Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on...

180
Proposal for Environmental Water Quality Standards in Finland Susan Londesborough ENVIRONMENTAL PROTECTION FINNISH ENVIRONMENT INSTITUTE The Finnish Environment 749 ...........................

Transcript of Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on...

Page 1: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

Proposal for Environmental Water

Quality Standards in Finland

Susan Londesborough

ENVIRONMENTALPROTECTION

F I N N I S H E N V I R O N M E N T I N S T I T U T E

T h e F i n n i s h E n v i r o n m e n t 749

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 2: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are
Page 3: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

T h e F i n n i s h E n v i r o n m e n t

Susan Londesborough

F I N N I S H E N V I R O N M E N T I N S T I T U T E

HELSINKI 2005

749

Proposal for Environmental Water

Quality Standards in Finland

Page 4: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 7492

ISBN 952-11-1950-0ISBN 952-11-1951-9 (PDF)

ISSN 1238-7312

Cover photo: Jaakko MannioPage layout: Liisa Lamminpää

Printing: Edita Prima Ltd, 2005

The publication is available in the internet:www.environment.fi /publications

Page 5: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3The Finnish Environment 749

Contents

1 Introduction .................................................................................. 5

2 Data collection, management and validation ............................. 62.1 Collection .....................................................................................................................62.2 Management ................................................................................................................62.3 Validation .....................................................................................................................7

3 Methodology ................................................................................ 83.1 Assessment factor (AF) approach ............................................................................83.2 Statistical extrapolation approach – species sensitivity ...................................... distribution (SSD) ...................................................................................................10

4 Specifi c quality standards ........................................................... 114.1 Annual average EQS for fresh water pelagic community ................................344.2 Annual average EQS for the Baltic sea pelagic community ............................344.3 Maximum acceptable concentrations (MAC-QS) for the fresh water .............. pelagic community ..................................................................................................124.4 EQS for sediment ....................................................................................................124.5 EQS referring to secondary poisoning of top predators ...................................134.6 QS referring to uptake of fi sh by humans ...........................................................144.7 QS for drinking water ............................................................................................14

5 Over all quality standard ............................................................ 15

Acknowledgement ......................................................................... 15

Abbreviations ................................................................................. 16

References ..................................................................................... 17

Annexies ....................................................................................... 28Annex 1. Overview of toxicity test endpoints (Table 15 in TGD) .....................28Annex 2. Assessment factors to derive a PNECaquatic for fresh water ..........29 Annex 3. Chapter 3.8.3.5 in TGD. Calculation of PNECoral ..............................31Annex 4. Summary of derived environmental quality standards .....................34Annex 5. Chlorobenzene ...........................................................................................36Annex 6. 1,2-dichlorobenzene ..................................................................................48Annex 7 1,4-Dichlorobenzene .................................................................................57Annex 8. Mercaptobenzothiazoledisulphide ........................................................64Annex 9. 2-(Tiocyanomethylthio)benzothiazole (TCMTB) ................................69Annex 10. Mercaptobenzothiazole ............................................................................76Annex 11. Benzyl butyl phthalate .............................................................................81Annex 12. Dibutylphtalate ..........................................................................................90Annex 13. Phenylhexylbenzenediamine ..................................................................97Annex 14. Nonylphenolethoxylates (NPE) ............................................................103Annex 15. Octamethylcyclotetrasiloxane (OMCTS) ............................................105Annex 16. 1,3-Dihydroxybenzene (Resarcinol) .....................................................112Annex 17. 2-bromo-2-nitropropane-1,3-diol (Bronopol) .....................................118Annex 18. 4-chloro-3-methylphenol ........................................................................123

Page 6: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 7494

Annex 19. Dimethoate ................................................................................................130Annex 20. Ethylenethiourea .....................................................................................138Annex 21. Mancozeb ..................................................................................................143Annex 22. 4-chloro-2-methylphenoxy acetic acid (MCPA) .................................148Annex 23. Metamitron ...............................................................................................159Annex 24. Prochloraz ..................................................................................................164Annex 25. Tribenuron methyl ...................................................................................170

Documentation pages ................................................................. 175

Page 7: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5The Finnish Environment 749

Introduction

In this report Environmental Quality Standard (EQS) have been derived for a set of industrial and consumer chemicals and pesticides. These chemicals have been selected by a risk based prioritisation procedure (Londesborough 2003). They have been selected in order to identify relevant pollutants belonging to the substance groups mentioned in list 2 to Directive 76/464/EEC on pollution caused by certain dangerous substances discharged into the aquatic environment (Dangerous Sub-stances Directive). The selection of these substances is also part of the implemen-tation of the Water Framework Directive (2000/60/EC). When determining the eco-logical status of water bodies according to the Water Framework Directive the EQS values are the border line between good and moderate status.

The EQS values are derived according to Annex V to the WFD, point 1.2.6. The methodology used is described in detail in the Fraunhofer report on EQS set-ting for Community Priority Substances (Lepper 2002) and the principals and methodology given in the Technical Guidance Document for the risk assessment of new and existing chemicals (TGD 2003). For pesticides the principles and meth-odology given under directive 91/414/EEC are taken into consideration.

The EQS values are based on experimental ecotoxicological data. They rep-resent a predicted no effect concentration (PNEC) in the aquatic environment. Therefore, • degradation is not taken into consideration when deriving the quality

standards. The quality standards are meant to be used in assessing the ec-ological status of waters. When emission limit values are derived from the EQS values further considerations for e.g. bioaccumulation and biodegrada-tion needs to be taken into account,

• analytical limitations are not taken into consideration when deriving the quality standards. Analytical limitations must be considered when plan-ning the screening and monitoring of the substances. If EQS values are be-low achievable detection limits, different approaches, e.g. modelling must be considered.

For all substances an EQS value referring to the water phase is derived. For sub-stances that are liable to accumulate in sediment and/or biota EQS values for these matrixes are calculated as well. The overall EQS refers to the annual average con-centration in the water phase. In addition maximum acceptable concentration lim-it values (MAC-EQS) have been derived.

In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are available in the TGD (2003) and in the Fraunhofer EQS report (Lepper 2002). Chapter 4 explains how the specifi c quality standards relating to different protection objectives (e.g. water, sediment, top predators, human health) have been derived. The actual calculation of the en-vironmental quality standards is presented in substance specifi c fact sheets (An-nexes 5-25).

EQS values have been derived for 14 industrial and consumer chemicals and six pesticides. For nonylphenol ethoxylates (NPEs) a sum parameter calculated with the toxic equivalency approach is presented. It is based on the EQS value pro-posed for nonyl phenol (NP) on the Community level.

1

Page 8: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 7496

Data collection, management and validation

2.1 Collection

For all substances data were collected, where appropriate, from European Union Risk Assessment Reports (EU-RAR), the International Uniform Chemical Database (IUCLID) datasets, national statements on biocides, Nordic ecotoxicological eval-uations, pesticide monographs, the Ecotox Aquire database and from the OECD high production volume (HPV) Database. • The EU Risk Assessment Reports and the IUCLID datasets are available

from European chemical Substances Information System (ESIS) on the net site of the European Chemicals Bureau:

http://ecb.jrc.it/existing-chemicals• The Aquire Ecotox database is maintained by the USA Environmental Pro-

tection Agency and is available at: http://www.epa.gov/ecotox• OECD integrated high production volume (HPV) Database is available at: http://cs3-hq.oecd.org/scripts/hpv/

Nordic ecotoxicological evaluations and national statements are available from the Chemicals Division at SYKE. Detailed references are given in the substance spe-cifi c fact sheets.

2.2 Management

In order to manage Ecotox Aquire records the following assumptions were done. Results were preliminarily regarded as representing long term (chronic) tests, if a NOEC value was reported and the test duration was:

Algae ≥ 3 days = 72 hours (in accordance with the TGD table 15, see Annex 1)Daphnia sp. ≥ 21 (or 14) days (in accordance with OECD test guidelines) Fish ≥ 28 days = 672 hours (in accordance with OECD test guidelines)

If the test duration was not reported, the test was preliminarily regarded acute, with the exeption of reproduction tests conducted on Daphnia sp. , which were preliminary regarded as long term tests.

For pesticides tests conducted on the active ingredient were preferred. Test results on formulations have been used when tests on the active ingredient were lacking.

Table 15 of the TGD is presented in Annex 1 to this report. It gives informa-tion relevant for the treatment of data (e.g. the derivation of NOEC values when only LOEC or MATC have been reported).

For algae tests EC50/NOEC values based on growth rate are preferred over values based on biomass.

2

Page 9: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7The Finnish Environment 749

2.3 Validation

In order to check the validity of the test results, the original peer reviewed publica-tions were consulted for those results that determined the quality standard. How-ever, results evaluated and judged valid in EU risk assessment reports and Nordic ecotoxiclogical evaluations were taken as such.

Page 10: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 7498

Methodology

3.1 Assessment factor (AF) approach

For the aquatic environment, a predicted no effect concentration (PNEC) is de-rived that, if not exceeded, ensures an overall protection of the environment. Cer-tain assumptions are made concerning the aquatic environment which allow, how-ever uncertain, an extrapolation to be made from single-species short-term toxici-ty data to ecosystem effects. It is assumed that: • ecosystem sensitivity depends on the most sensitive species, and; • protecting ecosystem structure protects community function.

These two assumptions have important consequences. By establishing which spe-cies is the most sensitive to the toxic effects of a chemical in the laboratory, extrap-olation can subsequently be based on the data from that species. Furthermore, the functioning of any ecosystem in which that species exists is protected provid-ed the structure is not suffi ciently distorted as to cause an imbalance. It is general-ly accepted that protection of the most sensitive species should protect structure, and hence function.

For most substances, the pool of data from which to predict ecosystem ef-fects is very limited as, in general, only short-term toxicity data are available. In these circumstances, it is recognized that, while not having a strong scientifi c va-lidity, empirically derived assessment factors must be used. In applying such fac-tors, the intention is to predict a concentration below which an unacceptable effect will most likely not occur. It is not intended to be a level below which the chemi-cal is considered to be safe. However, again, it is likely that an unacceptable effect will not occur.

In establishing the size of these assessment factors, a number of uncertainties must be addressed to extrapolate from single-species laboratory data to a multi-species ecosystem. These areas have been adequately discussed in other papers, and may best be summarised under the following headings:• intra- and inter-laboratory variation of toxicity data;• intra- and inter-species variations (biological variance);• short-term to long-term toxicity extrapolation;• laboratory data to fi eld impact extrapolation (additive, synergistic and an-

tagonistic effects from the presence of other substances may also play a role here).

The size of the assessment factor depends on the confi dence with which a PNEC-value can be derived from the available data. This confi dence increases if data are available on the toxicity to organisms at a number of trophic levels, taxonom-ic groups and with lifestyles representing various feeding strategies. Thus lower assessment factors can be used with larger and more relevant datasets than the base-set data.

The choice of an assessment factor is presented in Annex 2 (Table 16 of the TGD). These assessment factors are also presented in Annex V to WFD, point 1.2.6. The assessment factors range from 1 – 1000 depending on the quality of the data set in use. The assessment factors should be considered as general factors that un-

3

Page 11: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9The Finnish Environment 749

der certain circumstances may be changed. In general, justifi cation for changing the assessment factor could include one or more of the following: • evidence from structurally similar compounds (evidence from a closely re-

lated compound may demonstrate that a higher or lower factor may be ap-propriate);

• knowledge of the mode of action including endocrine disrupting effects (some substances, by virtue of their structure, may be known to act in a non-specifi c manner);

• the availability of test data from a wide selection of species covering addi-tional taxonomic groups other than those represented by the base-set spe-cies;

• the availability of test data from a variety of species covering the taxonom-ic groups of the base-set species across at least three trophic levels. In such a case the assessment factors may only be lowered if these multiple data points are available for the most sensitive taxonomic group.

Specifi c comments on the use of assessment factors in relation to the available da-ta set are given in the notes below Table 16 to TGD (Annex 2). In general the PNEC value which is equivalent to the EQS is derived from the lowest NOEC or EC50 value and an assessment factor (AF) is applied to this value:

PNEC = NOECmin / AF

Plant Protection Products (PPP)

As the aquatic effects assessment according to Directive 91/414/EEC is – in princi-ple - equivalent to the aquatic effects assessment for new and existing substanc-es as laid down in the TGD, it is proposed to divide the lowest relevant long-term toxicity datum (e.g. a single species NOEC) by the long-term TER-trigger (Toxicity Exposure Ratio) in order to derive the quality standard.

QSwater, PPP = NOECmin / TER-trigger long-term

For fi sh and invertebrate the long term TER-trigger value is 10. For algae no long term TER-trigger value has been defi ned. In the risk assessment for plant pro-tection products in the context of Directive 91/414/EC, which is focused on the ac-ceptability of effects that may occur in small water courses (e.g. ditches) in the vi-cinity of the treated area, specifi c weight is given to the recovery potential of these systems after transient exposure. This might be the reason why effects on algae are not considered exactly the same way as any other effects on invertebrates or fi sh. Many alga species have a high recovery potential and recover fast once the toxi-cant concentration falls below the effect level. Thus, the objective of the PPP risk assessment differs to some extent from the objective that is followed by the qual-ity standard. The long-term quality standards refer to “annual average” concen-trations and it is, therefore, required to give the algae toxicity data another weight for the purpose of quality standard setting. Hence, it is proposed to apply an as-sessment factor of 10 (equivalent to the long-term TER trigger for aquatic inver-tebrates or fi sh) to the lowest valid NOECalgae in the data set, if algae are the or-ganisms most sensitive to the PPP concerned.

In the risk assessment of plant protection products the minimum data set cov-ers normally long term test results on fi sh, invertebrate and algae. If long term test results are not available for these groups, higher assessment factors in accordance with Annex 2 should be used for deriving the EQS values.

Page 12: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74910

3.2 Statistical extrapolation approach – species

sensitivity distribution (SSD)

If a large data set from long-term tests for different taxonomic groups is available statistical extrapolation methods may be used to support the effect assessment and the derivation of a PNEC. According to the TGD at least 10 (preferably more than 15) chronic NOEC values, preferably of full life-cycle or multi-generation studies, for different species covering at least 8 taxonomic groups (see table 1) are required for the statistical extrapolation method.

Suffi cient data to use statistical methods was not available for any of the sub-stances for which EQS values were derived.

Table 1. Species required to apply statistical extrapolation.

• Fish (species frequently tested include salmonids, minnows, bluegill sunfi sh channel catfi sh, etc.)

• A second family in the phylum Chordata (fi sh, amphibian, etc.)

• A crustacean (e.g. cladoceran, copepod, ostracod, isopod, amphipod, crayfi sh etc.)

• An insect (e.g. mayfl y, dragonfl y, damselfl y, stonefl y, caddisfl y, mosquito, midge, etc.)

• A family in a phylum other than Arthropoda or Chordata (e.g. Rotifera, Annelida, Mollusca, etc.)

• A family in any order of insect or any phylum not already represented

• Algae

• Higher plants

Page 13: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11The Finnish Environment 749

Specifi c quality standards

In deriving specifi c quality standards the format used for the Community priori-ty substances under WFD has been used (Lepper 2002). The quality standards are fi rst derived for the water phase. Where trigger-values values for bioaccumulation and sediment-water partition coeffi cients (Kp) are exceeded, EQS values for biota (QS- secondary poisoning and QS - human uptake via fi sh) and sediment are de-rived, in addition. The trigger values proposed by Lepper (2002) are used (see ta-ble 2).

Table 2. Triggers to derive EQS-sediment and EQS-biota.

trigger value

sediment log Kp ≥ 3

biota (secondary poisoning) BCF ≥ 100 (logKow ≥ 3)

4.1 Annual average EQS for fresh water pelagic

community

The annual average EQS (AA-EQS) for fresh water has been calculated with the assessment factor approach described in chapter 3.

4.2 Annual average EQS for the Baltic sea pelagic

community

The (annual average) EQS for the Baltic sea has been calculated according to the principals laid down in the marine effect assessment of the TGD. According to the TGD a comparison between fresh water and salt water ecotoxicological data has revealed that, at least for the usual aquatic test species (i.e. fi sh, crustaces, algae), differences in sensitivity between fresh water and salt water species are not sig-nifi cant. Therefore, it is suggested in the TGD to pool the fresh water and marine data in the aquatic effect assessment. However, for several metals and pesticides differences larger than a factor of 10 were found in the sensitivity between fresh water and marine species. Therefore, according to the TGD pooled data should not be used for metals and pesticides, unless it is shown that differences between marine and fresh water data are not signifi cant.

Due to the greater species diversity in the marine environment, the TGD introduces additional data requirements for the marine assessment. If data are on-ly available for freshwater or saltwater algae, crustacean and fi sh an additional as-sessment factor of 10 is applied to refl ect the greater uncertainty in the extrapola-tion.1 If data are available for two additional taxonomic groups (e.g. rotifers, echi-noderms or molluscs) the uncertainties in the extrapolation are reduced and the magnitude of the assessment factor can be lowered.2 According to the TGD the use

1) The assessment factors used in the marine effect assessment are presented in table 25 of the TGD.2) Complete list of additional marine taxonomic groups is given in Annex XIV to TGD.

4

Page 14: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74912

of additional data on species ecologically relevant is also important for the Baltic sea, which is characterized by a limited species diversity and specifi c stresses such as low and variable salinity.

According to the TGD the effect assessment should be, where possible, data relevant to the environmental compartment that is considered. Most marine tests have been performed in media where the salinity is around 2-3 %. As in the Finn-ish coastal areas of the Baltic sea the percentage of salt rarely exceeds 0.6-0.7 %, such test results are not considered applicable for deriving an EQS value for the Baltic sea.

4.3 Maximum acceptable concentrations (MAC-QS)

for the fresh water pelagic community

In addition to the annual average EQS values, maximum acceptable concentra-tion values (MAC) are derived on the basis of acute toxicity data. For deriving the MAC values it is proposed to apply an assessment factor of 100 to the lowest val-id acute test result (EC50 value). This is in accordance with the effect assessment of intermittent releases in the TGD and has been proposed by Lepper 2002. In the TGD, with regard to the effect assessment of intermittent releases, it is stated that normally no single monitoring datum should exceed the lowest relevant L(E)C50 divided by an assessment factor of 100. However, there may be occasions when a higher or lower factor would be appropriate. E.g. for substances with a know non-specifi c mode of action variations may be low and therefore a factor lower than 100 appropriate. In no case should a factor lower than 10 be applied to a short-term L(E)C50 value. On this basis, the assessment factor of 100 has been proposed by Lepper (2002) and is in general used in this assessment to derive maximum ac-ceptable concentration limits from the lowest acute test result.

For pesticides the lowest relevant acute L(E)C50 may be divided by the rele-vant short-term TER-trigger in analogy to the calculation of short term TER in the PPP risk assessment. This short term TER trigger is 100 for fi sh and 10 for algae. Ac-cording to Lepper 2002, if algae are the organism most sensitive to acute effects, it should be carefully assessed whether the application of a TER-trigger of 10 is jus-tifi ed, given the differences between the objectives of the PPP risk assessment and a quality standard.

4.4 EQS for sediment

For substances that are liable to accumulate in sediments (i.e. substances for which logKow ≥ 3 or logKp ≥ 3) an EQS-sediment value is derived. In most cases insuf-fi cient data from toxicity tests on benthic organisms are available. In such cases, EQS-values for sediment are calculated from the annual average EQS (AA-EQS) using the equilibrium partitioning (EP) method:

EQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l),

where Kp_susp = solids-water partition coeffi cient in suspended particulate mat-ter (SPM). (Kp-susp is used as the properties of fresh sediment (e.g. the top-most layer of sediment) resemble more the properties of SPM than sediment.)

Page 15: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13The Finnish Environment 749

Choice of Kp-susp -value

The EQS-sediment value derived with the EP-method is determined by the choice of the Kp_susp value. In literature a variety of experimental Kp values can be avail-able for soils and sediments with different properties. The fraction of organic car-bon (f(oc)) is the single most important property of the solid material affecting the adsorption of organic substances. Therefore, Kp values are often normalized to the carbon content and expressed as Koc-values (=Kp/f(oc)). When Koc values are available the Kp-susp can be calculated with the following equation:

Kp-susp = f(oc) x Koc

In the substance specifi c fact sheets the default fraction of organic carbon in sed-iment given in the TGD, 10 %, is used. The EQS-sediment values are calculated from a range of Koc-values or alternatively some reasoning is given for the choice of a specifi c Koc-value. If no experimental Koc values are available Koc values have been estimated with modelling.

When monitoring substances in the sediment it is recommended to meas-ure the actual fraction of organic carbon in the sample and use this to derive a site spesifi c Kp-value and EQS-sediment. The fi nal choice of the Koc value should be done site specifi cally with all the information available for the specifi c sediment.

EQS-sediment (wet weight)

If the volume proportion of water and the density of solids of the sediment are known it is possible calculate the EQS-sediment referring to the wet weight. As an example the default properties given in the TGD are used in the following to calcu-late the ratio between EQS-sediment (wet weight) / EQS-sediment (dry weight):

The TGD defi nes wet SPM as 90 % vol/vol water (density 1 kg/l) and 10 % vol/vol solids (density 2.5 kg/l), thus giving a wet density of (0.9 × 1) + (0.1 × 2.5) = 1.15 kg/l. The dry weight of solids is therefore 0.25 kg (per litre wet SPM) and thus the wet:dry ratio is 1.15/0.25 = 4.6 and respectively the PNEC(dry): PNEC(wet) = 4.6. Thus,

PNECsed (dry weight) / PNECsed (wet weight) = 4.6

4.5 EQS referring to secondary poisoning of top

predators

For substances that are liable to bioaccumulate (i.e. substances for which: BCF ≥ 100 or logKow ≥ 3) an EQS referring to secondary poisoning of top preda-tors is derived. A PNECoral is calculated from NOAEL values obtained from die-tary or oral exposure studies on birds and mammals. The PNECoral expresses the predicted no effect level of the substance in the food. In the assessment it is as-sumed that top predators prey 100 % on the aquatic organisms. Therefore, the lev-el of the substance must not exceed the PNECoral. In the derivation of the PNEC-oral assessment factors given in the TGD and presented in Annex 3 to this report are applied. In Annex 3 further details on the derivation of PNECoral, e.g. on da-ta requirements are given.

The derived EQS-secondary poisoning is expressed as mg/kg fi sh (wet weight). In addition, the corresponding concentration in water (µg/l) is estimated on the basis of BCF-values for fi sh.

Page 16: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74914

4.6 QS referring to uptake of fi sh by humans

For substances that are liable to bioaccumulate (BCF ≥ 100 or logKow ≥ 3) a QS re-ferring to uptake of fi sh by humans is required. As it is not in the scope of this work to derive acceptable daily intake levels for humans, only a tentative assessment to investigate the relevance of uptake of fi sh by humans to the over all AA-EQS value can be done. If acceptable daily intake (ADI) values set e.g. by WHO are available these are used. If no such values are available a tentative ADI level is derived from NOAEL values obtained from long term dietary studies on mammals or birds. An assessment factor of 100 is applied. The QSs referring to uptake of fi sh by humans should be seen as indicative values. They can be used to estimate whether fi sh up-take by humans is relevant for setting the over all quality standard.

The derivation is based on the default values given in the TGD. The accepta-ble daily intake level is expressed as mg/day for a person with 70 kg body weight. This threshold level may not be exceeded by more than 10 % by consumption of food originating from aquatic sources. According to TGD the average fi sh con-sumption of a EU citizen is 115 g/day.

The derived QS is expressed as mg/kg fi sh (wet weight). In addition, the cor-responding concentration in water (µg/l) is estimated on the basis of BCF-values for fi sh.

4.7 QS for drinking water

In this section drinking water quality standards set in other Community legisla-tion or recommended by e.g. WHO are reported. It is not in the scope of this work to derive acceptable daily intake levels (ADI) for humans. However, if no drinking water quality standards are available in existing legislation a tentative assessment on the basis of NOAEL values is performed as described in the previous chapter. Thus derived tentative drinking water QS values should be seen as indicative val-ues. They can be used to estimate whether uptake of water by humans is relevant for setting the over all quality standard.

The derivation is based on the default values given in the TGD: uptake by drinking water should not exceed 10 % of the threshold level for humans. The up-take of drinking water is 2 l/day.

Page 17: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15The Finnish Environment 749

Over all quality standard

In general, the lowest specifi c QS is selected as the overall AA-EQS for fresh wa-ter. Thus the overall AA-EQS is protective to all environmental compartments as-sessed. However, the Drinking Water Quality standards are generally considered as applying only to waters intended for the abstraction of drinking water. In Annex 4 a summary of the derived environmental quality standards is presented.

AcknowledgementsI would like to thank all colleagues at the Chemicals Unit and especially members of the risk assessment, biocides and pesticides teams for their excellent advice and support during the work. I would also like to thank Carita Nybom for the swed-ish translation of the documentation page.

Susan Londesborough

5

Page 18: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74916

Abbreviations

AA-EQS Annual Average EQSACC accumulationADI Acceptable Daily Intake (for humans)AF Assessment Factora.i. active ingredientAQxxxx Aquire Ecotox database reference

number BCF Bioconcentration factorBCM BiochemicalBEH BehaviourBUA The German Chemical Society –

Advisory Committee on Existing Chemicals of Environmental Relevance Reports

b.w. body weightC Complete CHG No clear trend, results are variableCHI ChineseCHLO Chlorophyll, generalCOCO Cobalt ContentCONV Conversion FactorDEC Decreased.w. dry weightDT50 Half LifeDVP Development effectENG EnglishEP Equilibrium partitioningEU-RAR European Union – Risk Assessment

Report EQS Environmental Quality StandardsEQUL EquilibriumEUSES European Union System for the

Evaluation of Substancesf(oc) fraction of organic carbonF FormulationGACC Accumulation, generalGBHV Behaviour, generalGDVP Developmental changes, generalGER GermanGGRO Growth, generalGRO GrowthHSDB Hazardous Substances Database. I IncompleteIMBL ImmobileINC IncreaseITX IntoxicationIUCLID International Uniform Chemical

DatabaseJPN JapaneseKoc Organic carbon – water distribution

coeffi cientKow Octanol-water distribution coeffi cientKp_sed Solids-water partition coeffi cient in

sediment

Kp_susp Solids – water partitioning coeffi cient in SPM

LC Lethal Concentration LD Lethal DoseLOAEL Lowest Observed Adverse Effect LevelM Moderatemeas. conc. measured concentrationsMBeT MercaptobenzothiazoleMBTS Mercaptobenzothiazoledisulphide MAC Maximum Acceptable ConcentrationMOR Mortality (group parameter; Aquire

code)MORT Mortality (Aquire code)N-CLASS Database on Environmental Hazard

Classifi cation NOAEL No Observed Adverse Effect LevelNOEC No Observed Effect Concentrationnom. conc. nominal concentrationsNPS National Priority SubstanceOMCTS OctamethylcyclotetrasiloxanePPP Plant Protection Product PNEC Predicted No-Effect ConcentrationQS Quality StandardQSAR Quantitative Structure Activity RelationshipRA Risk AssessmentRAR Risk Assessment ReportREP ReproductionRSDE Residue (Aquire code)SPM Suspended particulate materialSYKE Finnish Environment InstituteTCMTB 2-(thiocyanomethylthio)-

benzothiazoleTER Toxicity - Exposure RatioTDI Tolerable Daily IntakeTGD Technical Guidance DocumentTS Test SubstanceWFD Water Framework Directivew.w. wet weight

Page 19: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17The Finnish Environment 749

References

Aanes, K.J.1992. Some Pesticides Used in Norwegian Agriculture and Their Environmental Ef-fects on Common Inhabitants in Freshwater Ecosystems. Tolerance Limits. In: A. Hel-weg (Ed.), Pesticides in the Aquatic Environment.Appearance and Effects, Nov.12-14, 1991, Tune Landboskole, Denmark :108-131.

Abernethy, S., Bobra, A., Shiu, W., Wells, P. and MacKay, D.1985. Acute Lethal Toxicity of Hy-drocarbons and Chlorinated Hydrocarbons to Two Planktonic Crustaceans: The Key Role of Organism-Water Partitioning. Aquat.Toxicol. 8(3):163-174 (Publ. in Part As 11936) (OECDG Data File).

Ahmad, N., Benoit, D., Brooke, L., Call, D., Carlson, A., Defoe, D., Huot, J., Moriarity, A., Rich-ter, J. and Shubat, P. 1984. Aquatic Toxicity Tests to Characterize the Hazard of Vola-tile Organic Chemicals in Water: A Toxicity Data Summary. Parts I and II. EPA 600/3-84-009, U.S.EPA, MN :103 p.

Ahmed, W., and Washino, R. 1976. Toxicity of Pesticides Used in Rice Culture in California to Gambusia affi nis (Baird and Girard). In: Ph.D.Thesis, Ahmed, W., The Effectiveness of Predators of Rice Field Mosquitoes in Relation to Pesticide use in Rice Culture, Univer-sity of California, Davis, CA :15-31.

Aldenberg, T. and Jaworska, J. 2000. Uncertainty of the Hazardous Concentration and Frac-tion Affected for Normal Species Sensitivity Distributions. Ecotoxicology and Environ-mental Safety 46, 1-18.

Andersson, A. 2002. Water Quality Objectives - a background report on the derivation of wa-ter quality objectives in Sweden. National Chemicals Inspectorate, Solna. Sweden.

Andersson, Y., Björk, M., Hanze, K.1993. Ecotoxicological evaluation of the herbicide metam-itron. First revision, amendments and Appendix 1 included. National Chemicals In-spectorate, Sweden.

Applegate, V.C., Howell, J.H., Hall, A.E. Jr. and Smith, M.A.1957. Toxicity of 4,346 Chemicals to Larval Lampreys and Fishes. Spec.Sci.Rep.Fish.No.207, Fish Wildl.Serv., U.S.D.I., Washington, D.C. :157.

AQxxxx. Aquire Ecotox database reference. The database is available in the Internet: http://www.epa.gov/ecotox/

Baekken, T., and Aanes, K.J.1991. Pesticides in Norwegian Agriculture. Their Effects on Ben-thic Fauna in Lotic Environments. Preliminary Results. Int.Assoc.Theor.Appl.Limnol.Proc./Int.Ver.Theor.Angew.Limnol.Verh. 24(4):2277-2281.

Bailey, H.C., Liu, D.H.W. and. Javitz, H.A. 1985. Time/Toxicity Relationships in Short-Term Static, Dynamic, and Plug-Flow Bioassays. In: R.C.Bahner and D.J.Hansen (Eds.), Aquatic Toxicology and Hazard Assessment, 8th Symposium, ASTM STP 891, Philadel-phia, PA:193-212.

Barnhart, E.L. and Campbell, G.R. 1972. The Effects of Chlorination on Selected Organic Chemicals. EPA-12020-EXG, U.S.EPA, Washington, D.C. :105 p.

Barrows, M.E., Petrocelli, S.R., Macek, K.J. and J.J. Carroll, 1978. Bioconcentration and Elimi-nation of Selected Water Pollutants by the Bluegill Sunfi sh (Lepomis macrochirus). In: R.Haque (Ed.), Dyn. Exposure Hazard Assess.Toxic Chem., (Pap.Symp.1978), Ann Ar-bor Sci., Ann Arbor, MI:379-392 (1980), Am.Chem.Soc., Div. Environ. Chem.18(2):345-346 (1978) (ABS); Abstr.Pap.Am.Chem.Soc. 176:125 (Mar.10, 1980 Memo to D.W.Kuehl, EPA, MN).

Bazin, C., Chambon, P., Bonnefi lle, M. and Larbaigt, G. 1987. Compared Sensitivity of Lumi-nescent Marine Bacteria (Photobacterium phosphoreum) and Daphnia Bioassays. Sci.Eau.6:403-413.

Begum, G., Vijayaraghavan, S., Sarma, P., and Husain, S. 1994. Study of Dimethoate Bioaccu-mulation in Liver and Muscle Tissues of Clarias batrachus and Its Elimination Follow-ing Cessation of Exposure. Pestic.Sci. 40(3):201-205.

Benoit-Guyod, J.L., Andre, C. and Clavel, K. 1984. Chlorophenols: Degradation and Toxicity (Chlorophenols: Degradation et Toxicite). J.Fr.Hydrol.15(3):249-266 (Fre) (Eng Abs).

Bergman, H.L. and Anderson, A.D. 1977. Effects of Aqueous Effl uents from In Situ Fossil Fuel Processing Technologies on Aquatic Systems. Contract No.EY-77-C-04-3913, University of Wyoming, Laramie, WY.

Page 20: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74918

Bernardini, G., Spinelli, O., Presutti, C., Vismara, C, Bolzacchini, E., Orlandi, M. and Settimi, R. 1996. Evaluation of the Developmental Toxicity of the Pesticide MCPA and Its Contami-nants Phenol and Chlorocresol. Environ.Toxicol.Chem. 15(5):754-760.

Beusen, J.M. and Neven, B.1989. Toxicity of Dimethoate to Daphnia magna and Freshwater Fish. Bull.Environ.Contam.Toxicol. 42(1):126-133.

Birge, W.J., Black, J.A. and Bruser, D.M. 1979a. Toxicity of Organic Chemicals to Embryo-Lar-val Stages of Fish. Ecol.Res.Ser.EPA-560/11-79-007, Offi ce of Toxic Substances, U.S.EPA, Washington, D.C .:60 (OECDG Data File).

Birge, W.J., Black, J.A., Hudson, J.E. and Bruser, D.M. 1979b. Embryo-Larval Toxicity Tests with Organic Compounds. In: L.L.Marking and R.A.Kimerle (Eds.), Aquatic Toxicology and Hazard Assessment, 2nd Symposium, ASTM STP 667, Philadelphia, PA:131-147.

Björk, M. and Wenell, T. 1992. Ecotoxicological Evaluation of Prochloraz. National Chemicals Inspectorate, Sweden.

Blackman, G.E., Parke, M.H. and Garton, G. 1955. The Physiological Activity of Substituted Phenols. I. Relationships between Chemical Structure and Physiological Activity. Arch.Biochem.Biophys. 54:45-54.

Blasberg, Hicks, Stuerman, 1992. Chronic toxicity of TCMTB to Daphnia magna under fl ow-through test conditions. ABC Laboratories, Inc., Columbia, USA. Report No. 39727.

Bobra, A., Shiu, W.Y and MacKay, D. 1985. Quantitative Structure-Activity Relationships for the Acute Toxicity of Chlorobenzenes to Daphnia magna. Environ.Toxicol.Chem. 4(3):297-305

Bobra, A.M., Shiu, W.Y and Mackay, D. 1983. A Predictive Correlation for the Acute Toxicity of Hydrocarbons and Chlorinated Hydrocarbons to the Water Flea (Daphnia magna). Chemosphere 12(9-10):1121-1129.

Bogers, M. 1992. Daphnia Magna, reproduction test with bronopol. RCC Notox, the Nethet-lands. RCC project 054102.

Bogers, M. 1994. Daphnia magna, reproduction test with Myacide S 8 (fl ow-through). Notox B.V, the Netherlands. Laboratory project ID 123536.

Borah, S., and Yadav, R.N.S. 1996. Effect of Rogor (30 % w/w Dimethoate) on the Activity of Lactate Dehydrogenase, Acid and Alkaline Phosphatase in Muscle and Gill of a Fresh Water Fish. J.Environ.Biol. 17(4):279-283.

Bringmann, G., and Kuhn, R. 1959. The Toxic Effects of Waste Water on Aquatic Bacteria, Al-gae, and Small Crustaceans. Tr-Ts-0002, (Eng Transl); Gesund.Ing.80:115-120 (Ger) 53:17390G.

Bringmann, G., and Kuhn, R. 1982. Results of Toxic Action of Water Pollutants on Daphnia magna Straus Tested by an Improved Standardized Procedure. Z.Wasser-Abwasser-For-sch. 15(1):1-6 (GER) (ENG ABS) (OECDG Data File).

Bringmann, G., and Kuhn, R.1977. The Effects of Water Pollutants on Daphnia magna. Z.Wasser-Abwasser-Forsch.10(5):161-166 (GER) (ENG ABS); TR-79-1204, Literature Re-search Company :13 p. (ENG TRANSL) (OECDG Data File).

Broderius, S.J., Kahl, M.D. and Hoglund, M.D. 1995. Use of Joint Toxic Response to Defi ne the Primary Mode of Toxic Action for Diverse Industrial Organic Chemicals. Environ.Toxi-col.Chem. 14(9):1591-1605.

BUA 1990a. Report No. 54: Chlorobenzene. 1990. German Chemical Society. GDCh- Advisory Committee on Existing Chemicals of Environmental Relevance (BUA).

BUA 1990b. Report No 53: 1,2-dichlorobenzene. 1990. German Chemical Society. GDCh- Advi-sory Committee on Existing Chemicals of Environmental Relevance (BUA).

BUA 1991. Report No 74: 2-mercaptobenzothiazole (MbeT). 1991. German Chemical Society. GDCh- Advisory Committee on Existing Chemicals of Environmental Relevance (BUA).

BUA 1993. Report No126: 2,2'-dithio-bis-benzothiazole (MBTS). German Chemical Society. GD-Ch- Advisory Committee on Existing Chemicals of Environmental Relevance (BUA). October 1993.

BUA 1996. Report No 208: N-(1,3-dimethylbutyl)-N'-phenyl-1,4-benzenediamine. 1996. Ger-man Chemical Society – Advisory Committee on Existing Chemicals of Environmental Relevance (BUA).

Buccafusco, R.J., Ells, S.J. and LeBlanc, G.A. 1981. Acute Toxicity of Priority Pollutants to Bluegill (Lepomis macrochirus). Bull.Environ.Contam.Toxicol. 26(4):446-452 (OECDG Data File).

Page 21: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19The Finnish Environment 749

Butler, P.A., 1963. Commercial Fisheries Investigatinons. Circ. Fish wildl. Serv., Washington, No.167 :11-25.

Calamari, D., Galassi, S., Setti, F. and Vighi, M. 1983. Toxicity of Selected Chlorobenzenes to Aquatic Organisms. Chemosphere 12(2):253-262 (Publ in Part As 10745).

Call, D.J., Brooke, L.T. and Ahmad, N. 1979. Toxicity, Bioconcentration and Metabolism of Se-lected Chemicals in Aquatic Organisms. Third Quarterly Progress Report to EPA, EPA Cooperative Agreement No.CR 806864020, University of Wisconsin, Superior, W I:38.

Canada 2002. Canadian Environmental Quality Guidelines for Nonylphenol and its Ethoxy-lates (Water, Sediment and Soil), 2002. Environment Canada. Report No. 1-3.

Canada 2003. Canadian Environmental Quality Guidelines: Summary of Existing Canadian Environmental Quality Guidelines, December 2003. Available on the internet: (http://www.ccme.ca/publications/can_guidelines.html).

Canton, J.H., Slooff, W. Kool, H.J., Struys, J., Gouw, T.J.M., Wegman, R.C.C. and Piet, G.J. 1985. Toxicity, Biodegrability and Accumulation of a Number of Cl/N-Containing Com-pounds for Classifi cation and Establishing Water Quality Criteria. Regul.Toxicol.Phar-macol. 5:123-131 (OECDG Data File).

Canton, J.H., Wegman, R.C.C., Van Oers, A., Tammer, A.H.M., Mathijssen-Spiekman, E.A.M and Van den Broek, H.H. 1980. Environmental Toxicological Research with Dimethoate and Omethoate. Rep.No.121/80, Natl.Inst.Public Health Environ.Hyg.:6 p.(DUT).

Casserly, D.M., Davis, E.M., Downs, T.D. and Guthrie, R.K. 1983. Sorption of Organics by Sele-nastrum capricornutum. Water Res. 17(11):1591-1594.

Caux, P.Y., Menard, L. and R.A. Kent, 1996. Comparative Study of the Effects of MCPA, Butylate, Atrazine, and Cyanazine on Selenastrum capricornutum. Environ.Pollut. 92(2):219-225.

Chaturvedi, L.D., and Agrawal, K. 1991. Physiological Responses of Fish to Rogor and Alachlor, Part I. General Impact on Heteropneustes fossilis. Uttar Pradesh J. Zool. 11(2):93-102.

COM(2001)262 fi nal. Communications to from the Commission to the Council and the Euro-pean Parliament on the implementation of the Community Strategy for Endocrine Dis-rupters – a range of substances suspected of interfering with the hormone systems of humans and wildlife (COM(1999)706), Brussels 14.6.2001. Available on the internet: ht-tp://europa.eu.int/comm/environment/endocrine/documents/index_en.htm.

Cowgill, U.M. and Milazzo, D.P. 1991. The Sensitivity of Ceriodaphnia dubia and Daphnia magna to Seven Chemicals Utilizing the Three-Brood Test. Arch.Environ.Contam.Toxi-col. 20(2):211-217.

Cowgill, U.M., Milazzo, D.P. and Landenberger. B.D. 1989. Toxicity of Nine Benchmark Chemi-cals to Skeletonema costatum, a Marine Diatom. Environ.Toxicol.Chem. 8(5):451-455.

Cowgill, U.M., Takahashi, I.T. and Applegath, S.L. 1985. A Comparison of the Effect of Four Benchmark Chemicals on Daphnia magna and Ceriodaphnia dubia affi nis Tested at Two Different Temperatures. Environ.Toxicol.Chem.4(3):415-422.

Crosby, D.G. and Tucker, R.K. 1966. Toxicity of Aquatic Herbicides to Daphnia magna. Science 154:289-291.

CSTEE 1994. EEC Water Quality Objectives for Chemicals Dangerous to Aquatic Environ-ments (List 1). Scientifi c Committee on Toxicity and Ecotoxicity of Chemicals of the Eu-ropean Commission (CSTE(EEC)). 1994. In: Reviews of Environmental Contamination and Toxicology, Vol. 137. Springer-Verlag, New York. p. 3-110.

Curtis, M.W. and Ward, C.H. 1981. Aquatic Toxicity of Forty Industrial Chemicals: Testing in Support of Hazardous Substance Spill Prevention Regulation. J.Hydrol.51:359-367.

Curtis, M.W., Copeland, T.L. and Ward, C.H. 1978. Aquatic Toxicity of Substances Proposed for Spill Prevention Regulation. In: Proc.Natl.Conf.Control of Hazardous Material Spills, Miami Beach, FL:93-103.

Curtis, M.W., Copeland, T.L. and Ward, C.H. 1979. Acute Toxicity of 12 Industrial Chemicals to Freshwater and Saltwater Organisms. Water Res. 13(2):137-141.

Dalich, G.M., Larson, R.E. and Gingerich, W.H. 1982. Acute and Chronic Toxicity Studies with Monochlorobenzene in Rainbow Trout. Aquat.Toxicol. 2:127-142.

Davis, H.C. and Hidu, H. 1969. Effects of Pesticides on Embryonic Development of Clams and Oysters and on Survival and Growth of the Larvae. Fish.Bull. 67(2):393-404.

Davis, J.T. and Hughes, J.S. 1987. Further Observations on the Toxicity of Commercial Herbi-cides to Bluegill Sunfi sh. In: Proc.16th Annu.Meeting Southern Weed Conf.:337-340.

Page 22: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74920

Dawson, G.W., Jennings, A.L., Drozdowski, D. and Rider, E. 1977. The Acute Toxicity of 47 In-dustrial Chemicals to Fresh and Saltwater Fishes. J.Hazard.Mater. 1(4):303-318.

DeGraeve, G.M., Geiger, D.L., Meyer, J.S. and Bergman, H.L. 1980. Acute and Embryo-Lar-val Toxicity of Phenolic Compounds to Aquatic Biota. Arch.Environ.Contam.Toxicol. 9(5):557-568.

Deneer, J.W., Seinen, W. and Hermens, J.L.M. 1988. Growth of Daphnia magna Exposed to Mixtures of Chemicals with Diverse Modes of Action. Ecotoxicol.Environ.Saf. 15(1):72-77.

Devillers, J., Meunier, T. and Chambon, P. 1985. Advantage of the Dosage-Action-Time Relation in Ecotoxicology for the Test of the Various Chemical Species of Toxics. Tech.Sci.Mu-nic.80:329-334 (Fre) (Eng Abs).

Dive, D., Leclerc, H. and Persoone, G. 1980. Pesticide Toxicity on the Ciliate Protozoan Colpid-ium campylum: Possible Consequences of the Effect of Pesticides in the Aquatic Envi-ronment. Ecotoxicol.Environ.Saf. 4:129-133.

Dutt, N. and Guha, R.S. 1988. Toxicity of Few Organophosphorus Insecticides to Fingerlings of Bound Water Fishes, Cyprinus carpio (Linn.) and Tilapia mossambica Peters. Indian J.Entomol. 50(4):403-421.

EHC 1991. Environmental Health Criteria (EHC) No 128: Chlorobenzene. 1991. World Health Organisation, International Programme on Chemical Safety, Geneva. Available on the net: http://www.inchem.org/pages/ehc.html.

EHC 1997. Environmental Health Criteria No 189: Di-n-butyl Phthalate. 1997. World Health Organization, International Programme on Chemical Safety, Geneve. Available on the net: http://www.inchem.org/pages/ehc.html.

Eriksson, U. & Johnson, A. 1994. Busan 30, reg nr 3759. 22.12.1994. Dnro F-50-250-93. National Chemicals Inspectorate, Sweden.

EU- RAR 2000. European Union Risk Assessment Report on Benzyl butyl phthalate. Draft De-cember 2000. Rapporteur Member State: Norway. The report is available in the Europe-an chemical Substances Information System (ESIS): http://ecb.jrc.it/existing-chemicals/.

EU-RAR 2001. European Union Risk Assessment Report on 4-nonylphenol (branched) and no-nylphenol. Final report, April 2001. Rapporteur Member State: UK. The report is availa-ble in the European chemical Substances Information System (ESIS): http://ecb.jrc.it/ex-isting-chemicals/.

EU-RAR 2003a. European Union Risk Assessment Report on 1,4-dichlorobenzene. Final report, October 2003. Rapporteur Member State France. The report is available in the Europe-an chemical Substances Information System (ESIS): http://ecb.jrc.it/existing-chemicals/.

EU-RAR 2003b. European Union Risk Assessment Report on Dibutyl phthalate, volume 29. Fi-nal Report, 2003. Rapporteur Member State: the Netherlands. The report is available in the European chemical Substances Information System (ESIS): http://ecb.jrc.it/existing-chemicals/.

EUSES. European Union System for the Evaluation of Substances. The EUSES program is based on the Technical Guidance Document (TGD) for risk assessment of chemicals. It is available in the internet: http://ecb.jrc.it/existing-chemicals/.

Ewell, W.S., Gorsuch, J.W, Kringle, R.O., Robillard, K.A. and Spiegel, R.C. 1986. Simultaneous Evaluation Of The Acute Effects Of Chemicals On Seven Aquatic Species. Environ.Toxi-col.Chem. 5(9):831-840.

Fackler, P.H., Dionne, E., Hartley, D.A. and Hamelink, J.L. 1995. Bioconcentration by Fish of a Highly Volatile Silicone Compound in a Totally Enclosed Aquatic Exposure System. En-viron.Toxicol.Chem. 14(10):1649-1656.

Fahl, G.M., Kreft, L., Altenburger, R., Faust, M., Boedeker, W. and Grimme, L.H. 1995. pH-De-pendent Sorption, Bioconcentration and Algal Toxicity of Sulfonylurea Herbicides. Aquat.Toxicol. 31(2):175-187.

Fargasova, A. 1994. Toxicity Determination of Plant Growth Hormones on Aquatic Alga - Scenedesmus quadricauda. Bull.Environ.Contam.Toxicol. 52(5):706-711.

