Synchronicity Mind and Matter

download Synchronicity Mind and Matter

of 16

Transcript of Synchronicity Mind and Matter

  • 7/31/2019 Synchronicity Mind and Matter

    1/16

    The International Journal of Transpersonal Studies, 2002, Vol. 21, 153-168 153 2002 by Panigada Press

    I.Introduction:OnMindandMatter

    PUBL ICATION OF the Pauli -Jung co rre-

    spondence(Pauli&Jung, 1992)leavesno

    doubtthatWolfgangPaulidevotedmuch

    thought to theconceptof synchronicity, or the

    acausalsynchronicityofmeaningfulevents. This

    concept was introduced byC. G. Jung (Jung&

    Pauli, 1952/1973)ina bookthatalsoincludesPau-

    lis contribution. Despite many discussions of

    synchronicitythatPaulihadwithscientistswork-

    ing at the Institute forAdvanced Study in

    Princeton, USA(wherehespenthiswaryears),

    theideawassomehowabandoned.Physicistswere

    notreadytodiscussacausalcoincidences between

    eventsdistantintimeandspace, mentalexperi-

    ences(dreams, intentions, thoughts), andmean-

    ing. Paulihimselfwasfamousforcreatingtrou-

    bleinlaboratorieshevisited, andapparentlyhe

    Synchronicity, Mind, and Matter

    Experimentswithremoteperceptionand RandomEventGenerators(REG)performedover

    thelastdecadesshowsmall butsignificantanomalouseffects. Sincetheseeffectsseemto

    beindependentofspatialandtemporaldistance, theyappearto beindisagreementwith

    thestandardscientificworldview. Averysimpleexplanationofquantummechanicsispre-

    sented, rejectingallunjustifiedclaimsabouttheworld. Aviewofmindinagreementwith

    cognitiveneuroscienceisintroduced. Itisarguedthatmindandconsciousnessareemer-

    gentpropertiesofthe brainandareunderstandablewithoutanynonphysicalassumptions.

    Aplausibleexplanationoftheresultsofanomalousexperiments, basedontheconceptof

    synchronicity, introduced byC.G. Jungandadvocated byW. Pauli, isoffered. Aproof is

    given thatstrong correlations should exist betweenany systems thatonce interacted.

    Synchronicityevents betweenpartsofthe brainandphysicalobjectsmay besufficientto

    explaintheresultsofanomalousexperiments. Standardphysicsissufficienttounderstand

    thesephenomena.

    regardedthisPaulieffectasamanifestationof

    synchronicity. ThewishthatPauliexpressedmore

    thanfortyyearsagotoseephysicsandpsycheas

    complementaryaspectsofthesamerealitymay

    slowly becomemanifestnow, thankstoourdeep-

    erunderstandingofthefoundationsofphysicsandthedevelopmentofthecognitivesciences.

    Perceptualand cognitive processesarenot

    passive butinvolve fittingthe bestmodelstothe

    incomingdata. Perceivingthree-dimensionalob-

    jectswithcolorsthatarealmostindependentof

    illuminationrequiresmanyassumptionsthatthe

    brainhaslearnedtomakeinthecourseofevolu-

    tion. Activeperceptionleadstothemetaphorof

    the brainasthemachinegeneratingmeaning

    (Freeman, 1996), discriminatingandevaluating

    everything froma subjective perspective. It is

    sufficienttos

    eeon

    lythos

    easp

    ectsofr

    ea

    litythat

    may influenceour decisions, so we donot see

    more. Looking formeaning isa great strategy

    facilitatingsurvivalintypicalsituations, butit

    alsoleadsto findingmeaningfulpatternsinran-

    domdotsorshapesoftheclouds. Atthecogni-

    tivelevelthesituationisanalogous.Weassume

    thatweknowourselves, buthowcanwereal-

    lyknow?Weknow byobservingandmakingthe-

    oriesaboutour own behavior (Gopnik, 1993).

    Motto:

    Itwould be mostsatisfactory ifphysicsand psyche

    could be seenascomplementaryaspects

    ofthe same reality.

