SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

11
SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION OF CO 2 Daniel Torres Jurado Carlos Larrea Castro Juan Ramón Avilés Moreno Pilar Ocón Esteban Universidad Autónoma de Madrid Proyecto BIOTRES Departamento de Química Física Aplicada 17 December 2020 Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Transcript of SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Page 1: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION OF

CO2

Daniel Torres Jurado

Carlos Larrea Castro

Juan Ramón Avilés Moreno

Pilar Ocón Esteban

Universidad Autónoma de Madrid

Proyecto BIOTRES

Departamento de Química Física Aplicada

17 December 2020

Workshop “Innovative technologies for sustainable management of urban and

industrial waste streams”

Page 2: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Introduction Method 1 Method 2 Conclusions Future

Carbon Dioxide

Source: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

420

410

400

390

380

370

360

350

340

330

320

310

300

Car

bo

nD

ioxid

eA

bundan

ce(p

pm

)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030Year

CO2 Emissions

22%

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Page 3: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 1 Method 2 Conclusions Future

Carbon

Dioxide

ElectrochemicalPhotocatalytic

Biological Chemical

Catalyst

Transformation ways

- Electricity from renowable source

- Electrolyte can be recycled

- ECR are cotrolled by electrodes and temperature

Selectivity Durability Profitability

Page 4: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 1 Method 2 Conclusions Future

Experimental Scheme: Liquid phase

AgNPs or CuNps on GDL

Ni FoamH2O

O2+4H++4e-

CO2+ xH++ xe-

CO2

Gas

Mass Flow

100mL/min

Peristaltic

Pump

5mL/minKHCO3

0,5M

+

EDTA

0,02M

Nafion 117 Membrane

Gas Chromatograph Mass Spectrometer

KHCO3

0,5M

+

EDTA

0,02M

Peristaltic

Pump

5mL/min

Previously we work:- Copper foil and Silver thread in three electrode cell

- Raman such as Products Analyzer in three electrode cell

Syn-Gas

(CO, H2)

CO2 + 2H++2e- CO + H2O

2H++2e- H2

Page 5: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 1 Method 2 Conclusions Future

m/z 12m/z 28

110 120 130 140 150 160 170 180

0,0

2,0x10-10

4,0x10-10

6,0x10-10

8,0x10-10

1,0x10-9

To

tal Io

n C

urr

ent

(u.a

.)

Retention time (sec)

CG+Masas -10mA/cm2 AgNps

CG+Masas -5mA/cm2 CuNps 80nm

110 120 130 140 150 160 170 180-1x10

-11

0

1x10-11

2x10-11

3x10-11

4x10-11

5x10-11

6x10-11

Rela

tive

Inte

nsi

ty (

u.a

)

Retention Time (sec)

110 120 130 140 150 160 170 180

0,0

5,0x10-13

1,0x10-12

1,5x10-12

2,0x10-12

2,5x10-12

Rela

tive

Inte

nsi

ty (

u.a

)

Retention Time (sec)

0 1000 2000 3000 4000 5000 6000-2,6

-2,5

-2,4

-2,3

-2,2

-2,1

-2,0

-5mA/cm2 CuNps 80 nm

Po

tenti

al (V

)

Time (sec)

-10mA/cm2 AgNps

Catalyst

1mg/cm2

[KHCO3] (M)

Supported on Carbon

Current density applied on ECR (mA/cm2)

Potential (V)

Rate CO (ppm/min)

Rate H2

(ppm/min)CO : H2

AgNps 100nm 0.5 No

-5 -2.29 <DL 949 -

-10 -2.50 99 1331 0.07

-25 -3.05 <DL 2654 -

AgNps 100nm 3 No

-25 -2.77 181 3712 0.05

-50 -3.10 124 6222 0.02

-100 -3.42 55 11104 0.005

CuNps 80nm 0.5 No

-5 -2.27 6 1045 0.01

-10 -2.55 - 2019 -

-25 -2.95 - 2551 -

CuNps 22nm 0.5 Yes-10 -3.12 - 889 -

-25 -3.18 - 1810 -

Page 6: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 1 Method 2 Conclusions Future

Experimental Scheme: Gas phase

Ni FoamMass Flow

100mL/minH2O

Humidifier

Peristaltic

Pump

5mL/minKHCO3

0,5M

+

EDTA

0,02M

Nafion 117 Membrane

Gas Chromatograph Mass Spectrometer

Previously we work:- Pt and IrO2 such as anode

- Synthetized Copper and Silver Nanoparticles

- Controlled Conditions: Temperature and Pressure

CO2

Gas

AgNPs or CuNps on GDL

H2O

O2+4H++4e-

CO2+ xH++ xe-

Syn-Gas

(CO, H2)

CO2 + 2H++2e- CO + H2O

2H++2e- H2

Page 7: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 1 Method 2 Conclusions Future

m/z 12m/z 28

Catalyst

1mg/cm2

CO2 Flow

(mL/min)