Figueroa, I. and Simmons, M.S. 1991. Structure-Activity Relationships of Chlorobenzenes Using DNA Measurement as a Toxicity Parameter in Algae. Environ.Toxicol.Chem. 10(3):323-329.

Figueroa, I.D.C. 1990. Structure-Activity Relationships of Chlorobenzenes Using DNA Meas-urement as a Toxicity Parameter in Algae. Ph.D.Thesis, University of Michigan, Ann Ar-bor, MI:232 p.; Diss.Abstr.Int.B Sci.Eng.51(4):1722.

Page 23: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21The Finnish Environment 749

Firmin, R. 1984. The Environmental Impacts of Organosilicon Compounds on the Aquatic Bio-sphere. In: Persoone, G. (Ed.). Ecotoxicological Testing for the Marine Environment. State University of Ghent and Institute for Marine Research, Bredene.

Florence, T.M. and Stauber, J.L. 1986. Toxicity of Copper Complexes to the Marine Diatom Nitzschia closterium. Aquat. Toxicol. 8(1):11-26.

Freitag, D., Lay, J.P. and Korte, F. 1984. Environmental Hazard Profi le - Test Results as Relat-ed to Structures and Translation into the Environment. In: Kaiser, K.L.E. (Ed.). QSAR in Environmental Toxicology, Proceedings of the Workshop held at McMaster University, Hamilton, Ont., Aug.16-18, 1983. D. Reidel Publ. Co., Dordrecht, Netherlands. 111-131.

Furay, V.J., and Smith, S. 1985. Toxicity and QSAR of Chlorobenzenes in Two Species of Benth-ic Flatfi sh, Flounder (Platichthys fl esus L.) and Sole (Solea solea L.). Bull.Environ.Con-tam.Toxicol. 54(1):36-42.

Gagliano, G., Bowers, L. 1993. Acute toxicity of Preventol CMK technical to the Rainbow Trout (Oncorchynchus mykiss) Under Static Renewal Conditions (KS 66085 Performing Lab. ID PR812201, Miles Report No. 105020). Miles Inc., Agricultural Division, Research and Development Department, Environmental Research Section, South Metcalf, Stilwell.

Galassi, S. and Vighi, M. 1981. Testing Toxicity of Volatile Substances with Algae. Chemosphere 10(10):1123-1126.

Geiger, D.L., Brooke, L.T. and Call, D.J. 1990. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas), Vol. 5. Center for Lake Superior Environmental Stud-ies, University of Wisconsin-Superior, Superior, WI I:332.

Geiger, D.L., Northcott, C.E., Call, D.J. and Brooke, L.T. 1985. Acute Toxicities of Organic Chem-icals to Fathead Minnows (Pimephales promelas), Vol. 2. Center for Lake Superior En-vironmental Studies, University of Wisconsin-Superior, Superior, WI I:326.

Geiger, D.L., Poirier, S.H., Brooke, L.T. and Call, D.J. 1986. Acute Toxicities of Organic Chemi-cals to Fathead Minnows (Pimephales promelas), Vol. 3. Center for Lake Superior Envi-ronmental Studies, University of Wisconsin-Superior, Superior, WI I:328.

Gersich, F.M. and Mayes, M.A. 1986. Acute Toxicity Tests with Daphnia magna Straus and Pimephales promelas Rafi nesque in Support of National Pollutant Discharge Elimina-tion Permit. Water Res. 20(7):939-941.

Gersich, F.M., Blanchard, F.A., Applegath, S.L. and Park, C.N. 1986. The Precision of Daphnid (Daphnia magna Straus, 1820) Static Acute Toxicity Tests. Arch.Environ.Contam.Toxicol. 15(6):741-749.

Gillette, L.A., Miller, D.L. and Redman, H.E. 1952. Appraisal of a Chemical Waste Problem by Fish Toxicity Tests. Sewage Ind.Wastes 24:1397-1401.

Guzzella, L., Gronda, A. and Colombo, L. 1997. Acute Toxicity of Organophosphorus Insecti-cides to Marine Invertebrates. Bull.Environ.Contam.Toxicol. 59:313-320.

Hansen, O.C. 1992. Økotoksikologisk evaluering af dimethoat (21.10.1992). Miljøstyrelsen. Bekaempelsesmeddelkontoret.

Hattula, M.L., Wasenius, V.M., Reunanen, H. and Arstila, A.U. 1981. Acute Toxicity of Some Chlorinated Phenols, Catechols, and Cresols to Trout. Bull.Environ.Contam.Toxicol. 26(3):295-298.

Havlikova, J., Svobodova, Z. and Filipova, O. 1981. The Acute Toxicity of Galinex Special a Aminex 500 to Fish. Bul.Vyzk.Ustav Ryb.Hydrobiol.Vodnany 17(4):26-30 (CZE) (ENG ABS),

Hedenmark 1993. Ecotoxicologisk utvärdering av slembekämpningsmedlet TCMTB (93-02-24). Hedenmark & vatten HB, Solna, Sweden.

Heitmuller, P.T., Hollister, T.A. and Parrish, P.R. 1981. Acute Toxicity of 54 Industrial Chemi-cals to Sheepshead Minnows (Cyprinodon variegatus). Bull.Environ.Contam.Toxicol. 27(5):596-604.

Hermens, J., Canton, H., Janssen, P., Jong, R. 1984. Quantitative Structure-Activity Relationship and Toxicty Studies of Mixtures of Chemicals with Anaesthetic Potency: Acute Lethal and Sublethal Toxicity to Daphnia Magna. Aquat. Toxicol. 5(2):143-154.

Hermens, J., Canton, H., Steyger, N. and Wegman, R. 1984. Joint Effects of a Mixture of 14 Chemicals on Mortality and Inhibition of Reproduction of Daphnia magna. Aquat.Tox-icol. 5(4):315-322.

Hill, R.W. 1984a. Bronopol: determination of acute toxicity to sheepshea minnow (Cyprinodon variegatus). Imperial Chemical Industries PLC, United Kingdom. BL/B/2522.

Page 24: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74922

Hill, R.W. 1984b. Bronopol: determination of acute toxicity to bluegill sunfi s (Lepomis macro-chirus). Imperial Chemical Industries PLC, United Kingdom. BL/B/2520.

Hodson, P.V., 1985. A Comparison of the Acute Toxicity of Chemicals to Fish, Rats and Mice. J.Appl.Toxicol. 5(4):220-226.

Hodson, P.V., Dixon, D.G. and Kaiser, K.L.E. 1984. Measurement of Median Lethal Dose As a Rapid Indication of Contaminant Toxicity to Fish. Environ.Toxicol.Chem. 3(2):243-254.

Holcombe, G.W., Phipps, G.L., Knuth, M.L. and Felhaber, T. 1984. The Acute Toxicity of Se-lected Substituted Phenols, Benzenes and Benzoic Acid Esters to Fathead Minnows Pimephales promelas. Environ.Pollut.Ser.A Ecol.Biol. 35(4):367-381.

Hopkins, R. and Kain, J.M. 1971. The Effect of Marine Pollutants on Laminarea hyperboria. Mar.Pollut.Bull. 2(5):75-77.

Howard, P.H. 1990. Handbook of Environmental Fate and Exposure Data For Organic Chem-icals. Volume 1: Large Production and Priority Pollutants. Lewis Publishers. ISBN 0-87371-151-3.

HSDB. Hazardous Substances Database. The database is available in the Internet: http://toxnet.nlm.nih.gov/.

Huang, J.C., and Gloyna, E.F. 1967. Effects of Toxic Organics on Photosynthetic Reoxygenation. U.S.D.I. (U.S.NTIS PB-216749). Fed.Water Pollut.Control Admin., Tech.Rep. 163 p.

Hughes, J.S. and Davis, J.T. 1964. Effects of Selected Herbicides on Bluegill Sunfi sh. Proc.Annu.Conf.Southeast.Assoc.Game Fish Comm. 18:480-482.

Hutchinson, T.C., Hellebust, J.A. Tam, D. MacKay, D., Mascarenhas, R.A. and Shiu. W.Y. 1980. The Correlation of the Toxicity to Algae of Hydrocarbons and Halogenated Hydrocar-bons with Their Physical-Chemical Properties. Environ.Sci.Res. 16:577-586.

IUCLID Dataset on 4-chloro-3-methylphenol. The dataset is available from the ESIS (European chemical Substances Information System) database in the internet: http://ecb.jrc.it/exist-ing-chemicals/.

IUCLID Dataset on Chlorobenzene. The dataset is available from the ESIS (European chemi-cal Substances Information System) database in the internet: http://ecb.jrc.it/existing-chemicals/.

IUCLID Dataset on MBeT. The dataset is available from the ESIS (European chemical Sub-stances Information System) database in the internet: http://ecb.jrc.it/existing-chemicals/.

IUCLID Dataset on MBTS. The dataset is available from the ESIS (European chemical Sub-stances Information System) database in the internet: http://ecb.jrc.it/existing-chemicals/.

Johnson, W.W. and Finley, M.T. 1980. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates. Resour.Publ.137, Fish Wildl.Serv. U.S.D.I., Washington, D.C. 98 p.

Jones, W.E., 1975. Detection of Pollutants by Fish Tests. Water Treat.Exam. 24:132-139. Juhnke, I., and Luedemann, D. 1978. Results of the Investigation of 200 Chemical Compounds

for Acute Fish Toxicity with the Golden Orfe Test. Z.Wasser-Abwasser-Forsch. 11(5):161-164 (GER) (ENG TRANSL).

Kader, H.A., Thayumanavan, B. and Krishnaswamy, S. 1976. The Relative Toxicities of Ten Bio-cides on Spicodiaptomus chelospinus Rajendran (1973) [Copepoda: Calanoida]. Comp.Physiol.Ecol. 1(3):78-82.

Kallqvist, T., and Romstad, R. 1994. Effects of Agricultural Pesticides on Planktonic Algae and Cyanobacteria - Examples of Interspecies Sensitivity Variations. Norw.J.Agric.Sci.Sup-pl. 13:117-131.

Kent, D.J., McNamara, P.C, Putt, A.E., Hobson, J.F and E.M. Silberhorn, 1994. Octamethylcy-clotetrasiloxane in Aquatic Sediments: Toxicity and Risk Assessment. Ecotoxicol. Envi-ron. Saf. 29(3):372-389.

Kirkwood, R.C., and Fletcher, W.W. 1970. Factors Infl uencing the Herbicidal Effi ciency of MCPA and MCPB in Three Species of Micro-Algae. Weed Res. 10:3-10.

Kjøholt, J., Andersen, H.V., Seedorf, L. and Randløv, A. 1992. Økotoksikologisk vurdering af TCMTB (2-(tiocyanomethylthio)benzothiazole). Oktober 1992. COWIconsult, Miljøsty-relsen, Denmark.

Knapek, R. and Lakota, S. 1974. Biological Testing to Determine Toxic Effects of Pesticides in Water. (Einige Biotests zur Untersuchung der Toxischen Wirkung von Pestiziden im Wasser). Tagungsber.Akad.Landwirtschaftswiss.D.D.R.126:105-109 (GER) (ENG ABS).

Knezovich, J.P. and Harrison, F.L. 1988. The Bioavailability of Sediment-Sorbed Chloroben-zenes to Larvae of the Midge, Chironomus decorus. Ecotoxicol.Environ.Saf. 15:226-241.

Page 25: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23The Finnish Environment 749

Knoll Microcheck Report 1998. The Toxicity of Bronopol to the Freshwater Unicellular Green Alga (Scenedesmus subspicatus). CEMAS. CEM Analytical Services Ltd. CEM Report Number CEMR-754. Knoll Microcheck Report Number KM 98001. Date of Issue 20th January 1998.

Kuehn et al. 1989. Schadwirkingen von Umweltschemicalien im Daphnien-Reproductions-Test als Grundlage fuer die Bewertung der Umweltgefährlichkeit in aquatischen Systemen – Verlaengerter Toxizitetstest bei Daphnia magna als Grundlage fuer Wasserqualitets-standarde. UFOPLAN 106 03 02/01, 332 p.

Kuhn, R. 1988. Schadstoffwirkungen von Umweltchemikalien im Daphnien-Reproduktions-Test als Grundlage fr die Bewertung der Umweltgefhrlichkeit in Aquatischen Syste-men. Forschungsbericht 10603052.

Kuhn, R. and Pattard, M.1990. Results of the Harmful Effects of Water Pollutants to Green Al-gae (Scenedesmus subspicatus) in the Cell Multiplication Inhibition Test. Water Res. 24(1):31-38.

Kuhn, R., Pattard, M., Pernak, K. and Winter, A. 1989. Results of the Harmful Effects of Water Pollutants to Daphnia magna in the 21 Day Reproduction Test. Water Res. 23(4):501-510.

LeBlanc, G.A., 1980. Acute Toxicity of Priority Pollutants to Water Flea (Daphnia magna). Bull.Environ.Contam.Toxicol. 24(5):684-691.

Leopold, M.A. 1991. Scenedesmus subspicatus. Fresh water algal growth inhibition test with bronopol. RCC Notox, The Netherlands. RCC Notox project 054091.

Lepper, P. 2002. Towards the Derivation of Quality Standards for Priority Substances in the Context of the Water Framework Directive. Final Report of the Study contract No. B4-3040/2000/30637/MAR/E1: Identifi cation of quality standards in the fi eld of water policy. Fraunhofer-Institute Molecular Biology and Applied Ecology.

Lijzen, J. Baars, A. Otte P, Rikken, M., Swartjes, E., Verbruggen, E., Wezel, A., 2001. Technical Evaluation of the Intervention Values for Soil/sediment and Groundwater – Human and Ecotoxicological Risk Assessment and Derivation of Risk Limits for Soil, Aquatic Sediment and Groundwater. RIVM report 711701 023.

Londesborough, S. 2003. Proposal for a Selection of National Priority Substances. The Finnish Environment Institute, Helsinki. The Finnish Environment, Environmental protection 622. 80 p. 952-11-1386-3. Available on the internet: www.environment.fi /publications.

Lu, P.Y., and Metcalf, R.L. 1975. Environmental Fate and Biodegradability of Benzene Deriva-tives As Studied in a Model Aquatic Ecosystem. Environ.Health Perspect. 10:269-284.

Lysak, A. and Marcinek, J. 1972. Multiple Toxic Effect of Simultaneous Action of Some Chemi-cal Substances on Fish. Rocz.Nauk Roln.Ser.H Rybactwo 94(3):53-63.

Machado, M.W. 1991. Acute toxicity of TCMTB to Rainbow Trout Under Flow-through Condi-tions. Springborn Laboratories, Inc., Wareham, Massachusetts, USA. Report No. SLI 91-1-3650.

MacPhee, C., and Ruelle, R. 1969. Lethal Effects of 1888 Chemicals upon Four Species of Fish From Western North America. Univ.of Idaho Forest, Wildl.Range Exp.Station Bull.No.3, Moscow, ID, 112 p.

Madsen, T.J., 2002. Mancozeb: Static Acute Toxicity Tests Conducted with Ten Species of Fresh-water Fish Exposed in a Sediment-Water System. Mancozeb Consortium, unpublished report. ABC Laboratories Study No. 47737 (ER Ref. 106.9) GLP, unpublished.

Mallet, M.J. 1994. A study of the Growth Inhibition Effects of Bronopol with Three Freshwa-ter Algal Species to OECD 201. Euro Laboratories Ltd. Buckinghamshire. ELL/770. April 1994. 41 p.

Mallet, M.J. 1996. The toxicity of Bronopol to Early Life Stages of Rainbow Trout (Oncorhyn-chus mykiss Walbaum). ELL/1103. Euro Laboratories Limited. Bedfordshire. United Kingdom. July 1996. 44 p.

Marchini, S., Hoglund, M.D., Borderius, S.J. and Tosato, M.L. 1993. Comparison of the Suscep-tibility of Daphnids and Fish to Benzene Derivatives. Sci.Total Environ.(Suppl.):799-808.

Martin, I.D., Mackie, G.L. and Baker, M.A. 1993. Control of the Biofouling Mollusc, Dreissena polymorpha (Bivalvia: Dreissenidae), with Sodium Hypochlorite and with Polyquater-nary Ammonia. Arch.Environ.Contam.Toxicol. 24:381-388.

Mattsoff, L. 1998. KVK META – Ecotoxicological Evaluation of Metamitron. Finnish Environ-ment Institute, Chemicals Division.

Page 26: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74924

Mayer, F.L.J. and Ellersieck, M.R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour.Publ.No.160, U.S.Dep.Interior, Fish Wildl.Serv., Washington, DC :505 p.

Mayes, M.A., Alexander, H.C. and Dill, D.C. 1983. A Study to Assess the Infl uence of Age on the Response of Fathead Minnows in Static Acute Toxicity Tests. Bull.Environ.Contam.Toxicol. 31(2):139-147.

McLeese, D.W., V. Zitko, and M.R. Peterson, 1979.Structure-Lethality Relationships for Phe-nols, Anilines and Other Aromatic Compounds in Shrimp and Clams. Chemosphere 8(2):53-57.

McMahon, R.F., Shipman, B.N. and Long, D.P. 1993. Laboratory Effi cacies of Nonoxidizing Molluscicides on the Zebra Mussel (Dreissena polymorpha) and the Asian Clam (Cor-bicula fl uminea). In: T.F.Nalepa and D.W.Schloesser (Eds.), Zebra Mussels - Biology, Im-pacts, and Control, Lewis Publishers, Boca Raton, FL:575-598.

McNamara, 1992. TCMTB – Acute Toxicity to Daphnida (Daphnia magna) Under Flow-Through Conditions. Springborn laboratories, Inc., SLI Report 91-1-3617.

MITI 1992. Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CS-CL Japan, Compiled under the Supervision of Chemical Product Safety Division, Basic Industries Bureau NMITI, Ed. by CITI, October 1992. Published by Japan Chemical in-dustry Ecology-Toxicology & Information Centre.

Monograph on Mancozeb Prepared in the Context of the Inclusion of Active Substances in An-nex I of the Council Directive 91/414/EEC. Draft 2001, Endpoints Complete and Adden-dum February 2003. Rapporteur Member State: Italy.

Monograph on MCPA Prepared in the Context of the Inclusion of Active Substances in An-nex I of the Council Directive 91/414/EEC. Draft 2001, Addendum to Monograph 2002 and Report on MCPA from ECCO 127 17.9.2002 including list of endpoints. Rappor-teur Member State: Italy.

Monograph on Tribenuron methyl Prepared in the Context of the Inclusion of Active Sub-stances in Annex I of the Council Directive 91/414/EEC. Draft 2003. Rapporteur Member State: Sweden.

N-CLASS. The N-CLASS Database on Environmental Hazard Classifi cation. The Database is available in the Internet: http://www.kemi.se/nclass/default.asp

Nikl, D.L., and Farrell, A.P. 1993. Reduced Swimming Performance and Gill Structural Chang-es in Juvenile Salmonids Exposed to 2-(Thiocyanomethylthio)Benzothiazole. Aquat.Toxicol. 27(3/4):245-264.

Nishiuchi, Y., 1975. Toxicity of Formulated Pesticides to Some Fresh-Water Organisms. The Aquiculture /Suisan Zoshoku 23(2):88-91 (JPN).

Nishiuchi, Y., and Y. Hashimoto, 1967. Toxicity of Pesticide Ingredients to Some Fresh Water Organisms. Sci.Pest Control /Botyu-Kagaku 32(1):5-11 (JPN) (ENG ABS).

Nishiuchi, Y., and Y. Hashimoto, 1967. Toxicity of Pesticide Ingredients to Some Fresh Water Organisms. Sci.Pest Control /Botyu-Kagaku 32(1):5-11 (JPN) (ENG ABS) (Author Com-munication Used).

Nishiuchi, Y., and Y. Hashimoto, 1969. Toxicity of Pesticides to Some Fresh Water Organisms. Rev.Plant Protec.Res. 2:137-139.

Nitschke, L., Wilk, A., Schussler, W., Metzner, G. and Lind, G. 1999. Biodegradation in Lab-oratory Activated Sludge Plants and Aquatic Toxicity of Herbicides. Chemosphere 39(13):2313-2323.

NL 1999. Environmental Quality Standards in the Netherlands 1999. A Review of Environ-mental Quality Standards and Their Policy Framework in the Netherlands. Ministry of Housing, Spatial Planning and the Environment. Directorate-General for Environmen-tal Protection. Kluwer, Alpen aan den Rijn. 627 p. ISBN 90-14-08189-8.

Noack, M., 1994. Acute Immobilisation Test of Desaminometamitron. Project No. 940805FB, Study No. DAI42441.

Nurmi, E. 1994. Dimetoaatin ympäristövaikutukset 27.6.1994 ja täydennysmuistio 18.11.1994. (Ecotoxicological evaluation of Dimethoate 27.6.1994 including Addendum 18.11.1994). Vesi- ja ympäristöhallitus, Kemikaalivalvontayksikkö.

Nurmi, E. 1996. 2-bromo-2-nitropropane-1,3-diol (bronopol) (Knoll MicroCheck). 11.3.1996. Finnish Environment Intitute, Chemicals Division.

Nuutinen, Sari. 2002. Supplementary Ecotoxcological Evaluation of Prochloraz. 8.8.2002. Finn-ish Environment Institute, Chemicals Division.

Page 27: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25The Finnish Environment 749

Ogawa, M., and Kitamura, H. 1988. Biological Assay of Plant Growth-Regulating Compounds Using Lemnaceae Plants. Annu.Rep.Sankyo Res.Lab.(Sankyo Kenkyusho Nempo) 40:91-99 (JPN) (ENG ABS).

Oldersm and Hansveit, 1982. The Effect of the Product Prochloraz on the Growth of the Green Alga (Scenedesmus pannonicus), TNO, Delft, Netherlands (Registration document M 23).

Palmer, C.M. and Maloney, T.E. 1955. Preliminary Screening for Potential Algicides. Ohio J.Sci. 55(1):1-8.

Pedersen, Finn 1994. Ækotoksikologiske kvalitetskriterier for overfl adevand – Principper for Fastættelse af Kvalitetskriterier for Overfl adevand og Sediment. Miljøprojekt nr. 250. Miljøministerier, Miljøstyrelsen.

Peither A., 2002a. Acute toxicity of Penncozeb 80 WP to the Rotifer Species Brachyonus calyci-fl orus in a 24-hour Immobilization Test. RCC, Environmental Chemistry and Pharman-alytics Division, CH-4452 Itingen/Switzerland Report number 837527; (ER Ref. 104.2) GLP, unpublished.

Peither A., 2002b. Acute toxicity of Penncozeb 80 WP to the Freshwater Snail Lymnea stagnalis in a 48-hour Immobilization Test RCC, Environmental Chemistry and Pharmanalytics Division, CH-4452 Itingen/Switzerland Report number 837450 ; (ER Ref. 103.10) GLP, unpublished.

Peither A., 2002c. Acute toxicity of Penncozeb 80 WP to Crustacean Species Gammarus sp. in a 48-hour Immobilization test. RCC, Environmental Chemistry and Pharmanalytics Di-vision, CH-4452 Itingen/Switzerland Report number 837483 ; (ER Ref. 103.11) GLP, un-published.

Peither A., 2002d. Acute toxicity of Penncozeb 80 WP to Crustacean Species Asellus sp. in a 48-hour immobilization test. RCC, Environmental Chemistry and Pharmanalytics Divi-sion, CH-4452 Itingen/Switzerland Report number 837505; (ER Ref. 104.1) GLP, unpub-lished.

Peterson, H.G., Boutin, C., Martin, P.A., Freemark, K.E. Ruecker, N.J. and Moody, M.J. 1994. Aquatic Phyto-Toxicity of 23 Pesticides Applied at Expected Environmental Concentra-tions. Aquat.Toxicol. 28(3/4):275-292.

Pickering, Q.H. and Henderson, C.1966. Acute Toxicity of Some Important Petrochemicals to Fish. J.Water Pollut.Control Fed. 38(9):1419-1429.

Progress report of the OECD Chemicals Group and Management Committee: Progress reports from Clearing Houses for Spesifi c Chemicals, 2-mercapto-benzothiazole. Room docu-ment for the 15th joint meeting Paris (1990).

Ramos, E.U., Vaes, P., Mayer, W.H.J. and Hermens, J.L.M. 1999. Algal Growth Inhibition of Chlorella pyrenoidosa by Polar Narcotic Pollutants: Toxic Cell Concentrations and QSAR Modeling. Aquat.Toxicol. 46(1):1-10.

Ramos, E.U., Vermeer, C., Vaes, W.H.J. and Hermens, J.L.M. 1998. Acute Toxicity of Polar Nar-cotics to Three Aquatic Species (Daphnia magna, Poecilia reticulata and Lymnaea stag-nalis) and Its Relation to Hydrophobicity. Chemosphere 37(4):633-650.

Roderer, G. 1990. Testung Wassergefahrdender Stoffe als Grundlage fur Wasserqualitatsstand-ards. Testbericht: Wassergefahrdende Stoffe, Fraunhofer-Institut fur Umweltchemie und Okotoxikologie, Schmallenberg.

Rose, R.M., Warne, M.S.J. and Lim, R.P. 1998. Quantitative Structure-Activity Relationships and Volume Fraction Analysis for Nonpolar Narcotic Chemicals to the Australian Cladoceran Ceriodaphnia. Arch.Environ.Contam.Toxicol. 34(3):248-252.

Samsøe-Petersen, L. and Møller, L. 1993. 43 datablade med vandkvalitetskriterier for 50 stoffer. Miljøstyrelsen, Institut for Vand og Miljø. Rapport November 1993.

Sangli, A.B. and Kanabur, V.V. 1998. Toxicity of Resorcinol and Nitrophenol to a Freshwater Fish Lepidocephalus guntea. Environ.Ecol. 16(3):642-644.

Scheerbaum, D. 1994a. Algae Growth Inhibition Test of Desaminometamitron. Project-No. 940805FB, Study No. SS042441.

Scheerbaum, D., 1994b. Fish Acute Toxicity Test, 96 h of Desaminometamitron. Project-No940805FB, Study no. FAR42441.

Seppälä, T. 1997. Addendum to Ecotoxicological Evaluation of Bronopol. 2.7.1997. Finnish En-vironment Institute, Chemicals Division, Finland.

Serrano, R., Hernandez, F., Pena, J.B., Dosda, V. and Canales, J. 1995. Toxicity of Bioconcentra-tion of Selected Organophosphorus Pesticides in Mytilus galloprovincialis and Venus gallina. Arch.Environ.Contam.Toxicol. 29(3):284-290.

Page 28: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74926

Sewell, I.G., Grant-Salmon, D. and Bartlett, A.J. 1994a. The Acute Toxicity of Metamitron to Daphnia magna. Project No. 646/2.

Sewell, I.G., Grant-Salmon, D. and Bartlett, A.J. 1994b. The Acute Toxicity of Metamitron to Golden Orfe (Leuciscus idus). Project No. 646/1.

Shafi ei, T.M. and Costa, H.H. 1990. The Susceptibility and Resistance of Fry and Fingerlings of Oreochromis mossambicus (Peters) to Some Pesticides Commonly used in Sri Lanka. J.Appl.Ichthyol./Z.Angew.Ichthyol. 6(2):73-80.

Sijm, D.T.H.M., Schipper, M. and Opperhuizen, A. 1993. Toxicokinetics of Halogenated Ben-zenes in Fish: Lethal Body Burden as a Toxicological End Point. Environ.Toxicol.Chem. 12:1117-1127.

SLI Report 90-3-3271, SLI Study 12023.1288.6104.115, cited in IUCLID.SLI Report 91-3-3698, Study 12023.1289.6112.128, Springborn Laboratories, Inc., Wareham,

Massachusetts, 10 April 1991, Final report cited in IUCLID.SLI report 91-7-3813, Study 12023.1289.6112.128, Springborn Laboratories, Inc., Wareham, Mas-

sachusets, 25 July 1991, Final report cited in IUCLID) Sollmann, T., 1949. Correlation of the Aquarium Goldfi sh Toxicities of Some Phenols, Qui-

nones, and Other Benzene Derivatives with Their Inhibition of Autooxidative. J.Gen.Physiol. 32:671-679.

Song, M.Y., Stark, J.D. and Brown, J.J. 1997. Comparative Toxicity of Four Insecticides, In-cluding Imidacloprid and Tebufenozide, to Four Aquatic Arthropods. Environ.Toxicol.Chem. 16(12):2494-2500.

Sousa, J.V., McNamara, P.C., Putt, A.E., Machado, M.W., Surprenant, D.C., Hamelink, J.L. and Kent, D.J. 1995. Effects of Octamethylcyclotetrasiloxane (OMCTS) on Freshwater and Marine Organisms. Environ.Toxicol.Chem. 14(10):1639-1647.

Springborn Laboratories Inc., Bioconcentration and Elimination of C14-residues by Fathead Minnow (Pimephales promelas) Exposed to Octamethylcyclotetrasiloxane. Report to Silicone Health Council/USA, 18. July 1991, cited in IUCLID.

Stauber, J.L., and T.M. Florence, 1987. Mechanism of Toxicity of Ionic Copper and Copper Complexes to Algae. Mar.Biol. 94(4):511-519.

Stom, D.I., and Roth, R. 1981. Some Effects of Polyphenols on Aquatic Plants: I. Toxicity of Phe-nols in Aquatic Plants. Bull.Environ.Contam.Toxicol. 27(3):332-337.

Stom, D.J. 1977. Infl uence of Polyphenols and Quinones on Aquatic Plants and Their Blocking of SH-Groups. Acta Hydrochim.Hydrobiol. 5(3):291-298

Suzuki, T., Ito, Y. and Harada, S. 1963. A Record of Blackfl y Larvae Resistant to DDT in Japan. J.Exp.Med. 33(1):41-46 (JPN).

TGD 2003. Technical Guidance Document (TGD) on Risk Assessment in Support of Commis-sion Directive 93/67/EEC on Risk Assessment for New Notifi ed Substances and Com-mission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances and Directive 98/8/EC of the European Parliament and of the Council Concerning the Plac-ing of Biocidal Products on the Market. Part II: Environmental Risk Assessment. 2003. The document is available in the internet: http://ecb.jrc.it/existing-chemicals/.

Thun, S. 1991a. Final report on the Algae Growth Inhibition. Test Article: "Metamitron tec.". Project No. 80-91-0131-00-91.

Thun, S. 1991b. Acute toxicity in Rainbow Trout. Test Article: "Metamitron tech. ". Project No. 80-91-0131-03-91.

Thun, S. 1991c. Final report: Prolonged Toxicity Test in Rainbow Trout. Test Article: "Metam-itron tec.". BAC Project No. 80-91-0131-01-91.

TNO Nederl. 1988. Effect of Busan 30 on the Growth of the Alga Selenastrum capricornutum, TNO Nederl. 1988.

Trabalka, J.R. and Burch, M.B. 1978. Investigation of the Effects of Halogenated Organic Com-pounds Produced in Cooling Systems and Process Effl uents on Aquatic Organisms. In: R.L.Jolley, H.Gorchev, and D.R.Hamilton,Jr. (Eds.), Water Chlorination: Environmental Impact and Health Effects:163-173.

Trenel, J., and Kuhn, R. 1982. Bewertung Wassergefahrdender Stoffe im Hinblick auf La-gerung, Umschlag und Transport. Umweltforschungsplan des Bundesministers des In-nern.

Tscheu-Schluter, M., 1974. Acute Toxicity of Herbicides for Selected Aquatic Organisms. I. Syn-thetic Growth-Promoting Herbicides, Phenoxycarboxylic Acids. Acta Hydrochim.Hyd-robiol. 2(2):139-159 (GER).

Page 29: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27The Finnish Environment 749

U.S. Environmental Protection Agency, 1978. In-Depth Studies on Health and Environmental Impact of Selected Water Pollutants. Contract No.68-01-4646, U.S.EPA :9 p.

US EPA 2000. Environmental Effects Database (EEDB). Environmental Fate and Effects Divi-sion, U.S.EPA, Washington, D.C, Offi ce of Pesticide Programs.

US-EPA 2000. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Offi ce of Pesticide Programs 2000. Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.

Waller, D.L., Rach, J.J., Cope, W.G., Marking, L.L., Fisher, S.W and Dabrowska, H. 1993. Toxici-ty of Candidate Molluscicides to Zebra Mussels (Dreissena polymorpha) and Selected Nontarget Organisms. J.Gt.Lakes Res. 19(4):695-702.

Van der Zandt, P.T.J., Heinis, F. and Kikkert. A. 1994. Effects of Narcotic Industrial Pollutants on Behaviour of Midge Larvae (Chironomus riparius (Meigen), Diptera): A Quantitative Structure-Activity. Aquat.Toxicol. 28(3/4):209-221.

Van Leeuwen, C.J., Adema, D.M.M. and Hermens, J. 1990. Quantitative Structure-Activity Re-lationships for Fish Early Life Stage Toxicity. Aquat.Toxicol. 16(4):321-334.

Van Leeuwen, C.J., Espeldoorn, A. and Mol, F. 1986. Aquatic Toxicological Aspects of Dithiocar-bamates and Related Compounds. III. Embryolarval Studies with Rainbow Trout (Sal-mo gairdneri). Aquat.Toxicol. 9(2/3):129-145.

Van Leeuwen, C.J., Grootelaar, E.M.M. and Niebeek, G. 1990. Fish Embryos as Teratogenicity Screens: A Comparison of Embryotoxicity Between Fish and Birds. Ecotoxicol.Environ.Saf. 20(1):42-52.

Van Leeuwen, C.J., Maas-Diepeveen, J.L., Niebeek, G., Vergouw, W.H.A., Griffi oen, P.S. and Lu-ijken, M.W. 1985. Aquatic Toxicological Aspects of Dithiocarbamates and Related Com-pounds. I. Short-Term Toxicity Tests. Aquat.Toxicol. 7(3):145-164.

Veith, G.D., Macek, K.J., Petrocelli, S.R. and Carroll, J. 1980. An Evaluation of Using Partition Coeffi cients and Water Solubility to Estimate Bioconcentration Factors for Organic Chemicals in Fish. In: Eaton, J.G., Parrish, P.R. and Hendricks. A.C. (Eds.), Aquatic Toxi-cology and Hazard Assessment, 3rd Symposium, ASTM STP 707, Philadelphia, PA :116-129.

Wenell, T. 1994. Supplementary Ecotoxicological Evaluation of TCMTB (2-(tiocyanomethylthio)benzothiazole), November 1994, National Chemicals inspectorate, Sweden.

Verma et al, 1984b. Biocides in Relation to Water Pollution. Part 2: Bioassay Studies of Few Bio-cides to a Fresh Water Fish, Channa gachua. Acta Hydrochim.Hydrobiol. 6(2):137-144.

Verschuren 1983. Handbook of Environmental Data on Organic Chemicals. Second Edition. Van Nostrand Reinhold Company Inc. 1310 s.

Verschuren, K., 1996, Handbook of Environmental Data on Organic Chemicals, Third Edition., John Wiley & Sons, Inc., New York, U.S.

Wezell, A.P. and Vlaardingen, P. 2001. Maximum Permissible Concentrations and Negligible Concentrations for Antifouling substances Irgarol 1051, Dichlofl uanid, Ziram, Chlo-rothalonil and TCMTB. Rijksinstituut voor Volksgezondheid en Milieu (RIVM) / Na-tional Institute of Public.

WHO 1984. Guidelines for Drinking-Water Quality. Vol. 1: Recommendations, Geneva, World Health Organization, 130 pp.

Williams, T.D., Thompson, R.S. 1981.Determination of the Acute Toxicity of Myacide BT to Daphnia Magna. Imperial Chemicals Industries PLC, UK. BL/B/2128.

WRc 2002. Study on the Scientifi c Evaluation of 12 Substances in the Context of Endocrine Dis-rupter Priority List of Actions. Erc-NSF Ref. VC 6052. November 2002. Available on the internet: http://europa.eu.int/comm/environment/endocrine/documents/index_en.htm

Vodenicharov, D.G., Atavina, T.G. and Stom, D.I. 1987. Use of Zoospore Immobilization to Evaluate the Toxicity of Phenols. Gidrobiol.Zh. 23(1):90-94.

Woin, P. and C. Bronmark, 1992. Effect of DDT and MCPA (4-Chloro-2-Methylphenoxyacetic Acid) on Reproduction of the Pond Snail, Lymnaea stagnalis. L. Bull.Environ.Contam.Toxicol. 48(1):7-13.

Yin, H. and Lu, J. 1993. Toxic Effect of Two Organic Toxicants on Penaeus chinensis. Mar.Sci./Haiyang Kexue (1):59-62 (CHI) (ENG ABS). Mar.Sci./Haiyang Kexue (1):59-62 (CHI) (ENG ABS).

Yoshioka, Y., Ose, Y. and Sato, T. 1985. Testing for the Toxicity of Chemicals with Tetrahymena pyriformis. Sci.Total Environ. 43(1-2):149-157.

Page 30: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74928

Annex 1. Overview of toxicity test endpoints (Table 15 in TGD)

Short-term studies:

1 If a test report does not indicate the L(E)C50 values but the raw data are presented, the L(E)C50 should be calculated, for example by Probit analysis. If only one toxicity value lies between the L(E)C0 and the L(E)C100, the L(E)C50 cannot be calculated by Probit analysis. Instead, the L(E)C50 may be estimated by, e.g., linear regression.2 If results are presented as >L(E)C10 and <L(E)C50 , they can be rated as L(E)C50 while results clearly above a L(E)C50 can only be used as an indication of the short-term toxicity of the chemical considered.

Long-term studies:

3 The NOEC (no observed effect concentration) is defi ned as “the highest concentration tested at which the measured pa-rameter shows no signifi cant inhibition” (OECD 201, 1984a) or the test concentration immediately below the LOEC (OECD 210, 1984g). There has to be a concentration-effect relationship. In the past, the NOEC was determined directly from the concentration-effect curve by consideration of the deviation of the control (e.g. 10%) or it was derived on the ba-sis of ANOVA (analysis of variance) and a subordinate test (e.g. Dunett’s). The preconditions for the use of ANOVA have to be fulfi lled (normal distribution, homogeneous variances). This method to derive the NOEC with the ANOVA is criticised (Pack, 1993, prepared for OECD). The OECD report recommends the calculation of the ECX point as a preferable alternative (see footnote *). In older investigations, it may be diffi cult to fi nd out how the NOEC was generated unless test reports or raw data are available.4 A LOEC (lowest observed effect concentration) stands for the lowest concentration where an effect has been observed. It may therefore not be used as a NOEC. In case only a LOEC is given in the report, it can be used to derive a NOEC with the following procedures:5 LOEC > 10 and < 20% effect: NOEC can be calculated as LOEC/2.6 LOEC ≥ 20% effect and a distinct effect relationship: the EC10 is calculated or extrapolated and regarded as the NOEC. If the effect percentage of the LOEC is unknown no NOEC can be derived.7 MATC (maximal acceptable toxicant concentration): In aquatic toxicity the MATC is often calculated. This is the geomet-ric mean of the NOEC and the LOEC. If in the test report only the MATC is presented, the MATC can be divided by 21/2 to de-rive a NOEC.8 An EC10 for a long-term test which is obtained by extrapolation using appropriate statistics (e.g. Probit analysis) can be considered as a NOEC. This procedure is used if no NOEC is available.9 It should be noted that in the case of algae studies, which are actually multigeneration studies, it is generally accepted that a 72-hour (or longer) EC50 value may be considered as equivalent to a short-term result and that a 72-hour (or long-er) NOEC value can be considered as a long-term result.

* “If the reliability in an experiment is relatively high, the corresponding sensitivity of the statistical analysis will be rela-tively low. Only large differences from the control can then be detected. Consequently, the resulting NOECs can themselves correspond to large and potentially biologically important magnitudes of effect.” (Pack, 1993). A concentration where there is a clear effect cannot be regarded as a NOEC. Additionally, the level of the NOEC value depends on the number of test concentrations, range of concentrations and dilution factors. At present, alternatives for the NOEC have been proposed (Pack, 1993; Hoekstra et al., 1993). The advantage of these methods is that information from the whole concentration-effect relationship is taken into account. These methods result in an ECx, where x is a low effect percentile (e.g. 5-20%). It makes results from different experiments more comparable than NOECs. Currently, the use of the NOEC or the ECx point estimates are being discussed (Pack, 1993).

ANNEX 1

Page 31: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29The Finnish Environment 749

Annex 2. Assessment factors to derive a PNECaquatic for fresh water (Table 16 in TGD). (Assessment factors to derive PNECaquatic for saltwater are given in table 25 in the TGD)

Available data Assessment factor

At least one short-term L(E)C50 from each of three trophic levels of the base-set (fi sh, Daphnia and algae) 1000 a)

One long-term NOEC (either fi sh or Daphnia) 100 b)

Two long-term NOECs from species representing two trophic levels (fi sh and/or Daphnia and/or algae) 50 c)

Long-term NOECs from at least three species (normally fi sh, Daphnia and al-gae) representing three trophic levels 10 d)

Species sensitivity distribution (SSD) method 5-1 (to be fully justifi ed case by case) e)

Field data or model ecosystems Reviewed on a case by case basis f)

Notes to Table 16:a) The use of a factor of 1000 on short-term toxicity data is a conservative and pro-tective factor and is designed to ensure that substances with the potential to cause adverse effects are identifi ed in the effects assessment. It assumes that each of the uncertainties identifi ed above makes a signifi cant contribution to the overall un-certainty. For any given substance there may be evidence that this is not so, or that one particular component of the uncertainty is more important than any other. In these circumstances it may be necessary to vary this factor. This variation may lead to a raised or lowered assessment factor depending on the available evidence. A factor lower than 100 should not be used in deriving a PNECwater from short-term toxicity data except for substances with intermittent release.

There are cases where the base-set is not complete: e.g. for substances that are produced at <1 t/a (notifi cations according to Annex VII B of Directive 92/32). At the most the acute toxicity for Daphnia is determined. In these exceptional cas-es, the PNEC should be calculated with a factor of 1000.

Variation from a factor of 1000 should not be regarded as normal and should be fully supported by accompanying evidence.

b) An assessment factor of 100 applies to a single long-term NOEC (fi sh or Daph-nia) if this NOEC was generated for the trophic level showing the lowest L(E)C50 in the short-term tests. If the only available long-term NOEC is from a species (standard or non-standard organism) which does not have the lowest L(E)C50 from the short-term tests, it cannot be regarded as protective of other more sensi-tive species using the assessment factors available. Thus the effects assessment is based on the short-term data with an assessment factor of 1000. However, the re-sulting PNEC based on short-term data may not be higher than the PNEC based on the long-term NOEC available.

An assessment factor of 100 applies also to the lowest of two long-term NOECs covering two trophic levels when such NOECs have not been generated from that showing the lowest L(E)C50 of the short-term tests. This should, however, not ap-ply in cases where the acutely most sensitive species has an L(E)C50 value lower than the lowest NOEC value. In such cases the PNEC might be derived by using an assessment factor of 100 to the lowest L(E)C50 of the short-term tests.

c) An assessment factor of 50 applies to the lowest of two NOECs covering two trophic levels when such NOECs have been generated covering that level show-

ANNEX 2/1

Page 32: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74930

ing the lowest L(E)C50 in the short-term tests. It also applies to the lowest of three NOECs covering three trophic levels when such NOECs have not been generated from that trophic level showing the lowest L(E)C50 in the short-term tests.

This should however not apply in cases where the acutely most sensitive spe-cies has an L(E)C50 value lower than the lowest NOEC value. In such cases the PNEC might be derived by using an assessment factor of 100 to the lowest L(E)C50 of the short-term tests.

d) An assessment factor of 10 will normally only be applied when long-term toxic-ity NOECs are available from at least three species across three trophic levels (e.g. fi sh, Daphnia, and algae or a non-standard organism instead of a standard organ-ism). When examining the results of long-term toxicity studies, the PNECwater should be calculated from the lowest available NOEC. Extrapolation to the eco-system effects can be made with much greater confi dence, and thus a reduction of the assessment factor to 10 is possible. This is only suffi cient, however, if the spe-cies tested can be considered to represent one of the more sensitive groups. This would normally only be possible to determine if data were available on at least three species across three trophic levels. It may sometimes be possible to determine with high probability that the most sensitive species has been examined, i.e. that a further long-term NOEC from a different taxonomic group would not be low-er than the data already available. In those circumstances, a factor of 10 applied to the lowest NOEC from only two species would also be appropriate. This is partic-ularly important if the substance does not have a potential to bioaccumulate. If it is not possible to make this judgement, then an assessment factor of 50 should be applied to take into account any interspecies variation in sensitivity. A factor of 10 cannot be decreased on the basis of laboratory studies.

e) Basic considerations and minimum requirements as outlined in Section 3.3.1.2. in the TGD.

f) The assessment factor to be used on mesocosm studies or (semi-) fi eld data will need to be reviewed on a case-by-case basis.

ANNEX 2/2

Page 33: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31The Finnish Environment 749

Annex 3. Calculation of PNECoral (Chapter 3.8.3.5 in TGD)

Only toxicity studies reporting on dietary and oral exposure are relevant, as the pathway for secondary poisoning is referring exclusively to the uptake through the food chain. Secondary poisoning effects on bird and mammal populations rarely become manifest in short-term studies. Therefore, results from long-term studies are strongly preferred, such as NOECs for mortality, reproduction or growth. If no adequate toxicity data for mammals or birds are available, an assessment of sec-ondary poisoning cannot be made. For new substances, the results of mammalian repeated-dose toxicity tests are used to assess secondary poisoning effects. For ex-isting substances and biocides, toxicity data for birds (e.g. OECD test 205 (1984h) (LC50, 5-day acute avian dietary study) or OECD test 206 (1984i) (chronic)) may al-so be present. Extrapolation from such test results gives a predicted no-effect con-centration in food (PNECoral) that should be protective to other mammalian and avian species. Acute lethal doses LD50 (rat, bird) are not acceptable for extrapola-tion to chronic toxicity, as these are not dietary tests. Acute effect concentrations (e.g. OECD 205 (1984h)) for birds are acceptable for extrapolation. The results of the available mammalian or avian tests may be expressed as a concentration in the food (mg.kgfood -1) or a dose (mg.kg body weight.day-1) causing no effect. For the assessment of secondary poisoning, the results always have to be expressed as the concentration in food. In case toxicity data are given as NOAEL only, these NOAELs can be converted to NOECs with the following two formulae:

NOEC bird = NOAELbird x CONVbird (77)

NOEC mammal food_chr. = NOAELmammal,oral_chr x CONVmammal (78)

Explanation of symbols:NOECbird NOEC for birds (kg.kgfood–1)

NOECmammal, food chr NOEC for mammals (kg.kgfood–1)

NOAELbird NOAEL for birds (kg.kg bw.d-1)

NOAELmammal, oral chr NOAEL for mammals (kg.kg bw.d-1)

CONVbird

conversion factor from NOAEL to NOEC (kg bw.d.kgfood –1) Table

22

CONVmammal

conversion factor from NOAEL to NOEC (kg bw.d.kgfood –1) Table

22

ANNEX 3/1

Page 34: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74932

Table 22. Conversion factors from NOAEL to NOEC for several mammalian and one bird species

Species Conversion factor (bw/dfi )1)

Canis domesticus 40

Macaca sp. 20

Microtus spp. 8.3

Mus musculus 8.3

Oryctolagus cuniculus 33.3

Rattus norvegicus (> 6 weeks) 20

Rattus norvegicus (≤ 6 weeks) 10

Gallus domesticus 8

1 ) bw = body weight (g); dfi : daily food intake (g/day)

NOECs converted from NOAELs have the same priority as direct NOECs.

