Surgical Site Infection and Implications on the Orthopedic Implant Market

13
1 Surgical Site Infection and Implications on the Orthopedic Implant Market Research and Market Analysis

description

Surgical site infection (SSI), one that occurs within 30 days of a surgical procedure or within one year of a foreign body implant, is considered a preventable source of significant morbidity, mortality, and economic cost.i In the US, overall SSIs account for 14-­‐16% of all hospital-­‐acquired infections, and it is estimated that, on patients developing SSIs, cost is increased by $3,152 per admission and hospital stay is lengthened by seven days per admission.ii Approximately 70% of SSIs are superficial infections, while the remaining are more invasive, involving deeper tissues, organs, and/or implanted material. Although the majority of SSIs do not develop into life-­‐threatening infections, the tremendous numbers of surgical procedures performed annually make the incidence significant. In the US alone, there are about 27 million surgical procedures performed each year, with about 290,000 SSIs (slightly more than 1%) and approximately 8,000 deaths associated with these procedures.iii Within orthopedic surgery in the US, there are over 4 million orthopedic procedures performed each year, with a SSI rate typically less than 1%.1 In the US there are approximately 2 million fracture-­‐ fixation devices inserted annually and, on average, approximately 5% of initially inserted internal fixation devices become infected at an additional cost of about $15,000,iv while in the UK implant-­‐associated infections are estimated to cost £7−11 million per year.v

Transcript of Surgical Site Infection and Implications on the Orthopedic Implant Market

Page 1: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       1    

                             

Surgical  Site  Infection  and  Implications  on  the  Orthopedic  Implant  Market  

Research  and  Market  Analysis                                              

Page 2: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       2    

 Surgical  site  infection  (SSI),  one  that  occurs  within  30  days  of  a  surgical  procedure  or  within  one  year  of  a  foreign  body  implant,  is  considered  a  preventable  source  of  significant  morbidity,  mortality,  and  economic  cost.i    In  the  US,  overall  SSIs  account  for  14-­‐16%  of  all  hospital-­‐acquired  infections,  and  it  is  estimated  that,  on  patients  developing  SSIs,  cost  is  increased  by  $3,152  per  admission  and  hospital  stay  is  lengthened  by  seven  days  per  admission.ii  Approximately  70%  of  SSIs  are  superficial  infections,  while  the  remaining  are  more  invasive,  involving  deeper  tissues,  organs,  and/or  implanted  material.    Although  the  majority  of  SSIs  do  not  develop  into  life-­‐threatening  infections,  the  tremendous  numbers  of  surgical  procedures  performed  annually  make  the  incidence  significant.    In  the  US  alone,  there  are  about  27  million  surgical  procedures  performed  each  year,  with  about  290,000  SSIs  (slightly  more  than  1%)  and  approximately  8,000  deaths  associated  with  these  procedures.iii    Within  orthopedic  surgery  in  the  US,  there  are  over  4  million  orthopedic  procedures  performed  each  year,  with  a  SSI  rate  typically  less  than  1%.1    In  the  US  there  are  approximately  2  million  fracture-­‐fixation  devices  inserted  annually  and,  on  average,  approximately  5%  of  initially  inserted  internal  fixation  devices  become  infected  at  an  additional  cost  of  about  $15,000,iv  while  in  the  UK  implant-­‐associated  infections  are  estimated  to  cost  £7−11  million  per  year.v        Internal  fixation  of  closed  fractures  has  a  lower  incidence  of  infection  (1−2%),  while  the  incidence  may  exceed  30%  after  internal  fixation  of  open  fractures.vi,vii,viii,ix    Infection  is  believed  to  be  responsible  for  causing  failure  in  approximately  1%  of  hip  implants,  4%  of  knee  implants,  and  more  than  15%  of  orthopedic  trauma-­‐related  implants,x  adding  an  estimated  $3.8  billion  to  annual  US  healthcare  costs.xi    National  efforts  to  decrease  the  incidence  of  postoperative  infection  are  ongoing  throughout  the  world,  and  are  commonly  referred  to  as  Infection  Control  programs.    In  addition,  the  World  Health  Organization  (WHO),  while  primarily  focused  on  infection  control  policies  to  prevent  and  control  spread  of  epidemic-­‐  and  pandemic-­‐prone  respiratory  diseases'  pathogens,  also  promotes  its  own  guidelines  on  preventing  and/or  controlling  healthcare-­‐associated  and  ventilator-­‐associated  infections.xii    In  the  US,  the  Centers  for  Disease  Control  (CDC),  The  Joint  Commission  (TJC),  and  others,  have  all  developed  guidelines  for  preventing  healthcare-­‐associated  infections.xiii          

