Synthesis of DME and Gasoline from Biomass-Derived...

23
7 th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT Synthesis of DME and Gasoline from Biomass-Derived Synthesis Gas 7 th ASIAN DME CONFERENCE November 16-18, 2011 Niigata, Japan Ulrich Arnold, Miriam Stiefel, Ruaa Ahmad, Herbert Lam, Manfred Döring Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

Transcript of Synthesis of DME and Gasoline from Biomass-Derived...

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Synthesis of DME and Gasoline

from Biomass-Derived Synthesis Gas

7th ASIAN DME CONFERENCE

November 16-18, 2011

Niigata, Japan

Ulrich Arnold, Miriam Stiefel, Ruaa Ahmad,

Herbert Lam, Manfred Döring

Karlsruhe Institute of Technology (KIT),

Institute of Catalysis Research and Technology (IKFT),

Hermann-von-Helmholtz-Platz 1,

76344 Eggenstein-Leopoldshafen

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Dimethylether Methanol Ethanol

ETBE

Pure vegetable oil

Biodiesel

Methane

HomologationDehydrationOlefinsGasolineDiesel

Methanol-To-Olefins (MTO)

Methanol-To-Gasoline (MTG)

Methanol-To-Synfuel (MTS)

Hydrogen

MTBE

Reforming

Isobutylene

Conversion-of-Olefins-to-Distil late

Isobutylene

Transesterification of rapeseed oil with methanol

Squeezing or extraction

Fischer-Tropsch-Synthesis (FT-Synthesis)

HydroThermal Upgrading (HTU) + HydroDeOxygenation (HDO)

Hydrogen

Fermentation of sugars and starch

Degradation of (l igno)cellulose + fermentation

Anaerobic digestion

Hydrothermal gasification

Fermentation

Water gas shift reaction

Methanization

ABE-FermentationButanol

Pyrolysis

Gasification

Syngas

Pyrolyzate

Biomass

Wastes

etc.

CO, H2, CO2, H2S, COS, NH3 etc.

Direct synthesis Low temperature synthesis Direct synthesisCOD

© Ulrich Arnold

Direct gasificationBiofuels: An overview

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

GTL = Gas-To-Liquid (Syngas from natural gas) - Motunui, New Zealand (Mobil)

- Topsøe Integrated Gasoline Synthesis (TIGAS process), Texas, USA (Haldor Topsøe)

- Mobil Olefin-To-Gasoline/Distillate process (MOGD)

- Lurgi‘s Methanol-To-Synfuel process (MTS)

- CAC plant, Freiberg, Germany

CTL = Coal-To-Liquid (Syngas from coal) - Medicine Bow, Wyoming, USA (ExxonMobil)

- Jincheng, Shanxi Province, China (JAM + Uhde)

- Adams Fork Energy, Mingo County, West Virginia, USA (Uhde)

BTL = Biomass-To-Liquid (Syngas from biomass) - CHEMREC process (production of dimethyl ether, DME): Chemrec, ETC, Volvo, Delphi,

Haldor Topsøe, Preem, Total, SEA

- Choren process (Fischer-Tropsch-Technology, FT)

- French CEA project in Bure Saudron: CNIM group, Air Liquide, Choren, SNC Lavalin,

Foster Wheeler-France, MSW Energy (FT)

- BioTfueL project: Uhde Prenflo-PDQ-process, Total, IFP, French Atomic Energy Board,

Sofiproteol (FT)

- Güssing gasifier (woodchips), Oxford Catalysts (Velocys Inc., now part of the

Oxford Catalysts Group), SGC Energia (Portugal), microreactor technology (FT)

Related activities:

GTL-, CTL- and BTL-processes for fuel production

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

The bioliq® process at KIT Direct gasification CO, H , CO , H S, COS, NH etc.

Dimethylether Methanol Ethanol

ETBE

Pure vegetable oil

Biodiesel

Methane

Homologation Olefins Gasoline Diesel

M ethanol- T o- O lefins (MTO)

M ethanol- T o- G asoline (MTG)

M ethanol- T o- S ynfuel (MTS)

Hydrogen

MTBE

Reforming

Isobutylene

Isobutylene

Transesterification of rapeseed oil with methanol

Squeezing or extraction

F ischer- T ropsch-Synthesis (FT-Synthesis)

H ydro T hermal U pgrading (HTU) + H ydro D e O xygenation (HDO)

Hydrogen

Fermentation of sugars and starch

Degradation of (ligno)cellulose + fermentation

Anaerobic digestion

Hydrothermal gasification

Fermentation

Water gas shift reaction

Methanization

ABE-Fermentation Butanol

Pyrolysis

Gasification

Syngas

Pyrolyzate

Biomass

Wastes

etc.