Degree of

wetting

Supported on

Carbon

Current density applied on

ECR (mA/cm2)

Potential

(V)

Rate CO

(ppm/min)

Rate H2

(ppm/min)CO:H2

AgNps 100nm 100 Low No

-5 -2.34 132 644 0.20

-10 -2.58 310 573 0.54

-25 -3.12 1782 815 2.19

AgNps 100nm 100 High No-10 -2.15 - 1430 -

-25 -2.64 336 2102 0.16

CuNps 80nm 100 Low No-1 -1.75 - 571 -

-5 -2.66 - 1275 -

CuNps 22nm 100 Low Yes-5 -2.68 - 941 -

-10 -3.07 - 1598 -

110 120 130 140 150 160 170 180 190 200

-1x10-11

0

1x10-11

2x10-11

3x10-11

4x10-11

5x10-11

6x10-11

7x10-11

8x10-11

To

tal Io

n C

urr

ent

(u.a

)

Time (sec)

CG +Masas -25mA/cm2 AgNps

CG + Masas -5mA/cm2 CuNps 80 nm

-500 0 500 1000 1500 2000 2500 3000 3500 4000

-3,2

-3,0

-2,8

-2,6

-2,4

-2,2

-25mA/cm2 AgNps

Po

tenti

al (V

)

Time (sec)

-5mA/cm2 CuNps 80 nm

110 120 130 140 150 160 170 180 190 200-1x10

-11

0

1x10-11

2x10-11

3x10-11

4x10-11

5x10-11

6x10-11

7x10-11

Rela

tive

Inte

nsi

ty (

u.a

)

Retention Time (sec)

110 120 130 140 150 160 170 180 190 200

-5,0x10-13

0,0

5,0x10-13

1,0x10-12

1,5x10-12

2,0x10-12

2,5x10-12

Rela

tive

Inte

nsi

ty (

u.a

.)

Retention Time (sec)

Page 8: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 2 Conclusions FutureMethod 1

Experimental Results: Gas phase

Experimental Results: Liquid phase

Syn-Gas (CO:H2) >1

Catalyst

1mg/cm2

CO2 Flow

(mL/min)

Degree of

wetting

Supported on

Carbon

Current density applied on

ECR (mA/cm2)

Potential

(V)

Rate CO

(ppm/min)

Rate H2

(ppm/min)CO:H2

AgNps 100nm 100 Low No

-5 -2.34 132 644 0.20

-10 -2.58 310 573 0.54

-25 -3.12 1782 815 2.19

AgNps 100nm 100 High No-10 -2.15 - 1430 -

-25 -2.64 336 2102 0.16

CuNps 80nm 100 Low No-1 -1.75 - 571 -

-5 -2.66 - 1275 -

CuNps 22nm 100 Low Yes-5 -2.68 - 941 -

-10 -3.07 - 1598 -

Catalyst

1mg/cm2

[KHCO3] (M)

Supported on Carbon

Current density applied on ECR (mA/cm2)

Potential (V)

Rate CO (ppm/min)

Rate H2

(ppm/min)CO : H2

AgNps 100nm 0.5 No

-5 -2.29 <DL 949 -

-10 -2.50 99 1331 0.07

-25 -3.05 <DL 2654 -

AgNps 100nm 3 No

-25 -2.77 181 3712 0.05

-50 -3.10 124 6222 0.02

-100 -3.42 55 11104 0.005

CuNps 80nm 0.5 No

-5 -2.27 6 1045 0.01

-10 -2.55 - 2019 -

-25 -2.95 - 2551 -

CuNps 22nm 0.5 Yes-10 -3.12 - 889 -

-25 -3.18 - 1810 -

Page 9: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction Method 2 Conclusions FutureMethod 1

Two CO2 electroreduction methods have been developed in presence of silver and

copper nanoparticles catalysts.The first one in liquid phase and the second in gas phase.

The silver catalyst is more efficient for syn-gas production than copper catalyst.

One of the objectives is to achieve a high CO: H2 ratio. In this way, ECR in the gas phase

seems more efficient than the liquid phase.

Page 10: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

Introduction FutureMethod 1 Method 2 Conclusions

Gas phase

Liquid phase

Work under: controlled pressure

and temperature

Eliminateimpurities on

copper (EDTA isnot a goodmethod).

Improvementsin both methods

Applydifferent current density

Use othercatalystssuch as

bimetallicSn-Cu

Study theinfluence of the amountof catalyst

Formation of C1-C2

Hydrocarbonswith copper

catalyst

Page 11: SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION …

Workshop “Innovative technologies for sustainable management of urban and industrial waste streams”

SYN-GAS PRODUCTION FROM ELECTROCHEMICAL REDUCTION OF

CO2

ACKNOWLEDGEMENT:

17 December 2020

BIOTRES-CM (P2018/EMT-4344) ELECTROCHEMISTRY GROUP (UAM)

[email protected]