Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is...

35
Symbiosis
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    0

Transcript of Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is...

Page 1: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Symbiosis

Page 2: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Sym biosistogether life

Symbionts: the organisms involved

Host: the larger organism, if there is one

Mutualism: both symbionts benefit

Commensalism: one symbiont receives benefit while neither harming nor helping the other in any significant way

Parasitim: one symbiont, called a parasite, benefits at the expense of the other, usually a host

Anthropomorphism in biological definitions?

Page 3: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Examples

Ants and plants: mutualism with a large host

Epiphytic plants: commensalism with a large host

Parasitism: many species of aphids

Parasites need to be distinguished between cases where a pathogen may lead to death and where there may be a balance in the host-parasite relationship. For example, there can be genetic balances in virulence and resistance that operate at the populations level. Myxomatosis and rabbits

Page 4: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Symbiosis in the origin of the eukaryotesTwo components of the theory

1. The endomembrane may have evolved by infolding of the plasma membrane of an ancestral prokaryote

2. Serial endosymbiosis. Mitochondria and chloroplasts evolved from prokaryotes that lived symbiotically within some ancestral eukaryotes. Molecular evidence – circular DNA in chloroplasts and mitochondria

Page 5: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

In biological nitrogen fixation two moles of ammonia are produced from one mole of nitrogen gas, using 16 moles of ATP and a supply of electrons and protons (hydrogen ions):

N2 + 8H+ + 8e- + 16 ATP = 2NH3 + H2 + 16ADP + 16 Pi

This reaction is performed exclusively by prokaryotes (the bacteria and related organisms), using an enzyme complex termed nitrogenase. This enzyme consists of two proteins - an iron protein and a molybdenum-iron protein.

A point of special interest is that the nitrogenase enzyme complex is highly sensitive to oxygen

Nitrogen fixing bacteria

Page 6: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Nodule formation 1

Roots emit chemical signals that attract Rhizobium bacteria. The bacteria emit signals that stimulate root hairs to elongate, and to form an infection thread by an invagination of the plasma membrane

Soya bean infection with Rhizobium

Page 7: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Nodule formation 2

The bacteria penetrate the root cortex within the infection thread. Plant cells start dividing and vesicles containing the bacteria, bacteriods, bud into the cells from the branching infection thread

Page 8: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Nodule formation 3

Growth continues in the affected regions of the cortex and pericycle and these fuse to form the nodule

Page 9: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Nodule formation 4

The nodule grows and vascular tissue connecting it to the plant’s xylem and phloem develops

Page 10: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Root hairs

http://www.sunderland.ac.uk/~es0man/tem2.htm

7 days after infection

Lens culinaris (lentil) root nodulation. 12 days after infection

Page 11: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

TEM photomicrographs

http://www.sunderland.ac.uk/~es0man/tem2.htm

Small numbers of bacteria Large numbers of bacteria

7 days 12 days

Page 12: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Clover root with nodules

Part of a clover root system bearing naturally occurring nodules of Rhizobium. Each nodule is about 2-3 mm long.

http://helios.bto.ed.ac.uk/bto/microbes/nitrogen.htm

Page 13: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Leghaemoglobin

In symbiotic nitrogen-fixing organisms such as Rhizobium, root nodules can contain oxygen-scavenging molecules such as leghaemoglobin, which shows as a pink colour when the active nitrogen-fixing nodules of legume roots are cut open. Leghaemoglobin may regulate the supply of oxygen to the nodule tissues in the same way as haemoglobin regulates the supply of oxygen to mammalian tissues

Clover root nodules.

Leghaemoglobin is found only in the nodules and is not produced by either the bacterium or the plant when grown alone.

Page 14: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Anabaena with heterocysts

The other cells have both photosystem I and photosystem II, which generates oxygen when light energy is used to split water to supply H2 for

synthesis of organic compounds.

Anabaena sp. with symbiont bacteria (possibly Zoogloea) around heterocysts

In some cyanobacteria nitogen fixation occurs in heterocycts. These cells only have Photosystem I

http://www-cyanosite.bio.purdue.edu/images/images.html

Page 15: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

General N fixation and Alfalfa

Some legumes are better at fixing nitrogen than others. Common beans are poor fixers (less than 50 lbs per acre) and fix less than their nitrogen needs. Maximum economic yield for beans in New Mexico requires an additional 30-50 lbs of fertilizer nitrogen per acre. However, if beans are not nodulated, yields often remain low, regardless of the amount of nitrogen applied.