2 2 2 3

Direct synthesis Low temperature synthesis Direct synthesis COD

© Ulrich Arnold

bioliq I

bioliq II

bioliq IV bioliq III

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Investigated processes at KIT-IKFT

CH3OCH3 → C2H4 + H2O n CH3OCH3 → “(CH2)2n“ + n H2O

Direct Synthesis of DME Direct Synthesis of Ethanol

Syngas (H2/CO 1)

Synthesis of Olefins from DME Synthesis of Gasoline from DME

3 CO + 3 H2 → CH3OCH3 + CO2 3 CO + 3 H2 → C2H5OH + CO2

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Focus on direct conversion of SYNGAS-TO-DME (STD)

CH3OCH3 → C2H4 + H2O n CH3OCH3 → “(CH2)2n“ + n H2O

Direct Synthesis of DME Direct Synthesis of Ethanol

Syngas (H2/CO 1)

Synthesis of Olefins from DME Synthesis of Gasoline from DME

3 CO + 3 H2 → CH3OCH3 + CO2 3 CO + 3 H2 → C2H5OH + CO2

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

● Synthesis of methanol:

2 CO + 4 H2 2 CH3OH DHR° = 182.2 kJ/mol

● Dehydration of methanol:

2 CH3OH H3COCH3 + H2O DHR° = 23.5 kJ/mol

● Water-gas shift reaction:

CO + H2O H2 + CO2 DHR° = 41.2 kJ/mol

● Total reaction:

3 CO + 3 H2 H3COCH3 + CO2 DHR° = 246.9 kJ/mol

Direct conversion of carbon monoxide-rich syngas to DME

Three reactions take place simultaneously:

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Laboratory plant for the STD process

● Fixed bed reactor:

- Di = 1.6 cm

- L = 30 cm

- V = 60.3 cm3

● Catalyst:

Bifunctional catalyst system comprising

a methanol- and a dehydration-catalyst

● Reaction conditions:

- p = 51 bar

- T = 200 - 250 °C

- GHSV = 20 - 150 Nml/(min·gCat)

- Dilution: 70% inert gas

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Typical results from the STD reaction

● Pressure: 51 bar

Reaction conditions: ● Temperature: 250 °C

● Space velocity: 20 - 150 Nml/(min·gCat)

● Dilution: 70% inert gas

H2/CO CO conversion (%)

DME selectivity (%)

CO2 selectivity (%)

MeOH selectivity (%)

2

61 67 32 1

1

45 66 33 1

0.67

34 65 34 1

M. Stiefel, R. Ahmad, U. Arnold, M. Döring, Fuel Process. Technol. 2011, 92, 1466-1474.

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Influence of temperature and H2/CO ratio on DME synthesis

● Large influence of temperature on CO conversion; Optimum range: 250 - 260 °C

● CO conversion increases with increasing H2 content in the synthesis gas;

Temperature dependence decreases with decreasing H2 content

0

10

20

30

40

50

60

70

80

90

100

190 200 210 220 230 240 250 260 270 280

T (°C)

CO

co

nvers

ion

(%

)

Eq

uilib

riu

m c

on

vers

ion

♦ H2/CO = 2.0

▲ H2/CO = 1.0

■ H2/CO = 0.5

p = 51 bar, 70% inert gas dilution, Vtotal = 100 Nml/min

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

● Almost maximum CO conversion at a flow rate of 50 ml/min at 250 °C

● Increase of CO conversion by increase of residence time is independent of H2/CO ratio

Influence of flow rate on DME synthesis

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

V total (Nml/min)

CO

co

nve

rsio

n (

%)

p = 51 bar, T = 250 °C, 70% inert gas dilution

▲H2/CO = 0.5

■ H2/CO = 1.0

♦ H2/CO = 2.0

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Ar dilution (%)

CO

co

nvers

ion

(%

)

14.6%

27.4%

11.1%

♦ H2/CO = 2.0

■ H2/CO = 1.0

▲H2/CO = 0.5 p = 51 bar, T = 250 °C, Vtotal = 100 Nml/min

● The lower dilution the higher CO conversion

● The H2/CO ratio influences CO conversion:

Maximum increase was observed at H2/CO = 1

Influence of syngas dilution on DME synthesis

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

● Strong deactivation by acidic catalyst poisons within 24 h

● CO conversion decreases but DME selectivity remains constant

● Influence of NH3 is negligible within 24 h

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

t (h)

CO

co

nvers

ion

an

d D

ME

sele

cti

vit

y (

%)

