SWITCHYARD, NTPC SIPAT Training report

44
A Report on Power Plant Familiarization & SWITCHYARD Submitted to: HR department Submitted by: Katakam venkataramesh Electrical Engineering 2 nd year, 4 th sem National Institute of Technology, Raipur

description

overview of thermal power plant and switchyard

Transcript of SWITCHYARD, NTPC SIPAT Training report

Page 1: SWITCHYARD, NTPC SIPAT Training report

A Report on

Power Plant Familiarization

&

SWITCHYARD

Submitted to:

HR department

Submitted by:

Katakam venkataramesh

Electrical Engineering

2nd year, 4th sem

National Institute of Technology, Raipur

Page 2: SWITCHYARD, NTPC SIPAT Training report

CONTENTS

Part A - Power Plant Familiarization

About NTPC Limited

About NTPC SIPAT

Introduction of Thermal Power Plant

Evolution of Thermal Power Plant

Typical Diagram of a Coal-Fired Thermal Power Station

Main component of Thermal power plant

Part B – Switchyard

Salient features of NTPC switchyard

Switchyard levels

Transformers and ratings

Equipment ratings

Line parameters

Circuit breaker ratings

Protection concept

Page 3: SWITCHYARD, NTPC SIPAT Training report

ABOUT NTPC LIMITED

NTPC, a public sector company, was in cooperated in 1975 to accelerate power development in the country as a wholly owned company of the government of India.

In the last 33 years, it has grown into the largest power utility of India.

NTPC is the sixth largest thermal power generator in the World.

It is the second largest in utilizing the capacity.

It delivers power at minimal environment cost and minimizes environmental impact.

Its core business is engineering, construction and operation of power generating plants. As on date the installed capacity of NTPC is 34,000 MW through its 15 coal based (23,395 MW), 7 gas based (3,955 MW) and 4 Joint Venture Projects (1,794 MW).

Recognizing its excellent performance and vast potential, Government of the India has identified NTPC as one of the jewels of Public Sector 'Maharatnas'- a potential global giant.

Source Installed Capacity (MW) PercentageCoal- 85,193.38 53.3

Gas- 17,055.85 10.5 Oil- 1,199.75 0.9Total Thermal 103448.98 64.7

Page 4: SWITCHYARD, NTPC SIPAT Training report

ABOUT NTPC SIPAT

NTPC SIPAT being located in Bilaspur district of Chhattisgarh state is a coal

Fired project of NTPC with capacity of -

3*660 MW (Stage I project) based on “SUPERCRITICAL BOILER TECHNOLOGY”

2*500 MW (Stage II project) based on “SUBCRITICAL BOILER TECHNOLOGY”

NTPC Sipat accomplishes its water resource requirements from Hasdeo Right Bank Canal, which is 22 kilometres away from the thermal project and coal from Dipika mines of SECL.

NTPC Sipat has a 765 kV transmission system, which is also the first time in India. This is the largest Transmission-system of its kind.

This thermal project has a submerged ash dyke, situated around 12 kilometres from the main plant accompanied by an Ash Water Re-circulating Plant.

High efficiency electrostatic precipitators(ESP)s

It is the first implementation of super critical technology in India.

An ash water recirculation system, effulent treatment plant and central mointering basin.

A circulating water system with induced draft cooling towers

2*275 m high twin flue emission stacks, 1*275m high single flue stack.

Page 5: SWITCHYARD, NTPC SIPAT Training report

INTRODUCTION TO THERMAL POWER PLANT

A thermal power station is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser and recycled to where it was heated; this is known as a Rankine cycle.

Page 6: SWITCHYARD, NTPC SIPAT Training report

BASIC POWER PLANT CYCLE

The thermal power plant uses a dual (vapor + liquid) phase cycle in a closed way to enable the working fluid (waterfluid (water) to be used again and again. The cycle used is RANKINE CYCLE modified to include super heating of sheating of steam, regenerative feed water heating and reheating of steam.

On large turbines, it becomes economical to increase the cycle efficiency by using reheat, which is a way of partially overcoming temperature limitations. By returning partially expanded steam to reheater, the average temperature at which the heat is added is increased.

Advantages of thermal power stations:

The fuel used is quite cheap.

Less initial cost as compared to other generating plants.

It can be installed at any place irrespective of the existence of coal. The coal can be transported to the site of the site of the plant by rail or road.

It requires less space as compared to Hydro power plants.

