Switched Doherty PAs for 3G

57
1 Switched Doherty PAs for 3G Thomas Apel 2300 NE Brookwood Parkway Hillsboro, OR 97124

Transcript of Switched Doherty PAs for 3G

Page 1: Switched Doherty PAs for 3G

1

Switched Doherty PAs for 3G

Thomas Apel

2300 NE Brookwood Parkway

Hillsboro, OR 97124

Page 2: Switched Doherty PAs for 3G

2

Outline

• Introduction and motivation

• Pros and Cons

• Background: Stepped bias and switched periphery

• Switched Doherty

• Example PAs

• Performance improvement techniques

• Test data

• Tristate switched Doherty PA in BiHEMT process

• Conclusion

Page 3: Switched Doherty PAs for 3G

3

Why Use Switched Doherty PAs?

• CDMA talk-time is strongly influenced by PA current

• Average PA current is dependent on power efficiency

at low power levels (in addition to full power PAE)

• Improvement in low power PAE requires:

– a reduction in supply voltage OR

– an increase in load impedance

(compared to full power levels)

• Load impedance can be changed explicitly (switched)

or implicitly (periphery switching)

• The results reported here use implicit load control to

improve low power efficiency

Page 4: Switched Doherty PAs for 3G

4

Pros and Cons

• Switched Doherty PAs are not easy to implement

– Z inverter (Zo and insertion phase)

– Delay line (Zo and insertion phase)

– Interstage branch impedances

– ALL MUST BE CORRECT- consistent with final stage segmentation

• Performance advantages include:

– High PAE in both low and high power modes

– No insertion phase discontinuity during mode change

– Increased load insensitivity and superior 3rd order reverse IMD due to quadrature operation in high power mode

– All periphery is used in high power mode

– External load impedance is same as conventional PA

Page 5: Switched Doherty PAs for 3G

5

Background: Conventional PA with Stepped Bias

• 1st GENERATION

CONVENTIONAL PA

• 1-BIT CONTROL

• ONLY DC QUIESCENT

REDUCTION IN LOW MODE

• POOR LOW MODE PAE DUE

TO MISMATCH

TQ7632

Z Load

Z int

LP

RF output

RF input

BASE BIAS-1

BASE BIAS-2

+ Vreg

+ Vcc

+ Vreg

Hi/Lo Step

Page 6: Switched Doherty PAs for 3G

6

Background : Conventional PA with Switched Periphery

RF output

RF input

BASE BIAS-1

BASE BIAS-2

+ Vreg

+ Vcc

+ Vreg

Hi/Lo Step

BASE BIAS-2A

+ Vreg

Z Load

Z int

LP

TQ7634

• 2nd GENERATION

CONVENTIONAL PA

• 1-BIT CONTROL

• BETTER LINEARITY IN LOW

MODE THAN STEPPED BIAS

• POOR LOW MODE PAE DUE

TO MISMATCH

Page 7: Switched Doherty PAs for 3G

7

Switched Periphery Load Sharing

Z LOAD

M · Z

LO

AD

LO

AD

Q2

Q1

(open)

LO

AD

Q2

Q1

Z L

OA

D

Z LOAD

M · Z _M - 1

LOAD

HIGH POWER MODE LOW POWER MODE

Page 8: Switched Doherty PAs for 3G

8

Switched Doherty Load Sharing

Z LOAD

M · Z

LO

AD

LO

AD

Q2

Q1

(open)

LO

AD

Q2

Q1

Z L

OA

D

Z LOAD

M · Z _M - 1

LOAD

M · Z LOAD M2 · Z LOAD

Zo =M · Z LOAD

= 90°

Zo =M · Z LOAD

= 90°

HIGH POWER MODE LOW POWER MODE

Page 9: Switched Doherty PAs for 3G

9

CDMA Load Sharing Prototype

Z

INV

ER

TE

R

18

4.5 Q1

Q2

6

Z0 = 18

18

DELAY

LINE

Z

INV

ER

TE

R

(open)