The PNECoral is ultimately derived from the toxicity data (food basis) applying an assessment factor. In formula:

PNECoral = TOXoral / AForal (79)

Explanation of symbols:PNECoral PNEC for secondary poisoning of birds and mammals [in kg.kgfood-1]

AForal assessment factor applied in extrapolation of PNEC [-] Table 23

TOXoral either LC50 bird, NOECbird or NOECmammal, food, chr [in kg.kgfood-1]

The assessment factor (AForal) takes into account interspecies variation, acute/subchronic to chronic extrapolation and laboratory data to fi eld impact extrap-olation. Some specifi c considerations need to be made for the use of the assess-ment factor for predators. CCME (1998) contains wildlife data on body weight and daily food ingestion rates for 27 bird and 10 mammalian species. In addition, Schudoma et al. (1999) derived the mean body weight and daily food intake for the otter. The currently available set on wildlife bw/dfi ratios ranges from 1.1 to 9 for birds and from 3.9 to 10 for mammalian species. Comparison of these wildlife conversion factors with the values given in Table 22 for laboratory species (8.3 – 40) shows that the wildlife species often have a lower bw/dfi ratio than laboratory animals. The difference can be up to a factor 8 for birds and 10 for mammals. This difference is in theory accounted for in the use of the interspecies variation fac-tor that is part of the standard assessment factor. The interspecies variation, how-ever, should comprise more than just the bw/dfi differences between species, e.g. the differences in intrinsic sensitivity. The protective value of the “normal” inter-species variation factor may therefore be questionable in case of predators. On top of that, many predator species are characterised by typical metabolic stages in their life-cycle that could make them extra sensitive to contaminants in compari-son with laboratory animals (e.g. hibernation or migration). Similar to the bw/dfi differences, also this aspect goes beyond the “normal” interspecies variation. The AForal should compensate for the above-mentioned specifi c aspects in the effects assessment of predators. A factor of 30, accounting for both interspecies variation

ANNEX 3/2

Page 35: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33The Finnish Environment 749

and lab-to fi eld extrapolation, is considered to be appropriate for this purpose. Additionally, acute/subchronic to chronic extrapolation needs to be taken into ac-count. The resulting assessment factors are given in Table 23.

Table 23. Assessment factors for extrapolation of mammalian and bird toxicity data.

TOXoral Duration of test AForal

LC50 bird 5 days 3,000

NOECbird chronic 30

NOECmammal, food,chr 28 days 300

¯"¯ 90 days 90

¯"¯ chronic 30

If a NOEC for both birds and mammals is given, the lower of the resulting PNECs is used in the risk assessment.

ANNEX 3/3

Page 36: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74934 Annex 4. Summary of derived environmental quality standards

The derivation of the proposed quality standards is presented in detail in the substance specifi c fact sheets (Annexes 5 – 25). NR = not required. NP = not possible to derive due to lack of data. See also list of abbreviations.

Name CAS Proposed overallAA-EQS for fresh water

µg/l

AA-EQSfresh water pelagic community

µg/l

AA-EQSBaltic sea pelagic community

µg/l

MAC-EQSfresh water pelagic community

µg/l

AA-EQSfresh water sediment(tentative stan-dards derived by EP-method)mg/kg d.w.

EQS-secondary poisoning

µg/kg fi sh w.w.

QS-food uptake by man

(tentative stan-dards)

µg/kg fi sh w.w.

QS-drinking water abstraction(tentative standards)

µg/l

Chlorobenzene 108-90-7 9.3 32 3.2 43 0.14 9 300 6000 3

Dichlorobenzene, 1,2- 95-50-1 7.4 7.4 0.74 - 0.26 40 000 36 500 0.3

Dichlorobenzene, 1,4- 106-46-7 20 20 2 - 0.9 10 000 6000 0.1

Mercaptobenzothiazoledi-sulphide; (MBTS)

120-78-5 0.8 NP NP NP 0.4 - 51 NR NR NP

2-(tiocyanomethylthio)-benzothiazole; (TCMTB)

21564-17-0 0.018 0.018 0.0018 0.2 0.002-0.003 1000 910 52.5

Mercaptobenzothiazole; MBeT; 149-30-4 0.8 0.8 0.08 2.5 NR NR NR NP

Dibutylphtalate; DBP 84-74-2 10 10 1 - 6.3 NR NR 1820

Benzylbutylphtalate; BBP 85-68-7 10 14 1.4 - 9.0 - 17 4 400 12 200 700

Phenylhexylbenzenediamine 793-24-8 Due to degradation by hydrolysis, de-listing from the list is proposed.

Nonylphenolethoxylates; NPEs

A sum parameter calculated with the toxic equivalency approach is proposed. It is based on the EQS value derived for nonyl phenol (NP) (0.33 µg/l) and toxic equivalency factors (see Annex 14 for details).

Octamethylcyclotetrasil-oxane; OMCTS

556-672 Due to degradation by hydrolysis, de-listing from the list is proposed.

1,3-dihydroxybenzene; resorcinol;

108-46-3 0.25 0.25 0.025 2.5 NR NR NR 7900

ANNEX 4/1

Page 37: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The Finnish Environment 749

Name CAS Proposed overallAA-EQS for fresh water

µg/l

AA-EQSfresh water pelagic community

µg/l

AA-EQSBaltic sea pelagic community

µg/l

MAC-EQSfresh water pelagic community

µg/l

AA-EQSfresh water sediment(tentative stan-dards derived by EP-method)mg/kg d.w.

EQS-secondary poisoning

µg/kg fi sh w.w.

QS-food uptake by man

(tentative stan-dards)

µg/kg fi sh w.w.

QS-drinking water abstraction(tentative standards)

µg/l

Biocides

Bronopol; 2-Bromo-2-nitro-propane-1,3-diol

52-51-7 4 4 0.4 - NR NR NR 280

4-chloro-3-methylphenol 59-50-7 9 9 0.9 9 0.04 - 1 NR NR NP

Pesticides

Dimethoate 60-51-5 0.7 0.7 0.07 - NR NR NR 1

Ethylenethiourea; ETU 96-45-7 200 200 20 200 NR NR 120 1

Mancozeb 8018-01-7 Since Mancozeb rapidly degrades in water, an EQS values is not considered relevant. An EQS value is proposed for the major degradation product ethylenethiourea (ETU).

4-chloro-2-methylphenoxy acetic acid; MCPA

94-74-6 1.6 1.6 0.16 15 NR NR NR 1

Metamitron 41394-05-2 32 32 3.2 170 NR NR NR 1

Prochloraz 67747-09-5 1 1 0.1 7.3 0.3-0.4 3300 NP 1

Tribenuron-methyl 101200-48-0

0.1 0.1 0.01 0.4 NR NR NR 1

Annex 4. Continued

ANNEX 4/2

Page 38: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74936

Annex 5. Chlorobenzene

1. Identity of Substance

Name: Chlorobenzene

CAS-Number: 108-90-7

Classifi cation under WFD proposed National Priority Substance (NPS) in Finland

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 9.3 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS(Pelagic community; freshwater)

32 µg/l See section 8.1.

AA-EQS(Pelagic community; Baltic sea)

3.2 µg/L See section 8.1.

MAC-QS Pelagic community; freshwater

43 µg/l See section 8.1.

Benthic community (freshwater sediment)

141 µg/kg (dry wt) Tentative standard (EP method) See sec-tion 8.2

Predators (secondary poisoning)

9.3 mg/kg ~14.4 µg/l See section 8.3.

Food uptake by man 6 mg/kg ~ 9.3 µg/l Tentative standard. See section 8.4.

Drinking water abstraction 3 µg/l See section 8.5.

3a. Classifi cation and labelling

Reference:

R10 Xn; R20 N; R51-53; S2; S24/25; S61 N-CLASS

3b. Risk assessment in EUChlorobenzene is not listed in a priority list (as forseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances).

ANNEX 5/1

Page 39: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37The Finnish Environment 749

4. Physical and chemical properties

Property Value: Reference

Molecular formula C6H5Cl EnviChem

Molecular weight 112.56 EnviChem

Vapour pressure [Pa] 1) 1173 Pa (25 °C)2) 1180-1190 (25 °C)

1) EnviChem2) IUCLID 2000

Henry’s law constant [Pa m³/mol] 263 EUSES

Solubility in water [mg/l] 1) 502 (25°C)2) 210 – 400 (25°C)

1) EnviChem2) IUCLID 2000

Dissociation constant; pKa

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) no experimental data available

Photostability (DT50) (aqueous, sun-light, state pH)

no experimental data available

Readily biodegradable (yes/no) Not inherently biodegradable in MITI II test; BOD 0 %

MITI 1992

Degradation in Water/sediment no experimental data available

Mineralization no experimental data available

Distribution in water / sediment sys-tems

no experimental data available

Degradation products relevant to the aquatic environment

2- and 4-chlorophenol Howard 1990

Partition co-effi cient; log KOW 1) 2.18 – 3.792) 2.18 – 2.84

1) EnviChem2) IUCLID

Koc 1) 152 (clay soil)2) 268

1) (exper.) 2) EPI/ PCKOCWIN v1.66

BCF for fi sh [l/kg] 3.9 – 75; 645 See table 3.

Solids-water partition coeffi cient in sediment[l/kg]

experimental:1) Kd = 48 ± 2 (lake sediment)calculated: 2) 3.67 (log Kow = 2.18)2) 74 (log Kow = 3.79)

1) BUA 1990A2) EUSES

Solids-water partition coeffi cient in SPM [l/kg]

calculated: 1) 7.35 (log Kow = 2.18)1) 148 (log Kow = 3.79)2) From Koc 152: foc x Koc = 15.2

1) EUSES

6. Effect Data (aquatic environment)

Acute and chronic toxicity to aquatic organismsEcotoxicity data to aquatic organisms are presented in Tables 1 and 2.

ANNEX 5/2

Page 40: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74938

Table 6.1. Mammal and/or bird oral toxicity data relevant for the assessment of non compartment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Ref.

Oral dose rabbit, no effect (192 days)

14 mg/kg/b.w./day. Verschuren 1983

Oral dose rat, no effect (192 days) 14.4 mg/kg/b.w./day Clayton 1993-1994 cited in HSDB

Subchronic dietary administration (93-99 day) on rat

12.5 mg/kg b.w. Knapp et al. 1971 cited in IUCLID 2000

103 week dietary incorporation or gavage test on rat

60 mg/kg b.w./day EHC 1991

7. Effect data (human health)

Value Study Safety factor Reference

TDI(ingestion)

0.1 mg/kg b.w./day

103 week rat test NOEL 60 mg/kg b.w. per day 500 EHC 1991

Information on Endocrine Disrupting Potential

Comment Reference

no data available

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThe data is shown in Tables 1 and 2. Long term NOEC values are available for three trophic levels. Therefore, the use of an assessment factor of 10 is justifi ed. The low-est relevant reported NOEC value is for Daphnia Magna and it is 320 µg/l. Daphnia Magna is also the most sensitive species in the acute tests reported. The following EQS value is derived:

AA-EQS = 320 µg/l / 10 = 32 µg/l.

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 32 µg/l / 10 = 3.2 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Daphnia magna and it is 4300 µg/l. The assessment factor of 100 is used, and the following MAC-QS is derived:

MAC-QS = 4.3 mg/l / 100 = 43 µg/l

8.2 Quality Standard for SedimentA tentative QS for sediment is calculated from the AA-EQS using the equilibri-um partitioning method. The default properties (fraction of organic carbon, wet

ANNEX 5/3

Page 41: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39The Finnish Environment 749

and dry density) given in the TGD are used. The Kp-susp value, 15.2 l/kg, which is based on the experimental Koc value of 152 l/kg is used in the calculation. (The experimental sediment Kd value is not preferred as the properties of the sediment (fraction of organic carbon) is not known. This leads to the following EQSsed- value: 1. Kp_susp = 7.35 l/lkEQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS = 15.2 l/kg x 9.3 µg/l = 141.36 µg/kg

8.3 Secondary Poisoning of Top PredatorsChlorobenzene is liable to bioaccumulate (BCF > 100). Therefore, it is necessary to derive a spesifi c QS in relation to secondary poisoning. The no-effect level of 14 mg/kg b.w./day from a 192 day rat test can be used as a NOAEL. The conversion factor 20 is used to derive the respective NOECoral (table 22): 14 mg/kg b.w.. day x 20 b.w./day = 280 mg/kg food. To derive the respective PNECoral the assessment factor of 30 is used (table 23): 280 mg/kg food / 30 = 9.3 mg/kg food

According to TGD it is assumed that top predators prey 100 % on the aquatic organisms. Therefore, the level of chlorobenzene in fi sh may not exceed 9.3 mg/kg. The highest BCF value for fi sh is 645. Even higher BCF-values have been reported for algae and crustacea. The BCF value of 645 is used to derive the EQSsec.pois. QSsec.pois. = 9.3 mg/kg / 645 l/kg = 0.0144 mg/l = 14.4 µg/l

8.4 QS referring to food uptake by HumansChlorobenzene is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to food uptake by humans. The tolerable daily intake through ingestion (TDI) given by WHO (EHC 1991) can be used to assess the risk to humans through uptake by food. This corresponds to 7 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceeded by more than 10 % by consumption of food originating from aquatic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 0.7 mg of chlorobenzene, that is 6 mg/kg fi sh.

When using the BCF value of 645 l/kg the following QS is obtained:

QSfood uptake by humans = 6mg/kg / 645 l/kg = 9.3 µg/l

8.5 QS for drinking water abstractionIn the Guidelines for drinking-water quality (WHO, 1984), the following guideline value is developed for chlorobenzene: 3 µg/l. The value represent 10 % of the taste and odour threshold value. [in Environmental Health Criteria 128, IPCS 1991.]

ANNEX 5/4

Page 42: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74940

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration 1 Mean µg/l

Master Reference

Reference in master reference

Quality given in master reference

AlgaeSelenastrum capricor-nutum Green algae EC50 GRO 96 12 500 AQ10745 Galassi & Vighi. 1981

Chlamydomonas angulosa Green algae EC50 PHY 3 56618 AQ5065 Hutchinson et al. 1980

Chlorella vulgaris Green algae EC50 PHY 3 99053 AQ5065 Hutchinson et al. 1980

Skeletonema costatum Diatom EC50 POP 120 201 000 AQ2233 Cowgill et al. 1989

Selenastrum capricornutum Green algae EC50 POP 96 202 000 AQ9607 U.S.EPA 1978

Skeletonema costatum Diatom EC50 POP 120 203 000 AQ2233 Cowgill et al. 1990

Selenastrum capricornutum Green algae EC50 BCM 96 210 000 AQ9607 U.S.EPA 1978

Cyclotella meneghinia-na Diatom EC50 GEN 48 235740 AQ88 Figueroa & Simmons 1991

Cyclotella meneghiniana Diatom EC50 GEN 48 235740 19626 Figueroa 1990

Selenastrum capricornutum Green algae EC50 BCM 48 239000 AQ9607 U.S.EPA 1978

Selenastrum capricornutum Green algae EC50 BCM 24 298000 AQ9607 U.S.EPA 1979

Skeletonema costatum Diatom EC50 PHY 96 343 000 AQ9607 U.S.EPA 1978

CrustaceaDaphnia magna Water fl ea EC50 ITX static; pH 7; the an-

imals were not fed during the exper-iment

48 (585) AQ10805IUCLID Bobra et al. 1985 M in AQ

Penaeus chinensis Fleshy prawn LC50 MOR 96 (1720) AQ272 Yin & Lu 1993 / in Chinese M

Daphnia magna Water fl ea EC50 Immobilisation AFNOR 1974 24 4300 AQ15526 Ca-lamari et al. 1983

- C

Ceriodaphnia dubia Water fl ea EC50 ITX 48 5290 AQ18991 Rose et al. 1998 M

Daphnia magna Water fl ea EC50 ITX 48 5808 AQ11926 Abernethy et al. 1986 C

Daphnia magna Water fl ea EC50 Immobilisation OECD 202; GLP 6250 IUCLID Monsanto reports (IU-CLID)

Ceriodaphnia dubia Water fl ea LC50 MOR 24 7600 AQ4343 Marchini et al. 1993 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 7900 AQ10810 Cowgill et al. 1985 C

Table 1. Short term test for chlorobenzene.ANNEX 5/5

Page 43: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

The Finnish Environment 749

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration 1 Mean µg/l

Master Reference

Reference in master reference

Quality given in master reference

Ceriodaphnia dubia Water fl ea LC50 MOR 48 7900 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 8600 AQ10810 Cowgill et al. 1985 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 8900 AQ10810 Cowgill et al. 1985 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 10400 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 10700 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 10700 AQ12055 Gersich et al. 1986 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 11000 AQ10810 Cowgill et al. 1985 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 11100 AQ10810 Cowgill et al. 1985 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 11400 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 11500 AQ10810 Cowgill et al. 1985 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 11800 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 12800 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 12900 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 13000 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 13000 AQ12055 Gersich et al. 1986 C

Daphnia magna Water fl ea LC50 MOR 24 13900 AQ12055 Gersich et al. 1986 C

Ceriodaphnia dubia Water fl ea EC50 REP NR 14000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea LC50 MOR 23 14200 AQ12055 Gersich et al. 1986 C

Daphnia magna Water fl ea EC50 REP NR 15000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea LC50 MOR 48 15400 AQ10810 Cowgill et al. 1985 C

Daphnia magna Water fl ea LC50 MOR 48 15400 AQ12055 Gersich et al. 1986 C

Daphnia magna Water fl ea LC50 MOR 240 16000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea EC50 REP NR 16000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea EC50 ITX 23 16000 AQ9196 Bazin et al. 1987 M

Daphnia magna Water fl ea EC50 REP NR 19000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea LC50 MOR 47 21300 AQ10810 Cowgill et al. 1985 C

Table 1. Short term test for chlorobenzene. (Continued)ANNEX 5/6

Page 44: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74942

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration 1 Mean µg/l

Master Reference

Reference in master reference

Quality given in master reference

Ceriodaphnia dubia Water fl ea EC50 REP NR 22000 AQ212 Cowgill & Milazzo 1991 C

Ceriodaphnia dubia Water fl ea LC50 MOR 167 24000 AQ212 Cowgill & Milazzo 1991 C

Ceriodaphnia dubia Water fl ea EC50 REP NR 26000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea LC50 MOR 48 31000 AQ212 Cowgill & Milazzo 1991 C

Ceriodaphnia dubia Water fl ea LC50 MOR 48 47000 AQ212 Cowgill & Milazzo 1991 C

Daphnia magna Water fl ea LC50 MOR 48 86000 AQ5184 LeBlanc 1980 C

Daphnia magna Water fl ea LC50 MOR 24 140000 AQ5184 LeBlanc 1980 C

Daphnia magna Water fl ea EC50 BEH 24 195000 AQ707 Bringmann and Kuhn 1982 I

Daphnia magna Water fl ea LC50 MOR 24 310000 AQ5718 Bringmann and Kuhn 1977 C

Fish

Leuciscus idus melano-tus Carp LC50 MOR 48 20* AQ547 Juhnke & Luedemann 1978 I

Micropterus salmoides Largemouth bass LC50 MOR 156 50* AQ538 Birge et al. 1979b C

Micropterus salmoides Largemouth bass LC50 MOR 180 50* AQ563 Birge et al. 1979a C

Micropterus salmoides Largemouth bass LC50 MOR 156 60* AQ538 Birge et al. 1979b C

Micropterus salmoides Largemouth bass LC50 MOR 180 60* AQ563 Birge et al. 1979a C

Oncorhynchus mykiss Rainbow trout LC50 MOR 384 90* AQ563 Birge et al. 1979a C

Oncorhynchus mykiss Rainbow trout LC50 MOR 384 90* AQ563 Birge et al. 1979a C

Micropterus salmoides Largemouth bass LC50 MOR 84 340* AQ563 Birge et al. 1979a C

Micropterus salmoides Largemouth bass LC50 MOR 84 390* AQ563 Birge et al. 1979a C

Micropterus salmoides Largemouth bass LC50 MOR 60 660* AQ538 Birge et al. 1979b C

Micropterus salmoides Largemouth bass LC50 MOR 60 710* AQ538 Birge et al. 1979b C

Carassius auratus Goldfi sh LC50 MOR 180 880* AQ538 Birge et al. 1979b C

Carassius auratus Goldfi sh LC50 MOR 192 880* AQ563 Birge et al. 1979a C

Carassius auratus Goldfi sh LC50 MOR 180 1040* AQ538 Birge et al. 1979b C

Carassius auratus Goldfi sh LC50 MOR 192 1040* AQ563 Birge et al. 1979a C

Carassius auratus Goldfi sh LC50 MOR 96 2370* AQ563 Birge et al. 1979a C

Table 1. Short term test for chlorobenzene. (Continued)ANNEX 5/7

Page 45: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

The Finnish Environment 749

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration 1 Mean µg/l

Master Reference

Reference in master reference

Quality given in master reference

Carassius auratus Goldfi sh LC50 MOR 96 3480* AQ563 Birge et al. 1979a C

Carassius auratus Goldfi sh LC50 MOR 84 4080* AQ538 Birge et al. 1979b C

Oncorhynchus mykiss Rainbow trout LC50 MOR 48 4100 AQ15526 Calamari et al. 1983 C

Carassius auratus Goldfi sh LC50 MOR 84 4380* AQ538 Birge et al. 1979b C

Lepomis macrochirus Bluegill LC50 MOR 96 4500 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 72 4500 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 48 4500 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 24 4500 AQ7398 Bailey et al.1985 C

Oncorhynchus mykiss Rainbow trout LC50 MOR 96 4700 AQ15457 Dalich et al. 1982 M

Poecilia reticulata Guppy LC50 MOR 24 5630 AQ4038 Benoit-Guyod et al. 1984. M

Solea solea Dover sole LC50 MOR 96 5819 AQ14995 Furay & Smith 1995 M

Lepomis macrochirus Bluegill LC50 MOR 24 6000 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 16 6000 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 8 6000 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 4 6000 AQ7398 Bailey et al.1985 C

Cyprinodon variegatus Sheepshead minnow NOEC MOR 96 6200 AQ10366 Heitmuller et al. 1981 C

Platichthys fl esus Starry, euro-pean fl ounder

LC50 MOR 96 6607 AQ14995 Furay & Smith 1995 M

Lepomis macrochirus Bluegill LC50 MOR 2 6800 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 96 7400 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 72 7400 AQ7398 Bailey et al.1985 C

Oncorhynchus mykiss Rainbow trout LC50 MOR 96 7460 AQ10688 Hodson et al. 1984 C

Pimephales promelas Fathead min-now LC50 MOR 96 7 700 AQ4343 Marchini et al. 1993 C

Lepomis macrochirus Bluegill LC50 MOR 48 7 700 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 24 8 000 AQ7398 Bailey et al.1985 C

Danio rerio Zebra danio NOEC REP 168 8 500 AQ3279 Van Leeuwen et al. 1990. C

Danio rerio Zebra danio NOEC REP 336 8 500 AQ3279 Van Leeuwen et al. 1990. C

Table 1. Short term test for chlorobenzene. (Continued)ANNEX 5/8

Page 46: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74944

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration 1 Mean µg/l

Master Reference

Reference in master reference

Quality given in master reference

Cyprinodon variegatus Sheepshead minnow LC50 MOR 48 8 900 AQ10366 Heitmuller et al. 1981 C

Cyprinodon variegatus Sheepshead minnow LC50 MOR 96 10 000 AQ10366 Heitmuller et al. 1981 C

Danio rerio Zebra danio LC50 MOR 28 10 300 AQ3279 Van Leeuwen et al. 1990 C

Danio rerio Zebra danio LC50 MOR 48 10 500 AQ15526 Calamari et al. 1983 C

Lepomis macrochirus Bluegill LC50 MOR 1 12 000 AQ7398 Bailey et al.1985 C

Lepomis macrochirus Bluegill LC50 MOR 96 16 000 AQ5590 Buccafusco et al. 1981 C

Americamysis bahia Opossum shrimp LC50 MOR 96 16 400 AQ9607 U.S.EPA 1978 M

Pimephales promelas Fathead min-now LC50 MOR 96 16 900 AQ3217 Geiger et al. 1990 C

Lepomis macrochirus Bluegill LC50 MOR 24 17 000 AQ5590 Buccafusco et al. 1981 C

Cyprinodon variegatus Sheepshead minnow LC50 MOR 24 20 000 AQ10366 Heitmuller et al. 1981 C

Pimephales promelas Fathead min-now LC50 MOR 96 22 200 AQ10432 Mayes et al. 1983 C

Pimephales promelas Fathead min-now LC50 MOR 96 22 300 AQ10432 Mayes et al. 1983 C

Leuciscus idus melano-tus Carp LC50 MOR 48 24000 AQ547 Juhnke & Luedemann 1978 I

Lepomis macrochirus Bluegill LC50 MOR 96 24 000 AQ728 Pickering & Henderson 1966

C

Lepomis macrochirus Bluegill LC50 MOR 48 24 000 AQ728 Pickering & Henderson 1966

C

Lepomis macrochirus Bluegill LC50 MOR 24 24000 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 96 29 120 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 48 29 120 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 24 29120 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 96 33930 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 96 33930 AQ728 Pickering & Henderson 1966

C

Table 1. Short term test for chlorobenzene. (Continued)ANNEX 5/9

Page 47: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

The Finnish Environment 749

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration 1 Mean µg/l

Master Reference

Reference in master reference

Quality given in master reference

Pimephales promelas Fathead min-now LC50 MOR 48 33930 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 24 33930 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 48 34980 AQ728 Pickering & Henderson 1966

C

Pimephales promelas Fathead min-now LC50 MOR 96 35400 AQ10432 Mayes et al. 1983 C

Pimephales promelas Fathead min-now LC50 MOR 24 39190 AQ728 Pickering & Henderson 1966

C

Poecilia reticulata Guppy LC50 MOR 96 45530 AQ728 Pickering & Henderson 1966

C

Poecilia reticulata Guppy LC50 MOR 48 45530 AQ728 Pickering & Henderson 1966

C

Poecilia reticulata Guppy LC50 MOR 24 45530 AQ728 Pickering & Henderson 1966

C

Carassius auratus Goldfi sh LC50 MOR 96 51620 AQ728 Pickering & Henderson 1966

C

Carassius auratus Goldfi sh LC50 MOR 48 56000 AQ728 Pickering & Henderson 1966

C

Carassius auratus Goldfi sh LC50 MOR 24 73030 AQ728 Pickering & Henderson 1966

C

*The results reported by Birge et al. 1979 and Juhnke & Luedemann 1978 are signifi cantly smaller than other acute test results reported for fi sh. The Birge et al. results have been disregarded by the EU expert group on EQS. The Juhnke & Luedemann 1978 results are insuffi ciently reported in the original publication. Therefore, the data presented by Birge et al. 1979 and Juhnke & Luedemann 1978 shall be disregarded from this assessment.

Table 1. Short term test for chlorobenzene. (Continued)ANNEX 5/10

Page 48: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74946 Table 2. Long term test for chlorobenzene.

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, days

Concentration µg/L

Master reference

Reference in master reference

Quality given in master reference

AlgaeSkeletonema costatum Diatom NOEC POP 5 100 000 AQ2233 Cowgill et al. 1989 C

Selenastrum capricornutum Green algae NOEC BCM 4 100 000 AQ9607 U.S.EPA 1978 M

InvertebrateDaphnia magna Water fl ea NOEC REP NEN 6502 semi-

static method16 320 Hermens et al.

1984(cited in NSDB/IUCLID/BUA)

Daphnia magna Water fl ea NOEC REP nom.conc. 21 2500 IUCLID Kuehn et a. l 989

Daphnia magna Water fl ea NOEC REP NR 6 500 AQ212 Cowgill & Milazzo 1991

C

Daphnia magna Water fl ea NOEC REP NR 11 000 AQ212 Cowgill & Milazzo 1991

C

Daphnia magna Water fl ea NOEC REP NR 11 000 AQ212 Cowgill & Milazzo 1991

C

Daphnia magna Water fl ea NOEC REP NR 12 000 AQ212 Cowgill & Milazzo 1991

C

Ceriodaphnia dubia Water fl ea NOEC REP NR 19 000 AQ212 Cowgill & Milazzo 1991

C

Ceriodaphnia dubia Water fl ea NOEC REP NR 19 000 AQ212 Cowgill & Milazzo 1991

C

Ceriodaphnia dubia Water fl ea EC50 REP 14 2 500 AQ15526 Ca-lamari et al. 1983

C

FishDanio rerio Zebra danio NOEC REP 28 8 500 AQ3279 Van

Leeuwen et al. 1990

C

ANNEX 5/11

Page 49: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

The Finnish Environment 749

Table 3. Bioconcentration factors for chlorobenzene.

Scientifi c Name Common Name Endpoint Effect Test Duration, hours

Concentration µg/l

BCF Master Reference

Reference in Master reference

AlgaeOedogonium cardia-cum Green algae BCF ACC 48 1.01 4185 AQ2480 Lu & Metcalf 1975

Selenastrum capricornutum Green algae BCF ACC 24 10000 2172 AQ11672 Casserly et al. 1983

Chlorella fusca Green algae BCF ACC 24 50 50 AQ17318 Freitag et al. 1984

Chlorella fusca Green algae BCF ACC 24 50 50 AQ17318 Freitag et al. 1984

CrustaceaDaphnia magna Water fl ea BCF ACC 24 1.01 2789 AQ2480 Lu & Metcalf 1975

Physa sp. Pouch snail BCF ACC 48 1.01 1313 AQ2480 Lu & Metcalf 1975

InsectsCulex quinquefascia-tus Southern house mos-

quitoBCF ACC 24 1.01 1292 AQ2480 Lu & Metcalf 1975

Chironomus decorus Midge BCF ACC 48 1 11 AQ18041 Knezovich & Harrison 1988

FishGambusia affi nis Western mosquitofi sh BCF ACC 24 1.01 645 AQ2480 Lu & Metcalf 1975

Leuciscus idus Ide, silver or gold-en orfe

BCF ACC 72 50 75 AQ17318 Freitag et al. 1984

Leuciscus idus Ide, silver or gold-en orfe

BCF ACC 72 50 70 AQ17318 Freitag et al. 1984

Cyprinus carpio Carp BCF ACC 8 weeks 150 4.3 – 40 MITI 1992

Lepomis macrochirus BCF ACC 14 d 1 41 IUCLID Monsanto reports

Cyprinus carpio Carp BCF ACC 8 weeks 10 3.9 - 23 MITI 1992

ANNEX 5/12

Page 50: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74948

Annex 6. 1,2-dichlorobenzene

1. Identity of Substance

Name: 1,2-dichlorobenzene

CAS-Number: 95-50-1

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 7.4 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community; freshwater 7.4 µg/l See section 8.1.

AA-EQS Pelagic community; Baltic sea 0.74 µg/l See section 8.1.

MAC-QS Pelagic community; freshwater

- See section 8.1.

Benthic community; freshwater sediment

255 µg/kg (dry wt) Tentative standard derived from AA-EQS by EP method. See section 8.2.

Predators (secondary poisoning)

40 mg/kg ~ 150 µg/l See section 8.3.

Food uptake by man 36.5 mg/kg ~140 µg/l Tentative assessment. See section 8.4.

Drinking water abstraction 0.3 µg/l WHO-standard. See section 8.5.

3a. Classifi cation and labelling

R-Phrases and Labelling Reference:

Xn; R22 Xi; R36/37/38 N; R50-53 NCLASS

3b. Risk assessment in EU1,2-dichlorobenzene is not listed in a priority list (as forseen under Council Regu-lation (EEC) No 793/93 on the evaluation and control of the risks of existing sub-stances.)

ANNEX 6/1

Page 51: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49The Finnish Environment 749

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C6H4Cl2

Molecular weight 147

Vapour pressure [Pa] 140 - 196 BUA 1990B

Henry’s law constant [Pa m³/mol] 193 BUA 1990B

Solubility in water [mg/l] 133 – 154 (20 oC) BUA 1990B

Dissociation constant; pKa

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) No experimental data on hydrolysis is availa-ble. Based on its molecular structure, no hy-drolysis is expected.

Photostability (DT50) (aqueous, sunlight, state pH) no data available

Readily biodegradable (yes/no) Not readily biodegradable. MITI 1992

Degradation in Water/sediment no experimental data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic en-vironment

no experimental data available

Partition co-effi cient; log KOW 1) 3.28 – 3.772) 3.4

1) BUA 1990B / measured data 2) IUCLID

Koc [l/kg] measured values: 1) 316 (silt loam)1) 344 (sediment)1) 286-2000 (various aquifer materials)1) 4654 (aquifer material 90 % sand)1) 3800 – 4050 (aquifer material, sandy)calculated: 2) 756 (based on log Kow 3.43)

1) BUA 1990B2) EUSES

BCF (fi sh) 89 - 260

Solids-water partition coeffi cient in SPM [l/kg] no experimental data available

Solids-water partition coeffi cient in sediment[l/kg] no experimental data available

6. Effect Data (aquatic environment)

Ecotoxicity data to aquatic organisms are presented in Tables 1 and 2.

Table 6.1. Mammal and/or bird oral toxicity data relevant for the assessment of non compartment specifi c effects relevant for the food chain (secondary poisoning)

Type of study test result Ref.

Repeated oral dose studies on rat and mice up to two years of duration

NOAEL = 60 mg/kg b.w. OECD/SIDS initial assessment report

ANNEX 6/2

Page 52: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74950

Information on Endocrine Disrupting Potential

Comment Reference

no data available

7. Effect data (human health)

Value Study Safety factor Reference

TDI 0.6 mg/kg b.w./day 103 week mouse test; NOEL 60 mg/kg b.w./day 100 EHC 1991

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThe data is shown in Tables 1 and 2. Long term NOEC values are available for three trophic levels. The lowest reported NOEC value is for fi sh and it is 370 µg/l. How-ever, this 14-day test on fi sh cannot be accepted as a chronic test. Thus, as chronic NOEC values are available from only two trophic levels the use of an assessment factor of 50 is justifi ed. Therefore, the following EQS value is derived:

AA-EQS = 370 µg / 50 = 7.4 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 7.4 µg/l / 10 = 0.74 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Daphnia magna and it is 740 µg/l. When an assessment factor of 100 is used, a lower value than the AA-EQS is ob-tained. Therefore, no MAC value is proposed at this stage.

8.2 Quality Standard for Sediment

A tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning method. The default properties (fraction of organic carbon, wet and dry density) given in the TGD are used. Experimental Koc values range from 286 – 4654. It is proposed to use the Koc value of 344 (experimental for sediment). This is supported by the Koc values used for chlorobenzene and 1,4-dichlorobenzene, 152 l/kg and 450 l/kg, respectively. This results in a Kp-susp value of 34.4 l/kg (Kp_susp = foc (0.1) x Koc) and to the following AA-EQSsed.

AA-EQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 34.4 l/kg x 7.4 µg/l = 255 µg/kg

ANNEX 6/3

Page 53: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51The Finnish Environment 749

8.3 Secondary Poisoning of Top Predators

1,2-dichlorobenzene is liable to bioaccumulate. Therefore, it is necessary to de-rive a spesifi c QS in relation to secondary poisoning. The NOAEL value of 60 mg/kg b.w./day given in the SIDS initial assessment profi le can be used for the assessment. The value is based on several repeated dose studies on rat and mice up to two years of duration.

The NOECmammal is 60 mg/kg/b.w./day x CONV (20) = 1200 mg/kg food (TGD, table 22)

The PNECfood = 1200 mg/kg food / AF(30) = 40 mg/kg food (TGD, table 23)

According to TGD it is assumed that top predators prey 100 % on the aquatic organisms. Therefore, the level of 1,2-dichlorobenzene in fi sh may not exceed 40 mg/kg. The BCF value of 260 can be used:

QSsec.poisoning = 40 mg/kg / 260 l/kg = 0.15 mg/l = 150 µg/l

The QSsec.pois. indicates that the AA-EQS for the pelagic community is also pro-tective for top predators exposed through the food chain.

8.4 QS referring to food uptake by Humans

1,2-dichlorobenzene is liable to bioaccumulate. Therefore, it is necessary to de-rive a spesifi c QS in relation to food uptake by humans. The TDI value of 0.6 mg/kg b.w./day given by WHO (EHC 1991) can be used to assess the risk to hu-mans through uptake by food. This corresponds to 42 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceeded by more than 10 % by consumption of food originating from aquat-ic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 4.2 mg of 1,2-dichlorobenzene, that is 36.5 mg/kg fi sh.The BCF value of 260 can be used. Therefore, the following QS for food uptake by man is derived: QS-food uptake by man = 36.5 mg/kg / 260 l/kg = 0.14 mg/l

The QS-food uptake by humans indicates that the AA-EQS for the pelagic commu-nity is also protective for humans exposed through the food chain.

8.5 QS for drinking water abstraction

In the Guidelines for drinking-water quality (WHO, 1984), the following guide-line value is developed for 1,2-dichlorobenzene: 0.3 µg/l. The value represent 10 % of the taste and odour threshold value. [in Environmental Health Criteria 128, IPCS 1991.]

ANNEX 6/4

Page 54: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74952 Table 1. Short term tests for 1,2-dichlorobenzene.

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration µg/L

Master Reference*

Reference in master reference

Qualty given in master reference

Algae

Selenastrum capricornutum Green algae EC50 GRO GGRO 96 2200 AQ10745 Galassi & Vighi 1981 M

Scenedesmus subspicatus Green algae EC50 POP GPOP, DEC 48 13500 AQ2997 Kuhn & Pattard M

Scenedesmus subspicatus Green algae EC50 POP BMAS, DEC 48 14000 AQ2997 Kuhn & Pattard M

Cyclotella meneghiniana Diatom EC50 GEN GGEN 48 23330 AQ88 Figueroa et al. 1991 C

Cyclotella meneghiniana Diatom EC50 GEN DNAC, DEC 48 23330 AQ19626 Figueroa 1990 M

Skeletonema costatum Diatom EC50 PHY PSYN 96 44200 AQ9607 U.S.EPA 1978 M

Selenastrum capricornutum Green algae EC50 BCM CHLO 24 65800 AQ9607 U.S.EPA 1978 M

Selenastrum capricornutum Green algae EC50 BCM CHLO 96 71100 AQ9607 U.S.EPA 1978 M

Selenastrum capricornutum Green algae EC50 POP GPOP 96 76100 AQ9607 U.S.EPA 1978 M

Selenastrum capricornutum Green algae EC50 BCM CHLO 72 92700 AQ9607 U.S.EPA 1978 M

Selenastrum capricornutum Green algae EC50 BCM CHLO 48 107000 AQ9607 U.S.EPA 1978 M

Invertebrate

Ceriodaphnia dubia Water fl ea EC50 ITX IMBL, INC 48 662 AQ18991 Rose et al. 1998 (QSAR-results)

M

Daphnia magna Water fl ea EC50 ITX IMBL, INC 48 740 AQ6629 Canton et al. 1985 M

Daphnia magna Water fl ea EC50 ITX IMBL 24 780 Calamari 1983(AQ15526)

- M

Daphnia magna Water fl ea EC50 ITX IMBL 24 1700 AQ847 Kuhn et al. 1989 C

Daphnia magna Water fl ea EC50 BEH EQUL 24 1700 AQ6628 Kuhn 1988 M

Americamysis bahia Opossum shrimp LC50 MOR MORT 96 1970 AQ9607 U.S.EPA 1978 M

Daphnia magna Water fl ea LC50 MOR MORT, INC 48 2200 AQ6629 Canton et al. 1985 M

Tanytarsus dissimilis Midge EC50 MOR MORT, INC 48 2300 AQ16044 Call et al. 1979 M

Daphnia magna Water fl ea EC50 ITX IMBL 48 2352 AQ10805 Bobra et al. 1985 M

Daphnia magna Water fl ea EC50 ITX IMBL 48 2352 AQ11926 Abernethy et al. 1986 C

Daphnia magna Water fl ea LC50 MOR MORT 24 2400 AQ5184 LeBlanc 1980 C

ANNEX 6/5

Page 55: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The Finnish Environment 749

Table 1. Short term tests for 1,2-dichlorobenzene. (Continued)

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration µg/L

Master Reference*

Reference in master reference

Qualty given in master reference

Daphnia magna Water fl ea LC50 MOR MORT 48 2400 AQ5184 LeBlanc 1980 C

Daphnia magna Water fl ea EC50 ITX IMBL 48 6468 AQ11936 Bobra et al . 1983 C

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR MORT 96 9400 AQ875 Curtis et al. 1979 M

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR MORT 96 10000 AQ2965 Curtis & Ward 1981 M

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR MORT 48 10300 AQ875 Curtis et al. 1979 M

Tanytarsus dissimilis Midge LC50 MOR MORT, INC 48 11800 AQ16044 Call et al. 1979 M

Tanytarsus dissimilis Midge LC50 MOR MORT 48 12000 AQ10579 Call et al. 1983 C

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR MORT 24 14300 AQ875 Curtis et al. 1979 M

Artemia salina Brine shrimp LC50 MOR MORT 24 14994 AQ11926 Abernethy et al. 1986 C

Tanytarsus dissimilis Midge LC50 MOR MORT 24 19900 10579 Call et al. 1983 C

Daphnia magna Water fl ea EC50 BEH EQUL 24 45000 AQ707 Bringmann and Kuhn 1982

I

Tetrahymena pyriformis Ciliate EC50 GRO GGRO 24 51000 AQ11258 Yoshioka et al. 1985 C

Daphnia magna Water fl ea LC50 MOR MORT 24 68000 AQ5718 Bringmann & Kuhn 1977 C

Mercenaria mercenaria Northern quahog or hard clam

EC50 DVP GDVP, DEC 48 100000 AQ2400 Davis & Hidu 1969 M

Mercenaria mercenaria Northern quahog or hard clam

LC50 MOR MORT, INC 288 100000 AQ2400 Davis & Hidu 1969 M

Mercenaria mercenaria Northern quahog or hard clam

LC50 GRO GGRO, CHG 288 250 - 10000 AQ2400 Davis & Hidu 1969 M

Fish

Oncorhynchus mykiss Rainbow trout,donaldson trout

LD50 MOR MORT 96 1095 AQ11597 Hodson 1985 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

EC50 MOR MORT, INC 96 1520 AQ16044 Call et al. 1979 C

ANNEX 6/6

Page 56: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74954

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration µg/L

Master Reference*

Reference in master reference

Qualty given in master reference

Oncorhynchus mykiss Rainbow trout,donaldson trout

EC50 MOR MORT, INC 144 1520 AQ16044 Call et al. 1979 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT 144 1540 AQ10579 Call et al. 1983 C

Oncorhynchus mykiss Rainbow trout EC50 BEH LOCO, CHG 96 1550 AQ4433 Ahmad et al. 1984 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT, INC 144 1550 AQ16044 Call et al. 1979 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT 48 1580 AQ10579 Call et al. 1983 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT 72 1580 AQ10579 Call et al. 1983 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT 96 1580 AQ10579 Call et al. 1983 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT, INC 96 1580 AQ16044 Call et al. 1979 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT, INC 96 1610 AQ4433 Ahmad, N., D. Benoit, L. Brooke, D. Call, A. Carl-son, D. Defoe, J. Huot, A. Moriarity, J. Richter, and P.Shubat..

C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT 22 1650 AQ10579 Call et al. 1983 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR MORT 48 2300 AQ15526 Calamari 1983 C

Solea solea Dover sole LC50 MOR MORT, INC 96 4190 AQ14995 Furay & Smith 1995 M

Danio rerio Zebra danio LC50 MOR MORT, INC 96 4500 AQ56372 Roderer 1990 M

Platichthys fl esus Starry, european fl oun-der

LC50 MOR MORT, INC 96 4616 AQ14995 Furay & Smith 1995 M

Poecilia reticulata Guppy LC50 MOR MORT 96 4792 AQ7257 Sijm et al. 1993 C

Danio rerio Zebra danio LC50 MOR MORT, INC 48 5300 AQ56372 Roderer 1990 M

Table 1. Short term tests for 1,2-dichlorobenzene. (Continued) ANNEX 6/7

Page 57: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

The Finnish Environment 749

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration µg/L

Master Reference*

Reference in master reference

Qualty given in master reference

Lepomis macrochirus Bluegill LC50 MOR MORT 96 5600 AQ5590 Buccafusco et al. 1981 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 6027 AQ7257 Sijm et al. 1993 C

Lepomis macrochirus Bluegill LC50 MOR MORT 24 6300 AQ5590 Buccafusco et al. 1981 C

Danio rerio Zebra danio LC50 MOR MORT 48 6800 AQ15526 Calamari 1983 C

Menidia beryllina Inland silverside LC50 MOR MORT 96 7300 AQ863 Dawson et al. 1977 C

Cyprinodon variegatus Sheepshead minnow LC50 MOR MORT 48 9300 AQ10366 Heitmuller et al. 1981 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 9470 AQ12858 Geiger et al. 1986 C

Cyprinodon variegatus Sheepshead minnow LC50 MOR MORT 72 9700 AQ10366 Heitmuller et al. 1981 C

Cyprinodon variegatus Sheepshead minnow LC50 MOR MORT 96 9700 AQ10366 Heitmuller et al. 1981 C

Cyprinodon variegatus Sheepshead minnow NOEC MOR, MORT 4 days 9700 AQ10366 Heitmuller et al. 1981 C

Leuciscus idus melanotus Carp LC50 MOR MORT, INC 48 20000 AQ547 Juhnke and Luedemann 1978

I

Lepomis macrochirus Bluegill LC50 MOR MORT 96 27000 AQ863 Dawson et al. 1977 C

Leuciscus idus melanotus Carp LC50 MOR MORT, INC 48 29000 AQ547 Juhnke and Luedemann 1978

I

Pimephales promelas Fathead minnow LC50 MOR MORT 96 57000 AQ875 Curtis et al. 1979 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 57000 AQ2965 Curtis & Ward 1981 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 57000 AQ5735 Curtis et al. 1978 M

Pimephales promelas Fathead minnow LC50 MOR MORT 48 76300 AQ875 Curtis et al. 1979 C

Pimephales promelas Fathead minnow LC50 MOR MORT 48 76300 AQ5735 Curtis et al. 1978 M

Pimephales promelas Fathead minnow LC50 MOR MORT 24 120000 AQ5735 Curtis et al. 1978 M

Cyprinodon variegatus Sheepshead minnow LC50 MOR MORT 24 9700 - 13000 AQ10366 Heitmuller et al. 1981 C

Table 1. Short term tests for 1,2-dichlorobenzene. (Continued) ANNEX 6/8

Page 58: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74956 Table 2. Long term tests for 1,2-dichlorobenzene.

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, days

Concentration µg/l

Master Reference*

Reference in master reference

Qualty given in masterreference

Algae

Selenastrum capricornutum Green algae NOEC BCM, CHLO 4 10000 AQ9607 US EPA 1978 M

Crustacea

Daphnia magna Water fl ea EC50 reproduction 14 550 Calamari 1983(AQ15526)

- C

Daphnia magna Water fl ea NOEC BEH, EQUL 21 630 AQ6628 Kuhn 1988 M

Daphnia magna Water fl ea NOEC REP, GREP 21 630 AQ847 Kuhn et al. 1989 C

Fish

Danio rerio Zebra danio NOEC BEH, GBHV OECD 204, fl ow-through system

14 370 Roderer 1990(AQ56372)

M

*Same results have been partially also reported in IUCLID dataset and BUA 1990B report).

Table 3. BCF values for 1,2-dichlorobenzene.