Page 3: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       3    

In  terms  of  SSI,  including  orthopedic  SSIs,  the  most  important  organism  remains  Staphylococcus  aureus,  most  often  brought  into  the  hospital  by  the  patient  in  their  nares.xiv    Other  common  causative  organisms  include  methicillin-­‐resistant  Staphylococcus  aureus  (MRSA),  vancomycin-­‐resistant  Enterococcus  species,  extended-­‐spectrum  ß-­‐lactamase–producing  Escherichia  coli  or  Klebsiella  species,  and  fluoroquinolone-­‐  or  carbapenem-­‐resistant  Enterobacteriaceae  or  Pseudomonas  aeruginosa.xv,xvi    Although  the  use  of  antimicrobial  prophylaxis  or  preemptive  therapy  has  decreased  the  frequency  of  implant-­‐associated  infections,xvii  fighting  implant  infection  remains  a  complex  and  lengthy  process.xviii    

   

Commonly  identified  microorganisms  causing  infections  associated  with  fracture-­‐fixation  devices.  

Microorganism Frequency  (%)

Staphylococcus  aureus 30

Coagulase-­‐negative  staphylococci 22

Gram-­‐negative  bacilli 10

Anaerobes 5

Enterococci 3

Streptococci 1

Polymicrobial 27

Unknown 2 From:    Diagnosis  and  treatment  of  infections  associated  with  fracture-­‐fixation  devices.  A  Trampuz,  WZimmerli.  Injury,  Int.  J.  Care  Injured.  37:S59—S66.  2006.        It  is  estimated  as  many  as  30%  of  surgical  patients  are  active  carriers  of  Staphylococcus  aureus.xix    Nasal  carriage  of  Staphylococcus  aureus  has  been  shown  to  be  the  lone  independent  risk  factor  for  surgical  site  infection  following  orthopedic  implant  procedures.xx    Almost  50%  of  invasive  SSIs  in  orthopedic  procedures  caused  by  Staphylococcus  aureus,  and  half  of  these  are  caused  by  Methicillin-­‐resistant  Staphylococcus  aureus  (MRSA).    MRSA  is  also  a  significant  factor  as  it  is  more  virulent  than  non-­‐resistant  Staphylococcus  aureus,  it  more  readily  survives  outside  of  a  host,xxi  and  has  a  greater  incidence  of  significant  morbidity  and  mortality  associated  with  it.xxii    MRSA  has  recently  shown  continued  shift  from  a  hospital-­‐associated  to  a  community-­‐acquired  onset,  although  incidence  of  invasive  MRSA  in  the  US  has  recently  been  reported  to  be  on  the  decline  with  an  