Other grain legumes such as peanuts, cowpeas, soybeans, and faba beans are good nitrogen fixers, and will fix all of their nitrogen needs. These legumes may fix up to 250 lbs of nitrogen per acre and are not usually fertilized. If large amounts of nitrogen are applied, the plant literally slows or shuts down the nitrogen fixation process.

There are many research programs attempting genetic improvement of nitrogen fixation, e.g., alfalfa

Page 16: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Myco rrhizaeFungus Root

Mycorrhizas are highly evolved, mutualistic associations between soil fungi and plant roots.

The host plant receives mineral nutrients while the fungus obtains photosynthetically derived carbon compounds.

Almost 80 percent of all terrestrial plants can form mycorrhizal associations.

There are two major types ectotrophic mycorrhizae and endotrophic mycorrhizae

Page 17: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Mycorrhizal fungi produce a hyphal network in soils consisting of individual strands of hyphae or relatively undifferentiated bundles of hyphae called mycelial strands. Some fungi can produce rhizomorphs, which contain specialised conducting hyphae, or sclerotia, which are resistant storage structures. Soil hyphae acquire nutrients.

Ectomycorrhizae

Fungal structures in soilAbsorptive hyphae

Mycellialstrand Scleridia

Mycorrhizalroot

Soil mycellium

Rhizomorphs

Page 18: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Example of ECM short roots (arrows) of birch (Betula alleghaniensis), an angiosperm tree. The mycorrhizal short roots are thicker than other laterals of the same order due to the mantle and Hartig net.

Page 19: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Early stage of colonisation of pine short root by Pisolithus tinctorius. Hyphae (arrows) have contacted the root and are starting to proliferate on its surface near the apex (A).

SEM image showing the next stage of pine root colonisation by Pisolithus tinctorius. Mantle hyphae (arrows) have formed a dense covering on the root surface (arrows).

http://www.ffp.csiro.au/research/mycorrhiza/ecm.html

Page 20: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Pinus radiata and Amanita muscaria ECM synthesised under sterile conditions. This association has highly branched short roots with many root tips (arrows).

Eucalyptus maculata and Astraeus pteridis association synthesised under sterile conditions with relatively unbranched ECM and attached mycelial strands (star).

Page 21: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Populus tremuloides ECM root cross section showing labyrinthine Hartig net hyphae (arrows) around elongated epidermal cells. This complex hyphal branching pattern is considered to increase the fungal surface area in contact with the root.

http://www.ffp.csiro.au/research/mycorrhiza/ecm.html

Hand section cleared and stained with Chlorazol black E and viewed with interference contrast microscopy

Page 22: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

The network of hyphae in the soil is only connected to roots by the entry points that initiate mycorrhizal associations

Vesicular arbuscular mycorrhizae

Mycorrhizal root system washed carefully from coarse sand to reveal the intact network with external hyphae (arrow) with spores (S) produced by Glomus mosseae.http://www.ffp.csiro.au/research/mycorrhiza/ecm.html

Page 23: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

A colony refers to hyphal growth within a root resulting from the same external hyphae (1 or more connected entry points). These are also called infection units.

Epidermis

Hypodermis

CortexVesicle

Intracellularhyphae

AppressoriumAt entry point

Arbuscules

Intercellular hyphae in airchannel

Page 24: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Arbuscules (A) and convoluted hyphae (arrow) in the inner cortex of an Asarum canadense root. Arbuscules only form in the innermost cortex cell layer next to the endodermis in this species.

Vesicles (V) produced by a Glomus species in a leek root. This root also contains many intercellular hyphae. (Bar = 100 um)

http://www.ffp.csiro.au/research/mycorrhiza/ecm.html

Page 25: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

LichensLichens are symbiotic associations between photosynthetic micro-organisms held in a mesh of fungi.

Different species of lichens growing on a boulder.

The fungus gives the lichen its shape.