Cost of generation is less than that of diesel power plants.

Disadvantages

1. It pollutes the atmosphere due to production of large amount of smoke and fumes.

2. It is costlier in running cost as compared to Hydro electric plants.

3. Vital usage of natural resources (coal).

Page 7: SWITCHYARD, NTPC SIPAT Training report

EVOLUTION OF THERMAL POWER PLANT & ENHANCES IN EFFICIENCY

The “efficiency” of the thermodynamic process depends on how much of the energy fed into the cycle is converted into electrical energy. If the energy input to the cycle is kept constant, selecting elevated pressures and temperatures for the water-steam cycle can increase the output.

Based on the operating parameters of steam, Power plants are of generally three types -

1) SUB CRITICAL POWER PLANT

Up to an operating pressure of around 190 bar in the evaporator part of the boiler, the cycle is sub-critical. This means, that there is a non-homogeneous mixture of water and steam in the evaporator part of the boiler. In this case a drum-type boiler is used because the steam needs to be separated from water in the drum of the boiler before it is superheated and led into the turbine.

Sub-critical fossil fuel power plants can achieve 36–40% efficiency.

2) SUPER CRITICAL POWER PLANT

Supercritical is a thermodynamic expression describing the state of a substance where there is no clear distinction between the liquid and the gaseous phase. Water reaches this state at a pressure above 221above 221 bar (22.1 Mpa) and temperature above 374°C. Fluid is heated in super critical state undergoes a continuous transition from a liquid-like

Page 8: SWITCHYARD, NTPC SIPAT Training report

state to a vapor-like state. There is no distinct temperature such as a boiling point in the supercritical state.

Super critical designs have efficiencies in the low to mid 40% range,

3) ULTRA SUPER CRITICAL POWER PLANT

The steam parameters in this case are higher and exceed 600° C with pressure of 300 bar (30MPa). There are few power plants operating at such high temperature/ pressure and are referred to as Ultra Supercritical (USC) plants. In future further efficiency increase is expected to be achieved principally through the use of USC parameters by achieving live steam conditions of 760°C and 350 bar (35MPa).

Ultra Critical designs using pressures of 30.3 MPa and dual stage reheat reaching about 48%

Typical diagram of a coal-fired thermal power station

1. Cooling tower 10. Steam Control valve 19. Superheater

2. Cooling water pump11. High pressure steam turbine

20. Forced draught (draft) fan

3. transmission line (3-phase) 12. Deaerator 21. Reheater4. Step-up transformer (3-phase) 13. Feed water heater 22. Combustion air intake5. Electrical generator (3-phase) 14. Coal conveyor 23. Economiser6. Low pressure steam turbine 15. Coal hopper 24. Air preheater7. Condensate pump 16. Coal pulveriser 25. Precipitator

8. Surface condenser 17. Boiler steam drum26. Induced draught (draft) fan

9. Intermediate pressure steam turbine

18. Bottom ash hopper 27. Flue gas stack

Page 9: SWITCHYARD, NTPC SIPAT Training report
Page 10: SWITCHYARD, NTPC SIPAT Training report

MAIN COMPONENTS OF POWER PLANT

Boiler (steam generator): It is a closed vessel in which water,under pressure is converted into steam. A boiler is always designed to absorb maximum amount of heat released in the process of combustion. This heat is transferred to the boiler by all three modes of heat transfer i.e, conduction,convection and radiation.

Types of boilers:

Fire-Tube Boilers- The fire, or hot flue gases from the burner, is channelled through tubes that are surrounded by the fluid to be heated. The body of the boiler is the pressure vessel and contains the fluid. In most cases this fluid is water that will be circulated for heating purposes or converted to steam for process use.

Fire tube boiler

Page 11: SWITCHYARD, NTPC SIPAT Training report

Water Tube Boiler - Here the heat source is outside the tubes and the water to be heated is inside. Most high-pressure and large boilers are of this type. In the water-tube boiler, gases flow over water-filled tubes. These water-filled tubes are in turn connected to large containers called drums. This type of boiler is being used at SIPAT in both the stages.

Water tube boiler

Page 12: SWITCHYARD, NTPC SIPAT Training report

Components of Boiler

Economiser : Section of boiler in which feed water is first introduced into the boiler and flue gas is used to raise the temperature of water.

Steam drum: Steam drum separates steam from steam water mixture and keeps separated steam dry.