Scientifi c Name Common Name Endpoint Effect Test conditions Concentration µg/l

BCF Master Reference

Reference in master Reference

Quality given in master reference

Fish

Lepomis macrochirus Bluegill sunfi sh BCF ACC RSDE, INC 7.89 89 AQ5175 Barrows et al. 1978 C

Lepomis macrochirus Bluegill sunfi sh BCF ACC RSDE, INC 7.89 89 AQ15110 Veith et al. 1980 C

Cyprinus carpio Carp BCF 0.1 150-230 MITI 1991

Cyprinus carpio Carp BCF 0.001 90-260 MITI 1992

Other species

Chironomus decorus Midge BCF ACC GACC, INC 1 31 AQ18041Knezovich & Harri-son 1988 M

Selenastrum capricornutum Green algae BCF ACC GACC, INC 10000 19700 AQ11672 Casserly et al 1983 M

ANNEX 6/9

Page 59: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57The Finnish Environment 749

Annex 7 1,4-Dichlorobenzene

1. Identity of Substance

Name: 1,4-dichlorobenzene

CAS-Number: 106-46-7

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 20 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community , freshwater 20 µg/l See section 8.1.

AA-EQS; Pelagic community, Baltic sea 2 µg/l See section 8.1.

MAC-QS Pelagic community, freshwater

- See section 8.1.

AA-EQS; Benthic community (freshwater sediment)

900 µg/kg (dry wt) Tentative standard derived from the AA-EQS for the pelagic community by the EP method. see section 8.2

EQSsec.pois; Predators (secondary poisoning)

10 mg/kg ~ 34 µg/l See section 8.3.

QS -food uptake by man 6 mg/kg ~ 20 µg/l See section 8.4

QSdw; Drinking water abstraction 0.1 µg/l See section 8.5

3a. Classifi cation and labelling

R-Phrases and Labelling Reference:

Classifi caton: Xi;R36 N;R50-53; Labelling: Xi; N; R:36-50/53; S:(2-)24/25-46-60-61

EU-RAR 2003 (26th ATP of directive 67/548/EEC)

Classifi caton: Xi; R36; N; R50-53; Carc. Cat 3 R40Labelling: Xi; N; R: 36-40-50/53; S: (2-)24/25-46-60-61

EU-RAR 2003 (after discussions in May 2003 by the ”Commission Working Group on Classifi cation and Labelling of Danger-ous Substances”)

3b. Risk assessment in EU

The risks of 1,4-dichlorobenzene have been assessed in the EU.

ANNEX 7/1

Page 60: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74958

4. Physical and chemical properties

Property Value: Reference

Molecular formula C6H4Cl2

Molecular weight 147.01

Vapour pressure [Pa] 160-170 (20°C) EU-RAR 2003

Henry’s law constant [Pa m³/mol] 240-262 (20°C) EU-RAR 2003

Solubility in water [mg/l] 60-70 (20°C) EU-RAR 2003

Dissociation constant; pKa -

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) No experimental data on hydrolysis is available. Based on its molecular structure, no hydrolysis is expected.

EU-RAR 2003

Photostability (DT50) (aqueous, sunlight, state pH) no experimental data available

Readily biodegradable (yes/no) 1,4-dichlorobenzene can be classifi ed as ”readily biodegradable”.

EU-RAR 2003

Degradation in Water/sediment no experimental data available

Mineralization no experimental data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic environment

no experimental data available

Biodegradation rate in surface water k = 0.046 d-1

T50 = 15 dEU-RAR 2003

Biodegradation rate in sedinment

(takes account of adsorption to solid material; Koc

= 450 l/kg)

ksed = 0.002 d-1

T50 = 346.5 dEU-RAR 2003

Partition co-effi cient; log KOW 3.4 EU-RAR 2003

Koc [l/kg] 450 l/kg (value used in RAR. Average of results ranging from 155-748 l/kg, results for soils with organic carbon content beyond the OECD recommendation 0.6 – 3.5 % have been disregarded)

EU-RAR 2003

BCF (fi sh) [l/kg] 55 – 1400; In the EU-RAR 296 is used as a worst case, 1400 is considered not relevant as it has been determined for a development stage.

EU-RAR 2003

Solids-water partition coeffi cient in SPM [l/kg] Kp_spm = 45 l/kg; EU-RAR 2003

Solids-water partition coeffi cient in sediment[l/kg] Kp_sed = 22.5 l/kg; EU-RAR 2003

6. Effect Data (aquatic environment)

Acute and chronic toxicity to aquatic organismsEcotoxicity data to aquatic organisms are presented in Tables 1 and 2..

ANNEX 7/2

Page 61: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59The Finnish Environment 749

Table 6.1. Mammal and/or bird oral toxicity data relevant for the assessment of non compartment specifi c effects relevant for the food chain (secondary poisoning)Type of study Test result Reference

Chronic study with dogs (oral administration)

NOAEL = 10 mg/kg/day EU-RAR 2003

PNECoral = NOAEL 10) x CONV(10) / AF(10) = 10 mg/kg foodPNECoral= NOAEL x (10)CONV(40) / AF(30)= 13.3 mg/kg food

EU-RAR 2003

Information on Endocrine Disrupting Potential

Comment Reference

no data available

7. Effect data (human health)

Table 7.1

Value Study Safety factor Reference

TDI 0.1 mg/kg b.w./day 103 week rat test; LOAEL=150 mg/kg b.w./day

1000 EHC 1991

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThe 96-hour EC0 for algae (Selenastrum capricornatum) can be used as a NOEC (See Annex 1). As NOEC values from long term tests are available for three trophic lev-els, the assessment factor of 10 is justifi ed. The lowest reported NOEC value is for fi sh (Jordanella fl oridae) and it is 0.20 mg/l. Therefore, the following AA-EQS value is derived:

AA-EQS = 0.20 mg/l / 10 = 0.02 mg/l = 20 µg/l

This is the same as the PNEQaquatic proposed in the draft EU risk assessment re-port (EU RAR 2003)

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 20 µg/l / 10 = 2 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Daphnia magna and it is 0.7 mg/l. If the assessment factor of 100 is used, a lower value than the AA-EQS is derived. Therefore, no MAC value is derived at this stage. In the EU risk assessment no PNEC for intermittent releases has been derived.

ANNEX 7/3

Page 62: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74960

8.2 Quality Standard for SedimentIn the absence of toxicological data for sediment dwelling organisms, the EQSsed. is calculated using the equilibrium partitioning method from the AA-EQS value:

Kp_susp =f(oc) (0.1) x Koc (450 l/kg) = 45 l/kg

EQS sed. (dry weight) = Kp_susp x AA-EQS = 45 l/kg x 0.02 mg/l = 900 µg/kg (dry weight)EQSsed. (wet weight) = EQSsed. (dry weight) / 4.6 = 195.7 µg/l

This is the same as the PNEQsed. proposed in the draft EU risk assessment report (EU RAR 2003). Note: One test with a sediment dweller (Tanytarsus dissimilis 48-hour EC50 = 13 mg/l) in an aqueous system with a layer of sand at the bottom of the vessel was available in the EU RA (Call et al., 1983 cited in EU RAR 2003). The organic car-bon content of the sand is not indicated. Using each of the different compartment-water partition coeffi cients for soil, sediment and suspended matter, a concentra-tion in the sand layer of 157-178 mg/kg wet weight can be estimated. This result tends to validate the PNEC for sediment. The value obtained is a factor of 103 low-er than the experimental LC50-value. The PNEC for aquatic organisms is more like a factor 300 less than the acute toxicity results for fi sh. This might indicate that the PNEC sediment is over-estimating the toxicity to some degree.

8.3 Secondary Poisoning of Top PredatorsThe PNECoral in the EU RAR is 10 mg/kg food (13.4 mg/kg food when conversion and assessment factors according to the revised TGD are used, see table 6.1). Ac-cording to TGD it is assumed that top predators prey 100 % on the aquatic organ-isms. Therefore, the level of 1,4-dichlorobenzene in fi sh may not exceed 10 mg/kg. The BCF value of 296 l/kg can be used and the following QS is derived: QSsec.poisoning = 10 mg/kg / 296 l/kg = 0.034 mg/l = 34 µg/l

The QSsec.pois. indicates that the AA-EQS for the pelagic community is also pro-tective for top predators exposed through the food chain.

8.4 QS referring to food uptake by Humans1,4-dichlorobenzene is liable to bioaccumulate (BCF > 100). Therefore, it is nec-essary to derive a specifi c QS in relation to food uptake by humans. The tolera-ble daily intake through ingestion for humans (TDI) set by WHO (EHC 1991) is 0.1 mg/kg b.w./day (see table 7.1). This corresponds to 7 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceeded by more than 10 % by consumption of food originating from aquatic sources. According to TGD the average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 0.7 mg of 1,4-dichlorobenzene, that is 6 mg/kg fi sh.The BCF value of 296 can be used and the following QS for food uptake by man is derived: QS-food uptake by man = 6 mg/kg / 296 l/kg = 0,02 mg/l = 20 µg/l

ANNEX 7/4

Page 63: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61The Finnish Environment 749

8.5 QS for drinking water abstractionIn the Guidelines for drinking-water quality (WHO, 1984), the following guide-line value was developed for 1,4-dichlorobenzene: 0.1 µg/l. The value represent 10 % of the taste and odour threshold value. (EHC 1991)

ANNEX 7/5

Page 64: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74962 Table 1. Short term tests for 1,4-dichlorobenzene.

Scientifi c name common name

End-point

Effect Test conditions Dura-tion, hours

Concen-tration µg/l

Master reference

Reference in master reference

Quality in master reference

AlgaeScenedesmus subspicatus EC50 growth (bio-

mass )DIN regulation 38 412, part 9; closed system; nom. conc.

48 28 000 EU-RAR 2003 Kühn and Patta-rd, 1990

Scenedesmus subspicatus EC50 growth (growth rate)

DIN regulation 38 412, part 9; closed system; nom. conc.

48 38 000 EU-RAR 2003 Kühn and Patta-rd, 1990

CrustaceanDaphnia magna Water fl ea EC50 immobilisation OECD proposal 1979; analytical concentrations 48 700 EU-RAR 2003 Canton et al., 1985

Daphnia magna Water fl ea EC50 immobilisation AFNOR 1974, analytical concentrations 24 1600 EU-RAR 2003 Calamari et al., 1982

Daphnia magna Water fl ea EC50 DIN 38412 part 11 24 3200 EU-RAR 2003 Kühn et al., 1989

FishOncorhynchus mykiss Rainbow trout LC50 MORT fl ow-through system, analytical concentrations 96 1120 EU-RAR 2003 Call et al., 1983

Brachydanio rerio Zebra fi sh LC50 MORT OECD Guideline 203; fl ow-through system; ana-lytical concentrations

96 2100 EU-RAR 2003 Röderer, 1990

Jordanella fl oridae American fl agfi sh LC50 MORT USEPA 1975; fl ow-through; analytical concen-trations

96 2100 EU-RAR 2003 Smith et al., 1991

Pimephales promelas Fathead minnow; larvae

LC50 MORT ASTM Guideline 1980; static acute toxicity test; closed system; nominal concentrations

96 3600 EU-RAR 2003 Mayes et al., 1983

Pimephales promelas Fathead minnow LC50 MORT USEPA 1975; fl ow-through system; 30-day-old animals; analytical concentrations

96 4200 EU-RAR 2003 Carlson and Kosian, 1987)

Jordanella fl oridae American fl agfi sh LC50 MORT USEPA 1975; semi-static: it is not stated wheth-er the aquaria were covered; analytical concen-trations

96 4500 EU-RAR 2003 Smith et al., 1991

Cyprinodon variegatus Sheepshead min-now

LC50 MORT US-EPA 1975; nominal concentrations; static system, brackish water

96 7400 EU-RAR 2003 Heitmüller et al., 1981

Pimephales promelas Fathead minnow; subadults

LC50 MORT ASTM Guideline 1980; static acute toxicity test; closed system; nominal concentrations

96 11700 EU-RAR 2003 Mayes et al., 1983

Pimephales promelas Fathead minnow; juveniles

LC50 MORT ASTM Guideline 1980; static acute toxicity test; closed system; nominal concentrations

96 14200 EU-RAR 2003 Mayes et al., 1983

ANNEX 7/6

Page 65: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

The Finnish Environment 749

Table 2. Long-term tests for 1,4-dichlorobenzene.

Scientifi c name Common name

End-point

Effect Test conditions Dura-tion, days

Concen-tration mg/l

Master reference

Reference in master reference

Quality in master reference

AlgaeSelenastrum capricornutum EC0 US-EPA 1971, closed system, 1,4-dichloroben-

zene concentration confi rmed analytically at the beginning and end of the test

3 570 EU-RAR 2003 Calamari et al., 1983

Selenastrum capricornutum EC50 US-EPA 1971, closed system, 1,4-dichloroben-zene concentration confi rmed analytically at the beginning and end of the test

3 1600 EU-RAR 2003 Calamari et al., 1983

Scenedesmus pannonicus EC50 growth OECD proposal 1979: growth inhibition test, analytical concentrations

3 31000 EU-RAR 2003 Canton et al., 1985

CrustaceanDaphnia magna Water fl ea NOEC time of fi rst

birthanimals were transferred every 2nd day to new, closed test bottles; analytical concentrations

21 400 EU-RAR 2003 Kühn et al., 1989

Daphnia magna Water fl ea NOEC fertility fertility tests; solutions were changed daily; concentration loss never exceeded 15% of ini-tial concentration

28 220 EU-RAR 2003 Calamari et al., 1982

FishOncorhynchus mykiss NOEC morphologi-

cal and histo-logical effects, mortality

development test, fl ow through system; analyti-cal concentrations

60 ≥ 100 EU-RAR 2003 Calamari et al., 1983

Jordanella fl oridae NOEC larvae hatch-ing and sur-viving, growth

early life stage toxicity test similar to test de-veloped for fathead minnow; fl ow through sys-tem; analytical concentrations;

16 200 EU-RAR 2003 Smith et al., 1991

Brachydanio rerio NOEC death, weight and behav-iour

OECD guideline 204; fl ow-through system, ana-lytical concentrations

14 440 EU-RAR 2003 Röderer, 1990

Pimephales promelas NOEC larvae hatch-ing and sur-viving

fl ow-through system; analytical concentrations 28 570 EU-RAR 2003 Carlson and Kosian, 1987

ANNEX 7/7

Page 66: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74964

Annex 8. Mercaptobenzothiazoledisulphide

1 Identity of Substance

Name: 2,2’-dithio-bis-benzothiazole; mercaptobenzothiazoledisulphide; di(benzothiazol-2-y1)disulphide;benzothiazole disulphide; MBTS

CAS-Number: 120-78-5

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 0.8 µg/l For MBTS the same over all EQS value as has been derived for it’s degradation product MBeT is proposed.

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater) Not possible to derive due to lack of data. Tentative value 0.6 µg/l or 20 µg/l.

See section 8.1.

AA-EQS Baltic sea Not possible to derive due to lack of data. Tentative value 0.06 µg/l or 2 µg/l.

See section 8.1.

MAC-QS Pelagic community (freshwater) Not possible due to lack of data. Tentative value 6 µg/l or 200 µg/l.

See section 8.1.

Benthic community (freshwater sediment)

Not possible to derive due to lack of data.Tentative value: 0.4-51 mg/kg dry weight

See section 8.2.

Predators (secondary poisoning) Not required. BCF < 100.

Food uptake by man Not required. BCF < 100.

Drinking water abstraction Not possible to derive due to lack of data.

3a. Classifi cation and labelling

Reference:

R31 R43 N; R50-53 NCLASS

3b. Risk assessment in EUMBTS is not listed in a priority list (as foreseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances). IU-CLID report is available.

ANNEX 8/1

Page 67: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65The Finnish Environment 749

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C14H8N2S4

Molecular weight 332.42

Vapour pressure [Pa] 5.97 x 10-8 BUA 1993

Henry’s law constant [Pa m³/mol] 9.92 x 10-5 (calculated) BUA 1993

Solubility in water [mg/l] 1) < 0.2 (due to DL not possible to determine more accurately)2) 0.063) 104) 0.0096 (pH 5-8)

1) BUA 1993 (due to DL not possible to determine more accurately)2) Calculated from logKow 4.66 / EPI3) Exper. CHEM TEST INST (1992) cited in EPI4) ACD/I-Lab Web service

Dissociation constant; pKa

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) MBTS is expected to hydrolyse to MBeT. The hydrolytic rate increases with increasing tem-perature and pH. Experimental studies under environmental conditions are not available. At pH 9.8 and a temperature of 58oC in a 1M phosphate buffer the hydrolysis after 65 hours was 6.7 %. From this result it is assumed that hydrolysis is not relevant under normal envi-ronmental conditions.

BUA 1993

Photostability (DT50) (aqueous, sunlight, state pH)

no experimental data available

Readily biodegradable In the MITI II test on inherent biodegradabil-ity no degradation was determined within the experimental period of 28 days. In MITI I test on ready biodegradation 0.8 % degradation by BOD was determined.

MITI 1992

Degradation in Water/sediment no experimental data available

Mineralization no experimental data available

Distribution in water / sediment systems

no experimental data available

Degradation products relevant to the aquatic environment

Mercaptobenzothiazole (MBeT)

Partition co-effi cient; log KOW 1) 4.5 (calculated) 2) 4.663) 7.04 ± 0.65

1) BUA 19932) EPI/KOWWIN v1.66) 3) ACD/I-Lab Web service

Koc [l/kg] calculated from logKow:5560 (logKow = 4.5)7500 (logKow = 4.66)635 000 (logKow = 7.04)

EUSESEUSESEUSES

BCF (fi sh) [l/kg] 1.0 – 7.2 (0.2 mg/l)1.4 – 51 (0.02 mg/l)

MITI 1992

Solids-water partition coeffi cient in sediment[l/kg]

Solids-water partition coeffi cient in SPM [l/kg]

Kp=foc x Koc556; 750; 63 500

ANNEX 8/2

Page 68: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74966

6. Effect Data (aquatic environment)

Ecotoxicity data to aquatic organisms are presented in Table 1.

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThe ecotoxicological data on MBTS is presented in Annex I. There are no results from long term results available. There are short term results for algae, invertebrate and fi sh. However, data on test conditions, e.g. whether solubilizers were used, is scarce. Contradicting information has been given on the solubility of MBTS (see table 4). Most test results are probably well above the solubility of MBTS, which is most likely < 0.2 mg/l . The lowest EC50 value reported is for algae and it is 0.6 mg/l. However, according to BUA report the test could not be validated due to lack of data. An other test on algae gives a EC50 value > 40 mg/l. Therefore, only a ten-tative EQS-value can be derived based on the EC50 value of 0.6 mg/l value and an assessment factor of 1000.

1) AA-EQS = 0.6 mg/l / 1000 = 0.6 µg/l

If the EC50 value for algae 0.6 mg/l is disregarded, the EQS value should be based on the LC50= 19 mg/l value for fi sh from a MITI 1992 test:

2) AA-EQS = 19 mg/l / 1000 = 19 µg/l ≈ 20 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

1) AA-EQS = 0.6 µg/l / 10 = 0.06 µg/l2) AA-EQS = 19 µg/l / 10 = 1.9 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)A tentative MAC-QS can be derived using either the test results on algae or fi sh: 1) MAC-QS = 0.6 mg/l/100 = 0.006 mg/l = 6 µg/l 2) MAC-QS = 19 mg/l / 100 = 0.19 mg/l ≈ 200 µg/l

8.2 Quality Standard for SedimentNo ecotoxicity data on sediment organisms are available. No experimental Kow, Koc or Kp values are available. Estimated Koc values of 5560; 7500 and 635 000 l/kg are used to estimate an tentative EQS-sediment with the EP-method. The re-spective Kp-values are 556, 750 and 63 500. Kp=556 l/kg

EQS-sediment = EQS-AA x Kp = 0.8 µg/l x 556 l/kg = 444.8 µg/kg

Kp = 63 500 l/kg

EQS-sediment = EQS-AA x Kp = 0.8 µg/l x 63 500l/kg = 50 800 µg/kg

ANNEX 8/3

Page 69: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67The Finnish Environment 749

8.3 Secondary Poisoning of Top PredatorsNot required. BCF < 100.

8.4 QS referring to food uptake by HumansNot required. BCF < 100.

8.5 QS for drinking water abstractionNot possible due to lack of data. (No NOAEL values from chronic studies on mam-mals or birds reported.)

ANNEX 8/4

Page 70: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74968 Table 1. Short term tests for MBTS.

Scientifi c name Common name Endpoint Effect Test conditions Test du-ra-tion

Concentration, mg/l

Master reference

Reference in master reference

Quality given in master reference

AlgaeSelenastrum capricornatum Green algae EC50 Growth 96 0.6 BUA 1993 Monsanto 1983 Not validat-

ed due to lack of data

Scenedesmus subspicatus Green algae EC50 growth “Algae inhibition test”, C.3, guideline 67/548/EEC (draft 1992); nom. conc.

72 > 40 mg/l BUA 1993 Bayer AG 1992

InvertebrateDaphnia magna Water fl ea EC50 Mobility-inhi-

bition48 82 BUA 1993 Monsanto 1983 Not validat-

ed due to lack of data

Daphnia magna Water fl ea EC50 Mobility-inhi-bition

24 140 BUA 1993 Monsanto 1983 Not validat-ed due to lack of data

Daphnia magna Water fl ea NOEC Mobility-inhi-bition

“Acute toxicity for Daphniae” (C.2) guide-line 67/548/EEC (draft 1992); *EC50 = 211 mg/l, above solubility, no solubilizer used

48 < 31.6 * BUA 1993 Bayer AG 1993

FishOncorhynchus kisutch Coho salmon,silver

salmonNR MOR MORT 24 10 AQ15148 MacPhee & Ruelle 1969 M

Oncorhynchus tshawytscha Chinook salmon NR MOR MORT 24 10 AQ15148 MacPhee & Ruelle 1969 M

Ptychocheilus oregonensis Northern squawfi sh NR MOR MORT 24 10 AQ15148 MacPhee & Ruelle 1969 M

Oryzian latipes Orange-red killfi sh LC50 mortality Static/semistatic system 48 19 BUA 1993 MITI 1992

Salmo gairdneri Rainbow trout LC50 mortality static 96 66 BUA 1993 Monsanto 1983 Not validated due to lack of data

Lepomis macrochirus Bluegill sunfi sh LC50 mortality static 96 82 BUA 1993 Monsanto 1983 Not validated due to lack of data

ANNEX 8/5

Page 71: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69The Finnish Environment 749

Annex 9. 2-(Tiocyanomethylthio)benzothiazole (TCMTB)

1. Identity of Substance

Name: 2-(tiocyanomethylthio)benzothiazole; (benzothiazol-2-ylthio)methyl thiocyanate TCMTB

CAS-Number: 21564-17-0

Classifi cation under WFD proposed National Priority Substance

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 0.018 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community, freshwater 0.018 µg/l See section 8.1.

AA-EQS Pelagic community, Baltic sea 0.0018 µg/l See section 8.1.

MAC-QS Pelagic community, freshwater 0.2 µg/l See section 8.1.

Benthic community (freshwater sediment)

2-3 µg/kg (dry wt) Tentative standard derived by EP method; see section 8.2

Predators (secondary poisoning)

1 mg/kg fi sh ~ 4.3 µg/l Tentative value based on LOAEL value. See section 8.3.

Food uptake by man 0.91 mg/kg fi sh ~ 3.6 µg/l Tentative value based on LOAEL value. See section 8.4.

Drinking water abstraction 52.5 µg/l Tentative value based on LOAEL value. See section 8.4.

3a. Classifi cation and labelling

Reference:

T+; R26 Xn; R22 Xi; R36/38 R43 N; R50-53 N-CLASS

3b. Risk assessment in EUTCMTB has been notifi ed as a biocide under the Biocide Products Directive (98/8/EC). TCMTB is not listed in a priority list (as foreseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances). No IUCLID report is available.

4. Physical and chemical properties (continues to the next page)

Property Value: Reference

Molecular formula C9H6N2S3

Molecular weight 238

ANNEX 9/1

Page 72: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74970

Property Value: Reference

Vapour pressure [Pa] 5.44 x 10-4 (25oC)4.76 x 10-4 (25oC)

Wenell 1994

Henry’s law constant [Pa m³/mol]

1.65 x 10-3 Wenell 1994

Solubility in water [mg/l] 40 mg/l (pH 6.5; 24oC) Wenell 1994

Dissociation constant; pKa

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) 1) DT50 = 8300 h (345 days); pH7; 1) 24oC1) DT50 = 760 h (32 days); pH 8; 24oC1) DT50 = 83 h; pH 9; 24oC1) DT50 = 1250 h (52 days); well water pH 7.6-7.7, 24oC 1) DT50 = 2700 h (112.5 days); river water; pH 7.7 – 8.0; 24oC1) DT50 = 740 h (30.8 days); sea water; pH 7.8 – 8.0; 24oC 2) No transformation within 35 d; pH 5; 25oC2) 8 % degradation within 35 d; pH 7; 25oC2) DT50= 81 h; pH 9; 25oCComment: hydrolysis is not expected to be signif-icant under neutral or acidic conditions

1) Wenell 19942) Hedenmark 1992

Photostability (DT50) (aqueous, sunlight, state pH)

DT50 < 1 day; pH 6; 10-20oCDT50= 1.5 h; pH 5.1; 25oC; DT50 = 3.8 h; pH 5; 25oCComment: photolysis is not expected to be rele-vant under nordic conditions

Wenell 1994

Readily biodegradable (yes/no) Not readily biodegradable (0 % by BOD) MITI 1992

Degradation in Water/sediment no experimental data available

Mineralization no experimental data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic environment

Mercaptobenzothiazole

Partition co-effi cient; log KOW 1) 3.15 (pH 6.5; 24oC)2) 3.23

1) Wenell 19942) Hedenmark 1992

Koc 1152 (sand)1217 (sandy loam)1396 (clay loam)1614 (silt loam)

Hedenmark 1992

Kadsorption (soil-water) Kadsorption = 1.9-38.4 Hedenmark 1992

BCF (whole fi sh) [l/kg] 1) 184 (Lepomis macrochirus)2) 230-253

1) Wenell 19942) Kjølholt et al. 1992

Solids-water partition coeffi cient in sediment[l/kg]

ANNEX 9/2

Page 73: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71The Finnish Environment 749

Property Value: Reference

Solids-water partition coeffi cient in SPM [l/kg]

Kp_susp = foc (0.1) x Koc=115.2 – 161.4

6. Effect Data (aquatic environment)

Ecotoxicity data to aquatic organisms are presented in Tables 1 and 2.Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning):

Type of study Species, test result Ref.

Mallard duck (Anas platyrchynchos), acut oral toxicity, single dose, 14-d. The test is not standard.

LD50 = 1310 mg/kg b.w.. Raltech Scientifi c Services Inc 1979 cited in Hedenmark 1993

Chronic toxicity: 2-generation reproduction test on rat.

NOEL = 5.5 mg/kg/day Eriksson & Johnson 1994

13 week oral exposure test on rat. (Alimmalla annostasolla ilmeni esimahan limakalvon epiteelin liikakasvua)

LOAEL = 1.5 mg/kg/day Statement of STTV; 16.12.2002;Dnro 27/71/97

7. Effect data (human health)

Value Study Safety factor Reference

ADI - - -

8. Calculation of Quality StandardsFor background information on methodology used, e.g. assessment and conver-sion factors selected, see the background report (Environmental Quality Stand-ards in Finland).

8.1 Quality Standards for Water

FreshwaterThere are long term test results available for Daphnia magna and algae (see Annex 1). For Daphnia magna the NOEC value of 0.9 µg/l derived from the MATC value of 1.3 µg/l can be used. For algae a test performed on Busan 30 formulation con-taining 30 % of TCMTB is available. The NOEC value, 10 µg/l, indicates that algae are probably not more sensitive to TCMTB than crustacean. As there are chronic NOEC values from two trophic levels available, the use of an assessment factor of 50 is justifi ed (see table 16 in TGD; Annex 2 to the background report) and the fol-lowing AA-EQS is derived:

AA-EQS = 0.9 µg/l / 50 = 0.018 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. (See chapter 5.2 in the background report.) As there is no infor-mation on species relevant for the Baltic environment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 0.018 µg/l / 10 = 0.0018 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 values from short term tests are reported for fi sh (see Annex 1). The lowest LC50 value, 2 µg/l, is reported for Oncorchynchus mykiss from a tests

ANNEX 9/3

Page 74: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74972

conducted on a TCMTB formulation. Also other LC50 values in the range 5-10 µg/l have been reported for formulations. As it is unclear what the composition of the tested formulation is in these tests and as there is a test result available for On-corchynchus mykiss from a test performed on technical TCMTB and evaluated in the Swedish ecotoxicological evaluation (Wenell 1994), the results obtained for the formulations are disregarded in this assessment and the EC50 value of 20 µg/l cit-ed in the Swedish report (Wenell 1994) is used as the lowest valid EC50 value. The assessment factor of 100 is used, and the following MAC-QS is derived:

MAC-QS = 20 µg/l / 100 = 0.2 µg/l

8.2 Quality Standard for Sediment

A tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning (EP) method. The default properties (fraction of organic carbon, wet and dry density) given in the TGD are used in the calculations. Kp_susp values derived from experimental Koc values (Kp_susp=foc(0.1) x Koc) range from 115 to 161. The EQSsed values for the highest and lowest Kp_susp val-ues are therefore:

1. Kd-Susp = 115

EQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 115 l/kg x 0.018 µg/l ≈ 2 µg/kg2. Kp_susp = 161

EQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 161 l/kg x 0.018 µg/l ≈ 3 µg/kg

8.3 Secondary Poisoning of Top Predators

TCMTB is liable to bioaccumulate (BCF=184-235). Therefore, it is necessary to de-rive a specifi c QS in relation to secondary poisoning. In a 13 week oral exposure test on rats a LOAEL value of 1.5 mg/kg b.w./day has been reported. A conversion factor of 20 and an assessment factor of 30 (TGD, table 22 and 23; see Annex 3 in background report) are used to derive the respective PNECoral: PNECoral = 1.5 mg/kg b.w./day x 20 [kg b.w..day.kg food-1] / 30 = 1 mg/kg food. According to TGD it is assumed that top predators prey 100 % on the aquatic or-ganisms. Therefore, the level of TCMTB in fi sh may not exceed 1 mg/kg. This cor-responds to a water concentration of:

EQSsec.pois. = 1 mg/kg / BCF = 1 mg/kg / 235 = 4.3 µg/l

Although the assessment is based on a LOAEL value, the derived EQSsec.pois. in-dicates that the AA-EQS is probably protective for top predators also.

8.4 QS referring to food uptake by Humans

TCMTB is liable to bioaccumulate (BCF=184-253). Therefore, it is necessary to de-rive a specifi c QS in relation to food uptake by humans. However, as no ADI val-ue is available it is not possible to derive a QShuman up take by food. Neither is it in the scope of this work to derive ADI values for humans.

ANNEX 9/4

Page 75: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73The Finnish Environment 749

However, a tentative assessment can be done based on the LOAEL value of 1.5 mg/kg b.w./day used in the secondary poisoning assessment. An assessment factor of 100 is used to extrapolate from animals to humans (Lepper 2002). Thus a thresh-old level of 0.015 mg/kg b.w./day is obtained. This corresponds to 1.05 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceeded by more than 10 % by consumption of food originating from aquatic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 0.105 mg of TCMTB, that is 0.913 mg/kg fi sh.

The BCF value of 253 can be used. Therefore, the following QS for food uptake by man is derived: QS-food uptake by man = 0.913 mg/kg / 253 l/kg = 3.6 µg/l

The tentative assessment indicates that the AA-EQS derived for the pelagic com-munity is probably protective for humans exposed through the food chain.

8.5 QS for drinking water abstraction

As no ADI value is available it is not possible to derive a QSdw. A tentative assess-ment can be done by using the threshold level of 0.015 mg/kg b.w./day derived in section 8.4. Uptake by drinking water should not exceed 10 % of the threshold level for hu-mans. According to TGD the uptake of drinking water is 2 L/day. Therefore, the following provisional quality standard is derived:

QSdw = 0.1 x 0.015 mg/kg b.w./day x 70 kg / 2 L/day = 52.5 µg/l

The tentative assessment indicates that the AA-EQS derived for the pelagic com-munity is probably protective for humans exposed through drinking water.

ANNEX 9/5

Page 76: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74974 Table 1. Short term tests for TCMTB. Rows showing tests on formulations are shaded. F= formulation; NR=not reported; TS= test substance.

See also list abbreviations.

Scientifi c Name Common Name End-point

Effect Test conditions Test Duration, hours

Concentra-tion µg/l a.i.

Master Reference

Reference in master reference

Quality in master reference

AlgaeSelenastrum capricornatum EC50 growth

rateSimilar to OECD 201; TS: Busan 30 (30 % TCMTB); nom.conc.*as cited in Eriksson & John-son 1994

72* 30 Hedenmark 1993 TNO Nederl. 1988

InvertebrateDaphnia magna Water fl ee LC50 immo-

bilisa-tion

FIFRA guideline 72-2; GLP; TS: TC-MTB 80,4 %

48 22 Kjøholt 1992 McNamara 1992

Corbicula manilensis Asiatic clam LT50 MOR TS: F; 30 % a.i. 661.1 38 AQ17514 McMahon et al. 1993 M

Corbicula manilensis Asiatic clam LT50 MOR TS: F; 30 % a.i. 448.9 75 AQ17514 McMahon et al. 1993 M

Dreissena polymorpha Zebra mussel LT50 MOR TS: F; 30 % a.i. 652.5 150 AQ17514 McMahon et al. 1993 M

Corbicula manilensis Asiatic clam LT50 MOR TS: F; 30 % a.i. 401.4 150 AQ17514 McMahon et al. 1993 M

Dreissena polymorpha Zebra mussel LT50 MOR TS: F; 30 % a.i. 336 300 AQ17514 McMahon et al. 1993 M

Corbicula manilensis Asiatic clam LT50 MOR TS: F; 30 % a.i. 96.1 300 AQ17514 McMahon et al. 1993 M

Dreissena polymorpha Zebra mussel LT50 BEH TS: F; BULAB 6009; 30%AI 108 500 AQ6765 Martin et al. 1993 C

Dreissena polymorpha Zebra mussel LT50 MOR TS: F; 30 % a.i. 221.6 600 AQ17514 McMahon et al. 1993 M

Corbicula manilensis Asiatic clam LT50 MOR TS: F; 30 % a.i. 90.8 600 AQ17514 McMahon et al. 1993 M

Dreissena polymorpha Zebra mussel LT50 BEH TS: F; BULAB 6009; 30%AI 89 1000 AQ6765 Martin et al. 1993 C

Dreissena polymorpha Zebra mussel LT50 MOR TS: F; 30 % a.i. 183.7 1200 AQ17514 McMahon et al. 1993 M

Corbicula manilensis Asiatic clam LT50 MOR TS: F; 30 % a.i. 103.5 1200 AQ17514 McMahon et al. 1993 M

Dreissena polymorpha Zebra mussel LT50 BEH TS: F; BULAB 6009; 30%AI 91 2000 AQ6765 Martin et al. 1993 C

Dreissena polymorpha Zebra mussel LT50 BEH TS: F; BULAB 6009; 30%AI 85 4000 AQ6765 Martin et al. 1993 C

Dreissena polymorpha Zebra mussel LC50 MOR TS: F; BULAB 6009; 30%AI 48 >15000 AQ4175 Waller et al. 1993 C

Dreissena polymorpha Zebra mussel LC50 MOR TS: F; BULAB 6009; 30%AI 48 >15000 AQ175 Waller et al. 1993 C

Fish

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: F; BULAB 6009; 30%AI 48 2.1 AQ4175 Waller et al. 1993 C

ANNEX 9/6

Page 77: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

The Finnish Environment 749

Scientifi c Name Common Name End-point

Effect Test conditions Test Duration, hours

Concentra-tion µg/l a.i.

Master Reference

Reference in master reference

Quality in master reference

Ictalurus punctatus Channel catfi sh LC50 MOR TS: F; BULAB 6009; 30%AI 48 4.9 AQ4175 Waller et al. 1993 C

Oncorhynchus tshawytscha Chinook salmon LC50 MOR TS: F woodstat 30 % a.i. 96 7.3 AQ12470 Nikl & Farrell 1993 C

Oncorhynchus kisutch Coho salmon,silver salmon LC50 MOR TS: F woodstat 30 % a.i. 96 10.3 AQ12470 Nikl & Farrell 1993 C

Oncorhynchus kisutch Coho salmon,silver salmon LC50 MOR TS: F woodstat 30 % a.i. 96 11.4 AQ12470 Nikl & Farrell 1993 C

Oncorhynchus tshawytscha Chinook salmon LC50 MOR TS: F woodstat 30 % a.i. 96 11.5 AQ12470 Nikl & Farrell 1993 C

Oncorchynchus mykiss Rainbow trout LC50 mortal-ity

U:S:FIFRA test guidelines (1982); fl ow-through, juvenile, TS: tech. TCMTB 80.4 %

20 Wenell 1994 Machado 1991 1

Obliquaria refl exa Three-horned wartyback LC50 MOR TS: F; BULAB 6009; 30%AI 48 >15000 AQ4175 Waller et al. 1993 C

Table 2. Long term tests for TCMTB. Rows showing tests on formulations are shaded. F= formulation; NR=not reported; TS= test substance. See also list of abbreviations.

Scientifi c Name Common Name End-point

Effect Test conditions Test Du-ration, days

Concentra-tion µg/l a.i.

Master Refer-ence

Reference in master reference

Quality in mas-ter ref-erence

Selenastrum capricornatum NOEC growth rate

Similar to OECD 201; TS: Busan 30 (30 % TCMTB); nom.conc.*as cited in Eriksson & John-son 1994

4* 10 Hedenmark 1993 TNO Nederl. 1988

InvertebrateDaphnia magna Water fl ee MATC repro-

ductionU.S. FIFRA test guidelines (1982); TS: tech. TCMTB (83.8%); *corresponding NOEC = MATC / 2½ = 0.9 µg/l.

21 1.3* Wenell 1994 Blasberg et al. 1992 1

Daphnia magna Water fl ee NOEC TS: F; 84 % TCMTB; meas. concen-trations

21 3.8 Wezel & Vlaardin-gen 2001

Van der Pol & Van der Linde 1999

Daphnia magna Water fl ee LC50 repro-duction

U.S. FIFRA test guidelines (1982); TS: tech. TCMTB (83.8%)

21 5.1 Wenell 1994 Blasberg et al. 1992 1

Table 1. Short term tests for TCMTB. (Continued) Rows showing tests on formulations are shaded. F= formulation; NR=not reported; TS= test substance. See also list abbreviations.

ANNEX 9/7

Page 78: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74976

Annex 10. Mercaptobenzothiazole

1 Identity of Substance

Name: 2-mercaptobenzothiazole;2 (3H)- Benzothiazolethione; benzothiazole-2-thiol; MBeT

CAS-Number: 149-30-4

Classifi cation under WFD proposed NPS in Finland

2. Proposed Quality Standards

2.1 Overall Quality Standards

Quality Standard Comment:

AA-EQS 0.8 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater)

0.8 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 2.5 µg/l See section 8.1.

AA-EQS Baltic sea 0.08 µg/l See section 8.1

Benthic community (freshwater sediment)

Not required. log Kow <3

Predators (secondary poisoning)

Not required. log Kow <3; BCF < 100.

Food uptake by man Not required. log Kow <3; BCF < 100.

Drinking water abstraction Not possible due to lack of relevant data. The AA-EQS for the pe-lagic community is probably protective al-so in respect to human health. See section 8.5.

3a. Classifi cation and labelling

Reference:

R43 N; R50-53 NCLASS

3b. Risk assessment in EUMBeT is not listed in a priority list (as foreseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances). IUCLID report is available.

ANNEX 10/1

Page 79: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77The Finnish Environment 749

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C7H5NS2

Molecular weight 167.25

Vapour pressure [Pa] 2.98 x 10-6 BUA 1991 (calcu-lated)

Henry’s law constant [Pa m³/mol]

Solubility in water [mg/l] 120 (24oC)190 (pH 6.6, 24oC)230 (creek water pH 7.5, 24oC)260 (creek water pH 8.5, 24oC)

Wenell 1994

Dissociation constant; pKa

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) no esperimental data available

Photostability (DT50) (aqueous, sunlight, state pH)

no esperimental data available

Readily biodegradable (yes/no) No. Biodegradation 2.5 % by BOD in MITI I test. MITI 1990

Degradation in Water/sediment no experimental data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic environment

no data available

Partition co-effi cient; log KOW 2.41 Wenell 1994

Koc no experimental data available

BCF (fi sh) [l/kg] 1) <1 2) < 0.8

1) Progress re-port 1990 cited in BUA 19912) MITI 1992

Solids-water partition coeffi cient in sediment[l/kg]

no experimental data available

Solids-water partition coeffi cient in SPM [l/kg]

no experimental data available

6. Effect Data (aquatic environment)

For acute and chronic toxicity to aquatic organisms see Tables 1 and 2.

7. Effect data (human health)

Table 7.1

Value Study Safety factor Reference

ADI no data

ANNEX 10/2

Page 80: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74978

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThere are long term NOEC values for fi sh and crustacea available. Therefore, the use of an assessment factor of 50 is justifi ed. The lowest reported NOEC val-ue from a long term test is for fi sh and is 0.041 mg/lThe following AA-EQSaquat-ic is derived:

AA-EQS = 0.041 mg/l / 50 = 0.8 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 0.08 µg/lQuality Standard Accounting for transient Concentration Peaks (MAC-QS)

The lowest EC50 value from short term tests is for algae and is 0.25 mg/l. The as-sessment factor of 100 is used, and the following MAC-QS is derived:

MAC-QS = 2.5 µg/l

8.2 Quality Standard for Sediment

Not required.

8.3 Secondary Poisoning of Top Predators

Not required.

8.4 QS referring to food uptake by Humans

Not required.

8.5 QS for drinking water abstraction

It is not possible to determine a QSdw as no ADI value for humans is available.

ANNEX 10/3

Page 81: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

The Finnish Environment 749

Table 1. Short term tests for mercaptobenzothiazole MBeT (free acid). Rows showing tests on formulations are shaded.

Scientifi c Name Common Name Endpoint Effect Test conditions Test Duration, hours

Concentration mg/l

Master reference

Reference in master reference

Quality in master reference

Tetrahymena pyriformis Ciliate EC50 growth TS: F,A 24 10 a.i. 11258 Yoshioka et al. 1985 C

AlgaeSelenastrum capricornutum Green algae EC50 growth

rateOECD 201; TS: predis-solved in DMF

96 0.25 a.i BUA 1991 / IUCLID Monsanto 1979

Chlorella vulgaris EC50 NR 144 2 a.i. BUA 1991 Progress report 1990

InvertebrateDaphnia magna Water fl ee EC50 static 24 7 a.i. BUA 1991 Monsanto 1978 & 1979

Daphnia magna Water fl ee EC50 static 48 4.1a.i. BUA 1991 Monsanto 1978 & 1979

Daphnia magna Water fl ee EC50 static 24 3.3 a.i. BUA 1991 Progress report 1990

FishOncorhynchus mykiss Rainbow trout LC50 MOR Springborn laboratory

protocol192 0.67 IUCLID Monsanto report SR-83-X062

Oncorhynchus mykiss Rainbow trout LC50 MOR TS: F,technical material 24 0.76 F 6797 Mayer & Ellersieck 1986 M

Oncorhynchus mykiss Rainbow trout LC50 MOR : F,technical material 96 0.76 F 6797 Mayer & Ellersieck 1986 M

Ictalurus punctatus Channel catfi sh LC50 MOR TS: F,technical material 96 1.65 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 96 1.9 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 24 2.25 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 96 2.25 F 6797 Mayer & Ellersieck 1986 M

Ictalurus punctatus Channel catfi sh LC50 MOR TS: F,technical material 24 2.35 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 24 2.35 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 96 4.2 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 24 4.7 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 96 7.6 F 6797 Mayer & Ellersieck 1986 M

Lepomis macrochirus Bluegill LC50 MOR TS: F,technical material 24 10 F 6797 Mayer & Ellersieck 1986 M

Carassius auratus Goldfi sh NR MOR TS:F 48 2 F 15245 Sollmann 1949 M

ANNEX 10/4

Page 82: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74980

Table 2. Long term tests for mercaptobenzothiazole (MBeT).

Scientifi c Name Common Name Endpoint Effect Test conditions Test Du-ration, days

Concentration mg/l

Master ref-erence

Reference in master reference

Quali-ty master reference

InvertebrateDaphnia magna Water fl ee NOEC reproduc-

tionReproduction test follow-ing OECD 202

21 0.22 BUA 1991 Bayer 1987e

Daphnia magna Water fl ee NOEC Final test rule for the US EPA; fl ow-through,

21 0.24 BUA 1991 CMA, 1989d

Daphnia magna Water fl ee NOEC 21 3.3 BUA 1991 Progress report 1990

FishOncorhynchus mykiss Rainbow trout NOEC Early life stage TSCA

standard 797-1600; fl ow-through; TS:MBeT and acetone

89 0.041 BUA 1991 US EPA Final test rule

ANNEX 10/5

Page 83: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81The Finnish Environment 749

Annex 11. Benzyl butyl phthalate

1. Identy of Substance

Name: Benzybutylphthalate

CAS-Number: 85-68-7

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 10 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community, freshwater

14 µg/l See section 8.1.

AA-EQS Pelagic community, Baltic sea 1.4 µg/l See section 8.1.

MAC-QS Pelagic community, freshwater - See section 8.1.

Benthic community,freshwater sediment

9.0 - 17 mg/kg (dry weight) tentative standard (EP method); see section 8.2

Predators (secondary poisoning)

4.4 mg/kg fi sh ~10 µg/l See section 8.3.

Food uptake by man 12.2 mg/kg fi sh ~27 µg/l Tentative value. See section 8.4.

Drinking water abstraction 700 µg/l Tentative value. See section 8.5.

3a. Classifi cation and labelling

R-Phrases and Labelling Reference:

postponed NCLASS

3b. Risk assessment in EUIn EU risk assessment. Rapporteur Norway.

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C19H20O4

Molecular weight 312

Vapour pressure [Pa] 0.00008 (25oC) EU-RAR, draft December 2000

Henry’s law constant [Pa m³/mol]

Solubility in water [mg/l] 2.8 (20-25oC) EU-RAR, draft December 2000

Dissociation constant; pKa

ANNEX 11/1

Page 84: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74982

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) Hydrolysis is expected to be insignifi cant. EU-RAR, draft December 2000

Photostability (DT50) (aqueous, sunlight, state pH) Photostability is expected to be insignifi cant. EU-RAR, draft December 2000

Readily biodegradable (yes/no) Yes. 81 – 86 % by BOD in ready test EU-RAR, draft December 2000

Degradation in Water/sediment no experimental data available

Mineralization no data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic environment

monobutyl- and monobenzylphthalate; phthalic acid

EU-RAR, draft December 2000

Partition co-effi cient; log KOW 4.84

Koc calculated: 1) 10 500 measured: 2) 9 0003) 17 000

1) EUSES (based on log Kow = 4.84)2&3) EU-RAR

BCF (fi sh) [l/kg] 449 EU-RAR, draft December 2000

Solids-water partition coeffi cient in sediment[l/kg]

Solids-water partition coeffi cient in SPM [l/kg] foc(0.1) x Koc = 1) 10502) 9003) 1700

6. Effect Data (aquatic environment)

Ecotoxicity data on aquatic organisms are presented in Tables 1 – 2.

Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Ref.

10 week subchronic study on rat NOAEL = 20 mg/kg b.w.(CONV=20; AF=10) PNECoral = 40 mg/kg food

EU-RAR, draft December 2000

Information on Endocrine Disrupting Potential

Comment Reference

Testing on endocrine effects on-going under the EU-RA.