Page 4: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       4    

estimated  9.4%  decrease  in  hospital-­‐associated  and  an  estimated  5.7%  decrease  in  community-­‐onset  cases.xxiii    Similar  statistics  have  been  reported  in  England  and  the  rest  of  Europe,  with  a  24%  decrease  in  Staphylococcus  aureus  bacteremia  and  a  17%  decrease  in  the  proportion  of  those  cases  involving  MRSA  in  England.xxiv    Despite  these  encouraging  decreases  in  infection,  it  is  unclear  whether  these  decreases  can  be  attributed  to  traditional  hospital  infection  prevention  and  control  measures  or  are  due  to  normal  changes  in  as  many  of  the  decreases  began  before  the  measures  were  widely  instituted.24,xxv    In  the  US,  the  Surgical  Care  Improvement  Program  (SCIP)  was  launched  in  July  2006,  as  a  national  quality  partnership  of  organizations  to  improve  surgical  care  by  significantly  reducing  surgical  complications  such  as  SSIs.    Several  mechanisms  were  initiated  to  help  prevent  surgically  related  infections,  including  appropriate  choice,  timing,  and  duration  of  pre-­‐,  intra-­‐  and/or  post-­‐operative  antibiotics,  clipping  of  hair  around  surgical  incision  site  (instead  of  shaving),  good  blood  glucose  control  in  diabetics  and  keeping  patients  at  a  normal  body  temperature  as  much  as  possible.xxvi    Similar  national  programs  have  been  initiated  worldwide.      Classification  of  infections  associated  with  fracture  fixation  devices.  

CLASSIFICATION CHARACTERISTIC According  to  route  of  infection  

•  Perioperative   Inoculation  of  microorganisms  into  surgical  wound  during  surgery  or  immediately  thereafter  

•  Contiguous  Wound   Contamination  due  to  penetrating  trauma  (open  fractures)  or  from  an  adjacent  focus  of  infection  (skin  and  soft-­‐tissue  lesions)  

•  Hematogenous   Microbial  spread  through  blood  or  lymph  from  distant  focus  of  infection  (eg,  skin,  lung,  urinary  tract)  

According  to  onset  of  symptoms  after  implantation  

Early  infection  (<  2  weeks)  

Predominantly  acquired  during  trauma  or  implant  surgery;  caused  by  highly  virulent  organisms  (e.g.,  S.  aureus,  Gram-­‐negative  bacilli)  

Page 5: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       5    

Delayed  infection  (2−10  wks)    Late  infection  (>10  wks)  

Predominantly  acquired  during  trauma  or  implant  surgery;  caused  by  low  virulence  organisms  (e.g.,  coagulase-­‐negative  staphylococci);  occasionally  caused  by  hematogenous  seeding  from  remote  infections  

From:  Diagnosis  and  treatment  of  infections  associated  with  fracture-­‐fixation  devices.  A  Trampuz,  W  Zimmerli.  Injury,  Int.  J.  Care  Injured.  37:S59—S66.  2006.    Risk  factors  for  SSIs  of  all  types  are  diabetes,  obesity,  older  age,  emergency  status  of  operation,  and  obvious  contamination  of  the  injury  or  the  surgical  site.xxvii    In  orthopedic  surgery,  risk  factors  for  SSI  also  include  trauma  and  open  fractures  (preoperative),  subsequent  fracture-­‐fixation  procedures  (intraoperative),  or  abnormalities  in  wound  healing  (postoperative).xxviii    Hematogenous  infection,  primarily  caused  by  blood  stream  infection  (BSI)  originating  from  skin,  respiratory,  oral,  or  urinary  tract  infection,  is  less  common  than  SSI.    Implant-­‐associated  infections  are  primarily  caused  by  the  previously-­‐described  bacteria  growing  in  biofilm  communities.    These  microorganisms  live  in  a  tightly  clustered,  highly-­‐hydrated  polysaccharide  extracellular  matrix  (secreted  by  the  microbes)  adhered  to  a  surface.xxixxxxxxxi  Depletion  of  metabolic  substances  and/or  accumulation  of  waste  products  within  these  biofilms  causes  the  microbes  to  enter  into  a  slow-­‐growing  or  stationary  phase  enabling  the  bacteria  to  be  as  much  as  10,000  times  more  resistant  to  antibiotics  than  “planktonic”  bacteria.  18,xxxiixxxiii    This  surface  adherence,  for  example  on  an  orthopedic  implant,  occurs  rapidly  by  either  specific  mechanisms  such  as  adhesins  (cell-­‐surface  components  or  appendages  that  facilitate  adhesion  or  adherence  of  microbes),  or  by  nonspecific  mechanisms  such  as  surface  tension,  hydrophobicity,  and  electrostatic  forces).xxxiv    Adherence  to  an  implant  surface  is  followed  by  an  accumulative  phase  in  which  microbial  cells  adhere  to  one  another  and  form  a  biofilm.    The  presence  of  a  foreign  body  has  been  shown  to  significantly  increase  susceptibility  to  infection,  with  up  to  a  100,000  fold  lower  minimal  infecting  dose  of  Staphylococcus  aureus  causing  an  abscess  in  guinea  pigs  adjacent  to  subcutaneous  devices  due  at  least  in  part  to  a  locally  acquired  granulocyte  defect.xxxvxxxvi  Current  protocols  for  resolution  of  an  implant  infection  most  often  require  the  implant  be  removed,  the  soft  tissue  surrounding  the  implant  be  cured  of  infection,  and,  once  that  is  accomplished,  a  second  prosthetic  device  implanted.    This  process  often  takes  months  and  multiple  tens  of  thousands  of  dollars.18    