Super heaters: Bundles of boiler tubing located in the flow path of the hot flue gases. Heat is transferred from flue gases to the steam in super heater tubes.

Re-heater: Bundles of boiler tubes exposed to combustion gases in the same manner as super heater

Burners: These may be coal burners / oil burners arranged in a fashioned manner in different elevations either in all corners of furnace or in front & rear wall of the furnace. In Sipat we have corner located –

Coal burners in 10 different elevations and Oil guns in 5 different elevations.

Arrangement of Boiler Auxiliaries –

Coal Bunker ( 10 nos) – These are used for storing crushed coal from coal handling plant. These are 10 in nos for 500 MW / 660 MW units.

Coal Feeders (10 nos) – These are conveyor belt driven devices which fed coal in controlled way to Pulveriser

Pulveriser (10 nos) – These are located at zero meter adjacent to boiler and pulverise coal in to fine powder form for proper combustion

Primary air (PA)fans: These are used to transfer the pulverized coal to the boiler

Page 13: SWITCHYARD, NTPC SIPAT Training report

Secondary air(SA)fans: These are used to supply the air required for the combustion of coal. The velocity of primary and secondary air creates the necessary turbulence and combustion takes place with fuel in the suspension

DRAFT SYSTEM: The circulation of air is caused by the difference in pressure known as Draft. Thus draft is a differential in pressure between the two points i.e, atmosphere and inside the boiler. A differential in draft is needed to cause flow of gases through the boiler setting. This required differential is proportional to square of rate of flow.

In a draft system the movement of air is due to the action of fans. These fans have high efficiency, aerofoil blades inclined backward to the direction of rotation.

Forced draft (FD) fans: This fan is installed near the base of the boiler. This fan forces air through the furnace, economizer, air preheater and chimney. The pressure of air through the system is above atmospheric and air is forced to flow through the system.

Induced draft(ID) fans: This fan is installed near the base of the chimney. The burnt gases are sucked out of the boiler, thus reducing the pressure inside the boiler to less than atmospheric.

Primary / secondary Air Pre Heaters ( 2 nos each) – This equipment transfers heat from flue gases (from boiler ) to cold primary / secondary air by means of rotating heating surface elements.

Electro Static Precipitator – These are are generally two plate type located between boiler and the chimney. These are arranged for horizontal gas flow where Fly ash get precipitated.

Page 14: SWITCHYARD, NTPC SIPAT Training report
Page 15: SWITCHYARD, NTPC SIPAT Training report

TURBINE –

A steam turbine is a mechanical device that extracts thermal energy from pressurized steam and converts it into mechanical work.

Steam is made to pass through three stages in the turbine.

These are High pressure, Intermediate Pressure, Low Pressure i.e. HP, IP and LP turbines respectively.

Steam through the boiler first enters the Hp turbine. The parameters of the steam are 540°C and 172 kg/cm2.

After coming through the final row, the steam temperature and pressure decreases due to throttling. Hence the steam that comes out from the HP turbine is at 120°C and 40 Kg/cm2.

It is sent to re-heater in order to increase its temperature and pressure.

It is then fed to IP and LP turbines respectively. The steam that enters the IP turbine is at 365.9°C and 44.9 Kg/cm2.

After undergoing its operation in the IP and LP turbines the mixture of steam and water is at a temperature of 40°C and at less pressure.

But the heat content in it is very high. This heat cannot be utilized and hence has to be dissipated. The mixture of steam and vapor comes into the condenser and into the hot well.

From the hot well the mixture is cooled into water using the cooling tubes which supply a continuous flow of water at normal temperature and it absorbs the heat from the steam water mixture.

The water in the cooling tubes which have absorbed maximum heat is then sent to the cooling towers to remove its heat content.

Page 16: SWITCHYARD, NTPC SIPAT Training report

Generator:

Page 17: SWITCHYARD, NTPC SIPAT Training report

In 1831,Michael faraday discovered that if a conductor is moved through a magnetic field, an electrical voltage is induced in the conductor. The magnitude of the generated voltage is directly proportional to the strength of magnetic field and rate at which the conductor crosses the magnetic field. The induced voltage has a polarity that will oppose the change causing the induction-LENZS LAW.

Synchronous generators are used because they offer precise control of voltage, frequency, VARs and watts. This control is achieved through the use of voltage regulators and governors.

Exciter is the back bone of generator control system. It is the power source that supplies the dc magnetising current to the field windings of a synchronous generator there by ultimately inducing voltage or current in the generator armature.

