 163pseudopuma 103, 153, 156, 157, 161rivularis 103, 161tica 103, 163xanthosticta 103, 163zeteki 103, 163

Itapotihyla langsdorffii 109, 123, 164, 223

Kaloula conjuncta 12, 199

Leptodactylus ocellatus 12, 197pentadactylus 20

Limnodynastes salmini 12, 13, 199Limnomedusa macroglossa 12, 50, 197Lithodytes lineatus 12, 20, 197Litoria alboguttata 18

americana 111angiana 18arfakiana 12, 18, 53, 194aurea 12, 18, 53, 194becki 18caerulea 12, 18, 194dahlii 18dorsivena 18eucnemis 18freycineti 12, 18, 194infrafrenata 12, 18, 53, 194iris 112jungguy 61lesueuri 61longirostris 112meiriana 12, 18, 53, 194nannotis 18

Lophyohyla piperata 109Lysapsus caraya 42, 93, 163

laevis 11, 42, 93, 164, 186limellum 11, 42, 63, 93, 164, 186

Mantidactylus femoralis 12, 198Megastomatohyla mixe 104, 159, 219

mixomaculata 104, 159nubicola 104, 159pellita 104, 160

Melanophryniscus klappenbachi 12, 195Myersiohyla aromatica 89, 153

inparquesi 89, 157kanaima 89, 157loveridgei 89, 158

Neobatrachus sudelli 12, 13, 199Nyctimantis rugiceps 11, 41, 109, 164, 186, 223Nyctimystes disrupta 18

kubori 12, 18, 194narinosus 12, 18, 194oktediensis 18

Page 237: systematic review of the frog family hylidae, with special reference to ...

2005 237FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

pulcher 12, 18, 194trachydermis 18tyleri 18papua 18zweifeli 53

Odontophrynus americanus 12, 50, 196Ololygon catharinae 204

fuscovaria 203, 204megapodia 203trachythorax 204

Osornophryne guacamayo 12, 195Osteocephalus buckleyi 38, 39, 109, 164

cabrerai 11, 39, 109, 164, 186deridens 39, 109, 164elkejungingerae 39, 109, 121, 164exophthalmus 38, 39, 109, 164fuscifacies 39, 109, 164heyeri 39, 109, 164langsdorffii 11, 39, 72, 73. 108, 164, 186leoniae 39, 109, 121, 164leprieurii 11, 38, 39, 109, 164, 187mutabor 39, 109, 164oophagus 11, 38, 39, 72, 108, 109, 164, 187pearsoni 38, 39, 109, 121, 164planiceps 39, 109, 164rodriguezi 39, 40subtilis 38, 39, 109, 164taurinus 11, 38, 39, 108, 109, 164, 187verruciger 38, 39, 109, 164yasuni 39, 109, 164

Osteopilus brunneus 73, 108, 109, 164crucialis 11, 39, 73, 107, 109, 164, 187dominicensis 11, 39, 108, 109, 164, 187marianae 73, 107, 108, 109, 164pulchrilineatus 73, 109, 164septentrionalis 11, 39, 108, 109, 164, 187vastus 11, 39, 74, 109, 164, 187wilderi 73, 108, 109, 164

Pachymedusa dacnicolor 11, 19, 113, 116, 172,193, 227

Pedostibes hossi 12, 195Pharyngodon petasatus 107Phasmahyla cochranae 12, 19, 20, 116, 172, 193

exilis 19, 20, 116, 172guttata 12, 19, 20, 116, 172, 193jandaia 19, 20, 116, 172

Phrynohyas coriacea 39, 165hadroceps 11, 39, 165, 187imitatrix 39, 165lepida 39, 165mesophaea 11, 39, 74, 111, 165, 187resinifictrix 11, 39, 165, 187venulosa 11, 39, 108, 165, 187

Phrynomedusa appendiculata 116, 172bokermanni 116, 172

fimbriata 116, 172marginata 116, 172vanzolinii 116, 172

Phrynopus sp 12, 49, 197Phyllobates bicolor 12, 196Phyllodytes acuminatus 41, 42, 110, 165

auratus 41, 42, 110, 123, 165brevirostris 41, 42, 110, 165edelmoi 41, 42, 110, 165gyrinaethes 41, 42, 110, 165kautskyi 41, 42, 110, 165luteolus 11, 41, 42, 110, 165, 187melanomystax 41, 42, 110, 165punctatus 41, 42, 110, 165sp. 11, 42, 187tuberculosus 41, 42, 110, 165wuchereri 41, 42, 110, 165