7. Effect data (human health)

Value Study Safety factor Reference

ADI no data

ANNEX 11/2

Page 85: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83The Finnish Environment 749

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThere are long-term test results representing three trophic levels available. There-fore, an assessment factor of 10 can be applied to the lowest of the NOEC values. The lowest NOEC values available is for fi sh (Pimephales promelas; 30 d early life test) and is 0.14 mg/l. AA- EQS = 0.14 mg/l / 10 = 14 µg/l

This has been proposed as the PNEQaquatic in the latest EU risk assessment report draft.

Note: In addition, the EU-RAR points out that it should be noted that there is a study on Skeletonema costatum (Sugatt and Foote, 1981) showing a NOEC <0.03 mg/l, which needs to be reviewed for deriving a defi nite PNECaquatic. Skeletonema cos-tatum is a marine species.

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 14 µg/l / 10 = 1.4 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)

The lowest EC50 value from short term tests is for Scenedesmus subspicatus and is 0.325 mg/l. If the assessment factor of 100 is used, a lower value than the AA-EQS is derived. Therefore, no MAC value is derived at this stage. In the EU-RAR no PNEC for intermittent releases has been determined.

8.2 Quality Standard for SedimentA tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning method. The default properties (fraction of organic carbon, wet and dry density) givenfor SPM in the TGD are used. In the RAR two measure Koc val-ues are given: 9000 l/kg and 17 000 l/kg. This leads to the following Kp-susp val-ues: 900 l/kg and 1700 l/kg

1) Kp= 900 l/kg

PNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 900 l/kg x 10 µg/l = 9 mg/kg

2) Kp=1700 l/kg

PNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 1700 l/kg x 10 µg/l = 17 mg/kg

ANNEX 11/3

Page 86: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74984

Note: The RA draft uses the calculated value of Koc=1050 in deriving a sediment PNEC. In addition the RA draft uses default properties of sediment.

8.3 Secondary Poisoning of Top PredatorsBBP is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to secondary poisoning. The PNECoral is 40 mg/kg food. According to TGD it is assumed that top predators prey 100 % on the aquatic organisms. There-fore, the level of BBP in fi sh may not exceed 40 mg/kg. Using the BCF value of 449 the following QS is derived:

EQSsec.pois. = 40 mg/kg / 449 l/kg = 0.089 mg/l = 89 µg/l

The derivation of the PNECoral is based on the old TGD and an assessment factor of 10 is used. According to the revised TGD the assessment factor of 90 should be used for NOEC values obtained from tests with a duration of 90 days. The PNE-Coral is based on a 10 week study. Therefore, the use of an assessment factor of 90 is deemed justifi ed and the following PNECoral and EQSsec.pois. values are ob-tained.

PNECoral = 20 mg/kg b.w. x CONV (20) / AF (90) = 4.44 mg/kg food

EQSsec.pois(revised TGD) = 4.44 mg/kg / 449 l/kg = 9.9 µg/l

8.4 QS referring to food uptake by HumansBBP is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to food uptake by humans. However, no ADI-value for humans is availa-ble. Neither is it in the scope of this work to set ADI-values for humans. The NOAEl value of 20 mg/kg b.w. day used in the secondary poisoning can be used to pre-liminarily assess the risk caused to humans through food uptake. An extrapolation factor of 100 is used. This leads to a threshold level of 0.2 mg/kg b.w. day. This cor-responds to 14 mg/day for a person with 70 kg body weight. In the TGD it is sug-gested that the threshold level may not be exceeded by more than 10 % by con-sumption of food originating from aquatic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 1.4 mg of BBP, that is 12.2 mg/kg fi sh.The BCF value of 449 l/kg can be used. Therefore, the following QS for food up-take by man is derived: QS-food uptake by man = 12.2 mg/kg / 449 l/kg = 27 µg/l

Note: In a RIVM report (Lijzen et al . 2001) a TDI (tolerable daily intake) value of 0.5 mg/kg b.w./day is cited. This supports the use of the NOAEL value of 20 mg/kg b.w./day and extrapolation factor 100.

8.5 QS for drinking water abstractionTentative QSdw can be derived from the fresholdvalue of 14 mg/day.

QSdw = 0.1 x 14 mg/day / 2l = 0.7 mg/l

ANNEX 11/4

Page 87: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

The Finnish Environment 749

Table 1. Short term toxicity tests for BBP.

Scientifi c name Endpoint Effect Test conditions Test duration, hours

Concentration mg/l

Master reference

Reference in master reference

Quality given in master reference

Freshwater algae

Scenedesmus subspicatus EC50 growth measured concentrations 72 0.325 EU-RAR 2000 Carolina Ecotox 14-01-2 valid

Navicula pelliculosa EC50 growth measured concentrations 72 0.64 EU-RAR 2000 Carolina Ecotox 14-01-1 valid

Navicula pelliculosa EC50 growth measured concentrations 72 0.66 EU-RAR 2000 Huntingdon SLU 004/002301 valid

Scenedesmus subspicatus EC50 growth measured concentrations 72 0.92 EU-RAR 2000 Carolina Ecotox 14-01-2 valid

Selenastrum capricornutum EC50 growth nominal concentrations 14 d 0.5 EU-RAR 2000 SRI 81-0252 Not valid

Selenastrum capricornutum EC50 growth nominal concentrations 96 0.5 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Navicula pelliculosa EC50 growth nominal concentrations 96 0.6 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Selenastrum capricornutum EC50 growth nominal concentrations 5 d 0.7 EU-RAR 2000 SRI 81-0252 Not valid

Navicula pelliculosa EC50 growth measured concentrations 72 2.1 EU-RAR 2000 Huntingdon SLU 002/992825 Not valid

Navicula pelliculosa EC50 growth 72 0.41 EU-RAR 2000 Carolina Ecotox 14-01-1 valid

Selenastrum capricornutum EC50 biomass nominal concentrations 96 0.52 EU-RAR 2000 Monsanto 86-9076 Not valid

Scenedesmus subspicatus EC50 growth measured concentrations 72 1.5 EU-RAR 2000 Huntingdon SLU 005/002302 valid

Scenedesmus subspicatus EC50 growth measured concentrations 72 4.6 EU-RAR 2000 Huntingdon SLU 003/992087 Not valid

Chlorella vulgaris EC50 growth 72 >2.9 EU-RAR 2000 Carolina Ecotox 14-06-1 valid

Microcystis aeruginosa EC50 growth nominal concentrations 96 >1000 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Marine algae

Skeletonema costatum EC50 growth nominal concentrations 96 0.4 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Dunaliella tertiolecta EC50 growth nominal concentrations 96 1.0 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Invertebrate (freshwater tests)

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 1.0 EU-RAR 2000 Barera & Adams, 1981 valid

Hexagonia sp. EC50 nom. conc. 96 1.1 EU-RAR 2000 Staples et al,1997

Daphnia magna EC50 U.S.EPA, static, nom. conc.

48 1.6 EU-RAR 2000 Barera & Adams, 1981 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 1.6 EU-RAR 2000 Barera & Adams, 1981 valid

ANNEX 11/5

Page 88: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74986 Table 1. Short term toxicity tests for BBP..

Scientifi c name Endpoint Effect Test conditions Test duration, hours

Concentration mg/l

Master reference

Reference in master reference

Quality given in master reference

Chironimus tentans EC50 U.S.EPA,static, nom. conc.

48 1.6 EU-RAR 2000 Monsanto 85-9180 valid

Chironimus tentans EC50 U.S.EPA, static, nom. conc.

48 1.6 EU-RAR 2000 Monsanto 85-9165 valid

Daphnia magna EC50 U.S.EPA, static, nom. conc.

48 1.7 EU-RAR 2000 Monsanto 85-9171 not val.

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 1.8 EU-RAR 2000 Barera & Adams, 1981 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 1.8 EU-RAR 2000 Monsanto 85-9180 valid

Daphnia magna EC50 U.S.EPA, static, nom. conc.

48 1.9 EU-RAR 2000 Monsanto 78-0248 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 2.1 EU-RAR 2000 Barera & Adams, 1981 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 2.2 EU-RAR 2000 Barera & Adams, 1981 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 2.4 EU-RAR 2000 Monsanto 78-0248 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 2.9 EU-RAR 2000 Barera & Adams, 1981 valid

P. parthenogenitica EC50 nom. conc. 48 3.2 EU-RAR 2000 Staples et al,1997

Chironimus tentans EC50 static, nom. conc. 48 3.6 EU-RAR 2000 SRI LSC-1741 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 3.7 EU-RAR 2000 Monsanto 78-0247 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 4.1 EU-RAR 2000 Barera & Adams, 1981 valid

Daphnia magna EC50 U.S.EPA,static, nom. conc.

48 4.7 EU-RAR 2000 Barera & Adams, 1981 valid

Paratanytarsus parthenogenitica EC50 static, nom. conc. 48 7.2 EU-RAR 2000 Monsanto 83-x099 valid

ANNEX 11/6

Page 89: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

The Finnish Environment 749

Table 1. Short term toxicity tests for BBP. (Continued)

Scientifi c name Endpoint Effect Test conditions Test duration, hours

Concentration mg/l

Master reference

Reference in master reference

Quality given in master reference

Daphnia magna EC50 U.S.EPA, static, nom. conc.

48 >10 EU-RAR 2000 Barera & Adams, 1981 valid

Daphnia magna EC50 U.S.EPA, static, nom. conc.

48 >10 EU-RAR 2000 Barera & Adams, 1981 valid

Procambarus sp. EC50 48 >2.4 EU-RAR 2000 Staples et al,1997

Paratanytarsus dissimilis EC50 static, nom. conc. 48 >3.6 EU-RAR 2000 SRI LSC-1741 valid

Invertebrate (marine tests)

Mysidopsis bahia EC50 U.S.EPAstatic; nom. conc. salinity 14 ‰

96 0.9 EU-RAR 2000 EG&G Binomics BP-79-4-38 valid

Mysidopsis bahia EC50 Fed.Reg 1980fl ow, meas. conc. salinity 30 ‰

96 >0.74 EU-RAR 2000 Springborn 87-10-2525 valid

Paleomonetes vulgaris EC50 ASTM,1980fl ow, meas. conc. salinity 32 ‰

96 >2.7 EU-RAR 2000 Springborn 86-7-2087 valid

Penaeus dourarum EC50 ASTMfl ow, meas. conc. salinity 32-33 ‰

96 >3.4 EU-RAR 2000 Springborn 86-7-2083 valid

Fish (freshwater tests)

Oncorhynchus mykiss LC50 U.S.EPAfl ow, meas. conc.

96 0.82 EU-RAR 2000 E&G Binomics, 1983 valid

Pimephales promelas LC50 U.S.EPAfl ow, meas. conc.

96 1.5 EU-RAR 2000 Adams et al., 1995 valid

Lepomis macrochirus LC50 U.S.EPA,static, nom. conc.

96 1.7 EU-RAR 2000 Monsanto 82-0015 valid

Oncorhynchus mykiss LC50 static, nom. conc. 96 1-10 EU-RAR 2000 Monsanto 74-0053 not valid

Lepomis macrochirus LC50 static, nom. conc. 96 1-10 EU-RAR 2000 Monsanto 74-0053 not valid

Pimephales promelas LC50 U.S.EPA,static, nom. conc.

96 2.1 EU-RAR 2000 Monsanto 82-0013 valid ANNEX 11/7

Page 90: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74988

Scientifi c name Endpoint Effect Test conditions Test duration, hours

Concentration mg/l

Master reference

Reference in master reference

Quality given in master reference

Salmo gairdneri LC50 U.S.EPA,static, nom. conc.

96 3.3 EU-RAR 2000 Monsanto 82-0014 valid

Pimephales promelas LC50 U.S.EPA,static, nom. conc.

96 5.3 EU-RAR 2000 Monsanto 82-0016 valid

Cyprinodon varigatus LC50 U.S.EPA,static, meas. conc.

96 >0.68 EU-RAR 2000 Adams et al., 1995 valid

Pimephales promelas LC50 U.S.EPA,static,

96 >0.78 EU-RAR 2000 Adams et al., 1995 valid

FISH (marine tests)

C. aggregata LC50 ASTM,fl ow, meas. conc. salinity 31-32 ‰

8 d 0.49 EU-RAR 2000 Ozretich et al., 1983 valid

Cymastogaster aggregata LC50 ASTM,fl ow, meas. conc. salinity 31-32 ‰

96 0.51 EU-RAR 2000 Ozretich et al., 1983 valid

C. aggregata LC50 ASTM,fl ow, meas. conc. salinity 31-32 ‰

96 0.51 EU-RAR 2000 Ozretich et al., 1983 valid

Paraphrys vetulus. LC50 ASTM,fl ow, meas. conc. salinity 32 ‰

96 0.55 EU-RAR 2000 Randall et al., 1983 valid

Paraphrys vetulus. LC50 ASTM,static, meas. conc. salinity 25 ‰

96 0.66 EU-RAR 2000 Randall et al., 1983 valid

Cyprinodon variegatus LC50 U.S.EPA,static, nom. conc. salinity 8 ‰

96 3.0 EU-RAR 2000 Monsanto 82-0017, valid

Table 2. Long term toxicity tests for BBP. (Continues to page 89)

Scientifi c name Endpoint Effect Testconditions

Test duration

Concentration mg/l

Master reference

Reference in master reference

Quality given in master reference

Freshwater algae Navicula pelliculosa NOEC growth nom. conc. 96 h < 0.3 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Table 1. Short term toxicity tests for BBP. (Continued)ANNEX 11/8

Page 91: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The Finnish Environment 749

Chlorella vulgaris NOEC growth 72 h >2.9 EU-RAR 2000 Carolina Ecotox 14-06-1 valid

Navicula pelliculosa NOEC growth meas. conc 72 h 0.064 EU-RAR 2000 Carolina Ecotox 14-01-1 valid

Selenastrum capricornutum NOEC growth nom. conc. 96 h 0.10 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Scenedesmus subspicatus NOEC growth meas. conc 72 h 0.15 EU-RAR 2000 Huntingdon SLU 005/002302 valid

Navicula pelliculosa NOEC growth meas. conc 72 h 0.17 EU-RAR 2000 Huntingdon SLU 004/002301 valid

Navicula pelliculosa NOEC growth meas. conc 72 h 0.20 EU-RAR 2000 Carolina Ecotox 14-01-1 valid

Selenastrum capricornutum NOEC based on bio-mass

nom. conc. 96 h 0.21 EU-RAR 2000 Monsanto 86-9076 Not valid

Selenastrum capricornutum NOEC growth nom. conc. 5 d 0.23 EU-RAR 2000 SRI 81-0252 Not valid

Scenedesmus subspicatus NOEC growth meas. conc 72 h 0.26 EU-RAR 2000 Carolina Ecotox 14-01-2 valid

Scenedesmus subspicatus NOEC growth meas. conc 72 h 0.31 EU-RAR 2000 Carolina Ecotox 14-01-2 valid

Navicula pelliculosa NOEC growth meas. conc 72 h 0.46 EU-RAR 2000 Huntingdon SLU 002/992825 Not valid

Scenedesmus subspicatus NOEC growth meas. conc. 72 h 1.0 EU-RAR 2000 Huntingdon SLU 003/992087 Not valid

Microcystis aeruginosa NOEC growth nom. conc. 96 h 320 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Selenastrum capricornutum NOEC growth nom. conc. 14 d < 0.02 EU-RAR 2000 SRI 81-0252 Not valid

Marine algae

Skeletonema costatum NOEC growth nom. conc. 96 h 0.3 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

Dunaliella tertiolecta NOEC growth nom. conc. 96 h 0.3 EU-RAR 2000 EG&G Binomics 78-9-148 Not valid

InvertebrateDaphnia magna NOEC survival 42 d 0.26 EU-RAR 2000 Gledhill et al. (1980) valid

Daphnia magna NOEC reproduction 21 d 0.28 EU-RAR 2000 Rhodes et al. (1995) valid

Daphnia magna NOEC survival 21 d 0.35 EU-RAR 2000 Monsanto 82-SS-103. valid

FishPimephales promelas NOEC Weight gain fl ow through, meas.

conc.0.14 EU-RAR 2000 EG&G Bionomics, (1981) Valid

Pimephales promelas NOEC mortality fl ow through, meas. conc.

0.74 EU-RAR 2000 Monsanto -78-0344 Valid

Oncorhynchus mykiss NOEC Early life stage

fl ow through, meas. conc.

³0.2 EU-RAR 2000 Rhodes et al. (1995). Valid ANNEX 11/9Table 2. Long term toxicity tests for BBP. (Continued)

Page 92: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74990

Annex 12. Dibutylphtalate

1. Identity of Substance

Name: Dibutylphtalate, DBP

CAS-Number: 84-74-2

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Quality Standard Comment:

AA-EQS 10 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment

AA-EQSPelagic community, freshwater

10 µg/l See section 8.1.

AA-EQSPelagic community, Baltic sea

1 µg/l See section 8.1.

MAC-QSPelagic community, freshwater

- See section 8.1.

Benthic community, freshwater sediment

6.3 mg/kg (dry wt Kp_susp) tentative standard (EP method); see section 8.2

Predators (secondary poisoning)

34.7 mg/kg ~19 300 µg/l See section 8.3.

Food uptake by man 31.7 mg/kg ~17 600 µg/l See section 8.4.

Drinking water abstraction 1 820 µg/l See section 8.5.

3a. Classifi cation and Labelling

Reference

Repr. Cat. 2; R61; Repr. Cat. 3; R62; N; R50 EU-RAR 2003

T; N; R: 61-50-62; S: 53-45-61

3b. Risk assessment in EURAR published (volume 29).

4. Physical and chemical properties

Property Value: Reference

Molecular formula C16H22O4 EU-RAR vol29

Molecular weight 278 EU-RAR vol29

Vapour pressure [Pa] 9.7 ± 3.3 *105 (25oC) EU-RAR vol29

Henry’s law constant [Pa m³/mol] 0.27 EU-RAR vol29

Solubility in water [mg/l] 10 mg/l EU-RAR vol29

Dissociation constant; pKa

ANNEX 12/1

Page 93: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91The Finnish Environment 749

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) Contribution of hydrolysis to the environmental degradation expected to be low.

EU-RAR vol29

Photostability (DT50) (aqueous, sunlight, state pH) no data available

Readily biodegradable (yes/no) Yes EU-RAR vol29

Degradation in Water/sediment no data available

Mineralization no data available

Distribution in water / sediment systems no data available

Degradation products relevant to the aquatic environment

monobutylphtalate; phthalic acid EU-RAR vol29

Partition co-effi cient; log KOW 4.57 EU-RAR vol 29

Koc 6340 l/kg (based on log Kow = 4.57) EU-RAR vol 29

BCF (fi sh) [l/kg] 1,8 (does not take into consideration the major metabolite monobutylphtalate MBP)

EU-RAR vol29

Solids-water partition coeffi cient in sediment[l/kg] 317 (Foc (0.05) x Koc) EU-RAR vol29

Solids-water partition coeffi cient in SPM, Kp_susp [l/kg]

634 (Foc (0.1) x Koc) EU-RAR vol29

6. Effect Data (aquatic environment)

Ecotoxicity data on aquatic organisms are presented in Tables 1- 2.

Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Reference

119 d continuous breeding test on rat; LOAEL = 52 mg/kg b.w. (the study is supposed to adequately identify compounds with endocrine activity. There-fore, the LOAEL value is used in the RA)

PNECoral = 104 mg/kg food(CONV = 20, AF=10)PNECoral = 34.7 mg/kg food based on revised TGD(CONV = 20, AF = 30)

EU-RAR vol29

Information on Endocrine Disrupting Potential

Comment Reference

See previous table.

7. Effect data (human health)

Value Study Safety factor Reference

ADI 0.06 mg/kg/day developmental and reproduction effects in rats 1000 EHC 1997

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterIn the RAR the PNEC for the aquatic compartment is derived from the 99 day NOEC of 100 µg/l for Onchorhynchus mykiss (see Annex 1). This key study is sup-ported by the Gammarus pulex study in which a similar value was found based on a decrease in locomoter activity. An assessment factor of 10 will be used for the ex-

ANNEX 12/2

Page 94: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74992

trapolation. This factor is used because long term NOECs for three trophic levels are available. The PNECaquatic derived in the RAR is proposed as the AA-EQS:

AA-EQS = PNECaquatic = 10 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 1 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for fi sh (Perca fl avescens) and is 0.35 mg/l (see Annex 1). If the assessment factor of 100 is used, a lower value than the AA-EQS is derived. Therefore, no MAC value is derived at this stage.

8.2 Quality Standard for SedimentA tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning method. The default properties (fraction of organic carbon; wet and dry density) given in the TGD are used. Kp_susp derived from the calculated Koc value of 6340 l/kg is used. This results in the following quality standards for sediment (dry weight):

Kp-susp = foc (0.1) x Koc (6340 l/kg) = 634 l/kg

PNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 634 l/kg x 0.01 mg/l = 6.3 mg/kg

Note! In the RAR the PNECsediment has been calculated based on the TGD de-fault values for sediment and the following results are obtained: 1.2 mg/kg (wet weight) and 3.1 mg/kg (dry weight).

8.3 Secondary Poisoning of Top PredatorsDBP is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to secondary poisoning. The PNECoral value of 34.7 mg/kg food, which is calculated with the assessment factor (30) according to the revised TGD is used in the derivation (see table 6.1). According to TGD it is assumed that top preda-tors prey 100 % on the aquatic organisms. Therefore, the level of DBP in fi sh may not exceed 34.7 mg/kg, When the BCF value of 1.8 l/kg is used the following EQS value is obtained: EQSsec.pois. = 34.7 mg/kg / 1.8 l/kg = 19.3 mg/l = 19 300 µg/l

It should be noted that the BCF value of 1.8 does not take into account the major metabolite monobutylphthalate, which has been demonstrated to cause reproduc-tive effects in mammals. (RAR page 11).

The derived EQSsec.pois. indicates that the AA-EQS is protective top predators ex-posed to DBP by secondary poisoning.

ANNEX 12/3

Page 95: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93The Finnish Environment 749

8.4 QS referring to food uptake by HumansDBP is liable to bioaccumulate (BCF > 100 and it is classifi ed as Repr. Cat. 2; R61; Repr. Cat. 3; R62. Therefore, it is necessary to derive a spesifi c QS in relation to food uptake by humans. In the RAR the LOAEL value of 52 mg/kg b.w./day from a 119 d continuous breeding test on rat has been used to assess the risk for humans ex-posed via the environment. The AF of 100 can be used to extrapolate from animal to human. Therefore, it can be conducted that the threshold level for human health is 0.52 mg/kg/b.w./day. This corresponds to 36.4 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceed-ed by more than 10 % by consumption of food originating from aquatic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 3.64 mg of DBP, that is 31.7 mg/kg fi sh.When the BCF value of 1.8 l/kg is used, the following QS for food uptake by man is derived: QS-food uptake by man = 31.7 mg/kg / 1.8 l/kg = 17.6 mg/l = 17 600 µg/l

Note! In comparison WHO has set an ADI of 0.066 mg/kg b.w. / day (EHC 1997). This has been derived from a LOAEL value of 66 mg/kg b.w./day for developmen-tal and reproductive effects in rats with an assessment factor of 1000. 1000 is the un-certainty factor (×10 for interspecies variation, ×10 for interindividual variation, ×10 for lack of data on a NOAEL. A factor of 10 for lack of a NOAEL was consid-ered adequate since the effects observed at the lowest dose levels were moder-ate and probably reversible. The severe, possibly irreversible, teratogenic, testic-ular and epididymal effects were only observed at the highest dose level tested, which also produced other signs of toxicity. Because DBP is rapidly metabolized and eliminated, with no evidence of accumulation in tissues, no additional factor was incorporated for lack of data on chronic effects. The LOAEL values used in the EU-RAR and by WHO are similar. Using an assessment factor of 1000 instead of an factor 100 leads to a 10 times smaller QSvalue. In the case of DBP this does not, however, change the overall conclusion that the QS derived from ecotoxico-logical NOEC values is protective to humans also.

8.5 QS for drinking water abstractionThe threshold level for human health is 0.52 mg/kg b.w./day. This corresponds to 36.4 mg/day for a person with 70 kg body weight.The tentative quality standard for drinking water is calculated with the provision that uptake by drinking water should not exceed 10 % of the threshold level for humans. According to TGD the uptake of drinking water is 2l/day. Therefore, the following provisional quality standard is derived:

QSdw = 0.1 x 36.4 mg/day / 2 l/day = 1.82 mg/l = 1820 µg/l

See also Note 1 under chapter 8.4.

ANNEX 12/4

Page 96: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74994 Table 1. Short-term toxicity tests for DBP.

Scientifi c name Endpoint Effect Test conditions

Test duration, hours

Concentration, mg/l

Master reference Reference in master reference

Quality given in master reference

AlgaeGymnodium breve EC50 Other 96 0.0034 - 0.2 EU-RAR 2003b Wilson et al., 1978 not relevant

Scenedesmus subspi catus EC50 92/69/EEC 72 1.2 EU-RAR 2003b Huls, 1995 relevant

Scenedesmus subspicatus EC50 bio mass DIN 38412/9 48 3.5 EU-RAR 2003b BASF, 1989 relevant

Scenedesmus subspicatus EC50 growth DIN 38412/9 48 9.0 EU-RAR 2003b BASF, 1989 relevant

InvertebrateChironomus plumosus EC50 Other 48 0.76 EU-RAR 2003b Streufert et al., 1980 relevant

Mysidopsis bahia LC50 mortality Other 96 0.8 EU-RAR 2003b EG and G Bionomics, 1984a relevant

Nitocra spinipes LC50 mortality Otherbrackish water

96 1.7 EU-RAR 2003b Lindén et al., 1979 relevant

Gammarus pseudo lim nae us LC50 mortality APHA, 1971 96 2.1 EU-RAR 2003b Mayer and Sanders, 1973 relevant

Daphnia magna EC50 EE92/69 48 3.4 EU-RAR 2003b Huls, 1994b relevant

Daphnia magna EC50 EG&G Bio no mics, 1982

48 3.4 EU-RAR 2003b CMA, 1984 relevant

Daphnia magna EC50 Other 48 5.2 EU-RAR 2003b McCarthy and Whitmore, 1985 relevant

Paratanytarsus parthenoge-netica

EC50 Other 96 5.8 EU-RAR 2003b EG and G Bionomics, 1984b relevant

Artemia salina LC50 mortality Otherseawater

24 8 EU-RAR 2003b Hudson et al., 1981 relevant

Daphnia magna EC50 Other 24 17 EU-RAR 2003b Kuhn et al. , 1989 relevant

FishPerca fl avescens LC50 mortality fl ow through 96 0.35 EU-RAR 2003b Mayer and Ellersieck, 1986 relevant

Ictalurus punctatus LC50 mortality fl ow through 96 0.46 EU-RAR 2003b Mayer and Ellersieck, 1986 relevant

ANNEX 12/5

Page 97: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

The Finnish Environment 749

Scientifi c name Endpoint Effect Test conditions

Test duration, hours

Concentration, mg/l

Master reference Reference in master reference

Quality given in master reference

Lepomis macrochirus LC50 mortality staticAPHA, 1971

96 0.7 EU-RAR 2003b Mayer and Sanders, 1973 relevant

Lepomis macrochirus LC50 mortality staticEG&G Bionomics, 1982

96 0.9 EU-RAR 2003b CMA, 1984 relevant

Pimephales pro melas LC50 mortality fl ow throughEG&G Bionomics, 1981

96 0.9 EU-RAR 2003b CMA, 1984 relevant

Pimephales pro melas LC50 mortality static 96 1.1 EU-RAR 2003b Geiger et al., 1985 relevant

Lepomis macrochirus LC50 mortality staticEPA, 1975

96 1.2 EU-RAR 2003b CMA, 1984 relevant

Lepomis macrochirus LC50 mortality static 96 1.2 EU-RAR 2003b Buccafusco et al., 1981 relevant

Pimephales pro melas LC50 mortality staticAPHA, 1971

96 1.3 EU-RAR 2003b Mayer and Sanders, 1973 relevant

Oncorhynchus mykiss LC50 mortality fl ow throughEG&G Bionomics, 1981

96 1.6 EU-RAR 2003b CMA, 1984 relevant

Pimephales pro melas LC50 mortality fl ow throughEPA-60018-81-011

96 2.0 EU-RAR 2003b McCarthy and Whitmore, 1985 relevant

Brachydanio rerio LC50 mortality semi static EEC 92/69 C1

96 2.2 EU-RAR 2003b Huls, 1994a relevant

Ictalurus punctatus LC50 mortality staticAPHA, 1971

96 2.9 EU-RAR 2003b Mayer and Sanders, 1973 relevant

Pimephales pro melas LC50 mortality staticEG&G Bionomics, 1982

96 3.0 EU-RAR 2003b CMA, 1984 relevant

Oncorhynchus mykiss LC50 mortality staticAPHA, 1971

96 6.5 EU-RAR 2003b Hudson et al., 1981 relevant

Leuciscus idus LC50 mortality staticDIN 38 412, 1982

96 7.3 EU-RAR 2003b CMA, 1984 relevant

Table 1. Short-term toxicity tests for DBP. (Continued)ANNEX 12/6

Page 98: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 74996 Table 2. Long term toxicity tests for DBP.

Species Endpoint Effect Test conditions

Test duration

Concentration, mg/l

Master reference Reference in master reference

Quality given in master reference

AlgaeSynecchococcus lividus LOEC marine 14 d 0.0021 EU-RAR 2003b Acey et al., 1987 not relevant

Dunaliella parva NOEC marine 8 d 0.2 EU-RAR 2003b Acey et al., 1987 relevant

Skeletenoma costatum NOEC (marine 0.6-0.7 EU-RAR 2003b Medlin, 1980 relevant

Selenastrum capricornu tum NOEC EGG-CMA-002 10 d 0.8 EU-RAR 2003b CMA, 1984 relevant

Thalassiosira pseudomona NOEC marine 4 d 2.0 EU-RAR 2003b Acey et al., 1987 relevant

Selenastrum capricornutum NOEC 7 d 2.8 EU-RAR 2003b Melin and Egnéus, 1983 relevant

Invertebrate2

Gammarus pulex NOEC fl ow through 10 d 0.10 EU-RAR 2003b Thurén and Woin, 1991 relevant

Dugesia japonica EC50 7 d 0.54 EU-RAR 2003b Yoshioka et al., 1986 relevant

Daphnia magna NOEC OECD202 16 d 0.56 EU-RAR 2003b McCarthy and Whitmore, 1985 relevant

Daphnia magna NOEC 21 d 1 EU-RAR 2003b Kuhn et al., 1989 relevant

Daphnia magna EC50 EPA 600/8-87/011 21 d 1.05 EU-RAR 2003b DeFoe et al., 1990 relevant

Fish

Oncorhynchus mykiss NOEC growth 60 days posthatch 99 d 0.1 EU-RAR 2003b Ward and Boerie, 1991 relevant

1It is necessary to discuss the 14-day LOEC of 0.002 mg/l for the blue-green algae Synecchococcus lividus in more detail. At DBP concentrations of 0.002 mg/l and higher, the number of monodispersed (i.e. non-aggregated) cells of the blue-green algae was found to be signifi cantly decreased. This effect, however, can be fully attributed to a DBP induced shift from nonaggregated towards aggregated cells. At each concentration of DBP tested namely, the percentage of aggregated S. lividus was found to be increased: at 0.002 mg/l about 95% of the algae were in aggregated form as opposed to 22% in the control group. In addition, when counting the total number of S. lividus, i.e. both aggregated and non-aggregated organisms, a signifi cant increase was found at all test concentrations. In conclusion it can be said that DBP caused a decrease only in the number of non-aggregated S. lividus. Nevertheless, very low concentrations of DBP seem to affect the growth behaviour of these blue-green algae. At present, however, the ecological signifi cance of this effect is unknown and therefore the value will not be used for the PNEC derivation.2In addition the International Programme for Chemical Safety (IPCS) document on DBP (IPCS/WHO, 1997) contains some other long-term toxicity studies with aquatic invertebrates. The effect concentrations in these tests were all larger than 100 µg/l.

ANNEX 12/7

Page 99: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97The Finnish Environment 749

Annex 13. Phenylhexylbenzenediamine

1. Identity of Substance

Name: Phenylhexylbenzenediamine; N-(1,3-dimethylbutyl)-N’-phenyl-1,4-benzenediamine;N-(1,3-dimethylbutyl)-N’-phenyl-1,4-phenylenediamine; 6PPD

CAS-Number: 793-24-8

Classifi cation under WFD Due to degradation by hydrolysis, de-listed from the list of proposed NPS in Finland.

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS - Due to degradation by hydrolysis de-listing from the list is proposed.

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater)

0.14 µg/l See section 8.1.

AA-EQS, Pelagic community, Baltic sea 0.014 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 0.14 µg/l See section 8.1.

Benthic community (freshwater sediment)

1.6 µg/kg (pH = 5; dry wt)47 µg/kg (pH = 7; dry wt)

Tentative standard (EP method) See section 8.2

Predators (secondary poisoning)

0.35 – 130 µg/l Tentative value. Based on calculated BCF. See section 8.3.

Food uptake by man 0.3 – 116 µg/l Tentative value See section 8.4.

Drinking water abstraction 140 µg/l Tentative value see section 8.5.

3a. Classifi cation and labelling

Reference:

not found in NCLASS

3b. Risk assessment in EUNot on priority lists for risk assessment under 793/93/EEC. Has been evaluated in the ECB PBT-assessment.

ANNEX 13/1

Page 100: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 74998

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C6H5NHC6H4NHC4(CH3)2

Molecular weight 268.5

Vapour pressure [Pa] 0.00685 (25oC) BUA 1996

Henry’s law constant [Pa m³/mol] 1) 1.842) 0.0003 (25oC)

1) BUA 19962) EPI

Solubility in water [mg/l] 1) 1.12) 1.9 (25oC)

1) Monsanto study in IUCLID2) BUA 1996

Dissociation constant; pKa 6.73 ± 0.32 ACD / calculated

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) According to the ECB PBT-asessment 6-PPD de-grades hydrolytically (abiotic degradation 60 % within 24 h). Little information on the fate and ef-fects of the degradation products is known. How-ever, given their structure, it is unlikely that they would give rise to a signifi cant bioaccumulation concern.

ECB-PBT working group; substance information, update 30.6.03. Rappor-teur UK.

Photostability (DT50) (aqueous, sunlight, state pH)

no data available

Readily biodegradable (yes/no) No. Biodegradation 13-40 % in modifi ed MITI test IUCLID dataset

Degradation in Water/sediment no data available

Mineralization no data available

Distribution in water / sediment systems no data available

Degradation products relevant to the aquat-ic environment

See above (Hydrolytic stability).

Partition co-effi cient; log KOW Calculated values: 1) 4.242) 4.683) 5.4

1) ACD /calculated2) EPI/KOWWIN v1.66)/calc.3) BUA 1996 / cal-culated

Koc calculated from logKow 4.24: 1) 102 (pH 5)1) 760 (pH 6)1) 3113 (pH 7)3) 3430calculated from logKow 4.68:2) 69 7003) 7780 calculated from logKow 5.43) 29 800

1) ACD /calculated2) EPI/KOWWIN v1.66)/calc.3) EUSES

ANNEX 13/2

Page 101: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99The Finnish Environment 749

Property Value: Ref.

BCF (fi sh) [l/kg] calculated from logKow4.24: 1) 20.7 (pH 5)1) 154 (pH 6)1) 633 (pH 7)2) 3673) 8024) 802calculated from logKow 4.68:3) 18974) 1900Calculated from logKow 5.4: 3) 77624) 7760

1) ACD /calculated2) EPI; BCFWIN v2.14)3) logBCF = 0.85logKow – 0.7 (TGD)(4) EUSES)

Solids-water partition coeffi cient in sediment [l/kg]

Solids-water partition coeffi cient in SPM [l/kg]

Foc x Koc = 0.1 x Koc (calculat-ed from logKow 4.24 by ACD): 1) 10.2 (pH 5)1) 76.0 (pH 6)1) 311.3 (pH 7)

1) ACD /calculated

6. Effect Data (aquatic environment)

Ecotoxicity data on aquatic organisms are presented in Tables 1 and 2.

7. Effect data (human health)

Table 7.1

Value Study Safety factor Reference

ADI no data

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterFor 6PPD only one long term test is available. It is conducted on fi sh (Pimephales promelas). However, only a LC50 value has been reported from this test. The re-ported LC50 value (0.15 mg/l) is very close to a LC50 value reported for Salmo gaird-neri in a short term toxicity tests (0.14 mg/l). As no test results from chronic tests are available, the use of an assessment factor of 1000 is justifi ed. The LC50 value reported for Salmo gairdneri is the lowest LC/EC50 value reported. Therefore, the following EQS value is derived:

AA-EQS = 0.14 mg/l / 1000 = 0.14 µg/l.

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

EQSBaltic sea = 0.014 µg/l

ANNEX 13/3

Page 102: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749100

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)

The lowest EC50 value from short term tests is for Salmo gairdneri and is 0.14 mg/l. If the assessment factor of 100 is used, the following MAC is derived:

MAC-QS = 1.4 µg/l.

8.2 Quality Standard for SedimentA tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning method and sediment-water partitioning coeffi cients. In the revised TGD the default properties (fraction of organic carbon, wet and dry density) of sus-pended matter (SPM) are used to calculate the PNECsed. For 6 PPD no measured values for logKow or Kp are availble. The values calculated by ACD-programme for pH values 5 and 7 are used:

pH = 5

PNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 10.7 x 0.14 µg/l = 1.6 µg/kg

pH = 7

PNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 311 x 0.14 µg/l = 47 µg/kg

8.3 Secondary Poisoning of Top Predators6PPD is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to secondary poisoning. The NOEL value of 4 mg/kg b.w./day from a 24 month rat test (table ) can be used to derive a PNECoral: 4 mg/kg b.w./day x CONV (20) / AF (30) = 2.7 mg/kg food. According to TGD it is assumed that top predators prey 100 % on the aquatic organisms. There-fore, the level of 6PPD in fi sh may not exceed 2.7 mg/kg. No BCF values have been measured for 6PPD. Using the highest and lowest BCF values calculated, the fol-lowing QSsec.pois. values are obtained:

1. QSsec.pois = 2.7 mg/kg / 20.7 l/kg= 130 µg/l

2. QSsec.pois. = 2.7 mg/kg / 7762 = 0.35 µg/l

The tentative values indicate that the EQSaquatic is suffi cient to protect top pred-ators from secondary poisoning.

8.4 QS referring to food uptake by Humans6PPD is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to food uptake by humans. No ADI value for humans is available. Nei-ther is it in the scope of this work to set such values. The NOEL value of 4 mg/kg b.w./day from a rat test (table 6.1 ) can be used to derive a tentative threshold lev-el for humans. The assessment factor of 100 is used to extrapolate from animals to humans. This corresponds to 2.8 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceeded by more than 10 % by consumption of food originating from aquatic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more

ANNEX 13/4

Page 103: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101The Finnish Environment 749

than 0.28 mg of 6PPD, that is 2.4 mg/kg fi sh. Using the highest and lowest BCF val-ues calculated the following QSsec.pois. values are obtained:

1. QS-food uptake by man = 2.4 mg/kg / 20.7 l/kg = 116 µg/l

2. QS-food uptake by man = 2.4 mg/kg / 7762 l/kg = 0.3 µg/l

The tentative values indicate that the AA- EQSaquatic is probably suffi cient to pro-tect also humans exposed via consumption of fi sh.

8.5 QS for drinking water abstractionThe tentative threshold level of 2.8 mg/day/person can be used to derive a QSDW. The tentative quality standard for drinking water is calculated with the provision that uptake by drinking water should not exceed 10 % of the threshold level for humans. According to TGD the uptake of drinking water is 2l/day. Therefore, the following provisional quality standard is derived: QSdw =0.1 x 2.8 mg/day / 2 l = 0.14 mg/l

The tentative values indicate that the EQSaquatic is probably suffi cient to protect also humans exposed via consumption of water.

ANNEX 13/5

Page 104: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749102 Table 1. Short term tests on N-(1,3-dimethylbutyl)-N’-phenyl-1,4-benzenediamine.

Scientifi c Name Common Name Endpoint Effect Effect Measure-ment, trend, test conditions

Test Durtion, hours

Concentration mg/l

Master Reference

Reference in Master Reference

Quality in masterreference

AlgaeSelenastrum capricornutum EC50 growth biomass OECD 201 96 0.6 IUCLID

BUA 1996Monsanto, Bayer AG Leverkusen, 1984

InvertebrateDaphnia Magna Water fl ee EC50 immobilization OECD 202 48 0.51 IUCLID

BUA 1996Monsanto, Bayer AG Leverkusen, 1984

Daphnia Magna Water fl ee EC50 immobilization OECD 202 48 0.79 IUCLIDBUA 1996

Monsanto, Bayer AG Leverkusen, 1984

Daphnia Magna Water fl ee EC50 immobilization OECD 202 48 0.82 IUCLID Monsanto, Bayer AG Leverkusen, 1984

Chironimus tentans EC50 NR EPA-660/3-75-009 48 0.99 IUCLIDBUA 1996

Monsanto, Bayer AG Leverkusen, 1975

FishSalmo gairdneri LC50 MORT Bionomics lab. pro-

tocol, static; nom. conc.

96 h 0.14 IUCLIDBUA 1996

Monsanto, Bayer AG Leverkusen, 1977

Lepomis macrochirus LC50 MORT Bionomics lab. pro-tocol, static; nom. conc.

96 h 0.4 IUCLIDBUA 1996

Monsanto, Bayer AG Leverkusen, 1977

Brachydanio rerio LC0 MORT OECD 203; nom.conc.

96 h 5 IUCLIDBUA 1996

Bayer AG Leverkusen, 1984

Table 2. Long term tests on N-(1,3-dimethylbutyl)-N’-phenyl-1,4-benzenediamine.

Scientifi c Name Common Name Endpoint Effect Test conditions etc.

Test Durtion, days

Concentration mg/l

Master Reference

Reference in master reference

Quality in master reference

Pimephales promelas LC50 MORT OECD 204 28 d 0.15 IUCLIDBUA 1996

Monsanto, Bayer AG Leve-rkusen, 1984

ANNEX 13/6

Page 105: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103The Finnish Environment 749

Annex 14. Nonylphenolethoxylates (NPE)

Nonylphenolethoxylates (NPE)NPEs readily undergo an initial primary degradation which largely involves the loss of ethoxylate groups. This results in the formation of more refractory degrada-tion products such as nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2OE), nonylphenoxy acetic acid (NP1EC) and non-ylphenoxy ethoxy acetic acid (NP2EC). In the fi rst step NPnEO (n>3) degrades to form NP1EO and NP2EO. These are further oxidized to form NP1EC and NP2EC or are degraded to nonylphenol. Under aerobic conditions, oxidation of NP1EO and NP2EO to NP1EC and NP2EC appears to be favoured over formation of no-nylphenol. (EU RAR 2001, Canada 2002). Toxic effects of NPEsThe toxicity of nonylphenolic compounds increases with decreasing length of the ethoxylate chain. The mode of toxicity for nonylphenol and the lower chain length NPEa and NPECs is narcosis. Toxicity from longer chain NPEs may be due to phys-ical surfactant effects. Nonylphenol ethoxylates exhibit estrogenic activity. (Can-ada 2002) The activity appears to increase with decreasing chain length (FHI fact sheet). Concentrations at which estrogenic effects occur are comparable to concen-trations at which other chronic effects are observed. Therefore, EQS-values set on the basis of other chronic effects are protective for most endocrine disrupting ef-fects as well (Canada 2002).

Toxic equivalency (TEQ) approachNonylphenol, nonylphenol ethoxylates and nonylphenol carboxylates typically occur together in the aquatic environment. Furthermore, the analytical determina-tion of lower weight nonylphenol ethoxylates and nonylphenols can be performed simultaneously from the same sample (Canada 2002). Therefore, the use of a toxic equivalency (TEQ) approach is proposed as an pragmatic and feasible way to set EQS values for nonylphenolic compounds.1 Application of the TEQ approach re-quires that all components of a mixture have a common mode of toxicity such that their effects are additive. Nonylphenolic compounds meet this requirement. In the TEQ approach toxic equivalency factors (TEFs) are determined for each individual compound in a mixture by expressing the potency of each compound relative to the most toxic compound in the mixture. In the case of nonylphenolic compounds toxicity should be expressed relative to nonylphenol, the most toxic compound. The EQS value set on the EU level can therefore be used. At the time of writing the proposal for an EQS value for nonylphenol is 0.33 µg/l. The total concentration of NP and NP-equivalents in a sample can be calculated using the equation:

Total concentration = ∑(Cx x TEF)

Cx = concentration of each nonylphenolic compoundTEF = toxic equivalency factor for each particular nonylphenolic compound

TEF values, based on a broad dataset of acute and chronic studies have been pub-lished by Canadian Environmental Protection Agency (CEPA, Canada 2002). It is proposed that these TEF values are applied. Table 1. TEF-values according to CEPA.

1 NOTE: The same reasoning applies to octylphenolic compounds. Octylphenol is a WFD priority substance. The proposed EQS-AA value is 0,1 mg/l (May 2003). TEF-values for octylphenolic compounds have been published (Canada 2003). Therefore, the use of an TEF approach in monitoring octylphenol is recommended.

ANNEX 14/1

Page 106: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749104

TEF relative to NP

NP 1

NP1EO 0.5

NP2EO 0.5

NPnEO (3 >=n<=8) 0.5

NPnEO (n >= 9) 0.005

NP1EC 0.005

NP2EC 0.005

ANNEX 14/2

Page 107: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105The Finnish Environment 749

Annex 15. Octamethylcyclotetrasiloxane (OMCTS)

1. Identity of Substance

Name: Octamethylcyclotetrasiloxane (OMCTS)

CAS-Number: 556-67-2

Classifi cation under WFD due to degradation by hydrolysis de-listed from the list of proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS -

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community, freshwater 0.1 µg/l See section 8.1.

AA-EQS, Pelagic community, Baltic sea 0.01 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 0.1 µg/l See section 8.1.

Benthic community freshwater sediment

5 – 31.6 µg/kg (dry wt) tentative standard (EP method); see section 8.2

Predators (secondary poisoning)

0.67 mg/kg – 6.67 mg/kg ~ 0.05 – 0.5 µg/l (depending on AF)

The preliminary assess-ment indicates that sec-ondary poisoning can be the decisive protection ob-jective in setting an QS for OMCTS. See section 8.3.

Food uptake by man Required, but not possible due to lack of chronic data.

The preliminary assess-ment (tentative value 4.5 µg/l) indicates that food uptake by man can be the decisive protection objec-tive in setting the overall QS. See section 8.3.

Drinking water abstraction Required, but not possible due to lack of chronic data.

The preliminary assess-ment (Tentative value QS-dw=350 µg/l) indicates that QSdw is probably not decisive in determining the overall quality standard.

3a. Classifi cation and labelling

Reference:

R53, Repr.cat. 3; R62 NCLASS

3b. Risk assessment in EU OMCTS is not listed in a priority list (as foreseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances).

ANNEX 15/1

Page 108: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749106

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C8H24O4Si4

Molecular weight 297

Vapour pressure [Pa] 140 EPI

Henry’s law constant [Pa m³/mol] 11855 EPI

Solubility in water [mg/l] 1) 0.02 = 20 µg/l2) 0.005 = 5 µg/l

1) IUCLID2) EPI /experimental

Dissociation constant; pKa

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) 33 h (pH 5; +25oC)69 h (pH 7; +25oC) 0.56 h (pH 9; +25oC).

Dow Corning Corporation; fi nal report on hydrolyses test (OECD 111); 7.10.2004 (HES Study No 9931-102)

Photostability (DT50) (aqueous, sunlight, state pH) no experimental data available

Readily biodegradable (yes/no) no

Degradation in Water/sediment no experimental data available

Mineralization

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic environment

Degrades hydrolytically to dimethyl-silanediol, which is not expected to be toxic.