The amount of excition required to maintain the output voltage constant is a function of generator load.

As the generator load increases the amount of excitation increases.

Reactive lagging pf loads require more excition than unity pf loads

Reactive leading pf loads require less excition than unity pf loads

Page 18: SWITCHYARD, NTPC SIPAT Training report

EXCITATION SYSTEM

ROTATING

SYSTEM

STATIC SYSTEM

Conventional

Rotating machines

High frequenc

y excitation

Brushless Excitation

System

PMI Revision 00

Brushless excitation

PILOT EXCITER

MAIN EXCITER

GENERATOR

FIELD BREAKER

FIELD (PM)

ARMATURE ROTAT

ING DIODES

R

Y

B

Page 19: SWITCHYARD, NTPC SIPAT Training report

BRUSHLESS EXCITATION SYSTEM:

They do not require slip-rings, commutators, brushes and are practically maintenance free.

Main exciter:

Field winding on stator and armature winding on rotor

Having 6 poles and produce AC at 150Hz

Field is fed power from pilot exciter( controlled by ECS)

Pilot exciter:

It is a Permanent magnet alternator

Having 16 poles and produce AC at 400 Hz

It has armature winding on stator

Page 20: SWITCHYARD, NTPC SIPAT Training report

SWITCHYARD

Switchyard

It is a switching station which has the following credits :

Main link between generating plant and Transmission system, which has a large influence on the security of the supply.

Step-up and/or Step-down the voltage levels depending upon the Network Node.

Switching ON/OFF Reactive Power Control devices, which has effect on Quality of power.

Page 21: SWITCHYARD, NTPC SIPAT Training report

Salient Features of SIPAT Switchyard

First switchyard in INDIA at 765 Kv level. First switchyard in NTPC with total substation automation and numerical

relays. First switchyard in INDIA with a highest rating EHV Interconnecting

transformer of 1000MVA. Various voltage levels such as 765Kv, 400Kv and132Kv.

Page 22: SWITCHYARD, NTPC SIPAT Training report

Two 765 kv lines to SEONI , two 400 kv lines to Raipur, two 400 kv lines to Ranchi. One LILO from LANCO patadi to Raipur.

Switchyard details and notations

765 kv switchyard is having sectionalized double main bus with one and half breaker system . It has 26 bays

400 kv switchyard is having double main bus and one and half breaker scheme with 24 bays

132 kv switchyard is having double bus with bus coupler and has 13 bays

Nomenclature for identifying a particular equipment : Ex:-400 kv Raipur line-3 tie breaker code is 4-552 in which 4represents the first digit of voltage level 400kv 5represents the bay no. 52represents standard code of breaker and 89 represents isolator.

Comparison of switchyard levels

Levels ( all in meters ) 132KV 400KV 765KVEquipment Level 4.6 8 14Bus level 8.5 8 26Stringer level 12.2 16 38Earth wire level (shield wire) 17.4 24.5 46P- P Clearance (min) 1.587 4 7.6P- E Clearance (min) 14.8 3.5 4.9Bay width 12 27 51.5

Page 23: SWITCHYARD, NTPC SIPAT Training report

Transmission line details

Line Voltage Distance Current MWSeoni-1& 2 765Kv 344Km 2800 A 3338.95Raipur 1,2 & 3 400Kv 157Km 1400 A 872.93Ranchi 1 &2 400Kv 440Km 1400 A 872.93Lanco Patadi 400Kv 60Km 1400 A 872.93Muph 1&2 132Kv 28Km 550 A 113.17

MAXIMUM THERMAL LOAD LIMIT AT 0.95 POWER FACTOR

Switchyard equipmentsSwitchyard consists of the following main equipments

Power transformers

Circuit breakers

Isolators

Earth switches

Bus bars

Lightning arrestors

Page 24: SWITCHYARD, NTPC SIPAT Training report

Current transformers(C.T’s)

Capacitance voltage transformers(CVT’s)

PLCC equipments ( Wave traps)

Protective Relays, metering equipments, control units.

Functions of various equipment :

Transformers :

Transforms the voltage levels from higher to lower level or vice versa, keeping the power constant.

Circuit breakers : A circuit breaker is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by overload or short-circuit. Its basic function is to detect a fault condition and by interrupting continuity to immediately discontinue an electrical flow unlike a fuse which operates ones and then must be replaced, a circuit breaker can be reset(either manually or automatically) to resume normal operation.