DME selectivity

CO conversion

T = 250 °C, p = 51 bar, H2/CO = 1, Vtotal = 167 Nml/min

▲ Reference; ● 146 ppm NH3; ♦ 146 ppm H2S; ■ 146 ppm HCl

Influence of catalyst poisons on DME synthesis

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

● Typical loss of activity within the first days but CO conversion remains in an

acceptable range

● DME selectivity remains constant and high during three weeks

Long-term performance of the catalyst system

in the absence and presence of CO2

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

CO

co

nve

rsio

n a

nd

DM

E s

ele

cti

vit

y (%

)

t (h)

Gas composition:H2 = 35 mlN/min, CO = 35 mlN/min, N2 = 20 mlN/min, Ar = 27 mlN/minH2 = 35 mlN/min, CO = 35 mlN/min, N2 = 10 mlN/min, Ar = 27.5 mlN/min, CO2 = 9.5 mlN/min

DME selectivity

CO conversion

p = 51 bar, T = 250 °C, Vtotal = 117 Nml/min

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

The bioliq® process chain

Gasification (bioliq® II) Fast pyrolysis (bioliq® I)

Syngas Pyrolyzate Biomass

Methanol DME Olefins

Gasoline

HTHP gas cleaning + SYNGAS-TO-DME, STD (bioliq® III)

DME-TO-GASOLINE, DTG (bioliq® IV)

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Dimensioning of the bioliq® process

bioliq I bioliq II bioliq IIIa+b bioliq IV

Technology: Fast pyrolysis Entrained flow gasification

bioliq IIIa:

High Temperature High Pressure (HTHP) Syngas Cleaning

bioliq IIIb:

Syngas-To-DME (STD)

DME-To-Gasoline (DTG)

Product:

Bio-slurry Synthesis gas DME Gasoline

Dimensioning: 0.5 t/h dry biomass

(2 MW)

1 t/h bio-slurry

(5 MW)

150 kg/h DME 80 kg/h gasoline

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Fuel production within the bioliq® process

Cycle-Gas Compressor

Synthesis Gas

P-8

Waste Gas

Gasoline

Heavy

Gasoline

Product Separation

CO2-Absorber

Water-Gas Shift Reactor CO2-Absorber DME-Reactor Gasoline-Reactor

Rectification Column

Desorber

Flow chart for DME and gasoline production (bioliq® IIIb and IV)

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

bioliq® plant: View from southeast

Financial support from

bioliq® I

bioliq® II

bioliq® III

bioliq® IV

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

bioliq® plant: View from northeast

Cooperation between: and

bioliq® I bioliq® II

bioliq® III

bioliq® IV

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Product options within the bioliq® process

Reactor 2

MeOH/DME production

Feed Reactor 1

Water-gas shift reaction

MeOH catalyst DME catalyst

Reactor 3

Gasoline synthesis

Product

+ H2

+ + MeOH

+/ + + DME

+/ + + + Gasoline

Syngas

H2:CO = 1:1

+/ + + + (Modified catalyst) Kerosene

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

● High flexibility: Production of various fuels and chemicals is possible

● High selectivity: No elaborate product separation technologies

● Processes are tunable to a large extent (catalysts, conditions, reactors etc.)

● Large optimization potential

Why the methanol/DME pathway instead of

a Fischer-Tropsch process?

Sources: ● http://nzic.org.nz/ChemProcesses/energy

● Fischer-Tropsch Technology, (Ed.s: A. Steynberg, M. Dry), Elsevier, Amsterdam, 2004.

Comparison of Fischer-Tropsch with MTG

Compound LT-FT

Co Catalyst 220 °C

HT-FT

Fe Catalyst 340 °C MTG

Methane 5 8 0.7

Ethylene 0 4 –

Ethane 1 3 0.4

Propylene 2 11 0.2

Propane 1 2 4.3

Butylenes 2 9 1.1

Butane 1 1 10.9

C5+ Gasoline 19 36 82.3

Gasoil/Distillate 22 16 –

Heavy Oil/Wax 46 5 –

Oxygenates 1 5 0.1

100 100 100

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Conclusions

● Catalyst systems for the direct synthesis of DME in fixed bed reactors are mature

● Optimum reaction parameters are identified

● Higher H2 content in syngas increases CO conversion

● High DME selectivity (60 - 68%) even at H2/CO ≤ 1

● Main byproduct: CO2 from the water-gas shift reaction

● Low amounts of methanol (< 2%) in the product mixture;

Fast and almost complete dehydration of methanol

● Almost no further byproducts (< 0.1%);

Traces of methane, propane, propene, butane

● CO2 concentration should be low (< 5%); Otherwise significant decrease of

CO conversion

● Major challenge: Up-scaling and reactor technology

7th Asian DME Conference, November 16-18, 2011 Dr. Ulrich Arnold, IKFT

Thank you!