    W. Pauli(InJung&Pauli, 1952/1973)

    Wlodzislaw Duch

    Nicholas Copernicus UniversityTorun, Poland

  • 7/31/2019 Synchronicity Mind and Matter

    2/16

  • 7/31/2019 Synchronicity Mind and Matter

    3/16

  • 7/31/2019 Synchronicity Mind and Matter

    4/16

  • 7/31/2019 Synchronicity Mind and Matter

    5/16

  • 7/31/2019 Synchronicity Mind and Matter

    6/16

  • 7/31/2019 Synchronicity Mind and Matter

    7/16

  • 7/31/2019 Synchronicity Mind and Matter

    8/16

  • 7/31/2019 Synchronicity Mind and Matter

    9/16

  • 7/31/2019 Synchronicity Mind and Matter

    10/16

  • 7/31/2019 Synchronicity Mind and Matter

    11/16

  • 7/31/2019 Synchronicity Mind and Matter

    12/16

  • 7/31/2019 Synchronicity Mind and Matter

    13/16

    Synchronicity, Mind, and Matter 165

    Appendix

    THISAPPENDIXprovidesa technicalproofshowing the inseparabilityofsubsystems in quantummechanics. Statevectorsrepresentingobjects belongtoaHilbertspace. OperatorPrepresentinganobservable(property, thatmay beobserved)appliedtosomearbitrarystatevectorconvertsitinto

    anotherstatevector. Quantummechanicsisaholistictheoryanddoesnotallowforawell-defined

    wa

    yofdescribi

    ngth

    eseparat

    ion

    ofsyst

    ems. T

    hisfactga

    verisetoalternat

    iveformu

    lat

    ions

    ofmath

    -ematicalfoundationsof quantummechanics(Piron, 1985;Aerts, 1982), butsofarallexperiments

    showthatstandard quantummechanicsiscorrect. TheHilbertspaceofantisymmetric, manyparti-

    clefunctions, describingthetotalsystem, cannot bedecomposedintoseparatesubspaces.

    Considertwophysicalsystems,SAandS

    B, withN

    AandN

    Bparticles(electronsorotherfermions),

    respectively. Eachsystemisdescribed byitsownfunction, ^Aantisymmetricforpermutationsofall

    NAparticlesand^

    BantisymmetricforN

    Bparticles. Assumingthat bothfunctionsarenormalizedto

    unity, itiseasytoshowthattheproductfunctionAB

    =A

    Bisalwaysfarfromtheantisymmetric

    function =A^AB

    , whereAistheantisymmetrizationoperator. Thedistancemay bemeasured byan

    overlap^AB

    | ^or bythenormofdifference:)

  • 7/31/2019 Synchronicity Mind and Matter

    14/16

    166 The International Journal of Transpersonal Studies, 2002, Vol. 21

    InthetextbookofA. Messiah(Messiah, 1976, ChapterXIV, 8)itisproventhatthisnonseparability

    shouldnotmatter becauseprobabilitiesofdifferentstatesofaspatiallyisolatedsubsystemdonot

    dependontheantisymmetrizationofthefunctionofthissubsystemwithfunctionsofallotherparticles

    in theUniverse. Butwhatabout theresultsofjointmeasurements, that iscorrelations between

    observations?ConsiderthesystemsSAandS

    Bandtwoindependentmeasurementsofobservables

    correspondingtotheoperatorsOAandO

    B. Thewavefunctionsofthesesystemsmay beexpandedin

    theeige

    nbas

    isof:

    Messiah(1976)provesthattakingthetotalfunction &insteadoftheproductfunctionsI J

    &doesnotchangetheprobabilities | C

    a

    A| 2. However, hedoesnotlookatthepossiblecorrelationsofjoint

    measurements.Assumingthatthetwosystemsareseparated, theresultofthejointmeasurementis:

    &&&&&&&&&&&&&&&&&&^A&^

    B| O

    AO

    B|^

    A&^

    B&'&^

    A|O

    A|^

    A&^

    B|O

    B|^

    B&'&O

    A&O

    B

    DefinenowacoefficientCABmeasuringthedifference betweenthisresultandtheresultobtainedwithoutassumptionofseparability, calculatedwiththetotalwavefunction^:

    Ifthereisnodifference betweenthesetwocasesthiscoefficientshould bezero. However,

    sinceallmatrixelementsforpermutations(P,Q)&(I, I)vanish byvirtueoflocalizationoftheSAand

    SBsubsystems. Thisleadstothefollowinginequalityforthecorrelationcoefficient:

    &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&,&*CAB

    *&-%.