Circuit breakers are made in varying sizes from small devices that protect household appliances upto large switchgear design to protect high voltage circuits feeding an entire city.

TYPES OF CIRCUIT BREAKERS:

i. Miniature CB

ii. Air break CB

iii. Air blast CB

iv. Oil CB

v. SF6 CB

Page 25: SWITCHYARD, NTPC SIPAT Training report

vi. Vaccum CB

SF6 circuit breaker

1. Op mechanism

2. Interrupter

3. Support

4. Op rod

5. Linkage

6. Terminals

7. Filters

8. Puffer cylinder

9. Nozzle

10. Fixed position.

Page 26: SWITCHYARD, NTPC SIPAT Training report

11. Fixed contact

12.. Moving contact.

13. Gas inlet

One and half CB system:

The power stations have 400/765 kv outgoing line arranged in a one and half scheme breakers meaning there are 3breakers per 2 outgoing lines i.e, 1.5 breaker per line. These breakers are connected on to buses main bus 1 and 2. When one of the line is tripped breakers 1-52CB and 2-52CB trips then line isolated i.e, isolator 1-89, 1-89A,2-89A and 1-89L is opened, that side becomes dead(are known as stub). Isolator 2-89B is not opened as line 2 is in service.

PMI Revision 00

* Inert gas with high dielectric strength.

* Colour less and odour less. * Non-toxic and non- inflammable. * Sf6 is blown axially to the arc, hence it

removes the heat by axial convection and radial dissipation. As a result the arc dia reduces and comes to zero at current zero.

* Gas pressure in the chamber is at 5 ksc. * SF6 is filled at a pressure of 12 ksc in

the tank and maintained by means of an individual or a common compressor.

* The decomposition products of arcing are not explosive hence no chance of fire.

Disadvantages * SF6 gas condensates at low temperature

& high pressure

Advantage of SF6

Page 27: SWITCHYARD, NTPC SIPAT Training report

Now the area between (3-52CB and T/F-1 and 2-52CB i.e,stub or dead end) is protected by stub protection on 3-52CB side which gives bus over current trip if the line isolator is opened and current exceeds preset value.

Systematic diagram of one and half breaker CB

Isolators :

Opens or closes the electrical circuits under No-load conditions

Interlocked with breakers and earthswitces.

Isolates sections for maintenance.

Page 28: SWITCHYARD, NTPC SIPAT Training report

Used to select bus bars and CT switching for bus bar protection

Should withstand extreme wind pressures

Motor driven and handdriven systems.

Systematic diagram showing isolators

Instrument transformers : Used mainly for stepping-down the electrical parameters (Voltage or Current) to a lower and safe value for Metering and Protection logics.

Current transformers(CT): To step down high values of current to a safe value to incorporate Measuring and Protection Logics. It is also used for instrumentation, protection or measuring of power systems.

Voltage transformers(PT): To step down high values of voltage to a safe value to incorporate Measuring and Protection Logics. They serve a number of functions in a power system. They are required for the operation of many type of instrumentation and relay protective systems. They measure voltage and in conjunction with CT they measure power.

CB

Earth S/W

IsolatorIsolator LoadSource

Page 29: SWITCHYARD, NTPC SIPAT Training report

Earth switch :

It is a safety device used to ground sections required for maintenance by grounding the induction voltages

Interlocked with isolators and breakers

Motor driven or hand driven

Lightning arrestors: Safe guards the equipment by discharging the high currents or high voltage surges in power system due to Lightning.

Overhead earth wire: Protects the O/H transmission line from Lightning strokes.

Bus bar: Conductors to which a number of circuits are connected.

WaveTraps/Line traps:

Used in PLCC circuits for protection of transmission line and communication between substations.

VHF signal is transmitted from one end to other through the same power line.

Sends inter-trip signal to the other end circuit breaker(CB)s so that the faults can be isolated at the earliest time.

Page 30: SWITCHYARD, NTPC SIPAT Training report

Systematic diagram showing wavetraps/line traps

Reactive Power control devices: Controls the reactive power imbalance in the grid by switching ON/OFF the Shunt Reactors, Shunt Capacitors etc.,

Current Limiting Reactors: Limits the Short circuit currents in case of faulty conditions.