4.5 Q1

Q2

72

4.5

Z0 = 18

DELAY

LINE

HIGH POWER MODE LOW POWER MODE

Page 10: Switched Doherty PAs for 3G

10

Constant-K LC Impedance Inverter

L= Z0/

0, C= (

0 Z

0)-1

C C

L

Page 11: Switched Doherty PAs for 3G

11

M-derived LC Impedance Inverter

Cs

L

Ls

Cs

Ls

L= Z0/

0, Ls= Z

0(3

0)-1, Cs= 3(4

0Z

0)-1

TRAP RESONANCE SET TO 2nd HARMONIC

Page 12: Switched Doherty PAs for 3G

12

Switched Periphery to Switched Doherty

+ Vcc-1

DE

LA

Y

LIN

E

RF output

+ BIAS-A

Z

INV

ER

TE

R

+ BIAS-B

RF output

+ Vcc-1

+ BIAS-B

+ BIAS-A

SWITCHED

PERIPHERY

SWITCHED

DOHERTY

Page 13: Switched Doherty PAs for 3G

13

Switched Doherty PA

RF output

RF input

BASE BIAS-1

BASE BIAS-2

+ Vreg

+ Vcc

+ Vreg

Hi/Lo Step

BASE BIAS-2A

+ Vreg

DE

LA

Y

LIN

E

Z

INV

ER

TE

R

Page 14: Switched Doherty PAs for 3G

14

Low Power Mode

RF output

RF input

BASE BIAS-1

BASE BIAS-2

+ Vreg

+ Vcc

+ Vreg

Hi/Lo Step

BASE BIAS-2A

+ Vreg

DE

LA

Y

LIN

E

Z

INV

ER

TE

R

OFF

OFFOFF

Page 15: Switched Doherty PAs for 3G

15

Low Power Mode

RF output

RF input

BASE BIAS-1+ Vreg

+ Vcc

BASE BIAS-2A

+ Vreg

Z

INV

ER

TE

R

OPTIMUM PERIPHERY

AND

OPTIMUM LOAD

Page 16: Switched Doherty PAs for 3G

16

Contrast with Other Techniques

DUAL PATH ARCHITECTURE HIGH POWER MODE

SWITCHED DOHERTY IS DUAL PATH

SPECIAL CASE

BASE BIAS-2A

BASE BIAS-2B

RF output

(~ 4 )

Z0 ~

17

Z

INV

ER

TE

R

Z0 ~

17

Z

INV

ER

TE

R

BASE BIAS-2A

BASE BIAS-2B

OFF OFFRF output

(~ 4 )

ZL ~ 70

Page 17: Switched Doherty PAs for 3G

17

Contrast with Other Techniques (continued)

SWITCHED DUAL PATH DISTORTION IN HIGH POWER MODE

Z

INV

ER

TE

R

ZIN ~ 0

ZL =

RF output

(~ 4 )

BASE BIAS-2A

BASE BIAS-2B

OFF OFFHigh RF

Voltage

Z0 ~

17

Z

INV

ER

TE

R

BASE BIAS-2A

BASE BIAS-2B

RF output

(~ 4 )

D

S

Switch

Control

Page 18: Switched Doherty PAs for 3G

18

Isolation at Interstage Split

RF output

+ Vcc-1+ BIAS-A

DE

LA

Y

LIN

E

Z

INV

ER

TE

R

+ BIAS-B

+ Vcc-1

DE

LA

Y

LIN

E

RF output

+ BIAS-A

Z

INV

ER

TE

R

+ BIAS-B

NO ISOLATION WITH ISOLATION

Page 19: Switched Doherty PAs for 3G

19

PCS 1ST Generation Switched Doherty

• 1120 x 1200 um2

• 6480 um2 final

• 550 um2 driver

• external 2nd

harmonic tuning

Page 20: Switched Doherty PAs for 3G

20

PCS 2ND Generation Switched Doherty

• 1170 x 1230 um2

• 6480 um2 final

• 550 um2 driver

• internal 2nd

harmonic tuning

Page 21: Switched Doherty PAs for 3G

21

Cellular 2ND Generation Switched Doherty

• 1120 x 1470 um2

• 6480 um2 final

• 550 um2 driver

• internal 2nd

harmonic tuning

Page 22: Switched Doherty PAs for 3G

22

FISHBONE BASE Geometry for Low CBC

• 75% of STANDARD CELL CBC

• 57% of HAIRPIN CELL Rb’

• SOA is 2X HAIRPIN CELL

• >1 dB gain increase

• >2 % ha increase

Page 23: Switched Doherty PAs for 3G

23

Low Inductance Base Manifold

LO

W

Zo L

INE

LO

W

Zo L

INE

Large base LB ± D LB Low LB ± D LB Low LB ± D LB

EQ

UIV

AL

EN

T

• Lateral manifold contributes to LB

• A low Zo transmission line can reduce LB

• This is realized with METAL-2 / BCB / METAL-1 stack

• Increased shunt capacitance is parasitic result

• Lumped equivalent model is convenient

Page 24: Switched Doherty PAs for 3G

24

Low Interconnect L from Low Zo Lines Z

o (

)

L (

nH

/mm

)

C (

pF

/mm

)

WIDTH (mm) WIDTH (mm)