    Thusthereisahugedifference. Usingalocaldescriptionforisolatedsubsystemsleadstocorrect

    localresults, butcorrelationswithothersystemsarealwayslarge, approachingperfectcorrelationfora largeN. Theseresultsdonotseemtodependondecoherenceof largesystems. For further

    discussionofseparabilityandtheroleofsymmetry breakingseeDuch(1988).

  • 7/31/2019 Synchronicity Mind and Matter

    15/16

  • 7/31/2019 Synchronicity Mind and Matter

    16/16

    168 The International Journal of Transpersonal Studies, 2002, Vol. 21

    Popp, F. (Ed.), (1992). Recentadvancesin biophotonresearch

    anditsapplications. Singapore:World Scientific.

    Primas, H. (1981). Chemistry, quantummechanicsandre-

    ductionism, Lecture Notes in Chemistry 24. Berlin:

    Springer.

    Pulvermueller, F., Preissl, H., Eulitz, C., Pantev, C.,

    Lutzenberger, W., Elbert, T., & Birbaumer, N. (1994).

    Psycoloquy, 5(48), brain-rhythms.1.pulvermueller.

    Putnam, H. (1978). Manyfacesofrealism. La Salle, IL:OpenCourt.

    Puthoff, H.,&TargC. (1976).Aperceptualchannelforinfor-

    mationtransferoverkilometerdistances:Historical per-

    spective andrecentresearch.ProceedingsofIEEE, 64, 329-

    354.

    Rakover, S. S. (1993).Precisofmetapsychology:Missing links

    in behavior, mind, and science. Psycoloquy, 4(55),

    metapsychology.1.rakover.

    Ruppin, E. (1995). Neural modelingofpsychiatricdisorders.

    Network, 6, 636-656.

    Rutkowska, J. (1994). The computational infant. Oxford,

    England:Oxford UniversityPress.

    Schmidt, H. (1993). Observationofapsychokinetic effect

    underhighlycontrolledconditions.JournalofParapsy-

    chology, 57, 351-372.

    Selleri, F. (1987). Historyofthe EPRparadox, InF. Selleri

    (Ed.), Quantummechanics versus local realism: The

    Einstein-Podolsky-Rosenparadox (pp. 1-61). NewYork:

    PlenumPress.

    Shaw, M. L. G., &GainesB. R. (1992). KellysGeometryof

    psychological spaceand itssignificance forcognitive mod-

    eling. NewPsychologist, 10,23-31.

    Shepard, R. N. (1987). Towardauniversallawofgeneraliza-

    tionforpsychological science. Science, 237, 1317-1323.

    Shepard, R. N. (1993). Onthe physical basis, linguisticrep-

    resentation, and conscious experience of colors. In G.

    Harman (Ed.), Conceptions of themind (pp. 217-245).

    Hillsdale, NJ:Erlbaum.

    Shepard, R. N. (1994). Perceptual-cognitive universalsasreflectionsofthe world. PsychonomicBulletin & Review,

    1,2-28.

    Stapp, H. P. (1993). Mind, matterandquantummechanics.

    Berlin: Springer.

    Stapp, H. P. (1994). Theoreticalmodelofapurported empiri-

    cal violationofthe predictionsofquantumtheory. Physi-

    calReviewA, 50, 18-22.

    Tegmark, M. (2000). The importance ofquantumdecoherence

    in brainprocesses. PhysicalReviewE, 61, 4194-4206.

    Wang, P. P. (Ed.), (2001). Computingwithwords. NewYork:

    Wiley.

    Wigner, E. P. (1962). InI. J. Good(Ed.), Thescientistspecu-

    lates:Ananthologyofpartly-baked ideas (pp. 284-302).

    London:Heinemann.