Page 31: SWITCHYARD, NTPC SIPAT Training report

Power transformers at Sipat

Transformer Type Rating

IBT- 1,2,3 Auto T/f (3 ph unit)400/132Kv 200MVA

ICT-1,2Auto T/f(3X1 single ph units)

765/400Kv 3X333 MVA

GT-1,2,32 winding t/f(3X1 single ph units)

24/765Kv 3x 260 MVA

GT-4,52 winding t/f(3X1 single ph units)

21/765Kv 3x 260 MVA

ST-1,2,3 3 winding T/f132/11Kv 90/45/45 MVA

ST-4,5 3 winding T/f132/11Kv 80/40/40 MVA

MST-1,2 2 winding t/f132/11Kv 16 MVA

Reactors at sipat

Bus reactor 765Kv 80 MVARLine reactor 765Kv line Seoni 1 and 2 80 MVARLine reactor 400Kv line ranchi 1 and 2 63 MVAR

Page 32: SWITCHYARD, NTPC SIPAT Training report

Circuit breaker ratingsAll circuit breakers are SF6 breakers

Parameter 132 KV 400 KV 765 KV

Make Alstom,India Alstom,IndiaAreva, T&D,France

Rated Voltage 145Kv 420Kv 800KvRated Current 1250 A 2000 A 3150 AType of interrupter SF6 SF6 SF6 Number of breaks 1 2 4Closing Time < 150mSec 120mSec 120mSec MaxOpening Time 65 ms 18 to 24mSec 20 to 24mSec

Protection concept

Protective relays and relaying systems constantly measure and monitor the electrical parameters under all conditions.

Abnormal conditions are detected by the changes in theelectrical parameters such as Current, Voltage, Impedance frequency and phase angle.

After fault detection the relay operates & opens the circuit breaker thereby isolating the faulty part of the equipment

Any protective relaying requires the basic characteristics Sensitivity, Selectivity, Reliability, Operating speed, Economy and Simplicity

Page 33: SWITCHYARD, NTPC SIPAT Training report

Types of relays

Electromechanical type: operates on electro mechanical principles and has moving parts

Static relays: contain no moving parts, uses static components such as diodes, transistors and level detectors.

Digital relays: measured quantities are manipulated in analog form and subsequently converted into binary Voltages (square wave). logic circuits & microprocessors compare the Phase relationships of the square waves to make a trip decision.

Numerical relays: Numerical relays are those in which the measured a.c quantities are sequentially sampled and converted into numeric data form. A microprocessor performs mathematical and /or logical operations on the data to make trip decisions.

Advantages of numerical relays

Analogue circuits are replaced with microprocessors to implement relay functions.

Microprocessor uses protection algorithms & other computational functions for characteristic generation.

Programmable function setting Multiple functions by the same relay. Internal fault diagnosis. (self checking) High operating speed. Flexibility in wide parameter adjustment Built in event logger and disturbance recording options (Post trip

analysis) Digital communication facility Control through personal computers and remote control is possible. Low failure rate & less no. of spare cards

Page 34: SWITCHYARD, NTPC SIPAT Training report

400 KV line protections

Duplicate primary protections named as Main-1 and Main-2 with individual D.C source for each main protection and Carrier protection through PLCC

Distance Protection Directional Phase O/C and E/F Over Voltage and Open Jumper Power swing blocking TEE Differential-1 Under voltage protection VT supervision CT supervision Circuit breaker failure detection

765KVline protections

All protections same as 400 kv line and in addition 765 kv seoni lines have acompensated over voltage protection

IBT/ICT protections

Transformer protection comprises of main and backup protections

Main protection

Pressure relief valve trip Buchholz relay alarm and trip Differential Tee-1 Over flux protection

Page 35: SWITCHYARD, NTPC SIPAT Training report

Winding temperature alarm and trip Diffrential

Back-up protection

Pressure relief valve trip OLTC trip Oil temperature alarm and trip Directional Over current & Earth fault on HV & LV sides REF protection on both HV & LV sides. Differential Tee-2 protection.

Bus-bar protection

Bus-bar protection system primarily protects bus-bars and associated equipments of transmission or distribution network substations/switchyards from phase to phase or phase to earth faults

Bus-bar protection operating speed should be very high for internal faults and it should not operate for external fault.

MUST be very stable during normal operating conditions Bus-bar protection is based on KCL Sum of incoming currents and out-going currents =0 during healthy

condition Implemented by using biased differential protection Decentralized protection has Peripheral units attached to each bay and a

central unit for scheme logic, and has many zones