INCREMENTAL L and C

100 um GaAs

100 um GaAs

1.3 um BCB

1.3 um BCB

CHARACTERISTIC Zo

100 um GaAs

1.3 um BCB

Page 25: Switched Doherty PAs for 3G

25

Low Zo Base Manifold - PCS Band

LOW POWER CELLS HIGH POWER CELLS

Page 26: Switched Doherty PAs for 3G

26

Low Zo Base Manifold - Cellular Band

LOW POWER

CELLS

HIGH POWER CELLS

Page 27: Switched Doherty PAs for 3G

27

Improved Inductors

Split Line Spiral

Single Layer

Broadside Coupled

Split Line Spiral

• Standard overlay increases L but looses Q

• Split and split-overlay increase Q

• Split singles loose area efficiency

• Split-overlay and hybrids are the best overall for good Q with area efficiency

Page 28: Switched Doherty PAs for 3G

28

Cellular CDMA Performance

Page 29: Switched Doherty PAs for 3G

29

PCS CDMA Performance

Page 30: Switched Doherty PAs for 3G

30

UMTS Cellular WCDMA (Rel.99)

Page 31: Switched Doherty PAs for 3G

31

UMTS PCS WCDMA (Rel.99)

Page 32: Switched Doherty PAs for 3G

32

UMTS Cellular WCDMA (HSDPA)

Page 33: Switched Doherty PAs for 3G

33

UMTS PCS WCDMA (HSDPA)

Page 34: Switched Doherty PAs for 3G

34

Improvement: Tristate Switched Doherty

• Tristate (2-bit) power control.

• Build on switched Doherty (2-state) core

• No Vref needed -- PA operates directly from Vbatt.

• Enabled with logic interface (< 100uA control)

• Back compatible into standard sockets Vref pin is replaced by “ENABLE” logic input.

• Quiescent currents: – 6 mA ! ultra low power mode,

– 25 mA low power mode, and

– 78 mA high power mode.

Page 35: Switched Doherty PAs for 3G

35

Approach

• Switched Doherty PA core in HBT

• VREF elimination with pHEMT current sources for HBT bias circuits

• Low current logic pHEMT

• RF switch in pHEMT

BiHEMT process enables integrated solution:

Page 36: Switched Doherty PAs for 3G

36

BiHEMT: Co-integration of HBT and pHEMT

Page 37: Switched Doherty PAs for 3G

37

Tristate PA Module with pHEMT and HBT Chips

Page 38: Switched Doherty PAs for 3G

38

HBT PA Size Reduced from Original Switched Doherty

• Builds on original architecture

• HBT PA area is substantially reduced due to

removal of complex bias and control circuitry

• Type-1 or type-6 current mirrors are designed

to be driven by the Bias-Control chip

TRISTATE HBT PA

ORIGINAL SWITCHED DOHERTY

Page 39: Switched Doherty PAs for 3G

39

Switched Doherty PA Core (2 state)

RF output

RF input

BASE BIAS-1

BASE BIAS-2

+ Vreg

+ Vcc

+ Vreg

Hi/Lo Step

BASE BIAS-2A

+ Vreg

DE

LA

Y

LIN

E

Z

INV

ER

TE

R

Page 40: Switched Doherty PAs for 3G

40

Tristate Switched Doherty PA

RF output

RF input-1

BASE BIAS-1

BASE BIAS-2

+ Vcc

V-Mode-1

BASE BIAS-2A

DE

LA

Y

LIN

E

Z

INV

ER

TE

R

BASE BIAS-ULP

+ V_enable

(Vreg)

V Mode-2

+ V_enable

(Vreg)

+ V_enable

(Vreg)

+ V_enable

(Vreg)

RF input-2

V Mode-2

Page 41: Switched Doherty PAs for 3G

41

Ultra-Low Power Mode

RF output

Z

INV

ER

TE

R

BASE BIAS-ULP

+ V_enable

(Vreg)

V Mode-2

RF input-2

RF input-1

BASE BIAS-1

BASE BIAS-2

+ Vcc

V-Mode-1

BASE BIAS-2A

DE

LA

Y

LIN

E

+ V_enable

(Vreg)

+ V_enable

(Vreg)

+ V_enable

(Vreg)

V Mode-2

OFFOFF

OFFOFF

OFF

Page 42: Switched Doherty PAs for 3G

42

Simplified View of RF Loading in Tristate PA

2-state

Tristate

• Switched Doherty 2-state core

• Ultra-low power mode uses

load from low power mode

• RF input switch drives single

cell in ultra-low mode

Page 43: Switched Doherty PAs for 3G

43

Separate pHEMT and HBT Chips

pHEMT BIAS / CONTROL HBT POWER AMPLIFIER

Page 44: Switched Doherty PAs for 3G

44

Bias Control PA Interface

Page 45: Switched Doherty PAs for 3G

45

E/D pHEMT Bias Control with HBT PA

+ VBATT

I2B REF

Vbe ULP REF

IULP mirror

Vbe 2A REF

I2A mirror

Vbe 1 REF

I1 mirror

I2A REFI1 REF

MODE (2)