Phyllomedusa aspera 19atelopoides 117, 118, 172ayeaye 117, 172azurea 116baltea 117, 173bicolor 12, 20, 116, 118, 173, 193boliviana 116, 117, 173buckleyi 10, 19, 20, 54, 114, 115, 173burmeisteri 10, 20, 117, 173camba 117, 173centralis 117, 173coelestis 118, 173dacnicolor 115danieli 115, 173distincta 116, 173duellmani 117, 173ecuatoriana 117, 173fimbriata 19guttata 19, 20, 115hulli 114, 173hypochondrialis 12, 20, 116, 117, 172, 173, 193iheringii 116, 117, 173lemur 12, 20, 54, 114, 193medinai 114, 173megacephala 117, 173oreades 117, 173pailona 116palliata 12, 20, 117, 118, 173, 193perinesos 20, 117, 173psilopygion 54, 173rohdei 117, 173sauvagii 116, 117, 173tarsius 12, 20, 116, 117, 173, 193tetraploidea 12, 20, 113, 116, 117, 173, 193tomopterna 12, 20, 118, 173, 193trinitatis 113, 118, 173vaillanti 12, 20, 117, 118, 173, 193venusta 118, 173

Physalaemus cuvieri 12, 198Platymantis sp. 12, 199

Page 238: systematic review of the frog family hylidae, with special reference to ...

238 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Plectrohyla acanthodes 37, 105, 165ameibothalame 105, 153arborescandens 105, 153avia 37, 105, 165bistincta 105, 124, 153, 154, 155, 157, 158,

159, 160, 161, 162, 220calthula 105, 154calvicollina 105, 154celata 105, 155cembra 105, 155charadricola 105, 155chryses 105, 155chrysopleura 37, 105, 165crassa 105, 155cyanomma 105, 155cyclada 105, 155dasypus 37, 105, 165exquisita 37, 105, 165glandulosa 11, 37, 105, 165, 188guatemalensis 11, 37, 104, 105, 124, 165, 166,

188, 220hartwegi 37, 105, 165hazelae 105, 157, 165ixil 37, 105, 165labedactyla 105, 158lacertosa 37, 105, 165matudai 11, 37, 105, 165, 188mykter 105, 159pachyderma 105, 159pentheter 105, 160pokomchi 37, 105, 166psarosema 105, 160psiloderma 37, 105, 166pycnochila 37, 105, 166quecchi 37, 105, 166robertsorum 105, 161sabrina 105, 161sagorum 37, 105, 166sioplea 105, 162tecunumani 37, 105, 166teuchestes 37, 105, 166thorectes 105, 162

Pleurodema brachyops 12, 198Podonectes palmatus 93Proacris mintoni 127Pseudacris brachyphona 36, 106, 166

brimleyi 36, 106, 166cadaverina 11, 36, 106, 166, 188clarkii 36, 106, 166crucifer 11, 36, 105, 166, 188feriarum 36, 106, 166illinoiensis 36, 106, 166maculata 36, 106, 166nigrita 36, 106, 166nordensis 127ocularis 11, 36, 106, 166, 188ornata 36, 106, 166

regilla 11, 36, 106, 166, 188streckeri 36, 106, 166triseriata 11, 36, 106, 166, 188

Pseudis bolbodactyla 42, 94, 166cardosoi 42, 94, 166fusca 42, 94, 166minuta 11, 42, 63, 94, 166, 188paradoxa 11, 42, 63, 93, 94, 108, 166, 188tocantins 42, 94, 166

Pseudopaludicola falcipes 12, 198Pseudophryne bibroni 12, 13, 199Pternohyla dentata 36, 166Pternohyla fodiens 11, 37, 66, 106, 166, 188Ptychohyla acrochorda 37, 106, 166

adipoventris 106dendrophasma 106, 145erythromma 37, 70, 106, 167euthysanota 11, 37, 69, 106, 167, 188hypomykter 11, 37, 69, 106, 167, 189legleri 37, 69, 70, 106, 124, 167leonhardschultzei 11, 37, 69, 106, 167, 189macrotympanum 37, 69, 106, 167panchoi 37, 69, 106, 167salvadorensis 37, 69, 106, 167sanctaecrucis 37, 70, 106, 167sp. 11, 37, 69, 189spinipollex 11, 37, 69, 106, 167, 189zophodes 11, 37, 69, 106, 167, 189

Rana arborea 101bicolorboans 85gryllus 99leucophyllata 90nigrita 105palmipes 20paradoxa 93temporaria 12, 199tinctoria 86venulosa 111

Rhacophorus bipunctatus 12, 199maculatus 202

Scarthyla goinorum 11, 42, 62, 94, 167, 189, 212ostinodactyla 94

Scaphiophryne marmorata 12, 198Schismaderma carens 12, 195Scinax acuminatus 11, 43, 97, 167, 189

agilis 95, 167albicans 95, 167alcatraz 96, 167altae 97, 119, 167alter 74, 97, 167angrensis 95, 167arduous 96, 167argyreornatus 95, 167ariadne 95, 167

Page 239: systematic review of the frog family hylidae, with special reference to ...