Partition co-effi cient; log KOW 1) 5.1 2) 4.45

1) Chu 1987 cited in IUCLID2) Brueggeman et al. 1984 cited in IUCLID

Koc 1) 31 600 (measured) Calculated from log-Kow = 4.45:2) 50703) 5064Calculated from log-Kow = 5.12) 17 0003) 17 0224) 17 960

1) SLI Report 91-3-3698 (1991) cited in IUCLID2) EUSES3) TGD: 0.81xlogKow + 0.12) EUSES3) 0.81xlogKow + 0.1 (TGD Part III, ch. 4 table4)4) EPI/ PCKOCWIN v1.66

BCF (fi sh) [l/kg] Measured: 1) 14 261 2) 12 400Calculated from log-Kow = 4.45: 1) 12102) 12093) 533Calculated from log-Kow = 5.11) 43202) 43153) 1687

1) Fackler et. al. 19952) IUCLID1) EUSES2) logBCF = 0.85 x log-Kow – 0.70 (TGD eq. 74)3) EPI/BCFWIN v2.141) EUSES2) logBCF = 0.85 x lo-gKow – 0.70 (TGD eq. 74)3) EPI/BCFWIN v2.14

ANNEX 15/2

Page 109: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107The Finnish Environment 749

Property Value: Ref.

Solids-water partition coeffi cient in sediment[l/kg]

Solids-water partition coeffi cient in SPM [l/kg] Kp_susp = foc x Koc = 3160 (measured?) = 507 (logKow 4.45) = 1700 (logKow = 5.1)

6. Effect Data (aquatic environment)

Ecotoxicity data to aquatic organisms are presented in Tables 1 and 2.

7. Effect data (human health)

Table 7.1Value Study Safety factor Reference

ADI -

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThe data is shown in Annex I. Long term NOEC values are available for two troph-ic levels: fi sh and invertebrates. For algae no reported NOEC values for long term tests are available. Therefore, the use of an assessment factor of 50 is appropriate. The lowest reported NOEC value is for fi sh (Oncorhynchus mykiss) and it is 4.4 µg/l. Fish are also the most sensitive organisms in the acute tests available. Therefore, the following EQS value is derived:

AA-EQS = 4.4 µg/l / 50 = 0.088 µg/l ≈ 0.1 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 0.01 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)

The lowest EC50 value from short term tests is for Rainbow trout and it is 10 µg/l. The assessment factor of 100 is used and the MAC-QS value derived thus is equal to the AA-EQS: MAC-QS = 10 µg/l / 100 = 0.1 µg/l

8.2 Quality Standard for SedimentA tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning method. The default properties (fraction of organic carbon, wet and dry density) given in the TGD are used in the calculations.

ANNEX 15/3

Page 110: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749108

Koc values calculated with different equations give similar results (table 5). In IU-CLID a Koc value of 31 600 has been cited from a SLI report. This is probably based on measured data. EQSsed is calculated with two calculated Koc values (EUSES from two measured logKow values of 4.45 and 5.1) and with the Koc value of 31 600 l/kg. The respective Kp_susp values are 507, 1700 and 3160 l/kg (Kp_susp foc (0.1) x Koc). For substances with a logKow > 5 an extra assessment factor of 10 that takes into account uptake via ingestion of sediment should be used. The use of the extra as-sessment factor is considered justifi ed in the case of OMCTS.

This results in the following quality standards for sediment (dry weight):

1) logKow = 4.45 => Koc = 5070 l/kg

EQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (µg/l) = 507 l/kg x 0.1 µg/l / AF(10) = 5. 07 µg/kg

2) logKow = 5.1 => Koc = 17 000 l/kgEQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 1700 x 0.1 µg/l / AF(10) = 17 µg/kg

3) Koc = 31 600 l/kg EQSsed (dry weight) = Kp_susp (l/kg) x AA-EQS (µg/l) = 3160 l/kg x 0.1 µg/l / AF(10) = 31.6 µg/kgThe EQSsed based on the Koc value of 31 000 l/kg is recommended. The value is supported by the PNEC value derived from the sediment test and thus an ES-Qsed. value of 31.6 µg/kg is proposed.

Sediment tests: Effects in sediment spiked with OMCTS have been reported for midge larvae (Chironomus tentants). NOEC values of 120 mg/kg were reported (SLI Report 91-3-3698 and SLI report 91-7-3813). If an assessment factor of 1000 is used a PNECsed. of 120 µg/kg is derived. The use of an assessment factor of 1000 is justifi ed as the substance is very bioaccumulable and only one sediment test conducted on Chironomus tentans is available.

8.3 Secondary Poisoning of Top PredatorsOMCTS is liable to bioaccumulate. Therefore, it is necessary to derive a spesifi c QS in relation to secondary poisoning. There are no results from chronic dietary or oral exposure on mammals or birds available. Neither are there LC50 values from dietary studies on birds available. The NOEL of 100 mg/kg b.w. from a 14-day gavage test on rats can be used to preliminarily assess the risk of OMCTS to top predators. Using the conversion factor of 20 and the AForal of 3000 (EC50birds) or 300 (NOEC 28 days, mammal) the following tentative PNECoral values van be derived:

1) PNECoral = 100 mg/kg b.w. day x 20 kg b.w. day/kg food / 3000 = 0.67 mg/kg food2) PNECoral = 100 mg/kg b.w. day x 20 kg b.w. day / kg food / 300 = 6.67 mg/kg food

ANNEX 15/4

Page 111: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109The Finnish Environment 749

According to TGD it is assumed that top predators prey 100 % on the aquatic or-ganisms. Therefore, the level of OMCTS in fi sh may not exceed the PNECoral val-ue. The average of the two measured BCF values (14 261 + 12 400 /2 = 13 331) can be used to estimate the corresponding concentrations in water: 1) 0.67 mg/kg / 13 331 = 0.05 µg/l

2) 6.67 mg/kg / 13 331 = 0.5 µg/l

The preliminary values indicate that secondary poisoning can be the decisive pro-tection objective in setting an QS for OMCTS.

8.4 QS referring to food uptake by HumansOMCTS is liable to bioaccumulate and it is classifi ed Repr.cat. 3; R62. Therefore, it is necessary to derive a spesifi c QS in relation to food uptake by humans. No ADI-value for humans is available. Neither is it in the scope of this work to set ADI-val-ues. No results from chronic dietary tests on mammals are available. However, us-ing the NOEL value from the 14-day rat test (100 mg/kg b.w. day) a preliminary assessment can be performed: The assessment factor of 100 is used to extrapolate from animal to human. This cor-responds to 70 mg/day for a person with 70 kg body weight. In the TGD it is sug-gested that the threshold level may not be exceeded by more than 10 % by con-sumption of food originating from aquatic sources. The average fi sh consumption of a EU citizen is 115 g/day. Thus 115 g of fi sh may not contain more than 7 mg of OMCTS, that is 8.7 x 7 = 61 mg/kg fi sh.The BCF value of 13 331 can be used. Therefore, the following QS for food uptake by man is derived:

QS-food uptake by man = 61 mg/kg / 13 331 l/kg = 4.5 µg/l

The derived values is of the same order as the AA-EQS values. Therefore, the pre-liminary assessment indicates that food uptake by man can be the decisive protec-tion objective in setting the overall QS.

8.5 QS for drinking water abstractionAs no ADI-value is available it is not possible to derive a QSdw. Using the NOEL value from the 14-day rat test (100 mg/kg b.w. day) a preliminary assessment can be performed: The assessment factor of 100 is used to extrapolate from animal to human. This cor-responds to 70 mg/day for a person with 70 kg body weight. The quality standard for drinking water is calculated with the provision that uptake by drinking wa-ter should not exceed 10 % of the threshold level for humans. According to TGD the uptake of drinking water is 2l/day. Therefore, the following provisional quali-ty standard is derived:

QSdw = 0.1 x 70 mg/day / 2L = 0.35 mg/l

The assessment indicates that QSdw is probably not decisive in determining the overall quality standard.

ANNEX 15/5

Page 112: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749110 Table 1. Short term toxicity data on OMCTS.

Scientifi c Name Common Name Endpoint Effect Test conditions

TestDuration, days

Concentra-tion µg/l

Master Reference Reference in Master reference

Quality in master reference

AlgaeAnabaena fl os-aquae EC50 > 2000* IUCLID Firmin et al. 1984

Selenastrum capricornutum EC50 > 2000* IUCLID Firmin et al. 1984

InvertebrateDaphnia magna Water fl ea EC50 Immobilisation 2 > 15* Sousa et al. 1995

(AQ16736)C

Mysiodopsis bahia Mysid EC50 Immobilisation 4 > 9.1* Sousa et al. 1995(AQ16736)

FishOncorhynchus mykiss Rainbow trout LC50 Mortality 14 10* Sousa et al. 1995

(AQ16736)C

Cyprinodon variegatus Sheepshead minnow LC50 Mortality 14 > 6.3* Sousa et al. 1995(AQ16736)

*Solubility of OMCTS in water is 5-20 µg/l. Therefore, the test concentration might be above the water solubility.

Table 2. Long term toxicity data on OMCTS.

Scientifi c Name Common Name Criterion Effect / Endpoint Test conditions Test Dura-tion, days

Concen-tration ug/l

Master refer-ence

Reference in master reference

Qualityin masterreference

AlgaeSelenastrum capricornutum NOEC Growth of algae at

max. solubility (22 µg/l) decreased by 18 % compared with the control group.

During the test the concentration of testsubstance dropped under the de-tection limit (1 µg/l). The test sub-stance could not evaporate (closed system). It could be supposed that the testsubstance may be adsorbed at the algae and walls.

4 < 22* IUCLID SLI Report 90-3-3271, SLI Study 12023.1288.6104.115 (1990)

ANNEX 15/6

Page 113: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

The Finnish Environment 749

Scientifi c Name Common Name Criterion Effect / Endpoint Test conditions Test Dura-tion, days

Concen-tration ug/l

Master refer-ence

Reference in master reference

Qualityin masterreference

InvertebrateDaphnia magna Water fl ea NOEC reproduction TSCA guidelines; life-cycle test 21 7.9* Sousa et al.

1995(AQ16736)

Sousa et al. 1995 C

Americamysis bahia Opossum shrimp NOEC ITX 14 9* Sousa et al. 1995(AQ16736)

Sousa et al. 1995 C

Chironomus tentans Midge NOEC MOR 14 15* AQ13572 Suzuki and Harada 1963

C

Chironomus tentans Midge NOEC GRO 14 15* AQ13752 Kent et al. 1994 C

FishOncorhynchus mykiss Rainbow trout NOEC embryo viability,

hatching success, larval survival, growth

TSCA guidelines, early life-stage study. Flow through system main-taining consistent exposure conc. Delivery and exposure champers with no air/water interface.

93 4.4 Sousa et al 1995.

* Solubility of OMCTS in water is 5-20 µg/l. Therefore, the test concentration might by above the water solubility.

Table 3. BCF values for OMCTS.

Scientifi c Name Common Name Test conditions Test Dura-tion, days

Concentration ug/l BCF Mean

Master refer-ence

Reference in master reference

Quality in master reference

Pimephales promelas Fathead minnow 28 0.16 14 261 AQ8722 Fackler et al. 1995 C

Pimephales promelas Fathead minnow closed fl ow-through system, C14 28 0.23 12 400 IUCLID Springborn Laborato-ries Inc. 1991

Table 2. Long term toxicity data on OMCTS. (Continued) ANNEX 15/7

Page 114: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749112

Annex 16. 1,3-Dihydroxybenzene (Resarcinol)

1. Identity of Substance

Name: 1,3-dihydroxybenzene; 3-hydroxyphenol; Resorcinol

CAS-Number: 108-46-3

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 0.25 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater) 0.25 µg/l See section 8.1.

AA-EQS, Pelagic community, Baltic sea 0.025 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 2.5 µg/l See section 8.1.

Benthic community (freshwater sediment) Not required LogKow < 3

Predators (secondary poisoning) Not required. LogKow < 3

Food uptake by man Not required. LogKow < 3

Drinking water abstraction 7900 µg/l Tentative value. See section 8.5

3a. Classifi cation and labelling

Reference:

Xn; R22 Xi; R36/38 N; R50 NCLASS

3b. Risk assessment in EU

Resorcinol is not listed in a priority list (as foreseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances).

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C6H4(OH)2

Molecular weight 110

Vapour pressure [Pa] 0.027 (25 oC)

Henry’s law constant [Pa m³/mol]

no data available

Solubility in water 1400 g/l (20 oC)55 g/l (pH 4.4; 20 oC)

IUCLID

Dissociation constant; pKa 9.7 ; 9.81 IUCLID

ANNEX 16/1

Page 115: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113The Finnish Environment 749

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) no experimental data available

Photostability (DT50) (aqueous, sunlight, state pH) no experimental data available

Readily biodegradable (yes/no) Yes. Degrades 67 % by BOD in MITI I test. MITI 1992

Degradation in Water/sediment no experimental data available

Mineralization no experimental data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic en-vironment

no data available

Partition co-effi cient; log KOW 0.79 – 0.97 IUCLID

Koc 10.36 IUCLID

BCF (fi sh) [l/kg] no experimental data available

Solids-water partition coeffi cient in sediment[l/kg] no experimental data available

Solids-water partition coeffi cient in SPM [l/kg] no experimental data available

6. Effect Data (aquatic environment)

Acute and chronic toxicity to aquatic organismsFor acute and chronic toxicity to aquatic organisms see Tables 1 and 2.

Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Ref.

9-day gavage test; rat NOEL = 260 mg/kg b.w. BUA 99

9-day gavage test; mouse NOEL = 225 mg/kg b.w. BUA 99

Information on Endocrine Disrupting Potential

Comment Reference

In the Community Strategy for Endocrine Disrupters Resorcinol was identifi ed as a potential endo-crine disrupter (COM(2001)262) and was selected for in-depth evaluation (WRc 2002). Further testing is needed.

COM(2001)262WRc 2002

7. Effect data (human health)

Value Study Safety factor Reference

ADI -

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterNo chronic NOEC values were available for Resorcinol. The LOEC values obtained from long term tests on fi sh cannot be used as the effect percentage is not known. Therefore acute EC50 values are used and the assessment factor of 1000 is justi-fi ed. Daphnia Magna is the be the most sensitive species tested: the lowest report-ed EC50 value is 0,25 mg/l. Therefore the following EQS value is derived:

0.25 mg/l / 1000 = 0.25 µg/l

ANNEX 16/2

Page 116: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749114

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

EQSBaltic sea = 0.025 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Daphnia Magna and is 0.25 mg/l. The assessment factor of 100 is used, and the following MAC-QS is derived:

MAC-QS = 0.25 mg/l / 100 = 2.5 µg/l

8.2 Quality Standard for SedimentNot required.

8.3 Secondary Poisoning of Top PredatorsNot required.

8.4 QS referring to food uptake by HumansNot required.

8.5 QS for drinking water abstractionThe NOEL value of 225 mg/kg b.w. from the 90-day mouse test can be used to de-rive a tentative QS for drinking water abstraction. The assessment factor of 100 is used to extrapolate from animals to humans. This corresponds to 157.5 mg/day for a person with 70 kg body weight. The tentative quality standard for drinking water is calculated with the provision that uptake by drinking water should not exceed 10 % of the threshold level for humans. According to TGD the uptake of drinking water is 2l/day. Therefore, the following provisional quality standard is derived:

QSdw =0.1 x 157.5 mg/day / 2 l = 7.9 mg/l

The tentative value indicates that the EQSaquatic is suffi cient to protect also hu-mans exposed via consumption of water.

ANNEX 16/3

Page 117: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

The Finnish Environment 749

Table 1. Short term tests for 1,3-dihydroxybenzene.

Scientifi c Name Common Name criterion Endpoint / Effect

Effect Measurement, trend, test conditions

Test Duration, hours

Concentra-tion mg/l

Master Reference

Reference in Master Reference

Quality in master reference

AlgaePhaeodactylum tricornutum Diatom NR POP SW; TS:F 3 d 1.1 AQ11882 Florence & Stauber 1986 M

Chlorella pyrenoidosa Green algae NR POP TS:F 4 d 1.1 AQ12971 Stauber & Florence 1987 M

Scenedesmus quadricauda Green algae NR POP TS: F, resorcinol 4 d 60 AQ607 Bringmann & Kuhn 1969 M

Dunaliella salina Green algae NR BCM TS: F 0.5 110 AQ7686 Stom 1977 M

Dunaliella salina Green algae NR CEL TS: F 3 1650 AQ7686 Stom 1977 M

Chlamydomonas reinhardtii Green algae NR BEH TS:F 15 min 2750 AQ14483 Stom & Roth 1981 I

Dunaliella salina Green algae NR CEL TS: F 0.25 4510 AQ7686 Stom 1977 M

Dunaliella salina Green algae NR BEH TS:F 15 min 5500 AQ14483 Stom & Roth 1981 I

Cyclotella cryptica Diatom NR BCM TS:F 3 11 - 1100 AQ14483 Stom & Roth 1981 I

Chlorococcum macrostigma-tum

Green algae NR ITX TS: F; resorcinol 24 11 - 11000 AQ3555 Vodenicharov et al. 1987 M

Chlorococcum vacuolatum Green algae NR ITX TS: F; resorcinol 24 11 - 11000 AQ3555 Vodenicharov et al. 1987 M

Hypnomonas sp. Algae NR ITX TS: F; resorcinol 24 11 - 11000 AQ3555 Vodenicharov et al. 1987 M

Chlorella pyrenoidosa Green algae NR BCM TS:F 1-3 d 50 - 3000 AQ2232 Huang & Gloyna 1967 M

Aquatic plantsElodea canadensis Waterweed EC50 POP TS:F 9 days 143 AQ14483 Stom & Roth 1981 M

Lemna minor Duckweed EC50 POP TS:F 12 days 165 AQ14483 Stom & Roth 1981 M

InvertebrateDaphnia magna Water fl ea LC50 MOR TS: F,R 96 0.25 Ewell et al. 1986

AQ11951C

Daphnia pulex Water fl ea LC50 MOR TS; F 96 0.9 AQ6256 Trabalka & Burch 1978 M

Daphnia magna Water fl ea LOEC immobilisa-tion

0.9 Bringmann & Kühn 1959

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR 96 42 AQ2965 Curtis & Ward, 1981 M

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR SW 96 42 AQ875 Curtis et al. 1979 M

ANNEX 16/4

Page 118: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749116

Scientifi c Name Common Name criterion Endpoint / Effect

Effect Measurement, trend, test conditions

Test Duration, hours

Concentra-tion mg/l

Master Reference

Reference in Master Reference

Quality in master reference

Crangon septemspinosa Bay shrimp, Sand shrimp

LC50 MOR SW 96 56 AQ5810 McLeese et al. 1979 M

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR SW 48 78 AQ875 Curtis et al. 1979 M

Asellus intermedius Aquatic sowbug LC50 MOR TS: F,R 96 100 AQ11951 Ewell et al. 1986 C

Lumbriculus variegatus Oligochaete, worm LC50 MOR TS: F,R 96 100 AQ11951 Ewell et al. 1986 C

Helisoma trivolvis Ramshorn snail LC50 MOR TS: F,R 96 100 AQ11951 Ewell et al. 1986 C

Gammarus fasciatus Scud LC50 MOR TS: F,R 96 100 AQ11951 Ewell et al. 1986 C

Dugesia tigrina Turbellarian, fl at-worm

LC50 MOR TS: F,R 96 100 AQ11951 Ewell et al. 1986 C

Daphnia pulicaria Water fl ea LC50 MOR 48 100 AQ569 DeGraeve et al. 1980 M

Palaemonetes pugio Daggerblade grass shrimp

LC50 MOR SW 24 170 AQ875 Curtis et al. 1979 M

Fish x

Pimephales promelas Fathead minnow LC50 MOR TS: F,R 96 40 AQ11951 Ewell et al. 1986 C

Pimephales promelas Fathead minnow LC50 MOR 96 50 AQ5735 Curtis et al. 1978 M

Pimephales promelas Fathead minnow LC50 MOR 96 53 AQ875 Curtis et al. 1979 C

Pimephales promelas Fathead minnow LC50 MOR 96 57 AQ5735 Curtis et al. 1978 M

Pimephales promelas Fathead minnow LC50 MOR 96 60 AQ2965 Curtis & Ward, 1981 C

Pimephales promelas Fathead minnow LC50 MOR 48 73 AQ5735 Curtis et al. 1978 M

Pimephales promelas Fathead minnow LC50 MOR 48 73 AQ875 Curtis et al. 1979 C

Lepidocephalichthyes guntea Fish LC50 MOR INC 96 73 AQ19085 Sangli & Kanabur 1998 C

Lepidocephalichthyes guntea Fish LC50 MOR INC 72 75 AQ19085 Sangli & Kanabur 1998 C

Lepidocephalichthyes guntea Fish LC50 MOR INC 48 77 AQ19085 Sangli & Kanabur 1998 C

Lepidocephalichthyes guntea Fish LC50 MOR INC 24 80 AQ19085 Sangli & Kanabur 1998 C

Pimephales promelas Fathead minnow LC50 MOR 24 89 AQ5735 Curtis et al. 1978 M

Pimephales promelas Fathead minnow LC50 MOR 24 89 AQ875 Curtis et al. 1979 C

Table 1. Short term tests for 1,3-dihydroxybenzene. (Continued)ANNEX 16/5

Page 119: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

The Finnish Environment 749

Scientifi c Name Common Name criterion Endpoint / Effect

Effect Measurement, trend, test conditions

Test Duration, hours

Concentra-tion mg/l

Master Reference

Reference in Master Reference

Quality in master reference

Pimephales promelas Fathead minnow LC50 MOR INC; TS:F 96 100 AQ59196 Bergman & Anderson 1977

M

Pimephales promelas Fathead minnow LC50 MOR 96 100 AQ569 DeGraeve et al. 1980 C

Oncorhynchus mykiss Rainbow trout LC50 MOR 96 100 AQ569 DeGraeve et al. 1980 M

Danio rerio Zebra danio LC50 MOR TS: F, >=99 % 7 days 262 AQ2852 Van Leeuwen et al 1990 C

Oncorhynchus mykiss Rainbow trout LC50 MOR TS: F, >=99 % PU 60 days 320 AQ2852 Van Leeuwen et al 1990 C

Table 2. Long term tests for 1,3-dihydroxybenzene.

Scientifi c Name Common Name Criterion Endpoint/ Effect

Test conditions etc. Test Duration, days

Concentration mg/l

Master Reference Quality in AQ

FishOncorhynchus mykiss Rainbow trout LOEC mortality TS: F, >=99 %; nom. conc.

*lowest concentration tested. 60 320* Van Leeuwen et al. 1990

(cited in AQ2852)C

Oncorhynchus mykiss Rainbow trout LOEC NOC TS: F, >=99 %; nom. conc. *lowest concentration tested.

60 320* Van Leeuwen et al. 1990(cited in AQ2852

C

Oncorhynchus mykiss Rainbow trout LOEC Growth; lenght

GGRO, lenght; TS: F, >=99 % ; nom. conc. *lowest con-centration tested.

60 100* Van Leeuwen et al. 1990(cited in AQ2852

C

Oncorhynchus mykiss Rainbow trout LOEC Growth; weight

GGRO, weight; TS: F, >=99 %; nom. conc. *lowest con-centration tested.

60 32* Van Leeuwen et al. 1990(cited in AQ2852

C

*The LOEC values are not used in the assessment

Table 1. Short term tests for 1,3-dihydroxybenzene. (Continued)ANNEX 16/6

Page 120: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749118

Annex 17. 2-bromo-2-nitropropane-1,3-diol (Bronopol)

1. Identity of Substance

Name: 2-bromo-2-nitropropane-1,3-diol; Bronopol

CAS-Number: 52-51-7

Classifi cation under WFD proposed NPS in Finland

2.. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 4 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater)

4 µg/l PNECaquatic=4µg/l in SYKE Statements for Bronopol containing slimicides.

MAC-QS Pelagic community (freshwater) -

Baltic sea AA-EQS 0.4 µg/l

Benthic community (freshwater sediment)

Not required. logKow < 3.

Predators (secondary poisoning)

Not required. logKow < 3.

Food uptake by man Not required. logKow < 3.

Drinking water abstraction 280 µg/l Tentative assessment based on a NOEL value of 8 mg/kg/day. See section 8.5.

3a. Classifi cation and labelling

Reference:

Xn; R21/22 Xi; R37/38-41 N; R50 NCLASS

3b. Risk assessment in EU The substance has been notifi ed as an biocide under the Biocide Products Direc-tive (98/8/EC).Bronopol is not listed in a priority list (as foreseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances). IU-CLID report is not available. The ecotoxicological risks of Bronopol when used as a slimicide have been evalu-ated in SYKE as part of the national prior authorisation process.

ANNEX 17/1

Page 121: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119The Finnish Environment 749

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C3H6O4NBr

Molecular weight 200

Vapour pressure [Pa] 1) 0.00168 (20oC)2) 0.0017

1) Nurmi 19962) EPI / experimental

Henry’s law constant [Pa m³/mol] no data available

Solubility in water [mg/l] 1) 28 % w/v (22-25oC)2) 250 000

1) Nurmi 19962) EPI /experimental

Dissociation constant; pKa no data available

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) < 1 a (pH 4)< 1 d (pH 7, pH 9)

Seppälä 1997

Photolysis in water (DT50) 24.3 h (contimuos illumination 450 W/m2; pH 2, 25oC

Readily biodegradable (yes/no) No. Nurmi 1996, Seppälä 1997

Degradation in Water/sediment No experimental data available. Nurmi 1996

Mineralization No experimental data available.

Distribution in water / sediment systems No experimental data available.

Degradation products relevant to the aquatic environment

Possible hydrolyses products: bromonitroethanol; 2-hydroxymethyl-2-nitro-1,3-propanediol

Nurmi 1996

Partition co-effi cient; log KOW 0.18 Nurmi 1996

Koc 37 - 1416 Nurmi 1996

BCF (fi sh) [l/kg] no experimental data available

Solids-water partition coeffi cient in sediment[l/kg]

no experimental data available

Solids-water partition coeffi cient in SPM [l/kg]

no experimental data available

6. Effect Data (aquatic environment)

Acute and chronic toxicity to aquatic organismsEcotoxicity data to aquatic organisms are presented in Tables 1 and 2.

Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Ref.

Subchronic test on dog NOEL= 8mg/kg/vrk STTV statement 25.8.1997

7. Effect data (human health)

Value Study Safety factor Reference

ADI -

ANNEX 17/2

Page 122: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749120

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThe data is shown in Tables 1 and 2. There are NOEC values from long term tests available for three trophic levels. Therefore, the use of an assessment factor of 10 is justifi ed. Algae are clearly the most sensitive species in both long term and acute tests. The NOEC value of 40 µg/l for Scenedesmus subspicatus is selected as the test The following EQS values is derived:

AA-EQSaquatic = 40 µg/l /10 = 4 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQSBaltic sea = 0.4 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Scenedesmus subspicatus and it is 0.05 mg/l. If the assessment factor of 100 is used, a MAC-QS of 0.5 µg/l is de-rived. This is, however, smaller than the AA-EQS. Therefore, no MAC value is de-rived at this stage.

8.2 Quality Standard for SedimentNot required.

8.3 Secondary Poisoning of Top PredatorsNot required.

8.4 QS referring to food uptake by HumansNot required.

8.5 QS for drinking water abstractionAs no ADI value is available it is not possible to derive a QSdw. Neither is it in the scope of this work to derive ADI values for humans. A tentative assessment can be done by using the NOEL value of 8 mg/kg/day from a chronic test on dogs. An extrapolation factor of 100 is used to derive from animal to human. Thus a thresh-old level of 0.08 mg/kg b.w./day is obtained. Uptake by drinking water should not exceed 10 % of the threshold level for humans. According to TGD the uptake of drinking water is 2l/day. Therefore, the following provisional quality standard is derived: QSdw = 0.1 x 0.08 [mg.kg b.w.-1.day-1] x 70 [kg] / 2 [l.day-1] = 280 µg/l

The tentative assessment indicates that the AA-EQS derived for the pelagic com-munity is probably protective for humans exposed through drinking water.

ANNEX 17/3

Page 123: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

The Finnish Environment 749

Table 1. Short term tests for bronopol.

Scientifi c Name Common Name Criterion Effect Effect Measurement Test Duration, hours

Concentration1 Mean, mg/l

Master Reference

Reference inMaster Reference

Quality in master refeence

AlgaeScenedesmus subspicatus EC50 growth rate OECD 201. static. TS: Bronopol, 99.8

%, nom. conc. 3 0.05 Nurmi 1996 Leopold 1991 1

InvertebrateCrassostrea gigas Pacifi c oyster EC50 ITX IMBL; SW; 48 0.78 AQ344 US EPA 2000 M

Daphnia magna Water fl ea EC50 acute tox-icity

nom. static. test substance: Myacide BT. Test substance not specifi ed

48 1.4 Nurmi 1996 Williams & Thomp-son 1981

2

Daphnia magna Water fl ea EC50 ITX IMBL;TS: F 48 1.6 AQ344 US EPA 2000 M

Americamysis bahia Opossum shrimp LC50 MOR MORT; SW; TS:F 96 5.9 AQ344 US EPA 2000 M

FishOncorhynchus mykiss Rainbow trout LC50 MOR MORT; TS:F 96 20 AQ344 US EPA 2000 I

Lepomis macrochirus Bluegill sunfi sh LC50 MORT Flow-through.meas.conc. TS: F 96 36 Nurmi 1996 Hill 1984b 2

Lepomis macrochirus Bluegill LC50 MOR MORT; TS: F 96 36 AQ344 US EPA 2000 M

Salmo gairdneri Rainbow trout LC50 MORT Flow-through.meas.conc. 96 41 Nurmi 1996 Hill 1984a 2

Oncorhynchus mykiss Rainbow trout LC50 MOR MORT; TS:F 96 42 AQ344 US EPA 2000 M

Cyrpinodon variegatus Sheepshead minnow LC50 MORT Flow-through.meas.conc. 96 58 Nurmi 1996 Hill 1984c 2

Cyprinodon variegatus Sheepshead minnow LC50 MOR MORT; SW; TS:F 96 59 AQ344 US EPA 2000 M

ANNEX 17/4

Page 124: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749122

Table 2. Long term tests for bronopol.

Scientifi c Name Common Name

End-point

Effect Test conditions Test Duration, days

Concentration1 Mean, mg/l

MasterReference

Reference in Master Reference

Quality in master reference

AlgaeScenedesmus subspicatus NOEC growth OECD 201; static; TS: Bronopol, 99.8

%, nom. conc. (Note: in the report the value 0.0032 mg/l has been given. This has later been corrected to the value 0.01 mg/l due to corrected statistical calculation)

3 0.01 Nurmi 1996 Leopold 1991 1

Selenastrum capricornutum NOEC growth OECD 201. static. nom. conc. 4 0.01 Seppälä 1997 Mallet 1994 1

Scenedesmus subspicatus NOEC growth OECD 201; GLP including quality assur-ance statement; meas.conc.

3 0.04 Knoll Microcheck 1998

The PNEC value given in the SYKE statements on Bronopol use this value.

Scenedesmus subspicatus NOEC growth OECD 201. static. nom. conc. 4 0.1 Seppälä 1997 Mallet 1994 1

Chlorella vulgaris NOEC growth OECD 201. static. nom. conc. 3 0.32 Seppälä 1997 Mallet 1994 1

InvertebrateDaphnia Magna Water fl ea NOEC reprod. estimated from initial conc. fl ow-

through. OECD 202. 21 < 0.27 Nurmi 1996 Bogers 1992 1/2

Daphnia Magna Water fl ea NOEC reprod. OECD 202. Flow-through. Test mate-rial: Myacide S1 (20 % bronopol), re-sults as meas. conc. of bronopol

22 0.43 Nurmi 1996 Bogers 1994 1/2

FishOncorhynchus mykiss Rainbow trout NOEC Cont. fl ow-through. Based on OECD

210. Meas. conc.49 1.9 Seppälä 1997 Mallet 1996 1

ANNEX 17/5

Page 125: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123The Finnish Environment 749

Annex 18. 4-chloro-3-methylphenol

1. Identity of Substance

Name: 4-chloro-3-methylphenol

CAS-Number: 59-50-7

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 9 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater)

9 µg/l See section 8.1.

AA-EQS, Pelagic community, Baltic sea 0.9 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 9 µg/l See section 8.1.

Benthic community (freshwater sediment)

43 - 1041 µg/kg Tentative standard based on esti-mated Kp value and EP-method. See section 8.2.

Predators (secondary poisoning)

Not required. BCF < 100.

Food uptake by man Not required. BCF < 100.

Drinking water abstraction Required, but not possible due to lack of ADI value for humans.

The tentative assessment indi-cates that the AA-EQS for the pe-lagic community is probably al-so protective for humans exposed through drinking water. See sec-tion 8.5

3a. Classifi cation and labelling

Reference

Xn; R21/22 Xi; R41 R43 N; R50 NCLASS

3b. Risk assessment in EU 4-chloro-3-methylphenol is not listed in a priority list (as forseen under Council Regulation (EEC) No 793/93 on the evaluation and control of the risks of existing substances.).4-chloro-3-methylphenol has been notifi ed as a biocide under the Biocide Prod-ucts Directive (98/8/EC).

ANNEX 18/1

Page 126: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749124

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C7H7ClO

Molecular weight 142.59

Vapour pressure [Pa] 8 (20oC) IUCLID & BUA 135

Henry’s law constant [Pa m³/mol] 0.28 – 0.32 (20oC) BUA 135 / calculated

Solubility in water [mg/l] 3600 (20oC, pH 6.5)3900 (20oC)4000 (25oC, pH 5.1)5600 (23oC, pH 5.6)

IUCLID & BUA 135

Dissociation constant; pKa 9.43 – 9.62 BUA 135

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) no experimental data available

Photostability (DT50) no experimental data available

Readily biodegradable (yes/no) No. = 0 % by BOD in MITI I test MITI 1992

Degradation in Water/sediment no experimental data available

Mineralization no experimental data available

Distribution in water / sediment systems no experimental data available

Degradation products relevant to the aquatic environment

no data available

Partition co-effi cient; log KOW 3 IUCLID

Koc calculated from logKow 3.1: 1) 1157 calculated from WS= 3.6 g/l2) 483) 3394) 718

1) logKow = 0.544logKow + 1.377 (Kenaga Goring 1980 cited in BUA 1352) logKoc = 3.64 – 0.55 (log-WS) (Kenaga Goring 1980 cited in BUA 135)3) EUSES4) EPI / PCKOCWIN v.166)

BCF (fi sh) [l/kg] 5.5 – 116.7 - 13

MITI 1992

Solids-water partition coeffi cient in sediment[l/kg]

Solids-water partition coeffi cient in SPM [l/kg]

kp = foc(0.1)xKoc =4.8 - 1157

6. Effect Data (aquatic environment)

Ecotoxicity data to aquatic organisms are presented in Tables 1 and 2. Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Ref.

OECD 414 ”Teratogenity”; (15 days) test on rat; GLP

NOAEL = 30 mg/kg b.w. Bayer AG data cited in IUCLID

Repeated dose toxicity, 3 months test on rat NOAEL = 11 mg/kg b.w. Bayer AG data cited in IUCLID

ANNEX 18/2

Page 127: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125The Finnish Environment 749

7. Effect data (human health)

Value Study Safety factor Reference

ADI - - - -

Information on Endocrine Disrupting Potential

Comment Reference

Potential endocrine disrupter COM(2001)262)table2

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThe data for 4-chloro-3-methylphenol are shown in Annex 1. NOEC values from long term tests are available for algae and Daphnia magna. However, in the short term tests the most sensitive species are fi sh. The lowest LC50 value reported for fi sh is 0.917 mg/l, which is lower than the reported NOEC values. Therefore, an as-sessment factor of 100 is applied on this LC50 value:

AA-EQS = 0.917 mg/l / 100 = 9.17 µg/L ≈ 9 µg/L

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used and the following AA-EQS is derived:

AA-EQS = 9.17 µg/l / 10 = 0.9 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for fi sh and it is 0.917 mg/l. The as-sessment factor of 100 is used, and the following MAC-QS is derived:

MAC-QS = 0.917 mg/l / 100 = 9.17 µg/L ≈ 9 µg/L

8.2 Quality Standard for SedimentNo experimental Koc or Kp values are available. Estimated Koc-values range from 48 to 1157. An tentative EQS-sediment values is estimated with the EP-method us-ing the lowest and highest Koc values:

1. Koc = 48 l/kg => Kp = 4.8 l/kg

EQS-sediment = Kp x AA-EQS = 4.8 l/kg x 9 µg/l = 43.2 µg/kg

2. Koc = 1157 l/kg => Kp = 115.7 l/kg

EQS-sediment = Kp x AA-EQS = 115.7 l/kg x 9 µg/l = 1041.3 µg/kg

8.3 Secondary Poisoning of Top PredatorsNot required.

ANNEX 18/3

Page 128: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749126

8.4 QS referring to food uptake by HumansNot required.

8.5 QS for drinking water abstractionIt is not possible to derive an QSdw value for humans, as no ADI value is availa-ble. Neither is it in the scope of this work to derive such values. However, a tenta-tive assessment is performed on the basis of the NOAEL values from repeated dose toxicity and teratogenity toxicity tests cited in IUCLID. The lowest value reported, 11 mg/kg b.w./day from a 3 months rat test is used. The assessment factor of 100 is used to extrapolate from animals to humans. Thus a threshold level of 0.11 mg/kg b.w./day is derived. Uptake by drinking water should not exceed 10 % of the threshold level for humans. According to TGD the uptake of drinking water is 2 L/day. Therefore, the following provisional quality standard is derived:

QSdw = 0.1 x 0.11 mg/kg b.w./day x 70 kg / 2 L/day = 385 µg/l

The tentative assessment indicates, that the AA-EQS for the pelagic community is probably protective also for humans exposed through drinking water.

ANNEX 18/4

Page 129: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

The Finnish Environment 749

Table 1. Short term tests for 4-chloro-3-methylphenol.

Scientifi c Name Common Name Endpoint Effect Effect Measurement Test Duration, hours

Concentration, mg/l

Master Reference

Reference in Master Reference

Quality in master reference

AlgaeScenedesmus subspi-catus

Green algae EC50 ISO draft method 147/SC 5/WG 5 N 67; open static system

72 4.2 BUA 135 Bayer AG 1983a

Scenedesmus subspi-catus

Green algae EC50 growth bio-mass

DIN 38 412, Part 9. 96 >10 AQ2997 & BUA 135 Kuhn & Pattard 1990 M

Chlorella pyrenoidosa Green algae EC50 growth 72 15 AQ2997 & BUA 135 Ramos et al. 1999 C

Aquatic plantsLemna minor Duckweed LC50* MOR MORT 72 96 AQ2231 Blackman et al. 1955 M

InvertebrateDaphnia magna Water fl ea EC50 ITX IMBL 48 1.5 AQ19263 Ramos et al. 1998 C

Daphnia magna Water fl ea LC50 MOR MORT 48 2.0 AQ11961 Gersich & Mayes 1986 C

Daphnia magna Water fl ea EC50 ITX IMBL 48 2.3 AQ344 US EPA 2000 M

Daphnia magna Water fl ea EC50 ITX IMBL 24 2.8 AQ19263 Ramos et al. 1998 C

Daphnia pulex Water fl ea LC50 MOR MORT 96 3.1 AQ6256 Trabalka & Burch 1978 M

Daphnia magna Water fl ea EC50 ITX IMBL 2 3.5-10 AQ17456 & BUA 135

Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX IMBL 4 3.5-10 AQ17456 & BUA 135

Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX IMBL 6 3.5-10 AQ17456 & BUA 135

Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX IMBL 24 3.5-10 AQ17456 & BUA 135

Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX IMBL 24 4.4 AQ847 Kuhn et al. 1989 C

Daphnia magna Water fl ea EC50 BEH EQUL 24 4.4 AQ6628 & BUA 135 Kuhn 1988 M

Daphnia magna Water fl ea EC50 BEH EQUL 24 5.3 AQ56394 Trenel & Kuhn 1982 I

FishOncorhynchus mykiss Rainbow trout LC50 mortality FIFRA Guideline 72-1; TS: F, Preventol CMK,

99.97 % a.i. , anal. confi rmed96 0.917 1) AQ344

2) IUCLID1) US EPA 20002) Gagliano & Bowers 1993

M ANNEX 18/5

Page 130: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749128

Scientifi c Name Common Name Endpoint Effect Effect Measurement Test Duration, hours

Concentration, mg/l

Master Reference

Reference in Master Reference

Quality in master reference

Brachydanio rerio Zebra fi sh NOEC behaviour Method proposed by German Federal Envi-ronmental Agency; fl ow through system; TS: > 99.97 %, anal. confi rmed.

14 d 1 1) IUCLID 2) BUA 135

1) Bayer AG, unpublished data

Pimephales promelas Fathead minnow LC50* MOR MORT 96 1-10 AQ8960 Barnhart & Campbell 1972 M

Salmo trutta Brown trout LC50 MOR MORT 24 1.3 AQ5270 Hattula et al. 1981. M

Poecilia reticulata Guppy LC50 MOR MORT 24 2.2 AQ4038 Benoit-Guyod et al. 1984 M

Pimephales promelas Fathead minnow LC50 MOR MORT 96 4.1 AQ12447 Geiger et al. 1985 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 4.1 AQ15031 Broderius et al. 1995 C

Poecilia reticulata Guppy LC50 MOR MORT 96 6.7 AQ19263 Ramos et al. 1998 C

Poecilia reticulata Guppy LC50 MOR MORT 24 7.3 AQ19263 Ramos et al. 1998 C

Poecilia reticulata Guppy LC50 MOR MORT 48 7.3 AQ19263 Ramos et al. 1998 C

Poecilia reticulata Guppy LC50 MOR MORT 72 7.3 AQ19263 Ramos et al. 1998 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 7.4 AQ12447 Geiger et al. 1985 C

Pimephales promelas Fathead minnow LC50 MOR MORT 96 7.6 AQ10954 Holcombe et al. 1984 C

Pimephales promelas Fathead minnow LC50 MOR MORT 72 9.2 AQ10954 Holcombe et al. 1984 C

Danio rerio Zebra danio LC50 MOR MORT 2 10-35 AQ17456 Devillers et al. 1985 C

Danio rerio Zebra danio LC50 MOR MORT 4 10-35 AQ17456 Devillers et al. 1985 C

Danio rerio Zebra danio LC50 MOR MORT 6 10-35 AQ17456 Devillers et al. 1985 C

Danio rerio Zebra danio LC50 MOR MORT 24 10-35 AQ17456 Devillers et al. 1985 C

Pimephales promelas Fathead minnow LC50 MOR MORT 48 11.4 AQ10954 Holcombe et al. 1984 C

Pimephales promelas Fathead minnow LC50 MOR MORT 24 13.3 AQ10954 Holcombe et al. 1984 C

Table 2. Long term tests for 4-chloro-3-methylphenol.

Table 1. Short term tests for 4-chloro-3-methylphenol. (Continued)ANNEX 18/6

Page 131: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

The Finnish Environment 749

Scientifi c Name Common Name Endpoint Effect Test condition Test Du-ration, days

Concentration mg/l

Master Reference

Reference in Master Reference

Quality in master reference

AlgaeScenedesmus subspi-catus

Green algae EC10 ISO draft method 147/SC 5/WG 5 N 67; open static system

3 1.85 BUA 135 & IU-CLID

Bayer AG 1983a

Chlorella pyrenoidosa Green algae NOEC POP 3 1.9 AQ14484 Ramos et al . 1999 C

Scenedesmus subspicatus

Green algae EC10 growth, bio-mass

DIN 38 412, Part 9. 4 5.2 BUA 135 Kuhn & Pattard 1990 M

InvertebrateDaphnia magna Water fl ea NOEC behaviour 21 1.3 AQ6628 & BUA

135Kuhn 1988 M

Daphnia magna Water fl ea NOEC reproduction 21 1.3 AQ847 & BUA 135

Kuhn et al . 1989 C

ANNEX 18/7

Page 132: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749130

Annex 19. Dimethoate

1 Identity of Substance

Name: Dimethoate

CAS-Number: 60-51-5

Classifi cation under WFD proposed NPS in Finland

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 0.7 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater)

0.7 µg/l See section 8.1.

AA-EQS Pelagic community (Baltic sea)

0.07 µg/l See section 8.1.

MAC-QSPelagic community (freshwater)

- See section 8.1.

Benthic community (freshwater sediment) Not required log Kow < 3

Predators (secondary poisoning) Not required log Kow < 3

Food uptake by man Not required. log Kow < 3

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC. See section 8.5

3a. Classifi cation and labelling

Reference:

Xn; R21/22 NCLASS

proposal: R50 SYKE

3b. Risk assessment in EURisk assessment under Directive 91/414/EEC in process.

4. Physical and chemical properties

Property Value: Ref.

Molecular formula C5H12NO3PS2 Nurmi 1994

Molecular weight 229.25 Nurmi 1994

Vapour pressure [Pa] 1.1 x 10-3 at 25oC Nurmi 1994

Henry’s law constant [Pa m³/mol] no data available

Solubility in water [mg/l] 25 000 Nurmi 1994

Dissociation constant no data available

ANNEX 19/1

Page 133: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131The Finnish Environment 749

5. Environmental Fate and Partitioning

Property Value: Ref.

Hydrolytic stability (DT50) In neutral and acidic pH hydrolysis not relevant:DT50 (pH5) 156 daysDT50 (pH7) 68 daysDT50 (pH9) 4.4 days

Nurmi 1994

Photostability (DT50) (aqueous, sunlight, state pH)

Photochemical degradation not relevant:DT50 > 16 days in water

Nurmi 1994

Readily biodegradable (yes/no)

Degradation in Water/sediment DT50 = 17 days (river water)DT50 = 13 days (pond water)

Nurmi 1994

Mineralization no experimental data available

Bound residue no experimental data available

Distribution in water / sediment systems (active substance)

no experimental data available

Degradation products relevant to the aquatic environment

omethoate

Partition co-effi cient (log KOW) 0.705 Nurmi 1994

BCF (whole fi sh) no experimental data available

Koc 15-52 Nurmi 1994

solids-water partition coeffi cient suspended matter; Kp_susp [l/kg]

solids-water partition coeffi cient in sediment; Kp_sediment [l/kg]

Kp (=Koc x foc)1.5 – 5.2

6. Effect Data (aquatic environment)

Toxicity to aquatic organisms are presented in Tables 1 and 2.

7. Effect data (human health)

Dimethoate is not liable to bioaccumulate. Therefore, effect data on human health is not required. Drinking water QS shall be based on the QS given in 75/440/EEC.

Summary on Endocrine Disrupting Potential

Comment Reference

Dimethoate is on the list of substances with evidence of ED or potential ED which are neither restricted nor currently being addressed under existing Community legislation.

COM(2001)262 fi nal, table 2

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThere are chronic NOEC values representing three trophic levels (algae, crustacea and fi sh) available. Therefore, the use of an assessment factor of 10 is justifi ed. The short term data indicate that insects are probably the most sensitive group. There are no results form long term tests available for this group. The lowest valid EC50 value reported, 7 µg/l for Baetis rhodani, is lower than the chronic NOEC values reported. Therefore, the assessment factor of 10 is applied on this LC50 value and the following AA-EQS value is derived:

AA-EQS = 7 µg/l / 10 = 0.7 µg/l

ANNEX 19/2

Page 134: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749132

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:

AA-EQS = 0.7 µg/l / 10 = 0.07 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Baetis rhodani and it is 0.7 µg/l. When an assessment factor of 100 is applied to this EC50 a MAC-QS of 0.07 µg/l is derived. This is however lower than the proposed AA-EQS value. There-fore, no MAC value is derived at this stage.