MODE (1)

ENABLE

InGaP HBT PA Bias Mirrors

E/D pHEMT

Bias Control

with

RF Input Switch

RF IN

OUT-2

OUT-1

Vbe 2B REF

I2B mirrorVbias

(to HBT)

IULP REF

Page 46: Switched Doherty PAs for 3G

46

Standard HBT Bias Reference Circuits

VREF required

in each case

Page 47: Switched Doherty PAs for 3G

47

Elimination of VREF

TYPE-I BIAS MIRROR

REFERENCE CIRCUITS

• Current density is mirrored

in RF (biased) device

• I REF set by (V REF – Vbe)/RSENSE

• Precise control of VREF required

• Low ZSOURCE requires high

I MIRROR (and high I REF)

• Current density is mirrored

in RF (biased) device

• I REF set by independent of V REF

by current source

• Low Z SOURCE is easily obtained

since current flows from Vcc (V BAT)

Page 48: Switched Doherty PAs for 3G

48

Current Sources for Bias Circuits

• pHEMT I MAX is well behaved (epi dependent)

• s < 7% (3s = 20%)

• Geometry scaled to set current

=

D

S

D m

od

e

I REF

IG

Page 49: Switched Doherty PAs for 3G

49

IG Pull-up for Imax Operation of Reference FET

• IG < 1 mA

• IG is dependent on Idss (a wide distribution)

• s = 16% (3s = 48%)

• Tight control of IG is not important

D

D m

od

eD

mo

de

SD

mo

de

D m

od

e

IG = =

Page 50: Switched Doherty PAs for 3G

50

PA Enable

• VREF PIN used

• Logic interface

• VREF not needed

Page 51: Switched Doherty PAs for 3G

51

High Mode Quiescent Current

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

-10 30 90 -10 30 90 -10 30 90 -10 30 90 -10 30 90

2.80 3.15 3.50 3.85 4.20

2.80

3.15

3.50

3.85

4.20

SN (All) Vmode1 (V) 0.30 Vmode2 (V) 0.30

I_total (mA)

Vcc1, Vbias, Venable (V) Temp (C)

Vbatt-2 (V)

Page 52: Switched Doherty PAs for 3G

52

Low Mode Quiescent Current

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

-10 30 90 -10 30 90 -10 30 90 -10 30 90 -10 30 90

2.80 3.15 3.50 3.85 4.20

2.80

3.15

3.50

3.85

4.20

SN (All) Vmode1 (V) 3.00 Vmode2 (V) 0.30

I_total (mA)

Vcc1, Vbias, Venable (V) Temp (C)

Vbatt-2 (V)

Page 53: Switched Doherty PAs for 3G

53

Ultra-Low Mode Quiescent Current

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

-10 30 90 -10 30 90 -10 30 90 -10 30 90 -10 30 90

2.80 3.15 3.50 3.85 4.20

2.80

3.15

3.50

3.85

4.20

SN (All) Vmode1 (V) 3.00 Vmode2 (V) 3.00

I_total (mA)

Vcc1, Vbias, Venable (V) Temp (C)

Vbatt-2 (V)

Page 54: Switched Doherty PAs for 3G

54

Tristate Switched Doherty PA Data

• Switched Doherty performance

extended to ultra-low power mode

• Quiescent current typically below

6 mA in ultra-low mode

• Ultra-low mode supports up to

+12 dBm with -40 dBc ACPR

Page 55: Switched Doherty PAs for 3G

55

BiHEMT Tristate Switched Doherty

1st GENERATION SWITCHED

DOHERTY CORE

2nd GENERATION

SWITCHED DOHERTY

CORE

Page 56: Switched Doherty PAs for 3G

56

Conclusion

• Switched Doherty PAs have been realized in both PCS and Cellular bands for linear operation.

• Power efficiency and linearity are quite good in both high and low power operation.

• Basic switched Doherty architecture has been extended to Tristate operation with extremely low quiescent current in the lowest power mode

• BiHEMT process enables integration of pHEMT and HBT circuitry in Tristate PA

• Several techniques to improve performance have also been presented:

– A new HBT geometry provides reduced CBC

– Use of low Zo interconnect structures to reduce inductance in base feed manifold

– Use of composite split-line and overlay (broadside coupled) inductors for better area efficiency and good Q

• CDMA talk-time is significantly increased.

Page 57: Switched Doherty PAs for 3G

57

Acknowledgements

Yulung Tang

Tarun Juneja

Brian MCNamara

Tim Kramer

Marla Hammond

Jeff Damm

Eric Reavis