Page 6: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       6    

 A  solution  to  this  problem  has  been  sought  for  many  decades,  and  it  is  obvious  that  any  solution  will  require  a  diverse  array  of  expertise  from  many  different  disciplines.    Attempts  to  decrease  implant  infection  rates  have  included  those  listed  in  the  table  below.  

       

Type  of  Modification   Modification  

Implant  Surface  

Modification  

Mechanical   Electropolishing  of  titanium  surfaces    

Protein-­‐Resistant  Coating  

Titanium-­‐nitride  coatings  

Heparin  Coatings  

Albumin  coatings  

Hydrophilic  chain  coating  

Phosphorylcholine-­‐modified  polymer  coatings  

PEG-­‐based  coatings  

Poly(l-­‐lysine)-­‐grafted-­‐PEG  coatings  

Hyaluronic  acid  coatings  

Antimicrobial  Action  

Antimicrobial  Coating  

Gentamicin-­‐,  Ciprofloxacin-­‐,  or  Vancomycin  -­‐loaded  biocompatible  biodegradable  polymer  (e.g.  PLGA  or  PDLLA)  

Gentamicin-­‐coated  polyurethane  sleeves  

Antimicrobial  Gels  and  Films  

 

Antiseptic    Coating  

Chlorhexidine  

Covalently  bound  Quaternary  Ammonium  compounds  

Silver  ion-­‐  and  silver  nitrate-­‐based  coatings  

Antibacterial  Enzyme   Lysostaphin  

Antimicrobial    Current  

100  muA  current  through  the  stainless  steel  pins  of  a  fixation  device.  

     

Page 7: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       7    

At  the  present  time,  there  remains  an  unmet  need  for  a  surface  modification  or  coating  that  provides  complete  prevention  of  bacterial  adhesion  with  no  toxicity  to  adjacent  tissue.    Many  of  the  methods  listed  above  have  significantly  decreased  the  number  and/or  adherence  of  pathogenic  bacteria;  however,  more  studies  are  still  needed.    Ideally,  the  best  solution  for  a  surface  would  be  a  coating  or  treatment  that  would  be  biocompatible,  allow  fibroblast  and  osteoblast  cells  to  adhere  and  proliferate  leading  to  integration  and  vascularization  in  both  hard  and  soft  tissue,  and  prevent  bacterial  adherence.    Additional  potential  solutions  that  have  been  studied  include  inkjet  printing  of  nanocomposite  micropatterns  of  calcium  phosphate  and  antibiotic  nanocrystals  (~100  nm)  dispersed  in  a  biodegradable  polymer  matrix;18  Gentamicin-­‐eluting  bioresorbable  composite  fibers;xxxvii  Nanoscale  Particle  Therapies;xxxviii  Antibiotic  Eluting  Polypeptide;  PLL/PLGA  Nanocoatings;xxxix  and  Chitosan  Films.xl    That  ideal  solution,  however,  so  far  remains  elusive.      Overall,  the  global  anti-­‐invectives  market  is  forecast  to  expand  at  an  annual  rate  of  5.7%  through  2013,  with  growth  driven  primarily  by  the  anti-­‐bacterial  and  anti-­‐viral  classes,  while  the  orthopedic  implant  market  is  currently  valued  at  more  than  $16  billion  with  a  projected  value  exceeding  $23  billion  by  2012.    The  worldwide  market  for  combination  drug-­‐device  products  is  expected  to  be  the  highest  growth  segment  of  the  medical  products  industry.xli    