2005 239FAIVOVICH ET AL.: PHYLOGENY OF HYLIDAE

aromothyella 95, 167atratus 96, 167auratus 97, 168baumgardneri 97, 168berthae 11, 43, 95, 168, 189blairi 97, 168boesemani 97, 168boulengeri 11, 43, 96, 118, 168, 189brieni 95, 168caldarum 97, 168canastrensis 95, 168cardosoi 97, 168carnevalli 95, 168castroviejoi 97, 121, 168catharinae 11, 42, 43, 74, 95, 123, 167, 168,

169, 170, 189, 213centralis 95, 168chiquitanus 97, 168crospedospilus 97, 168cruentommus 97, 168, 204curicica 97, 168cuspidatus 97, 168danae 97, 119, 168dolloi 97, 156, 203, 204duartei 97, 168elaeochrous 11, 43, 97, 118, 168, 190eurydice 97, 168exiguous 97, 119, 168flavidus 97, 168flavoguttatus 95, 168funereus 97, 169fuscomarginatus 97, 169, 204fuscovarius 11, 43, 96, 97, 121, 169, 190garbei 96, 169granulatus 97, 169hayii 97, 169, 204heyeri 95, 169hiemalis 95, 169humilis 95, 169ictericus 97, 169jolyi 96, 169jureia 95, 169karenanneae 97, 158, 204kautskyi 95, 169kennedyi 96, 169lindsayi 97, 169littoralis 95, 169littoreus 96, 169longilineus 95, 169luizotavioi 95, 169machadoi 95, 169manriquei 97, 121, 169maracaya 97, 169megapodius 96, 169, 204melloi 96, 169nasicus 11, 43, 97, 169, 190nebulosus 96

obtriangulatus 95, 170oreites 97, 121, 170pachycrus 97, 170parkeri 97, 170pedromedinae 96, 170perereca 97, 170, 204perpusillus 42, 74, 96, 99, 167, 169, 170pinima 97, 160proboscideus 96, 170quinquefasciatus 97, 170ranki 95, 170rizibilis 95, 170rostratus 42, 94, 96, 119, 168, 169 170ruber 11, 42, 43, 62, 94, 95, 97, 123, 156, 157,

160, 163, 167, 168, 169, 170, 171, 190, 213similis 97, 170squalirostris 11, 43, 97, 170, 190staufferi 11, 42, 43, 97, 118, 170, 190, 204strigilatus 96, 170sugillatus 96, 170trachythorax 96, 205, 170, 204trapicheiroi 96, 170trilineatus 97, 171uruguayus 96, 97, 123v-signatus 96, 171wandae 97, 171x-signatus 97, 171

Scytopis hebes 111Smilisca baudinii 11, 37, 106, 171, 190

cyanosticta 11, 37, 38, 106, 171, 190daulinia 106dentata 106, 166fodiens 106, 166phaeota 11, 37, 38, 107, 119, 171, 190puma 11, 37, 38, 107, 119, 171, 191sila 37, 107, 119, 171sordida 37, 38, 107, 119, 171

Sphaenorhynchus bromelicola 43, 96, 98, 171carneus 43, 98, 171dorisae 11, 43, 94, 98, 171, 191lacteus 11, 43, 62, 98, 171, 191orophilus 43, 96, 98, 171palustris 43, 98, 171pauloalvini 43, 96, 98, 171planicola 43, 98, 171platycephalus 43, 98, 171prasinus 43, 96, 98, 171surdus 43, 98, 171

Stefania evansi 11, 16, 17, 192ginesi 11, 16, 17scalae 201schuberti 11, 17, 192

Telmatobius sp. 12, 198Tepuihyla aecii 40, 110, 171

celsae 40, 110, 171edelcae 11, 40, 110, 171, 191

Page 240: systematic review of the frog family hylidae, with special reference to ...

240 NO. 294BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

Tepuihyla (continued)galani 40, 110, 171luteolabris 40, 110, 171rimarum 40, 110, 171rodriguezi 40, 111, 172talbergae 40, 111, 172

Tetraprion jordani 111Tlalocohyla godmani 107, 156

loquax 107, 158picta 107, 160smithii 107, 162

Trachycephalus atlas 40, 111, 172coriaceus 111, 164hadroceps 111, 164imitatrix 111, 165

jordani 11, 40, 72, 111,172, 191lepidus 111, 165lichenatus 109marmoratus 109mesophaeus 111, 123, 165nigromaculatus 11, 40, 72, 74, 111, 123, 172,

191resinifictrix 111, 165venulosus 111, 118, 165

Trichobatrachus robustus 12, 195Triprion petasatus 11, 38, 107, 172, 191

spatulatus 36, 38, 107, 172

Xenohyla eugenioi 43, 98, 172truncata 11, 43, 98, 123, 172, 191