The alga provides the fungus with food. In some lichens the ‘alga’ is a Cyanobacteria and fixes nitrogen. Lichens are colonizers of bare rock but some species are epiphytes found in tree canopies.

Cladonia fimbriata

Page 26: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

There are some 16,000 species of lichen

The algal components can live in isolation with the fungal component – so the symbiotic relationship is not obligate for them. However, no zoospores (the algal resting stage) or gametes are produced while the alga is in the symbiotic relationship though they can produce them when cultured outside of it.

In contrast the symbiotic relationship is obligate for the fungal component. The mycelium of a few species may grow under laboratory conditions, on agar, but no lichen specific thallus is produced and no fruiting body develops.

In contrast to the many thousands of lichen fungi, there are only about 100 photosynthetic partners.

The oldest certain fossil lichen is EarlyDevonian (about 400 million years old) from the Rhynie Chert.

Page 27: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

See also Fig. 17.18B (but note names used here)

Fruiting body of the fungus

Fungal hyphae: a filament, composed of single cells joined together end to end

Cross-section through a lichen

Page 28: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Xanthoria parietina

The foliose lichen Xanthoria parietina, which grows on surfaces, including concrete, and rocks subjected to sea spray. Much of the surface is covered with bright orange fungal fruiting bodies about 3-5 mm diameter (arrowheads). The orange colour is due to production of the pigment parietin at the lichen surface.

Cross section of one of a lobe viewed by phase-contrast microscopy. The photosynthetic zone (p) is a distinct band of green algal cells. Above this band is the cortex (c) of densely packed fungal cells . The lower part of the thallus consists of a medulla (m) with conspicuous air pockets (a), and a thin lower cortex (lc). Like many foliose lichens, Xanthoria produces rhizinae (r) that penetrate into crevices and help to anchor the lichen to a surface.

http://helios.bto.ed.ac.uk/bto/microbes/lichen.htm

Page 29: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Classification by form

Lichens are unique as a symbiotic relationship because they look and behave quite differently from their component organisms. Lichens are regarded as organisms in their own right and are given generic and species names.

The fungus is termed the mycobiont The green alga or a cyanobacterium is termed the photobiont.

The "body" of a lichen is termed the thallus, and its general shape is used to group lichens into four broad categories.

Foliose Fruticose Squamulose Crustose

Page 30: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Foliose lichens

Parmelia physodes, growing on the twigs of a shrub.

Foliose lichens have a flat, leaf-like structure

Page 31: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Lecanora muralis with ascocarps pink-brown

Fruticose lichens have an erect or pendulous, bushy structureFructicose and Squamulose

Squamulose lichens have a thallus consisting of minute, scale-like squamules

Page 32: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Crustose lichens Crustose lichens produce a flat crust on or beneath rock or tree surfaces

Page 33: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Trebouxia

The most common photobiont is a single-celled green algae of the genus Trebouxia found in many lichens of temperate, arctic and alpine regions, including all species of the common lichen genus Cladonia. Trebouxia species seldom grow as free-living cells in nature but seem to be specialised lichen symbionts.

Trebouxia secretes about 8% of the carbohydrates it produces when living free in experiments, but up to 40% when it is a photobiont. The increased secretion rate is caused by the fungus.

Trebouxia

In lichens with Trebouxia the fungal hyphae can produce short branches that penetrate through the algal wall to serve as nutrient-absorbing haustoria.

Page 34: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

They are extremely intolerant to SO2

The maximum rates of nutrient release from the photobiont occur in optimal moisture conditions, whereas it retains most of the carbohydrate in conditions of water stress. It has been suggested that cycles of wetting and drying may be advantageous in maintaining a lichen symbiosis, because both partners could gain sufficient carbohydrate at different stages of this cycle.

Lichens are remarkable for their ability to withstand prolonged drying and to resume activity rapidly after rewetting. The rewetting of lichens is thought to start by water absorption in the gelatinous matrix of the cortex.

Page 35: Symbiosis. togetherlife Symbionts : the organisms involved Host : the larger organism, if there is one Mutualism : both symbionts benefit Commensalism.

Sections you need to have read

16.20 17.18 32.11 36.5

Courses that deal with this topic

Botany 371/372 Plant physiology laboratory