     

REFERENCES                                                                                                                

i      Surgical  Site  Infection.  Frequently  Asked  Questions.  CDC.  December  17,  2008.  http://www.cdc.gov/ncidod/dhqp/FAQ_SSI.html#  

ii      Infections.  Surgical  Care  Improvement  Project.  http://www.qualitynet.org  iii      CDC  2001.  iv      Darouiche  RO.  Treatment  of  infections  associated  with  surgical  implants.  N  Engl  J  Med  350(14):1422−1429.  [thesis].Ther  Umsch;  47(7):593−596.  2004.  

v      Staphylococci  and  implant  surfaces:  a  review.  LG  Harris,  RG  Richards.  Injury.  37(2S):S3-­‐S14.  May  2006.  

vi      McGraw  JM,  Lim  EV.  Treatment  of  open  tibial-­‐shaft  fractures.  External  fixation  and  secondary  intramedullary  nailing.  J  Bone  Joint  Surg  Am;  70(6):900−911.  1998.  

vii      ObremskeyWT,  Bhandari  M,  Dirschl  DR,  et  al.    Internal  fixation  versus  arthroplasty  of  comminuted  fractures  of  the  distal  humerus.  J  Orthop  Trauma;  17(6):463−465.  2003.  

viii      Perren  SM.  Evolution  of  the  internal  fixation  of  long  bone  fractures.  The  scientific  basis  of  biological  internal  fixation:  choosing  a  new  balance  between  stability  and  biology.  J  Bone  Joint  Surg  Br;  84(8):1093−1110.  2002.  

Page 8: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       8    

                                                                                                                                                                                                                                                                                                                                                                     ix      Raahave  D.    Postoperative  wound  infection  after  implant  and  removal  of  osteosynthetic  material.  Acta  Orthop  Scand;  47(1):28−35.  1976.  

x  Fighting  Bacterial  Infection  in  Orthopedic  Implants.  Stevens  Institute  of  Technology.  Article.  12  December  2009.    

xi  Site  Specific  Delivery  -­‐  Global  Impact.    TYRX.  2010.  http://www.tyrx.com/aboutus-­‐company.htm  

xii  Infection  prevention  and  control  in  health  care.  WHO.  http://www.who.int/csr/bioriskreduction/infection_control/en/  

xiii  Management  of  Multidrug  -­‐Resistant  Organisms  In  Healthcare  Settings.    JD  Siegel,  E  Rhinehart,  M  Jackson,  L  Chiarello.  The  Healthcare  Infection  Control  Practices  Advisory  Committee.  CDC.    2006.  

xiv  Kluytmans  J,  van  Belkum  A,  Verbrugh  H.  Nasal  carriage  of  Staphylococcus  aureus:  epidemiology,  underlying  mechanisms,  and  associated  risks.  Clin  Microbiol  Rev.  10:505-­‐520.  1997.  

xv  Antimicrobial-­‐Resistant  Pathogens  Associated  With  Healthcare-­‐Associated  Infections:  Annual  SummaryData  Reported  to  the  National  Healthcare  Safety  Network  at  the  Centers  for  Disease  Control  and  Prevention,  2006–2007.      