8.2 Quality Standard for SedimentNot required. Log Kow < 3.

8.3 Secondary Poisoning of Top PredatorsNot required. Log Kow < 3.

8.4 QS referring to food uptake by HumansNot required. Log Kow < 3.

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 19/3

Page 135: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

The Finnish Environment 749

Table 1. Short term tests for dimethoate.

Scientifi c Name Common Name

Endpoint Effect Test conditions etc. Test Duration; hours

Concen-tration, µg/l

Master reference

Reference in master reference

Quality in master reference

AlgaeChlamydomonas noctigama Green algae EC50 POP TS: F; DIMETHOATE, ROGOR L20 3 d 5 500 AQ 16010 Kallqvist & Romstad 1994 M

Microcystis aeruginosa Blue-green algae EC50 POP TS: F; DIMETHOATE, ROGOR L20 6 d 8 500 AQ 16010 Kallqvist & Romstad 1994 M

Synechococcus leopoliensis Blue-green algae EC50 POP TS: F; DIMETHOATE, ROGOR L20 5 d 10 000 AQ 16010 Kallqvist & Romstad 1994 M

Cyclotella Diatom EC50 POP TS: F; DIMETHOATE, ROGOR L20 6 d 14 000 AQ 16010 Kallqvist & Romstad 1994 M

Cryptomonas pyrenoidifera Cryptomonad EC50 POP TS: F; DIMETHOATE, ROGOR L20 6 d 16 000 AQ 16010 Kallqvist & Romstad 1994 M

Selenastrum capricornutum Green algae EC50 POP TS: F; DIMETHOATE, ROGOR L20 3 d 35 000 AQ 16010 Kallqvist & Romstad 1994 M

Chlorella pyrenoidosa Green algae EC50 GRO TS: 98% 24 290 000 AQ 5180 Canton et al. 1980 C

Chlorella pyrenoidosa Green algae EC50 GRO TS: 98% 48 300 000 AQ 5180 Canton et al. 1980 C

Chlorella pyrenoidosa Green algae EC50 GRO TS: 98% 72 470 000 AQ 5180 Canton et al. 1980 C

Scelenastrum capricornutum green algae EC50 growth, rate OECD guideline; GLP; TS: F; Roxion 72 477 000 Nurmi 1994 well done and reported

Chlorella pyrenoidosa Green algae EC50 GRO TS: 98% 96 480 000 AQ 5180 Canton et al. 1980 C

InvertebrateBaetis rhodani Mayfl y LC50 MOR Flow-through system; TS: F; Rogor L20;

200 g/l dimethoate.96 7 - C

Hydropsyche siltalai Caddisfl y LC50 MOR Flow-through system; TS: F; Rogor L20; 200 g/l dimethoate.

96 23 Baekken & Aanes 1991(cit-ed in AQ 13409)

- C

Pteronarcys californicus Stonefl y LC50 MOR TS: 97.4 % T 96 43 AQ 666 Johnson & Finley 1980 C

Heptagenia sulphurea Mayfl y LC50 MOR Flow-through system; TS: F; Rogor L20; 200 g/l dimethoate.

96 81 Baekken & Aanes 1991(cit-ed in AQ 13409)

C

Gammarus lacustris Scud LC50 MOR Flow-through system; TS: F; Rogor L20; 200 g/l dimethoate.

96 180 Baekken & Aanes 1991(cit-ed in AQ 13409)

M

Gammarus lacustris Scud LC50 MOR TS: 97.4 % 96 200 AQ 666 Johnson & Finley 1980 C

Daphnia magna Water fl ea EC50 REP TS: 98% 20 310 AQ 5180 Canton et al. 1980 C

Daphnia magna Water fl ea LC50 MOR TS: 98% 20 310 AQ 5180 Canton et al. 1980 C

ANNEX 19/4

Page 136: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749134

Scientifi c Name Common Name

Endpoint Effect Test conditions etc. Test Duration; hours

Concen-tration, µg/l

Master reference

Reference in master reference

Quality in master reference

Daphnia magna Water fl ea EC50 REP 16 310 AQ 5675 Hermens et al. 1984 M

Daphnia magna Water fl ea EC50 ITX; IMBL TS: 98% 48 2900 AQ 5180 Canton et al. 1980 C

Daphnia magna Water fl ea LC50 MOR TS: >95% PU, CRY, CYGON 48 3120 AQ 18476 Song et al. 1997 C

Daphnia magna Water fl ea LC50 MOR TS: >95% PU, CRY, CYGON 48 3320 AQ 18476 Song et al. 1997 C

Daphnia magna Water fl ea EC50 immobilisa-tion

OECD guidelines; TS: tech. dimethoate, 95 %, nom. conc.

4700 Nurmi 1994

Aedes aegypti Yellow fever mos-quito

LC50 MOR TS: F; >95% PU, CRY, CYGON 48 5040 AQ 18476 Song et al. 1997 C

Daphnia magna Water fl ea LC50 MOR TS: 98% 48 6400 AQ 5180 Canton et al. 1980 C

Daphnia magna Water fl ea LC50 MOR 48 6400 AQ 5675 Hermens et al. 1984 M

Aedes aegypti Yellow fever mos-quito

LC50 MOR TS: F; >95% CRY, CYGON 48 6410 AQ 18476 Song et al. 1997 C

Daphnia magna Water fl ea EC50 ITX; IMBL 24 3500 -10000

AQ 17456 Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX; IMBL 2 35000 -100000

AQ 17456 Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX; IMBL 4 10000 -35000

AQ 17456 Devillers et al. 1985 C

Daphnia magna Water fl ea EC50 ITX; IMBL 6 10000 -35000

AQ 17456 Devillers et al. 1985 C

FishSalmo trutta Brown trout LC50 MOR 96 1400 AQ 19224 Aanes 1992 M

Danio rerio Zebra danio NOEC MOR TS: F, 10 % EC, DIMETHOATE, BAYER 7 d 3100 AQ 600 Beusen & Neven 1989 M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR 72 3560 AQ 45084 Dutt & Guha, 1988. M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR 48 4000 AQ 45084 Dutt & Guha, 1988. M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR 72 4000 AQ 45084 Dutt & Guha, 1988. M

Table 1. Short term tests for dimethoate. (Continued)ANNEX 19/5

Page 137: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

The Finnish Environment 749

Table 1. Short term tests for dimethoate. (Continued)

Scientifi c Name Common Name

Endpoint Effect Test conditions etc. Test Duration; hours

Concen-tration, µg/l

Master reference

Reference in master reference

Quality in master reference

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR 24 4230 AQ 45084 Dutt & Guha, 1988. M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR 48 4550 AQ 45084 Dutt & Guha, 1988. M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR 24 4620 AQ 45084 Dutt & Guha, 1988. M

Danio rerio Zebra danio NOEC MOR TS: F, 10 % EC, DIMETHOATE, BAYER 7 d 5300 AQ 600 Beusen & Neven 1989 M

Lepomis macrochirus Bluegill LC50 MOR TS: 97.4 % T 96 6000 AQ 666 Johnson & Finley 1980 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: 97.4 % T 96 6200 AQ 666 Johnson & Finley 1980 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

EC50 BEH TS: 98% 48 8600 AQ 5180 Canton et al. 1980 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: 98% 48 10000 AQ 5180 Canton et al. 1980 C

Heteropneustes fossilis Indian catfi sh LC50 MOR TS: F, 30 EC, ROGOR 96 10550 AQ 4366 Chaturvedi & Agrawal 1991 M

Heteropneustes fossilis Indian catfi sh LC50 MOR TS: F; 30 EC, ROGOR 48 11400 AQ 4366 Chaturvedi & Agrawal 1991 M

Heteropneustes fossilis Indian catfi sh LC50 MOR TS: F; 30 EC, ROGOR 24 12130 AQ 4366 Chaturvedi & Agrawal 1991 M

Heteropneustes fossilis Indian catfi sh LC50 MOR TS: F; 30 EC, ROGOR 12 12880 AQ 4366 Chaturvedi & Agrawal 1991 M

Tilapia mossambica Mozambique tilapia LC50 MOR TS: DIMETHOATE 72 49800 AQ 45084 Dutt & Guha, 1988. M

Clarias batrachus Walking catfi sh LC50 MOR TS: DIMETHOATE, >94 % 96 50000 AQ 16180 Begum et al. 1994 M

Tilapia mossambica Mozambique tilapia LC50 MOR TS: DIMETHOATE 72 50200 AQ 45084 Dutt & Guha, 1988. M

Tilapia mossambica Mozambique tilapia LC50 MOR TS: DIMETHOATE 48 50700 AQ 45084 Dutt & Guha, 1988. M

Tilapia mossambica Mozambique tilapia LC50 MOR TS: DIMETHOATE 48 51200 AQ 45084 Dutt & Guha, 1988. M

Tilapia mossambica Mozambique tilapia LC50 MOR TS: DIMETHOATE 24 53100 AQ 45084 Dutt & Guha, 1988. M

Tilapia mossambica Mozambique tilapia LC50 MOR TS: DIMETHOATE 24 60800 AQ 45084 Dutt & Guha, 1988. M

Danio rerio Zebra danio LC50 MOR 2 100000 AQ 17456 Devillers et al. 1985 C

Danio rerio Zebra danio LC50 MOR 4 100000 AQ 17456 Devillers et al. 1985 C

ANNEX 19/6

Page 138: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749136 Table 1. Short term tests for dimethoate. (Continued)

Scientifi c Name Common Name

Endpoint Effect Test conditions etc. Test Duration; hours

Concen-tration, µg/l

Master reference

Reference in master reference

Quality in master reference

Danio rerio Zebra danio LC50 MOR 6 100000 AQ 17456 Devillers et al. 1985 C

Danio rerio Zebra danio LC50 MOR 24 100000 AQ 17456 Devillers et al. 1985 C

Oryzias latipes Medaka, high-eyes EC50 ITX; IMBL TS: 98% 24 105000 AQ 5180 Canton et al. 1980 C

Oryzias latipes Medaka, high-eyes EC50 ITX; IMBL TS: 98% 96 108000 AQ 5180 Canton et al. 1980 C

Oryzias latipes Medaka, high-eyes EC50 ITX; IMBL TS: 98% 72 118000 AQ 5180 Canton et al. 1980 C

Poecilia reticulata Guppy EC50 BEH TS: 98% 96 120000 AQ 5180 Canton et al. 1980 C

Oryzias latipes Medaka, high-eyes EC50 ITX; IMBL TS: 98% 48 128000 AQ 5180 Canton et al. 1980 C

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: 98% 24 133000 AQ 5180 Canton et al. 1980 C

Poecilia reticulata Guppy EC50 BEH TS: 98% 48 135 000 AQ 5180 Canton et al. 1980 C

Poecilia reticulata Guppy EC50 BEH TS: 98% 72 135 000 AQ 5180 Canton et al. 1980 C

Poecilia reticulata Guppy EC50 BEH TS: 98% 24 187 000 AQ 5180 Canton et al. 1980 C

ANNEX 19/7

Page 139: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

The Finnish Environment 749

Table 2. Long term tests for dimethoate.

Scientifi c Name Common Name

Endpoint Effect Test conditions Test Duration, days

Concen-tration µg/l

Master reference

Reference in Master reference

Quality in master reference

AlgaeSelenastrum capricornutum NOEC growth OECD; GLP; TS: F; Roxion 3 57 000 Nurmi, 1994 acceptable

InvertebrateDaphnia magna Water fl ea NOEC GRO TS: F, NR 16 29 AQ 12872 Deneer et al. 1989 M

Daphnia magna Water fl ea NOEC MOR TS: A, 98% 20 32 AQ5180 Canton et al. 1980 C

Daphnia magna Water fl ea NOEC reproduction Semi-static; TS: tech. dimethoate 99 % 21 40 Hansen 1992 well done

Daphnia magna Water fl ea NOEC MOR TS: F, 99 % DIMETHOATE, BAYER23

47 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC IMBL TS: F, 99 % DIMETHOATE, BAYER 23 47 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC MOR TS: F, 99 % DIMETHOATE, BAYER 23 76 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC IMBL TS: F, 99 % DIMETHOATE, BAYER 23 76 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC MOR TS: F, 99 % DIMETHOATE, BAYER 23 80 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC ITX TS: F, 99 % DIMETHOATE, BAYER 23 80 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC REP TS: A, 98% 20 100 AQ 5180 Canton et al. 1980 C

Daphnia magna Water fl ea NOEC ITX TS: F, 99 % DIMETHOATE, BAYER 23 100 AQ 600 Beusen & Neven 1989 C

Daphnia magna Water fl ea NOEC MOR TS: F, 99 % DIMETHOATE, BAYER 23 170 AQ 600 Beusen & Neven 1989 C

FishSalmo gairdneri Rainbow trout NOEC OECD (semi-static); GLP; TS; F, Roxion 21 720 Nurmi 1994 relevant

and well reported

ANNEX 19/8

Page 140: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749138

Annex 20. Ethylenethiourea

1. Identity of Substance

Name: ETU, Ethylenethiourea

CAS-Number: 96-45-7

Classifi cation under WFD proposed NPS in Finland

2. Proposed quality standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 200 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQSPelagic community (freshwater)

200 µg/l See section 8.1.

AA-EQSPelagic community (Baltic sea)

20 µg/l See section 8.1.

MAC-QSPelagic community (freshwater)

200 µg/l See section 8.1.

Benthic community (freshwater sediment) not required log Kow < 3.

Predators (secondary poisoning) not required log Kow < 3.

Food uptake by man 120 µg/kg fi sh (wet weight) See section 8.4.

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC; see section 8.5

3. Classifi cation and labelling

R-Phrases and Labelling Reference:

Repr.2; R61 Xn; R22. Aquatic: N.C* NCLASS

*At the December Environment meeting on classifi cation in 1996, N, FR and BE recommended that the substance would not be classifi ed. /NCLASS

4. Physical and chemical properties

Property Value: Reference

Molecular weight 102.16

Vapour pressure 0.02 Pa Verschuren 1996

Henry’s law constant 4.1 Pa m3mol-1 Verschuren 1996

Solubility in water 200 mg/l water at 30 deg C; HSDB/ Merck index

ANNEX 20/1

Page 141: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139The Finnish Environment 749

5. Environmental Fate and Partitioning in water

Property Value: Reference

Hydrolytic stability (DT50) hydrolytically stable Monograph

Photostability (DT50) (aqueous, sunlight, state pH)

ETU: pH 7. Non sensitised: DT50 (photolysis)= 76.2 days; (sensitised with acetone: DT50 (photolysis)= 2.3 days).

Monograph

Readily biodegradable (yes/no) -

Degradation in Water/sediment AquaticDT50= 4.0 - 11.1 days; average 6.9 days DT90= 13.3 - 36.7 days; average 22.3 days

Sediment (20°C, 4 systems):DT50= 1.4 - 9.6 days; average 4.9 days.DT90= 16.0 - 31.9 days; average 22.8 days.

Whole system (20°C, 4 systems):DT50= 6.7 - 11.1 days; average 8.2 days.DT90= 22.4 - 36.7 days; average 27.2 days.

Monograph

Mineralization no experimental data available

Bound residue no experimental data available

Distribution in water / sediment systems Water ETU: max 48.5% at day 1EU: max 37.5 at day 14EBIS: max 30.9% at day 0

SedimentETU: max 8.1% AR at 7 daysEU: max 9.1% after 30 days EBIS: max 3.8% after 2 days

In TER-calculations DT50= 6.9 days used for sur-face water.

Monograph

Partition co-effi cient (log KOW) 0.15 (1 ppm ETU in octanol) 0.14 (10 ppm ETU in octanol)(indicative values)

Monograph

Koc 34 – 146 in four soils; average 70

BCF (fi sh) Not required.

6. Effect Data (aquatic environment)

Toxicity data to aquatic organisms are presented in Tables 1-2.

7. Effect data (human health)

Value Study Safety factor Reference

ADI 0.002 mg/kg b.w./day 1-yr dog 100 Monograph; Endpoints February 2003

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThe data is presented in Tables 1 and 2. Daphnia magna is the most sensitive spe-cies in both short and long term tests. There are chronic NOEC values available

ANNEX 20/2

Page 142: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749140

for three trophic levels. Therefore the use of an assessment factor of 10 is justifi ed. The lowest NOEC is for Daphnia magna and it is 2 mg/l. The following AA-EQS val-ue is derived:

AA-EQS = 2 mg/l / 10 = 0.2 mg/l Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:

AA-EQS = 0.2 mg/l / 10 = 0.02 mg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Daphnia magna and it is 21.6 mg/l. For deriving the MAC value an assessment factor of 100 is used. The fol-lowing MAC-QS value is proposed: MAC-QS = 21.6 mg/l / 100 = 0.2 mg/l

8.2 Quality Standard for SedimentNot required. Log Kow < 3.

8.3 Secondary Poisoning of Top PredatorsNot required. Log Kow < 3.

8.4 QS referring to food uptake by HumansETU has been classifi ed as toxic to reproduction (cat. II; R61). Therefore, it is nec-essary to derive a QS referring to food uptake by Humans. The ADI value of 0.002 mg/kg b.w./day given in the mancozeb monograph can be used. This corresponds to 0.14 mg/day for a person with 70 kg body weight. In the TGD it is suggested that the threshold level may not be exceeded by more than 10 % by consumption of food originating from aquatic sources. The average fi sh consumption of a EU cit-izen is 115 g/day. Thus 115 g of fi sh may not contain more than 0.014 mg of ETU, that is 0.12 mg/kg fi sh. As no BCF value is available for ETU, it is not possible to calculate the corresponding concentration in water. (ETU is not expected to bioac-cumulate.). The QS can be given as mg/kg:

Qsfood uptake by man = 0.12 mg/kg = 120 µg/kg fi sh

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 20/3

Page 143: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

The Finnish Environment 749

Table 1. Short term tests on ETU.

Group End-point

Effect Test conditions Test duration, hours

Toxicity(mg a.s./l)

Master reference Reference in master reference

Quality given in master reference

AlgaePseudokirchneriella subcapita-ta; green algae

EbC50 growth OECD 201; Static; GLP; TS: ETU; nom. conc

72h 23.7 Mancozeb monograph; endpoints2003 Reuschenbach P.; 2000; Reg.Doc. 2000/1017191

acceptable

Pseudokirchneriella subcapita-ta; green algae

ErC50 growth OECD 201; Static; GLP; TS: ETU; nom. conc.

72h 93.8 Mancozeb monograph; endpoints2003 Reuschenbach P.; 2000; Reg.Doc. 2000/1017191

acceptable

Chlorella pyrenoidosa EC50 growth TS: F; 99 % PU 96 h 6600 AQ11455 Van Leeuwen et al . 1985 C

Chlorella P. ErC50 TS: ETU 96h 6600 Mancozeb monograph endpoints2003

InvertebrateDaphnia magna EC50 mortality OECD 202; GLP; TS: ETU 48h 21.6 Mancozeb monograph endpoints2003 Hisgen M.; 2000; Reg. Doc.

2000/1017216acceptable

Daphnia magna LC50 mortality TS: F; 99 % PU 48 26.4 11455 Van Leeuwen et al . 1985 M

FishRainbow trout LC50 mortality OECD 203; static; GLP; nom.conc. 96 h > 500 Mancozeb monograph; Addendum 1 Zok, S.; 2001; Reg.Doc.

2001/1001877)acceptable

Rainbow trout LC50 TS: ETU 96h >490 Mancozeb monograph; endpoints2003 Hutchinson 1982

Semotilus atromaculatus LC0 mortality TS: F; C 24 6000 927 Gillette 1952 C

Poecilia reticulata LC50 mortality TS: F; 99 % PU 96 7500 11455 Van Leeuwen et al . 1985 M

Semotilus atromaculatus LC100 mortality TS: F; C 24 8000 927 Gillette 1952 C

ANNEX 20/4

Page 144: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749142 Table 2. Long term tests on ETU.

Group Endpoint Effect Test conditions Test duration, days

Toxicity(mg a.s./l)

Master reference Reference in master reference

Quality given in master reference

AlgaePseudokirchneriella subcapita-ta; green algae

EbC10* growth OECD 201; Static; GLP; TS: ETU; nom. conc

3 14.4 Mancozeb monograph; end-points2003

Reuschenbach P.; 2000; Reg.Doc. 2000/1017191

acceptable

Pseudokirchneriella subcapita-ta; green algae

ErC10* growth OECD 201; Static; GLP; TS: ETU; nom. conc.

3 16.7 Mancozeb monograph; end-points2003

Reuschenbach P.; 2000; Reg.Doc. 2000/1017191

acceptable

InvertebrateDaphnia magna NOEC Survival,

behaviour, growth, re-production

OECD 202; life-cycle toxici-ty; fl ow through; GLP; TS: ETU; meas.conc.

21 day 2 Mancozeb monograph; ad-dendum2?

Graves et al. 1995 / 8.2.5/02

Daphnia magna LC50 mortality TS: F; >= 99 % PU 21d 18 AQ11456 Van Leeuwen et al . 1985 C

FishXenopus leavis NOEC behaviour;

growthNon-standardized (UBA); meta-morphosis assay on juvelnile life stages; GLP; TS: ETU; analytically verifi ed nom. conc.

28 d 10 Mancozeb monograph; Ad-dendum 1

III A 8.2.1/1, BASF RegDoc# 2002/1003402 acceptable

Oncorhynchus mykiss LOEC NOC TS: F; >= 99 % PU 60 100 AQ12096 Van Leeuwen et al. 1986 C

Oncorhynchus mykiss LOEC growth TS: F; >= 99 % PU 60 100 AQ12096 Van Leeuwen et al. 1986 C

Oncorhynchus mykiss EC50 NOC TS: F; >= 99 % PU 60d 1000 AQ12096 Van Leeuwen et al. 1986 C

Oncorhynchus mykiss LC50 mortality TS: F; >= 99 % PU 60d 1800 AQ12096 Van Leeuwen et al. 1986 C

Oncorhynchus mykiss LOEC growth TS: F; >= 99 % PU 60 3200 AQ12096 Van Leeuwen et al. 1986 C

Oncorhynchus mykiss LOEC MOR TS: F; >= 99 % PU 60d 32000 AQ12096 Van Leeuwen et al. 1986 C

*According to the TGD, the EC10-values for algae can be considered as NOEC values.

ANNEX 20/5

Page 145: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143The Finnish Environment 749

Annex 21. Mancozeb

1. Identity of Substance

Name: Mancozeb; manganese ethylenebis (dithiocarbamate) (polymeric) complex with zinc salt

CAS-Number: 8018-01-7

Classifi cation under WFD proposed NPS in Finland

2. Proposed quality standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS - Mancozeb rapidly degrades in water. EQS values are derived for the major degradation product ETU. See separate fact sheet on ETU (Annex 20).

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater)

0.2 µg/l See section 8.1.

AA-EQS Pelagic community (Baltic sea)

0.02 µg/l See section 8.1.

MAC-QSPelagic community (freshwater)

- See section 8.1.

Benthic community (freshwater ) Not required logKow = 1.38 < 3

Predators (secondary poisoning) Not required logKow = 1.38 < 3

Food uptake by man Not required. logKow = 1.38 < 3

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC; see sec-tion 8.5

3. Classifi cation and labelling

Reference:

N; R50-53 NCLASS

Proposal of rapporteur: Xi, R43, R63 (cat. 3); R50/53 Monograph

4. Physical and chemical properties

Property Value: Reference

Molecular weight 271.3 (tentative; not defi ned for the polymeric complex) Monograph

Vapour pressure Too low to be determined, literature comparison with other similar ionic solids:1.33 x 10-5 Pa

Monograph

Henry’s law constant (a) Henry’s law constant is calculated from the vapour pressure value and water solubility. KD < 5.9 x 10-4 Pa x m3 x mol -1 (not volatile).

Monograph

Solubility in water The value of solubility in water 2-20 mg/l Monograph

Dissociation constant (a) The dissociation constant cannot be measured as such but it fol-lows that a reasonable estimate of the upper limit of log K is - 10.(b) At 25°C, the typical pKa value for Mancozeb is 10.3.

Monograph

ANNEX 21/1

Page 146: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749144

5. Environmental Fate and Partitioning in water

Property Value: Reference

Hydrolytic stability (DT50) The value was proposed < 1 day2.2 – 36 hours (pH 5)14.1 – 16 hours (pH 9)

Monograph

Photostability Mancozeb decomposes completely with 3 hours at pH 8.8.Irradiated and dark control samples showed similar decomposition behaviour in-dicating that the major routes were hydrolysis and oxidation, not pho-tolysis. Four main decomposition products were observed: EBIS, ETU, EDA and EU.

Monograph

Readily biodegradable (yes/no)

No Monograph

Degradation in Water/sed-iment

Aquatic (20°C, 4 systems): mancozeb major fraction: DT50= 0.6-14.4 hours; average 4.7 hours DT90 = 6.6-158 hours; average 57.4 hours; mancozeb sum of complexed fraction: DT50= 0.1-0.9 day; average 12 hours DT90 = 1.3-4.9 day; average 3.1 days.

Sediment (20°C, 4 systems):Mancozeb: no a.i. was detected in sediment

In TER-calculations DT50= 4.7 hours or 2.3 hours (Annex B.8, page 8-61) has been used for surface water.

Monograph

Mancozeb degrades rapidly in water. The main metabolites of manco-zeb are ethylenebisisothiocyanate sulfi de (EBIS), ethyleneurea (EU) and ethylenethiourea (ETU). The proposed metabolic route is: [Manco-zeb EBIS ETU EU CO2]. Potentially toxic metabolites are EBIS and ETU. EBIS degrades almost as quickly as it is formed. In soil half-life for EBIS is 1-3 days. ETU is the ecotoxicologically most relevant me-tabolite.

[Swedish EQS-rapport]

Mineralization From 17.6 to 57.8% AR in 106 days (4 systems) Monograph

Bound residue 35 – 44 % (day 105-106) Monograph

Distribution in water / sedi-ment systems (active substance)

No mancozeb was distributed to sediment. Monograph

Distribution in water / sedi-ment systems (metabolites)

ETU: max 49 % in water (day 1); max. 8 % in sediment (day 7)EU: max 38 % in water (day 14); max 9 % in sediment (day 30)EBIS: max 31 % in water (day 0), max 4 % in sediment (day 2)

Monograph

Residues relevant to the aquatic environment

ETU, EU, EBIS Monograph

Partition co-effi cient (log POW) Kow 1.8 (fi rst partioning), and 21.4 (second partitioning of octanol vs fresh water) and 0.11 for water vs fresh octanol (indicative value).- logPow = 1.38

Monograph

Koc [l/kg] Mancozeb: 363 – 2334, in four soils, average 998

Monograph

BCF (fi sh) Not requested: logPow = 1.38

6. Effect Data (aquatic environment)

Toxicity data to aquatic organisms are presented in Tables 1-3.

ANNEX 21/2

Page 147: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145The Finnish Environment 749

7. Effect data (human health)

Value Study Safety factor Reference

ADI 0.05 mg/kg b.w./day 2-yr, rat 100 Monograph

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThere are long term test results from three trophic levels available. However, the test results for algae and crustacea are performed with mancozeb formulations. Never the less, the use of an assessment factor of 10 is considered justifi ed. Fish are the most sensitive species in the long term tests. The lowest NOEC value reported is for Fathead minnow and it is 0.00219 mg/l. The following AA-EQS is derived:

AA-EQS = 0.00219 mg/l / 10 = 0.000219 mg/l ≈ 0.2 µg/l Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:

AA-EQS = 0.2 µg/l / 10 = 0.02 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from short term tests is for Daphnia magna and is 0.011 mg/l. If the assessment factor of 100 is used, a lower value than the AA-EQS is derived. Therefore, no MAC value is derived at this stage.

8.2 Quality Standard for SedimentNot required.

8.3 Secondary Poisoning of Top PredatorsNot required.

8.4 QS referring to food uptake by HumansNot required.

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 21/3

Page 148: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749146 Table 1. Short term tests on Mancozeb. Rows showing tests on formulations are shaded.

Group Test conditions Effect Time-scale

Endpoint Toxicity (mg/l a.i.) Master reference

Reference Quality

AlgaeSelenastrum capricornutum TS: Dithane M-45; initial measured conc. growth 120h EC50 0.044 Monograph 9.2.8/1 valid

InvertebrateDaphnia magna TS: Mancozeb 80% WP; anal.confi rmed nom.

conc. Immobility 24h EC50 0.011 Monograph 9.2.6/15 valid

Daphnia magna Mancozeb tech; meas. conc. Immobility 48h EC50 0.073 Monograph 9.2.6/3 valid

Daphnia magna Penncozeb 80 WP; nom. anal. confi rmed Immobility 48h EC50 0.39 Monograph 9.2.6/12 valid

Brachionus calycifl orus Static; TS: Penncozeb 80 WP (80 % mancozeb); initially measured conc.

Immobility 24 h EC50 0.11. Monograph Peither 2002a Accept-able

Lymnea stagnalis Static; TS: Penncozeb 80 WP (80 % mancozeb); initially measured conc.

Immobility 24 h EC50 > 113 Monograph Peither 2002b Accept-able

Gammarus sp TS: Penncozeb 80 WP (80 % mancozeb); ini-tially measured conc.

Immobility 48 h EC50 3 Monograph Peither 2002c Accept-able

Asellus sp Static; TS: Penncozeb 80 WP (80 % mancozeb); initially measured conc.

Immobility 24 h EC50 4.4 Monograph Peither 2002d Accept-able

FishRainbow trout TS: Penncozeb 80 WP; meas. conc. mortality 96h LC50 0.15 Monograph 9.9.9/5 valid

Rainbow trout Mancozeb 80% WP; anal.confi rmed nom. conc. mortality 96h LC50 0.088 Monograph 9.2.9/8 valid

Rainbow trout Mancozeb tech; mean measured conc. mortality 96h LC50 0.074 Monograph 9.2.1/5 valid

Rainbow trout Mancozeb tech; mean measured conc. mortality 96h LC50 0.088 Monograph 9.2.1/7 valid

Bluegill Mancozeb tech; mean measured conc. mortality 96h LC50 0.083 Monograph 9.2.1/6 valid

Rainbow trout Static sediment-water system; TS: Dithane M-45 (82,6 %); initially measured conc.

mortality 96h LC50 0.073 Monograph Madsen, 2002 Accept-able

ANNEX 21/4

Page 149: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

The Finnish Environment 749

Table 2. Long term tests on Mancozeb. Rows showing tests on formulations are shaded. Group Test substance Effect Time-

scaleEndpoint Toxicity (mg/l a.i.) Master

referenceReference Quality

AlgaeSelenastrum capricornutum TS: Dithane M-45; initial measured conc. growth 120h NOEC 0.023 Monograph 9.2.8/2 valid

CrustaceaDaphnia magna TS: Dithane M-45; meas. conc. 21 d NOEC 0.0073* Monograph 9.2.7/1 valid

FishFathead minnow Early life stage; TS: mancozeb tech.; meas conc. 34 d NOEC 0.00219* Monograph 9.2.2/2 valid

Fathead minnow Early life stage; TS: Dithane M-45; meas.conc. 33 d NOEC 0.0052 Monograph 9.2.2/1 valid

ANNEX 21/5

Page 150: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749148

Annex 22. 4-chloro-2-methylphenoxy acetic acid (MCPA)

1. Identity of Substance

Name: MCPA; 4-chloro-2-methylphenoxy acetic acid

CAS-Number: 94-74-6

Classifi cation under WFD: proposed NPS in Finland

2. Proposed Quality Standards

2.1 Overall Quality Standards

Quality Standard Comment:

AA-EQS 1.6 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS Pelagic community (freshwater) 1.6 µg/l See section 8.1.

AA-EQS Pelagic community (Baltic sea) 0.16 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 15 µg/l See section 8.1.

AA-EQS Benthic community (freshwater sediment) Not required log Koc = 2.85 < 3

Predators (secondary poisoning) Not required logKow < 3

Food uptake by man Not required logKow < 3

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC; see section 8.5

3. Classifi cation and labelling

Reference

Xn; R22 Xi; R38-41 NCLASS

Proposal of rapporteur: Xn; R20/22; R 48/22 ; R36; R52/53; S2;S13;S25;S26;S46;S61 Monograph 2001

ANNEX 22/1

Page 151: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149The Finnish Environment 749

4. Physical and chemical properties

Property Value: Reference

Molecular weight (g/mol) 200.6

Vapour pressure 4×10-4 Pa at 32°C4×10-3 Pa at 45°C

Monograph 2001

Henry’s law constant 5.5×10-5 Pa × m3/mol at 25°C Monograph 2001

Solubility in water 26.216 g/l at pH 5 25°C293.898 g/l at pH 7 25°C320.093 g/l at pH 5 25°C

Monograph 2001

pKa 3.73 Monograph 2001

Dissociation constant log Kow 2.70 (0.001 m/l) at pH 12.80 (0.0001 m/l) at pH 10.28 (0.01 m/l) at pH 50.59 (0.001 m/l) at pH 5-0.81 (0.01 m/l) at pH 7-0.71 (0.001 m/l) at pH 7-1.07 (0.01 m/l) at pH 9-0.88 (0.001 m/l) at pH 9

Monograph 2001

5. Environmental Fate and Partitioning in water

Property Value: Reference

Hydrolytic stability (DT50)14C-MCPA acid is stable to hydrolytic degradation for 30 days in sterile aqueous solutions.

Monograph , Addendum B.7

Photostability (DT50) Photolysis is a major route of degradation for MCPA in a ster-ile aqueous buffer system at pH 5 and 25°C. 4-chloro-2-meth-ylphenol may be considered as a potential relevant metabo-lite in the water system. The half-life of 14C-MCPA was calculat-ed to be 25.4 days

Monograph; Addendum B.7

Readily biodegradable (yes/no)

Degradation in Water/sediment RMS considers the water-sediment study insuffi cient to address the behaviour of MCPA in a water/sediment. A new study to the contemporary guidelines is required.

Monograph; Addendum B.7

Mineralization Data required with valid water sediment studies. Monograph

Metabolites relevant to the aquatic environment

4-chloro-2-methylphenol Monograph; Addendum B.7

Distribution in water / sediment systems (active substance)

no data available

Koc – sediment (log Koc) 707 ml/g (2.85) Monograph

BCF (fi sh) no signifi cant bioaccumulation can be expected in fi sh Monograph

6. Effect Data (aquatic environment)

Ecotoxicity data on aquatic organisms are presented in Tables 1 and 2.

7. Effect data (human health)

Value Study Safety factor Reference

ADI 0.013 mg/kg b.w./day 1 year feeding study; dog 100 Monograph

ANNEX 22/2

Page 152: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749150

8. Calculation of Quality Standards

8.1 Quality Standards for WaterFreshwaterThere are long term test from three trophic levels available. Therefore the use of an assessment factor of 10 is justifi ed. Higher plants are on the basis of the data the most sensitive species. The lowest NOEC value reported from a long term test is for Lemna gibba and it is16.2 µg/l. Therefore the following AA-EQS is derived:

AA-EQS = 16.2 µg/l / 10 = 1,62 µg/l ≈ 1.6 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:AA-EQS = 1.6 µg/l / 10 = 0.16 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The IC50 value, 152 µg/l from the Lemna gibba test is the lowest valid IC50 value reported. For deriving the MAC value the lowest valid acute L(E)C50 can be di-vided by the short-term TER-trigger. For algae the TER trigger is 10. According to Lepper 2002, if algae are the organisms most sensitive to acute effects, it should be carefully assessed whether the application of a TER-trigger of 10 is justifi ed, giv-en the differences between the objectives of the PPP risk assessment and a qual-ity standard. In the case of MCPA, as test results on both algae and higher plants are available the use of the TER trigger of 10 is considered justifi ed. Therefore, the following MAC is derived:

MAC-QS = 152 µg/l / 10 = 15.2 µg/l ≈ 15 µg/l

8.2 Quality Standard for SedimentNot required as log Koc-sediment < 3.

8.3 Secondary Poisoning of Top PredatorsNot required. Log Kow < 3.

8.4 QS referring to food uptake by HumansNot required. Log Kow < 3.

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 22/3

Page 153: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

The Finnish Environment 749

Table 1. Short term toxicity tests on MCPA. Rows showing tests on formulations are shaded. The results in bold have been used in the TER-calcula-tions. DMA = dimethyl amine. MCPA acid is not readily soluble in water. Of the following studies either the acid form (solubilised in dimethyl amine (DMA)) or a DMA formulation were used. Physical/chemical data suggests that MCPA-DMA rapidly disassociates to MCPA acid. Therefore, either form can be used in risk assessments of MCPA’s effect on aquatic organisms. *All studies cited in the MCPA monograph are considered to be of acceptable quality for risk assessment purposes.

Scientifi c name Common name Endpoint Effect Method, test conditions

Duration, hours

Concentra-tion mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

AlgaeAnabaena inaequalis Blue-green algae NR PHY;

PSYNTS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Aphanizomenon fl os-aquae Blue-green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Microcystis aeruginosa Blue-green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Microcystis aeruginosa Blue-green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Oscillatoria Blue-green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Pseudanabaena sp. Blue-green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Cyclotella meneghiniana Diatom NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Nitzschia Diatom NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Scenedesmus quadricauda Green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Selenastrum capricornutum Green algae NR PHY; PSYN

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

Selenastrum capricornutum Green algae IC50 POP; ABDN

TS: F; MCPA, 96 % AI 96 1.94 Caux et al. 1996 C

Cylindrospermum licheniforme Blue-green algae NR POP; GPOP

TS: F; NR 72 2 AQ2755 Palmer & Maloney 1955 M

Gomphonema parvulum Diatom NR POP; GPOP

TS: F; NR 72 2 AQ2755 Palmer & Maloney 1955 M

ANNEX 22/4

Page 154: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749152

Scientifi c name Common name Endpoint Effect Method, test conditions

Duration, hours

Concentra-tion mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

Nitzschia palea Diatom NR POP; GPOP

TS: F; NR 72 2 AQ2755 Palmer & Maloney 1955 M

Selenastrum capricornutum Green algae EC50 PHY; PSYN

TS: F; MCPA, 96 % AI 96 17.8 Caux et al. 1996 Caux et al. 1996 C

Selenastrum capricornutum Green algae IC50 POP; ABDN

TS: F; MCPA, 96 % AI 96 18.4 Caux et al. 1996 Caux et al. 1996 C

Higher plantsLemna perpusilla Duckweed NR POP;

GPOPTS: F; NR NR 0.1 - 10 AQ3228 Ogawa & Kitamura 1988 I

Lemna gibba duckweed IC50 growth FIFRA guidelines; GLP; static;

140.152

Monograph; Ad-dendum

Drottar K R; Krueger, H O (1999)

Lemna minor Duckweed NR POP; ABND

TS: F; MCPA 24 1.4 AQ13800 Peterson et al. M

InvertebrateDaphnia magna Water fl ea LC50 MOR TS: F; NR 96 11 AQ6270 Knapek & Lakota, 1974. M

Daphnia pulex Water fl ea LC50* MOR TS: F; NR 3 >40 AQ15192 Nishiuchi & Hashimoto 1967 M

Moina macrocopa Water fl ea LC50* MOR TS: F; NR 3 >40 AQ15192 Nishiuchi & Hashimoto 1967 M

Daphnia pulex Water fl ea LC50* MOR TS: F; T OR PU 3 >40 AQ2682 Nishiuchi & Hashimoto, 1969 C

Moina macrocopa Water fl ea LC50* MOR TS: F; T OR PU 3 >40 AQ2682 Nishiuchi & Hashimoto, 1969 C

Daphnia magna Water fl ea EC50* ITX; IM-BL

TS: F; T 26 >100 AQ2775 Crosby & Tucker, 1966 C

Daphnia magna Water fl ea EC50 ITX; IM-BL

TS: F; NR 48 >180 AQ344 US-EPA 2000 M

Daphnia magna Water fl ea EC50 IMM. EPA guideline 72-2; fl ow-through; GLP; TS: MCPA-DMA; meas. conc.

48 > 190 MCPA-DMA

monograph 2001 Putt A E, 1992

FishPoecilia reticulata Guppy LC50 MOR TS: F; AMINEX 500 48 0.1 AQ35 Havlikova et al. 1981 M

Poecilia reticulata Guppy NR ITX TS: F; NR 3 d 1-5 AQ20141 Jones 1975 I

Table 1. Short term toxicity tests on MCPA. (Continued) ANNEX 22/5

Page 155: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

The Finnish Environment 749

Scientifi c name Common name Endpoint Effect Method, test conditions

Duration, hours

Concentra-tion mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

Menidia menidia Atlantic silverside LC50 MOR TS: F; NR 96 0.179 AQ344 US-EPA 2000 M

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: AMINEX 500 48 0.53 AQ35 Havlikova et al. 1981 M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR TS: AMINEX 500 48 1.44 AQ35 Havlikova et al. 1981 M

Lepomis macrochirus Bluegill LC50 MOR TS: F; NR 24 1.5 AQ880 Hughes & Davis 1964 M

Lepomis macrochirus Bluegill LC50 MOR TS: F; NR 48 1.5 AQ880 Hughes & Davis 1964 M

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: GALINEX SPECIAL 48 1.51 AQ35 Havlikova et al. 1981 M

Poecilia reticulata Guppy LC50 MOR TS: F; GALINEX SPE-CIAL

48 1.84 AQ35 Havlikova et al. 1981 M

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR TS: GALINEX SPECIAL 48 2.46 AQ35 Havlikova et al. 1981 M

Oncorhynchus mykiss Rainbow trout,donaldson trout

NR BEH; STRS

TS: F; NR 24 5 AQ638 Applegate 1957 M

Petromyzon marinus Sea lamprey NR BEH; STRS

SW; TS: F; NR 24 5 A638 Applegate 1957 M

Lepomis macrochirus Bluegill NR BEH; STRS

TS: F; NR 24 5 AQ638 Applegate 1957 M

Lepomis macrochirus Bluegill LC50 MOR TS: 27.6 % LD CO 96 >10 AQ666 Johnson & Finley 1980 C

Gambusia affi nis Western mos-quitofi sh

LC50 MOR TS: F; NR 24 >10 AQ17722 Ahmed & Washino 1976 M

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC0 MOR TS: F; NR 48 20 AQ9125 Lysak & Marcinek, 1972 M

Salmonidae Trout family LC50 MOR TS: F; NR 96 25 AQ6270 Knapek & Lakota 1974 M

Oryzias latipes Medaka, high-eyes LC50* MOR TS: T OR PU 48 >40 AQ2682 Nishiuchi & Hashimoto, 1969 C

Table 1. Short term toxicity tests on MCPA. (Continued)ANNEX 22/6

Page 156: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749154

Scientifi c name Common name Endpoint Effect Method, test conditions

Duration, hours

Concentra-tion mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

Cyprinus carpio Common, mirror, colored, carp

LC50* MOR TS: T OR PU 48 >40 AQ2682 Nishiuchi & Hashimoto, 1969 C

Carassius auratus Goldfi sh LC50* MOR TS: T OR PU 48 >40 AQ2682 Nishiuchi & Hashimoto, 1969 C

Oryzias latipes Medaka, high-eyes LC50* MOR TS: F; NR 48 >40 AQ15192 Nishiuchi & Hashimoto 1967 M

Cyprinus carpio Common, mirror, colored, carp

LC50* MOR TS: F; NR 48 >40 AQ15192 Nishiuchi & Hashimoto 1967 M

Carassius auratus Goldfi sh LC50* MOR TS: F; NR 48 >40 AQ15192 Nishiuchi & Hashimoto 1967 M

Tinca tinca Tench LC50 MOR TS: F; NR 96 45 AQ6270 Knapek & Lakota 1974 M

Carassius Carp LC50 MOR TS: F; NR 96 45 AQ6270 Knapek & Lakota 1974 M

Oncorhynchus mykiss Rainbow trout LC50 MORT OECD 203; fl ow-through; GLP; test substance: MCPA DMA in Herbizid Marks M, nom. conc.

96 50 monograph 2001 Knoch E, Memmert U. 1993 (a)

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR TS: F; NR 96 59 AQ6270 Knapek & Lakota 1974 M

Fundulus similis Longnose killifi sh NR MOR SW; TS: MCP AMINE WEED KILLER

NR 75 AQ2188 Butler 1963 M

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC100 MOR TS: F; NR 48 75 - 100 AQ9125 Lysak & Marcinek, 1972 M

Oncorhynchus mykiss Rainbow trout,donaldson trout

LC50 MOR TS: F; NR 96 91 AQ344 US-EPA 2000 M

Lepomis macrochirus Bluegill LC50 MOR TS: F; NR 96 97 AQ344 US-EPA 2000 M

Salmo gairdneri Rainbow trout LC50 MORT EPA guideline 72-1; static; GLP; test sub-stance: Technical MCPA- DMA (56.4 %)

96 117 monograph 2001 Ward T J, 1986a.

Lepomis macrochirus Bluegill LC50 MORT EPA guidelines; stat-ic; GLP; TS: MCPA-DMA nom. conc.

96 > 150 monograph 2001 Kirsch P, Munk R, 1992

Table 1. Short term toxicity tests on MCPA. (Continued)ANNEX 22/7

Page 157: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

The Finnish Environment 749

Table 1. Short term toxicity tests on MCPA. (Continued)

Scientifi c name Common name Endpoint Effect Method, test conditions

Duration, hours

Concentra-tion mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

Lepomis macrochirus Bluegill LC50* MOR TS: F; NR 24 163.5 AQ2787 Davis & Hughes 1963 C

Lepomis macrochirus Bluegill LC50* MOR TS: F; NR 48 163.5 AQ2787 Davis & Hughes 1963 C

Cyprinus carpio Common, mirror, colored, carp

LC50 MOR TS: F; NR 48 220 AQ6166 Tscheu-Schluter 1974 M

Menidia beryllina Tidewater Silverside LC50 MORT EPA guidelines; static; GLP; TS: MCPA-DMA

96 220 . monograph 2001 Ward T J, 1987

Salmo trutta Brown trout LC50 MOR TS: SAN-75 96 300 AQ19224 Aanes 1992 M

Lepomis macrochirus Bluegill LC50 MORT EPA guideline 72-1; static; GLP; TS: MCPA-DMA (56.4 %);

96 306. monograph 2001 Ward T J, 1986 (b)

Cyrpinus carpio Carp LC50 MORT OECD guideline 203; static; GLP; TS: MCPA (96,3 %)-DMA;

96 320 – 560 of TS monograph 2001 Bogers M, 1990 (a).

Salmo gairdneri Rainbow trout LC50 MORT OECD 203; fl ow-through; GLP; test substance: MCPA DMA (96.3 %), nom. conc.

96 560 - 748 of MCPA-DMA

monograph 2001 Bogers M, 1990(a).

Other species

Crassostrea virginica American or virgin-ia oyster

LC50 MOR SW; TS: F; MCPA 14 d 31.3 AQ2400 Davis & Hidu 1969 C

Crassostrea virginica American or virgin-ia oyster

NR-LETH MOR SW; TS: F; MCPA 14 d 100 AQ2400 Davis & Hidu 1969 M

Crassostrea virginica American or virgin-ia oyster

NR GRO SW; TS: F; MCPA 14 d 0.250 - 50 AQ2400 Davis & Hidu 1969 M

Crassostrea virginica American or virgin-ia oyster

EC50 DVP SW; TS: F; MCPA 48 15.62 AQ2400 Davis & Hidu 1969 C

Crassostrea virginica American or virgin-ia oyster

EC50 ITX SW; TS: F; NR 48 155 AQ344 US-EPA 2000 M

Bufo bufo japonicus Toad LC50* MOR TS: F; NR 24 10 AQ8163 Nishiuchi 1975 M

Aedes aegypti Yellow fever mos-quito

LC50 MOR TS: F; NR 96 335 AQ6270 Knapek & Lakota 1974 M

ANNEX 22/8

Page 158: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749156

Scientifi c name Common name Endpoint Effect Method, test conditions

Duration, hours

Concentra-tion mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

Tilapia mossambica Mozambique tilapia LC50 MOR TS: AGROXONE 48 486.4 AQ9253 Shafi ei & Costa 1990 C

Tilapia mossambica Mozambique tilapia LC50 MOR TS: AGROXONE 48 620.9 AQ9253 Shafi ei & Costa 1990 C

Tilapia mossambica Mozambique tilapia NR MPH; STRC

TS: AGROXONE 48 110 - 750 AQ9253 Shafi ei & Costa 1990 M

Spicodiaptomus chilospinus Calanoid copepod NR MOR TS: F; NR 48 4 AQ5264 Kader et al. 1976 M

Callinectes sapidus Blue crab NR BEH; STRS

SW; TS: MCP AMINE WEED KILLER

NR 5 AQ2188 Butler 1963 M

Lymnaea stagnalis Great pond snail NR REP TS: F; NR 45 d 6.308 AQ5094 Woin & Bronmark 1992 M

Colpidium campylum Ciliate NR POP TS: F; NR 43 >10.000 AQ5941 Dive et al. 1980 M

Penaeus duorarum Northern pink shrimp

LC50 MOR SW; TS: F; NR 96 236 AQ344 US-EPA 2000 M

Table 2. Long term tests on MCPA. Rows showing tests on formulations are shaded. The results in bold have been used in the EU monograph for TER-calculations. DMA = dimethyl amine.

Scientifi c name Common name

Endpoint Effect Method, test conditions

Duration, days

Concentra-tion mg/l a.i.

Master reference

Reference in Master ref-erence

Quality in Master Reference

AlgaeAnacystis aeruginosa Blue-green algae NR POP TS: F; NR 21 2 AQ2755 Palmer & Maloney 1954 M

Chlorella variegata Green algae NR POP TS: F; NR 21 2 AQ2755 Palmer & Maloney 1955 M

Scenedesmus acutus Green algae NR POP TS: F; NR 21 2 AQ2755 Palmer & Maloney 1955 M

Selenastrum capricornutum Green algae LOEC POP TS: F; MCPA, 96 % AI 4 2.13 Caux et al. 1996 C

Selenastrum capricornutum Green algae LOEC PHY TS: F; MCPA, 96 % AI 4 8.9 Caux et al. 1996 C

Selenastrum capricornutum Green algae LOEC POP TS: F; MCPA, 96 % AI 4 8.9 Caux et al. 1996 C

Pseudokirshneriella subcapitata

EC10 growth(biomass)

OECD Guidelines; GLP; TS: MCPA-DMA in Herbizid Marks M; nom. conc.

3 10 Monograph 2001 Knoch E, Memmert U, 1993 (b).

Table 1. Short term toxicity tests on MCPA. (Continued)ANNEX 22/9

Page 159: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

The Finnish Environment 749

Scientifi c name Common name

Endpoint Effect Method, test conditions

Duration, days

Concentra-tion mg/l a.i.

Master reference

Reference in Master ref-erence

Quality in Master Reference

Selenastrum capricornutum NOEC growth OECD Guidelines 201; static; GLP; MCPA-DMA

5 10.3 Addendum Palmer S J, Kendall T Z, Kreuger H O (1999a)

Anabaena fl os-aquae NOEC growth OECD Guidelines 201; static; GLP; MCPA-DMA

5 10.3. Addendum Palmer S J, Kendall T Z, Kreuger H O (1999c).

Navicula pelliculosa Diatom NOEC growth OECD Guidelines 201; static; GLP; MCPA-DMA

5 10.3 (EC50 32.9 mg/l a.i. used in RA)

Monograph, Ad-dendum

Palmer S J, Kendall T Z, Kreuger H O (1999d)

Skeletonema costatum (ma-rine diatom)

NOEC growth OECD Guidelines 201; static; GLP; MCPA-DMA

5 11.6 Monograph, Ad-dendum

Palmer S J, Kendall T Z, Kreuger H O (1999b).

Scenedesmus quadricauda Green algae LOEC POP TS: F; pure 20 60 AQ13758 Fargasova 1994 M

Scenedesmus quadricauda Green algae EC50 POP TS: F; pure 20 85 AQ13758 Fargasova 1994 M

Selenastrum capricorntum NOEC growth OECD guidelines 201; GLP; TS: U 46 M-Fluid

117 Monograph 2001 Hanstveit A O, 1988

Ankistrodesmus falcatus Green algae EC50 GRO TS: F: NR 14 310 AQ6166 Tscheu-Schluter 1974 I

Chlamydomonas globosa Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Chlamydomonas globosa Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Chlamydomonas globosa Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Chlorella pyrenoidosa Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Chlorella pyrenoidosa Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Chlorella pyrenoidosa Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Stichococcus bacillaris Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Stichococcus bacillaris Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Stichococcus bacillaris Green algae NR POP TS: CARBON 14 24 500 AQ9601 Kirkwood & Fletcher, 1970 M

Table 2. Long term tests on MCPA. (Continued)ANNEX 22/10

Page 160: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749158

Scientifi c name Common name

Endpoint Effect Method, test conditions

Duration, days

Concentra-tion mg/l a.i.

Master reference

Reference in Master ref-erence

Quality in Master Reference

Higher plantsLemna gibba duckweed NOEC growth FIFRA guidelines; GLP;

static; 14 0.0162

(IC50 152 µg/l a.i. used in RA)

Monograph, Ad-dendum

Drottar K R; Krueger, H O (1999)

Lemna minor duckweed NOEC growth OECD Lemna Growth Inhibition Test; GLP; TS=MCPA-DMA

7 0.127 Monograph, Ad-dendum

Mattock S D (1998).

Lemna gibba duckweed NOEC growth OECD Draft Guideline (December 1999) for Lemna Growth sp. Inhibition Test; static; GLP; TS:

7 0.32 Monograph, Ad-dendum

Moore K W, Hutchings M J (2000)

Lemna gibba Infl ated duckweed EC50 POP; ABND TS: F; NR 14 0.17 AQ344 US-EPA 2000 I

Laminaria hyperborea Cuvie, tangleweed NR POP; GPOP TS: F; NR; SW 28 1 AQ9356 Hopkins & Kain 1971 M

InvertebrateDaphnia magna Water fl ea NOEC reprod.

growthFlow-Through Life-Cy-cle Toxicity Test; GLP; meas.conc.

21 13 Monograph, Ad-dendum

Drottar, KR; Krueger, H O (1997b).

Daphnia magna Water fl ea NOEC repr. OECD Guidelines, Sec-tion 2, No. 202;semi-static; GLP; TS: MCPA (96.3 %)-DMA;

21 50 a.i. Monograph 2001 Müllershön H, 1990

FishPimephales promelas fathead minnow NOEC hatching

and growthEarly Life-Stage Toxic-ity Test;fl ow-through; GLP; meas.conc.

32 15 Monograph, Ad-dendum

Drottar, KR; Krueger, H O (1997a)

Salmo gairdneri Rainbow trout NOEC weight gain and lenghth

OECD Guideline 204; fl ow-through; GLP; TS: MCPA-DMA in U 46 M-Fluid

28 50 MCPA-DMA Monograph 2001 Munk R, 1990

Table 2. Long term tests on MCPA. (Continued)ANNEX 22/11

Page 161: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159The Finnish Environment 749

Annex 23. Metamitron

1. Identity of Substance

Name: metamitron; 4-amino-3-methyl-6-phenyl-1,2,3-triazin-5(4H)-one

CAS-Number: 41394-05-2

Classifi cation under WFD proposed NPS

2. Proposed Quality Standards

2.1 Overall Quality Standards

Ecosystem Quality Standard Comment:

AA-EQS 32 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQSPelagic community (freshwater)

32 µg/l See section 8.1.

AA-EQS Pelagic community (Baltic sea)

3.2 µg/l See section 8.1.

MAC-QS Pelagic community (freshwater) 170 µg/l See section 8.1.

Benthic community (freshwater sediment) Not required. Log Kow < 3; see section 8.2

Predators (secondary poisoning) Not required Log Kow < 3; see section 8.3

Food uptake by man Not required Log Kow < 3; see section 8.4

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC; see section 8.5

3. Classifi cation and labelling

Reference:

Xn; R22 N; R50-53 NCLASS

4. Physical and chemical properties

Property Value: Reference

Molecular formula C10H10N4O

Molecular weight 202.22

Vapour pressure [Pa] 7.44 x 10-11 Mattsoff 1998

Henry’s law constant [Pa m³/mol] 3.6 x 10-8 (25oC) Mattsoff 1998

Solubility in water [mg/l] 1680 (pH 7; 25oC)1770 (pH 5; 25oC)

Mattsoff 1998

Dissociation constant; pKa

ANNEX 23/1

Page 162: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749160

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) DT50 = 52.9 days (pH 5)DT50 = 41.8 days (pH 7)DT50 = 2.1 days (pH 9)

Mattsoff 1998

Photostability (DT50) (aqueous, sunlight, state pH) DT50 = 7 – 30 min Andersson 1993

Readily biodegradable (yes/no)

Degradation in Water/sediment DT50 (water) = 6 daysDT50 (whole system) = 6 days

Mattsoff 1998

Mineralization mineralization rate is low. Mattsoff 1998

Distribution in water / sediment systems no data available

Degradation products relevant to the aquatic environment

desaminometamitron see Tables 3 and 4

Partition co-effi cient; log KOW 0.96 Mattsoff 1998

Koc 1. 77 – 1332. 58 – 428 (x = 158)

1. Mattsoff 19982. Katri Siimes (SYKE); personal communications

BCF (fi sh) -

Solids-water partition coeffi cient in SPM [l/kg] foc(0.1) x Koc= 7.7 – 42.8

Solids-water partition coeffi cient in sediment[l/kg]

6. Effect Data (aquatic environment)

Toxicity to aquatic organisms are presented in Tables 1 and 2. Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Test result Ref.

Avian dietary toxicity (5 days) to mallard duck and bobwhite quail. OECD 205

NOEC 5000 mg/kg food Andersson 1993

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThere are long term tests available from three trophic levels. Therefore, the use of an assessment factor of 10 is justifi ed. Algae are the most sensitive species tested. The lowest NOEC value is 0.32 mg/l. The following quality standard is derived:

AA-EQS = 0.32 mg/l / 10 = 0.032 mg/l = 32 µg/l Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:

AA-EQS = 0.32 mg/l / 100 = 3.2 µg/l

ANNEX 23/2

Page 163: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161The Finnish Environment 749

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from a short term test is for Lemna minor and it is 1.7 mg/l. For deriving the MAC value the lowest relevant acute L(E)C50 can be divided by the short-term TER-trigger. For algae the TER trigger is 10. According to Lep-per 2002 it should be carefully assessed whether the use of the TER trigger value of 10 for algae is justifi ed given the differences in the objectives of the PPP risk as-sessment and the EQS values. As there are test results on both Lemna minor and algae the use of the TER-trigger 10 is considered justifi ed. Therefore, the follow-ing QS is derived: MAC-QS = 1.7 mg/l / 10 = 170 µg/l.

8.2 Quality Standard for SedimentNot required. Log Kow < 3.

8.3 Secondary Poisoning of Top PredatorsNot required. Log Kow < 3.

8.4 QS referring to food uptake by HumansNot required. Log Kow < 3.

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 23/3

Page 164: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749162 Table 1. Short term tests on metamitron.

Scientifi c name Common name

Endpoint Effect Method; test conditions

TestDuration, hours

Concen-tration, mg/l a.i.

Master reference Reference in Master reference

Quality in Master Reference

AlgaeScenedesmus subspicatus Green algae EC50 growth rate OECD 201; GLP; TS: tech. metamitron; nom.

conc.72 2.48 Mattsoff 1998 Thun a1991 2

Scenedesmus subspicatus Green algae EC50 growth EN 28692 72 h 2.9 Nitschke et al 1999 cit-ed in AQ20611

- M

Higher plantsLemna minor Duckweed EC50 frond count

and growth inhibition

draft OECD guideline 1996. Static. 7 d 1.7 Nitschke et al 1999 cit-ed in AQ20611

- M

InvertebrateDaphnia magna Water fl ee EC50 mortality OECD 202; part 1. GLP; TS: metamitron

(99.2 %); anal. confi rmed. nom. conc.48 6.7 Mattsoff 1998 Sewell 1994a 1

Daphnia magna Water fl ea EC50 immobilisa-tion

DIN 38412-L11 24 h 97 Nitschke et al 1999 cit-ed in AQ20611

M

FishSalmo gairdneri Rainbow trout LC50 mortality OECD 203; GLP; TS: tech. metamitron

(>98 %); anal. confi rmed nom. conc. 96 222 Mattsoff 1998 Thun 1991b 1

Leuciscus idus Golden orfe LC50 mortality OECD 203; GLP; TS: tech. metamitron (>99.2 %); anal. confi rmed nom. conc.

96 300 Mattsoff 1998 Sewell 1994b 1

Table 2. Long term tests on metamitron

Scientifi c name Common name

Endpoint Effect Method; test conditions Test Dura-tion

Concen-tration, mg/l

Master refer-ence

Reference in Master ref-erence

Quality in Master Reference

AlgaeScenedesmus subspicatus Green algae NOEC growth rate OECD 201; GLP; TS: tech. metamitron; nom.

conc. 72 0.32 Mattsoff 1998 Thun 1991 2

Scenedesmus subspicatus Green algae EC10 growth EN 28692 72 h 1 Nitschke et al 1999 cited in AQ20611

- M

Higher plants

ANNEX 23/4

Page 165: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

The Finnish Environment 749

Scientifi c name Common name

Endpoint Effect Method; test conditions Test Dura-tion

Concen-tration, mg/l

Master refer-ence

Reference in Master ref-erence

Quality in Master Reference

Lemna minor Duckweed EC10 frond count and growth in-hibition

draft OECD guideline 1996. Static. 7 d 0.46 Nitschke et al 1999 cited in AQ20611

- M

InvertebrateDaphnia magna Water fl ee NOEC mortality OECD 202; part 2. GLP; TS: tech. metamitron

(> 98 %); anal. confi rmed. nom. conc.21 d 3.2 Mattsoff 1998 Sewell 1994 1

FishSalmo gairdneri Rainbow trout NOEC behaviour OECD 204; GLP; TS: tech. metamitron

> 98 %, anal. confi rmed nom. conc. 21 d 7 Mattsoff 1998 Thun 1991c 1

Table 3. Short term tests on desaminometamitron

Scientifi c name Common name

Endpoint Effect Method; test conditions Test Dura-tion

Concen-tration, mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

AlgaeScenedesmus subspicatus Green algae EC50 growth rate OECD 201; GLP; TS: desaminometamitron

(99.5 %); anal. confi rmed nom. conc. 72 61 Mattsoff 1998 Scheerbaum 1994a 1

CrustaceaDaphnia magna Water fl ee EC50 mortality OECD 202, part 1; GLP; TS: desaminometam-

itron (99.5 %); anal. confi rmed. nom. conc.48 745 Mattsoff 1998 Noack 1994 2

FishSalmo gairdneri Rainbow trout LC50 mortality OECD 203; GLP; TS: desaminometamitron

(99.5 %); anal. confi rmed nom. conc. 96 > 1000

mg/lMattsoff 1998 Scheerbaum 1994b 1

Table 4. Long term tests on desaminometamitron

Scientifi c name Common name Endpoint Effect Method; test conditions Test Dura-tion

Concen-tration; mg/l

Master reference

Reference in Master reference

Quality in Master Reference

AlgaeScenedesmus subspicatus Green algae NOEC growth

rateOECD 201; GLP; TS: desaminometamitron (99.5 %); anal. confi rmed nom. conc.

72 1 Mattsoff 1998 Scheerbaum 1994

1

ANNEX 23/4

Page 166: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749164

Annex 24. Prochloraz

1. Identity of Substance

Name: Prochloraz; N-propyl-N-[2,4,6-trichlorophenoxy)ethyl]-1H-imidazole-1-carboxamide

CAS-Number: 67747-09-5

Classifi cation under WFD proposed National Priority Substance in Finland

2. Proposed Quality Standards

2.1 Overall Quality Standards

Quality Standard Comment:

AA-EQS Pelagic community (freshwater) 1 µg/l

2.2 Specifi c Quality Standards

Protection Objective Quality Standard Comment:

AA-EQS (Pelagic community freshwater) 1 µg/l See section 8.1

AA-EQS (Pelagic community Baltic sea) 0.1 µg/l See section 8.1

MAC-QS Pelagic community (freshwater) 7.3 µg/l See section 8.1

Benthic community (freshwater sediment) 273-393 µg/kg (dry wt) tentative standard (EP method); see section 8.2

Predators (secondary poisoning) 3.3 mg/kg fi sh (d.w.)~ 8.4 µg/l

See section 8.3.

Food uptake by man Required but not possible due to lack of data.

See section 8.4.

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC;see section 8.5

3. Classifi cation and labelling

R-Phrases and Labelling Reference:

Xn; R22 N; R50-53 N-CLASS

4. Physical and chemical properties

Property Value: Reference

Molecular formula C15H16Cl3N3O2

Molecular weight 376.7

Vapour pressure [Pa] 25oC 1.5 x 10-4 Björk 1992

Henry’s law constant [Pa m³/mol] 25oC 1.7 x 10-3 Björk 1992

Solubility in water [mg/l] 25oC 34 Björk 1992

Dissociation constant; pKa 3.8 Björk 1992

ANNEX 24/1

Page 167: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165The Finnish Environment 749

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) Stable:T50 = 2048 days; pH 6T50 = 1944 days; pH 7T50 = 671 days; pH 8

Björk 1992

Photostability (DT50) (aqueous, sunlight, state pH)

Readily biodegradable (yes/no) no: in sediments-water test up to 1.3 % was mineralised

Nuutinen 2002

Degradation in Water/sediment DT50 288 and 349 days Nuutinen 2002

Mineralization

Distribution in water / sediment systems in sediments-water test :after 15 days 82 – 92 % in sedimentafter 105 days < 1 % in surface water

Nuutinen 2002

Degradation products relevant to the aquatic envi-ronment

in sediment-water test percentage ofdegradation products < 2.5 %

Nuutinen 2002

Partition co-effi cient octanol-water; log Kow; 25oC 4.12 Björk 1992

Koc 3930 (silty clay loam)2733 (sandy loam soil)

Björk 1992

BCF [l/kg] 1) 393 (Lepomis macrochirus) 2) 634

1) Björk 19922) EUSES

Solids-water partition coeffi cient in SPM; Kp_spm [l/kg]

1) 2742) From measured Koc values:foc(0.1) x Koc= 393273

1) EUSES 2) Björk 1992

Solids-water partition coeffi cient in sediment Kp_spm; [l/kg]

137 EUSES

6. Effect Data (aquatic environment)

Ecotoxicity data on aquatic organisms is presented in Tables 1 and 2.

Mammal and/or bird oral toxicity data relevant for the assessment of non compart-ment specifi c effects relevant for the food chain (secondary poisoning)

Type of study Species, test result Reference

Sub-acute eight-day dietary toxicity to Anas Platyrhynchos

LC50 > 10 000 mg/kg food Björk 1992

Sub-acute eight-day dietary toxicity to Colinus virgianianus

LC50 > 5620 mg/kg food Björk 1992

7. Effect data (human health)

Value Study Safety factor Reference

ADI - - - -

Information on Endocrine Disrupting Potential

Comment Reference

Prochloraz is on the list of substances with evidence of ED or potential ED which are neither restricted nor currently being addressed under existing Community legislation.

COM(2001)262 fi nal, table 2

ANNEX 24/2

Page 168: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749166

8. Calculation of Quality StandardsFor background information on methodology used, e.g. assessment and conver-sion factors selected, see the background report (Environmental Quality Stand-ards in Finland).

8.1 Quality Standards for WaterFreshwaterThe effect data on aquatic organisms is shown in Annex I. There are chronic NOEC values available for algae, invertebrate and fi sh. Therefore, the use of an assess-ment factor of 10 is justifi ed. Algae are the most sensitive species. The following AA-EQS is derived on the basis of the lowest NOEC of 0.01 mg/l:

AA-EQS = 0.01 mg/l / 10 =1 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:

AA-EQS = 0.01 mg/l / 100 = 0.0001 mg/l = 0.1 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The lowest EC50 value from a short term test is for Scenedesmus pannonicus and it is 73 µg/l. For deriving the MAC value the lowest relevant acute L(E)C50 can be divided by the short-term TER-trigger. For algae the TER trigger is 10. According to Lepper 2002, if algae are the most sensitive species it should be carefully assessed whether the use of the TER trigger value of 10 is justifi ed given the differences in the objectives of the PPP risk assessment and the EQS values. As prochloraz is a fungizide, the use the TER-trigger of 10 is considered justifi ed. Therefore, the fol-lowing MAC-QS is derived:

MAC-QS = 73 µg/l / 10 = 7.3 µg/l

8.2 Quality Standard for SedimentA tentative QS for sediment is calculated from the AA-EQS using the equilibrium partitioning method. The default properties (fraction of organic carbon, wet and dry density) given in the TGD are used. Two different Kp values based on exper-imental Koc values are used.

1. Kp = 393 l/kg

PNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 393 l/kg x 1 µg/l = 393 µg/kg

2. Kp = 273 l/kgPNECsed (dry weight) = Kp_susp (l/kg) x AA-EQS (mg/l) = 273 l/kg x 1 µg/l = 273 µg/kg

ANNEX 24/3

Page 169: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167The Finnish Environment 749

8.3 Secondary Poisoning of Top PredatorsThere are no results from long term tests on birds or mammals available. The LC50 value of > 10 000 mg/kg food from a sub-acute test for Colinus virgianianus is used for the assessment of secondary poisoning. To derive PNECoral an assessment fac-tor of 3000 is used (TGD, table 23; see Annex 3 in background report).

PNECoral = 10 000 mg/kg / 3000 = 3.3 mg/kg food

According to TGD it is assumed that top predators prey 100 % on the aquatic or-ganisms. Therefore, the level of prochloraz in fi sh may not exceed 3.3 mg/kg. The BCF value of 393 defi ned for Lepomis macrochirus can be used to calculate the equivalent level of prochloraz in water. Also the biomagnifi cation should be taken into consideration. According to TGD (table21) the BMF is 1 for compounds with BCF < 2000. Therefore:

QSsec.pois. = 3.3 mg/kg / 393 l/kg = 8.4 µg/l

8.4 QS referring to food uptake by HumansProchloraz has a potential to bioaccumulate (BCF > 100). Therefore, it is neces-sary to derive a specifi c QS in relation to food uptake by humans. However, no ADI value is available for prochloraz. Neither is it in the scope of this work to derive ADI-values. As data from long term tests on mammals or birds are not available it is neither possible to derive an tentative ADI value in order to estimate thresh-old level for humans.

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 24/4

Page 170: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749168 Table 1. Short term tests on Prochloraz. Rows showing tests on formulations are shaded.

Scientifi c name Common name Endpoint Effect Method; test conditions Test Duration, hours

Concentra-tion, mg/l a.i.

Masterreference

Reference in Master reference

Qualityin Master Reference

AlgaeScenedesmus pannonicus Green algae EC50 growth Dutch guidelines; TS: tech. prochloraz 120 0.073 Björn 1992 Oldersm &

Hansveit 1982

Scenedesmus subspicatus Green algae EC50 growth, rate OECD 201; TS: F; Sportak 40 EC; anal. con-fi rmed nom. conc.

96 0.018 Nuutinen 2002 Knacker 1989 2

Invertebrate

Daphnia magna Water fl ea EC50 EPA 1975/1978; TS: tech. prochloraz, nom. conc.

48 2.6 Björn 1992 Lines 1981

Daphnia magna Water fl ea EC50 OECD 202; GLP; TS: F; Sportak 40 EC; nom conc. ; *EC50F = 9.51 mg/l

48 3.7 * Nuutinen 2002 Barber 1998 1

Fish

Salmo gairdneri Rainbow trout LC50 mortality EPA 1975; static; TS: tech. prochloraz; nom. conc.

96 1 Björn 1992 Buccafusco 1977

Lepomis macrochirus Bluegill sunfi sh LC50 mortality EPA 1975; static; TS: tech. prochloraz; nom. conc.

96 2.2 Björn 1992 Stiefel 1979

Rasbora heteromorfa Harlequin fi sh LC50 mortality EPA 1975; fl ow-through; TS: tech. prochloraz; nom.conc.

96 2.8 Björn 1992 Wilson and Stiefel 1980

Salmo gairdneri Rainbow trout LC50 mortality EPA 1975; fl ow-through; TS: tech. prochloraz; nom.conc;NOEC=0.38 mg/l

168 1.5 Björn 1992 Hoberg 1983

Salmo gairdneri Rainbow trout LC50 mortality OECD 203; fl ow-through; GLP; TS: F; Sportak EC; meas.conc.; *EC50F = 2.92 mg/l

96 1.2* Nuutinen 2002 Knacker 1991 2

ANNEX 24/5

Page 171: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169The Finnish Environm

ent 749

Table 2. Long term tests on Prochloraz.

Scientifi c name Common name Endpoint Effect Method; test conditions Test Duration, days

Concentra-tion; mg/l a.i.

Master reference

Reference in Master reference

Quality in Master Reference

AlgaeScenedesmus pannonicus Green algae NOEC growth Dutch guidelines; TS: tech. prochloraz 5 0.010 Björn 1992 Oldersm &

Hansveit 1982

Scenedesmus subspicatus Green algae NOEC growth OECD 201; TS: F; Sportak 40 EC; anal. con-fi rmed nom. conc. ; *NOECF= 0.0032 mg/l

4 0.0012* Nuutinen 2002 Knacker 1989 2

Invertebrate

Daphnia magna Water fl ea NOEC EPA 1982h; Life cycle test; fl ow-through; TS: tech. prochlorz

21 0.0221 Björn 1992 Smith 1989

Daphnia magna Water fl ea NOEC growth and reproduc-tion

OECD 202, Part II; life cycle test; semi-stat-ic; GLP; TS: F, Sportak 40 EC; nom. conc. ; *NOECF= 0.55 mg/l

21 0.21 Nuutinen 2002 Barber & Bar-ret 1991

2

Fish

Salmo gairdneri Rainbow trout NOEC length and weight

OECD 204; fl ow-through; GLP; TS: Sportak 40 EC; meas.conc.; *NOECF = 0.165 mg/l

21 0.07* Nuutinen 2002 Knacker 1991 2

1The difference between the NOEC values obtained for Daphnia Magna from the tests on technical prochloraz and the formulation is probably due to the tests conditions, not the actual difference in toxicity. The test on Sportak 40 EC formulation is semi-static, whereas the test on technical prochloraz is a fl ow-through test. In general fl ow-through tests are preferred.

ANNEX 24/6

Page 172: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749170

Annex 25. Tribenuron-methyl

1. Identity of Substance

Name: Tribenuron-methyl; Methyl2-[4-methoxy-6-methyl-1,3,5-triazin-2-yl(methyl)carbamoylsulfamoyl]benzoate

CAS-Number: 101200-48-0

Classifi cation under WFD proposed NPS in Finland

2. Proposed Quality Standards

2.1 Overall Quality Standards

Quality Standard Comment:

AA-EQS Pelagic community; freshwater 0.1 µg/l

2.2 Specifi c Quality Standards

Quality Standard Comment:

AA-EQSPelagic community; freshwater

0.1 µg/l See section 8.1.

AA-EQSPelagic community; Baltic sea

0.01 µg/l See section 8.1.

MAC-QS Pelagic community; freshwater 0.4 µg/l See section 8.1.

Benthic community (freshwater sediment) Not required. log Kp < 3.

Predators (secondary poisoning) Not required. log Kow < 3

Food uptake by man Not required. log Kow <3

Drinking water abstraction 1 µg/l A1-value for ∑pesticides of CD 75/440/EEC;see section 8.5

3a. Classifi cation and labelling

Reference

R43 NCLASS

Proposal of rapporteur: R43, R50/53 Monograph

3b. Risk assessment in EUMonograph published.

4. Physical and chemical properties

Property Value: Reference

Molecular formula C15H17N5O6S Monograph

Molecular weight 395,4 Monograph

Vapour pressure, 25 °C 5.3x10-8 Pa Monograph

Henry’s law constant 1.0x10-8 Pa m3 mol-1 at pH 7 Monograph

Solubility in water pH 5: 0.0489 g/l at 20 °CpH 7: 2.04 g/l at 20 °CpH 9: 18.3 g/l at 20 °C

Monograph

Dissociation constant PKa = 4.7 Monograph

ANNEX 25/1

Page 173: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171The Finnish Environment 749

5. Environmental Fate and Partitioning

Property Value: Reference

Hydrolytic stability (DT50) pH 5: very fast degradation; DT50 < 1 daypH 7: halfl ife 381 hours 16 dayspH 9: halfl ife > 200 daysMetabolites (at pH5): IN-L5296 stableIN-R9805: stableIN-D5803: DT50 123 daysIN-00581: stable

Monograph

Photostability (DT50) (aqueous, sunlight, state pH)

Stable Monograph

Readily biodegradable (yes/no) No

Degradation in Water/sedimentDT50 water

Tribenuron methyl 21-26 days (fi rst-order, r2 >0.8, n = 2)IN-5296 no reliable dataIN-D5119 no reliable dataIN-00581 5.5 days (fi rst order, r2 >0.8, n = 1)

Monograph

Degradation in Water/sedimentDT50 whole system

Tribenuron methyl 24 – 27 days (fi rst-order, r2 >0.8, n = 2)IN-5296 78 days (fi rst order, r2 >0.8, n = 1)IN-D5119 18 - 37 days (fi rst order, r2 >0.8, n = 2)IN-00581 7.6 days (fi rst order, r2 >0.8, n = 1)

Monograph

Mineralization 60 - 65% of applied for phenyl-labelled compound (135 days, n = 2)2 – 18% of applied for triazine-labelled compound (135 days, n = 2)

Monograph

Bound residue

Distribution in water / sediment systems (active substance)

Tribenuron methyl: maximum 20 % of applied in sediment after 7 days in one system.

Monograph

Distribution in water / sediment systems (metabolites)

L5296: maximum 86 % of applied in sediment after 56 days in one system.

Monograph

Residues relevant to the aquatic environ-ment

Partition co-effi cient (log KOW) pH 5: 2.6 pH 7: 0.78pH 9: 0.30

Monograph

Koc Koc = 9.8 – 74 (overall mean = 31, 5 soils)Koc = 9.8 – 15 (mean at pH>7 = 12.5, 2 soils)

Monograph

Kd_soil 0.1 - 2.5 (5 soils) Monograph

solids-water partition coeffi cient suspended matter; Kp_susp [l/kg]

foc (0.1) x Koc (74) = 7.4log 7.4 = 0.9 < 3

BCF (fi sh) Data not required, since log Kow <3 Monograph

6. Effect Data (aquatic environment)

The ecotoxicological data on aquatic organisms are presented in Tables 1 and 2.

7. Effect data (human health)

Value Study Safety factor Reference

ADI 0.01 mg/kg b.w. per day Rat, 2 yr 100 Monograph

ANNEX 25/2

Page 174: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Finnish Environment 749172

Information on Endocrine Disrupting Potential

Comment Reference

Tribenuron methyl metabolites appear to be potential agonists for the oestrogen receptor based on re-sults from in vitro receptor competition study. When these binding data are considered along with the increase in progesterone receptor number observed in the mechanistic study, a hormonally medi-ated mechanism of mammary tumour induction cannot be ruled out. However, the exact mechanism or hormonal pathways was not defi ned.

Monograph

8. Calculation of Quality Standards

8.1 Quality Standards for Water

FreshwaterThere are NOEC values from long term tests for three trophic levels. Therefore, the use of an assessment factor of 10 is justifi ed. Lemna gibba is the most sensitive or-ganism. The LC50 values from the 14 day Lemna gibba test can be considered as acute test results, where as the NOEC values can be taken as chronic test results. The NOEC of 1 µg/l is used to derive the AA-EQS:

AA-EQS = 1 µg/l / 10 = 0.1 µg/l

Baltic seaThe QS for the Baltic sea is derived in accordance with the marine effects assess-ment of the TGD. As there is no information on species relevant for the Baltic en-vironment an additional assessment factor of 10 is used (see table 25 in the TGD) and the following AA-EQS is derived:

AA-EQS = 0.01 µg/l

Quality Standard Accounting for transient Concentration Peaks (MAC-QS)The LC50 value from the 14 day Lemna gibba -test (4.3 µg/l) can be used to derive an EQS-MAC value. For deriving the MAC value the lowest relevant acute L(E)C50 can be divided by the short-term TER-trigger. For algae the TER trigger is 10. Ac-cording to Lepper 2002, if algae are the organism most sensitive to acute effects, it should be carefully assessed whether the application of a TER-trigger of 10 is jus-tifi ed, given the differences between the objectives of the PPP risk assessment and a quality standard. In the case of tribenuron methyl the use of the TER trigger 10 is considered justifi ed as test results from both algae and higher plants are availa-ble. Therefore, the following MAC-QS is derived.

MAC-QS = 4.3 µg/l / 10 = 0.4 µg/l

8.2 Quality Standard for SedimentNot required.

8.3 Secondary Poisoning of Top PredatorsNot required.

8.4 QS referring to food uptake by HumansNot required.

8.5 QS for drinking water abstractionThe imperative A1 value referring to drinking water abstraction by simple treat-ment is 1 µg/l for the total amount of pesticides (Council Directive 75/440/EEC). The drinking water standard set in CD 98/83/EC is 0.1 µg/l for individual pesticides.

ANNEX 25/3

Page 175: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

The Finnish Environment 749

Table 1. Short term tests on tribenuron methyl.

Endpoint Effect Test conditions Test duration, hours

Toxicitymg/l a.i.

Master reference Reference in master reference

Quality in master reference

AlgaeSelenastrum capricornutum EbC50 growth; bio-

massOECD Guideline 201; static; GLP; TS: tribenuron-methyl (97.4%); nom. conc.

120 0.021 Monograph; vol 3; B9 Sloman and Leva, 1998b

Chlorella fusca vacuolata; green algae

EC50 TS: F; > 99 % a.i. 24 h 0.08 AQ14937 Fahl et al. 1995 C

Chlorella fusca vacuolata; green algae

EC50 TS: F; > 99 % a.i. 14 h 0.11 AQ14937 Fahl et al. 1995 C

Selenastrum capricornutum ErC50 growth; rate OECD Guideline 201; static; GLP; TS: tribenuron-methyl (97.4%); nom. conc.

120 0.112 Monograph; vol 3; B9 Sloman and Leva, 1998b

Anabaena fl os-aquae EbC50 growth; bio-mass

US EPA guidelines 122-2 and 123-2.; static; GLP; TS: tribenuronmethyl (97.4%); nom. conc.

120 2.6 Monograph; vol 3; B9 Leva and Sloman, 1998a.

Selenastrum capricornutum EC50 TS: F 5 d 4.9 AQ344 US-EPA 2000 M

Anabaena fl os-aquae ErC50 growth; rate US EPA guidelines 122-2 and 123-2.; static; GLP; TS: tribenuronmethyl (97.4%); nom. conc.

120 13 Monograph; vol 3; B9 Leva and Sloman, 1998a.

Aquatic plantsLemna gibba EC50 frond count US EPA guideline 123-2.; ; static; GLP; TS:

tribenuronmethyl (92.6 % ); meas. conc. 14 days 0.004.3 Monograph, B9 Kannuck and Samel,

1995a.Lemna gibba EC50 biomass US EPA guideline 123-2.; ; static; GLP; TS:

tribenuronmethyl (92.6 % ); meas. conc.14 days 0.0056 Monograph, B) Kannuck and Samel,

1995a.CrustaceaDaphnia magna EC50 immobilisation TS: F 96 h 720 AQ344 US-EPA 2000 M

Daphnia magna EC50 immolisation US EPA guidelines, 72-2; static; GLP; TS: Triben-uron methyl (98.9%); anal.confi rmed nom. conc.

48 h >894 Monograph, vol3B9 Boeri et. al., 1997b

FishRainbow trout; Oncorhynchus mykiss

LC50 mortality US EPA guideline 72-1; static; GLP; TS: Triben-uron methyl (98,9%); anal. confi rmed nom.

96 h 738 Monographvol3B9 Boeri et al., 1997a

Lepomis macrochirus; blue gill LC50 MOR TS: F 96 h 1000 AQ344 US-EPA 2000 I

Oncorhynchus mykiss;rainbow trout

LC50 MOR TS: F 96 h 1000 AQ344 US-EPA 2000 I

ANNEX 25/4

Page 176: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The Finnish Environm

ent 749174 Table 2. Long term tests on tribenuron methyl.

Group Endpoint Effect Test conditions Test duration

Toxicity(mg/l a.i.)

Master reference Reference in master reference

Quality in master reference

AlgaeSelenastrum capricornutum NOECb growth; bio-

massOECD Guideline 201; static; GLP; TS: tribenuron-methyl (97.4%); nom. conc.

120 0.004 Monograph; vol 3; B9 Sloman and Leva, 1998b

Selenastrum capricornutum NOECr growth; rate OECD Guideline 201; static; GLP; TS: tribenuron-methyl (97.4%); nom. conc.

120 0.004 Monograph; vol 3; B9 Sloman and Leva, 1998b

Anabaena fl os-aquae NOECb growth; bio-mass

US EPA guidelines 122-2 and 123-2.; static; GLP; TS: tribenuronmethyl (97.4%); nom. conc.

120 < 0.63 Monograph; vol 3; B9 Leva and Sloman, 1998a.

Anabaena fl os-aquae NOECr growth; rate US EPA guidelines 122-2 and 123-2.; static; GLP; TS: tribenuronmethyl (97.4%); nom. conc.

120 1.25 Monograph; vol 3; B9 Leva and Sloman, 1998a.

Aquatic plantsLemna gibba NOEC frond count US EPA guideline 123-2.; ; static; GLP; TS: triben-

uronmethyl (92.6 % ); meas. conc. 14 days 0.001 Monograph, B9 Kannuck and Samel,

1995a.

Lemna gibba NOEC biomass US EPA guideline 123-2.; ; static; GLP; TS: triben-uronmethyl (92.6 % ); meas. conc.

14 days 0.001 Monograph, B) Kannuck and Samel, 1995a.

InvertebrateDaphnia magna NOEC growth OECD guideline 202; static; GLP; TS:F; Triben-

uron methyl (95.8 %); meas. conc. 21 days 120 Monograph, B9 Hutton, 1989b.

FishRainbow trout ; Salmo gairdneri

NOEC OECD guideline 204; fl ow-through; GLP; TS: F; Tribenuron methyl (95.8 %); meas. conc.

21 days 560 Monograph, endpoints Hutton, 1989a.

ANNEX 25/5

Page 177: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

175The Finnish Environment 749

PublisherFinnish Environment Institute

Date15.6.2005

Author(s)Susan Londesborough

Title of publicationProposal for Environmental Water Quality Standards in Finland

Parts of publication/other project publications

The publication is available in the Internet: www.environment.fi /publications

AbstractEnviromental Water Quality Standard (EQS) have been derived for a set of industrial and consumer chemicals and pesticides. These chemicals have been selected by a risk based prioritisation procedure. They have been selected in order to identify relevant pollutants belonging to the substance groups mentioned in Directive 76/464/EEC on pollution caused by certain dangerous substances discharged into the aquatic environment (Dangerous Substances Directive). The selection of these so substances is also part of the implementation of the Water Framework Directive (2000/60/EC). When determining the ecological status of water bodies according to the Water Framework Directive the EQS values are the border line between good and moderate status. The EQS values are derived according to methodology set in the Water Framework Directive. The methodology is equivalent to the methods given in the Technical Guidance Document for the risk assessment of new and existing chemicals. For pesticides the principles and methodology given under directive 91/414/EEC are taken into consideration.

Keywords Environmental Water Quality Standards, hazardous substances, chemicals

Publication series and number

The Finnish Environment 749

Theme of publication Environmental ProtectionProject name andnumber, if any

Vaarallisten aineiden direktiivin prioriteetiaineita koskevat kansalliset velvoitteet VC05044

Financier/commissioner

Ministry of Environment

Project organization

ISSN 1238-7312

ISBN952-11-1950-0

ISBN 952-11-1951-9 (PDF)

No. of pages177

LanguageEnglish

Restrictions Price20,00 EUR

For sale at/distributor

Edita Publishing Ltd. P.O. Box 800, FIN-00043 EDITA, Finland, Phone +358 20 450 00. Mail orders: Phone: +358 20 450 05, fax +358 20 450 2380. Internet: www.edita.fi /netmarket.

Financier of publication Finnish Environment InstitutePrinting place and year Edita Prima Ltd, Helsinki 2005

Documentation page

Page 178: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

176 The Finnish Environment 749

JulkaisijaSuomen ympäristökeskus

Julkaisuaika15.6.2005

Tekijä(t)Susan Londesborough

Julkaisun nimiProposal for Environmental Water Quality Standards in Finland

Julkaisun osat/muut saman projektin tuottamat julkaisut

Julkaisu on saatavana myös internetistä: http:/www.environment.fi /publications.

TiivistelmäRaportissa on määritetty vesiympäristön laatunormit joukolle teollisuus- ja kuluttajakemikaaleja sekä maatalouden torjunta-aineita. Kyseiset kemikaalit on valittu suhteellisella riskiin perustuvalla priorisointimenettelyllä. Tarkoituksena oli tunnistaa vesiympäristön kannalta merkityksellisiä haitallisia aineita, jotka kuuluvat haitallisten aineiden vesipäästöjä säätelevän direktiivin (76/464/EEC) aineluetteloihin. Kyseisellä työllä toimeenpannaan myös vesipolitiikan puitedirektiivin (2000/60/EY) velvoitteita. Vesipolitiikan puitedirektiivin mukaisessa vesien luokittelussa ympäristönlaatunormit määrittävät hyvän ja tyydyttävän ekologisen tilan raja-arvon.

Ympäristönlaatunormit on määritetty vesipolitiikan puitedirektiivissä säädetyillä menetelmillä. Käytetyt menetelmät ovat yhteneviä uusien ja olemassa olevien aineiden riskinarvion teknisten ohjeiden kanssa. Torjunta-aineiden kohdalla on huomioitu kasvinsuojeluaineiden riskinarviota säätelevän direktiivin 91/414/ETY periaatteet ja menetelmät.

Asiasanatympäristönlaatunormit, haitalliset aineet, kemikaalit

Julkaisusarjan nimi ja numero

Suomen ympäristö 749

Julkaisun teema YmpäristönsuojeluProjektihankkeen nimi ja projektinumero

Vaarallisten aineiden direktiivin prioriteetiaineita koskevat kansalliset velvoitteet VC05044

Rahoittaja/toimeksiantaja

Ympäristöministeriö

Projektiryhmäänkuuluvat organisaatiot

ISSN 1238-7312

ISBN952-11-1950-0

ISBN952-11-1951-9 (PDF)

Sivuja177

Kielienglanti

LuottamuksellisuusJulkinen

Hinta20,00 e

Julkaisun myynti/jakaja

Edita Publishing Oy, PL 800, 00043 EDITA, vaihde 020 450 00.Asiakaspalvelu: puhelin 020 450 05, faksi 020 450 2380Sähköposti: [email protected] , www.edita.fi /netmarket

Julkaisun kustantaja Suomen ympäristökeskus (SYKE)Painopaikka ja -aika Edita Prima Oy, Helsinki 2005

Kuvailulehti

Page 179: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

177The Finnish Environment 749

Utgivare Finlands miljöcentral

Datum15.6.2005

FörfattareSusan Londesborough

Publikationens titelProposal for Environmental Water Quality Standards in Finland

Publikationens delar/andra publikationer inom samma projekt

Publikationen fi nns tillgänglig också på internet: http:/www.environment.fi /publications.

SammandragRapporten ger defi nitionerna på vattenmiljöns kvalitetsnormer för ett antal industri- och konsumtionskemikalier samt växtskyddsmedel i jordbruket. Ifrågavarande kemikalier valdes genom en prioriteringsmetod som baserar sig på den relativa risken. Avsikten var att identifi era för vattenmiljön betydelsefulla ämnen, som fi nns i ämnesförteckningen i direktivet som stadgar om förorening genom utsläpp av vissa farliga ämnen (76/464/EEG). Med ifrågavarande arbete verkställs också obligationer i direktivet om en ram på vattenpolitikens område (2000/60/EG). I klassifi ceringen enligt direktivet för vattenpolitiken defi nierar miljökvalitetsnormerna gränsvärdet mellan god och tillfredsställande ekologiskt tillstånd.

Miljökvalitetsnormerna har defi nierats enligt de metoder som föreskrivs i direktivet för vattenpolitiken. Metoderna som använts sammanfaller med de tekniska anvisningarna för bedömningen av riskerna hos nya och existerande ämnen. När det gäller växtskyddsmedel har principerna och metoderna i direktivet 91/414/EEG beaktats.

Nyckelord miljökvalitetsnormer, skadliga ämnen, kemikalier

Publikationsserieoch nummer

Miljö i Finland 749

Publikationens tema MiljövårdProjektets namnoch nummer

Vaarallisten aineiden direktiivin prioriteetiaineita koskevat kansalliset velvoitteet VC05044

Finansiär/uppdragsgivare

Miljöministeriet

Organisationeri projektgruppen

ISSN 1238-7312

ISBN952-11-1950-0

ISBN 952-11-1951-9 (PDF)

Sidantal177

SpråkEngelska

OffentlighetOffentlig

Pris20,00 EUR

Beställningar/distribution

Edita Publishing Ab, PB 800, 00043 EDITA, växel 020 450 00.Postförsäljningen:Telefon +358 20 450 05, telefax + 358 20 450 2380Internet: www.edita.fi /netmarket

Förläggare Finlands miljöcentralTryckeri/tryckningsort och -år

Edita Prima Ab, Helsingfors 2005

Presentationsblad

Page 180: Susan Londesborough Proposal for Environmental Water ... · In chapter 3 a general presentation on the methods used for deriving PNEC values is given. More detailed descriptions are

Enviromental Water Quality Standards (EQS) have been derived for a set of

industrial and consumer chemicals and pesticides. These chemicals have been

selected by a risk based prioritisation procedure. Environmental Quality Standard

means the concentration of a particular pollutant in water, sediment or biota which

should not be exceeded in order to protect human health and the environment.

The work is part of the implementation of the Water Framework Directive (2000/60/

EC). It also responds to the requirements set by Directive 76/464/EEC on pollution

caused by certain dangerous substances discharged into the aquatic environment.

The EQS values are derived according to methodology set in the Water Framework

Directive. The methodology is equivalent to the methods given in the Technical

Guidance Document for the risk assessment of new and existing chemicals in the

European Union.

Proposal for Environmental Water Quality Standards in Finland

FINNISH ENVIRONMENT INSTITUTE P.O.BOX 140, FIN-00251 HELSINKI

ENVIRONMENTALPROTECTION

T h e F i n n i s h E n v i r o n m e n t

Edita Publishing LtdP.O.Box 800, FIN-00043 EDITA, FinlandPhone +358 20 450 05, fax + 358 20 450 2380.EDITA-BOOKSHOPS IN HELSINKIAnnankatu 44, phone 020 450 2566

The publication is available also in the internet:http://www.environment.fi /publications

ISBN 952-11-1950-0ISBN 952-11-1951-9 (PDF)ISSN 1238-7312

. . . . . . . . . . . . . . . . . . . . . . . . . . .

,!7IJ5C1-bbjfah!