xvi  AI  Hidron,  JR  Edwards,  J  Patel,  TC  Horan,  DM  Sievert,  DA  Pollock,  SK  Fridkin.  Infection  Control  and  Hospital  Epidemiology.  29(11):996-­‐1011.    Nov  2008.  

xvii  Zimmerli  W.  Antibiotic  prophylaxis.  Ruedi  RP,  Murphy  WM.  (Eds).  AO  Principles  of  fracture  management.  Stuttgart,  Germany  Thieme  Verlag.  2006.  

xviii  NSF  Funds  Infection-­‐Resistant  Orthopedic  Research.  Stevens  Institute  of  Technology.  Press  Release.  21  Jul  2010.    

xix  Gorwitz  RJ,  Kruszon-­‐Moran  D,  McAllister  SK,  et  al.  Changes  in  the  prevalence  of  nasal  colonization  with  Staphylococcus  aureus  in  the  United  States,  2001-­‐2004.  J  Infect  Dis.  2008;197(9):1226-­‐1234.  

xx  Kalmeijer  MD,  van  Nieuwland-­‐Bollen  E,  Bogaers-­‐  Hofman  D,  de  Baere  GA.  Nasal  carriage  of  Staphylococcus  aureus  is  a  major  risk  factor  for  surgical-­‐  site  infections  in  orthopedic  surgery.  Infect  Control  Hosp  Epidemiol.  21:  319-­‐323.  2000.  

xxi  Sexton  T,  Clarke  P,  O’Neill  E,  Dillane  T,  Humphreys  H.  Environmental  reservoirs  of  methicillin-­‐resistant  Staphylococcus  aureus  in  isolation  rooms:  correlation  with  patient  isolates  and  implications  for  hospital  hygiene.  J  Hosp  Infect.  62:187-­‐94.  2006.  

xxii  Melzer  M,  Eykyn  SJ,  Gransden  WR,  Chinn  S.  Is  methicillin-­‐resistant  Staphylococcus  aureus  more  virulent  than  methicillin-­‐susceptible  S.  aureus?  A  comparative  cohort  study  of  British  patients  with  nosocomial  infection  and  bacteremia.  Clin  Infect  Dis.  37:1453-­‐60.  2003.  

xxiii  Kallen  AJ,  Mu  Y,  Bulens  S,  et  al.  Health  care–associated  invasive  MRSA  infections,    2005-­‐2008.  JAMA.  304(6):641-­‐648.  2010.  

xxiv  Wilson  J,  Elgohari  S,  Livermore  DM,  et  al.  Trends  among  pathogens  reported  as  causing  bacteraemia  in  England,  2004  to  2008  [published  online  ahead  of  print  on  May  18,  2010].  Clin  Microbiol  Infect.          European  Antimicrobial  Resistance  Surveillance  System  (EARSS)  Annual  Report  2008.  Vol  2010.  Bilthoven,  the  Netherlands:  EARSS;  2008.  http://www.rivm.nl/earss/Images/EARSS%202008_final_tcm61-­‐65020.pdf.  

xxv  Climo  MW.  Decreasing  MRSA  infections:  an  end  met  by  unclear  means.  JAMA.  301(7):772-­‐773.  2009.  

xxvi  Surgical  Care  Improvement  Project.  QualityNet.  http://www.qualitynet.org  

Page 9: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       9    

                                                                                                                                                                                                                                                                                                                                                                     xxvii  Postoperative  Infections.  JAMA  Patient  Page.  JAMA.  303(24):2544.  June  23/30,  2010.  

xxviii  Diagnosis  and  treatment  of  infections  associated  with  fracture-­‐fixation  devices.  A  Trampuz,WZimmerli.  Injury,  Int.  J.  Care  Injured.  37:S59—S66.  2006.  

xxix  Inhibiting  Microbial  Biofilm  Formation  by  Brominated  Furanones.  S.  Hou,  M.  Duo,  Y.  Han,  Y.  Y.  Luk,  D.  Ren.  J  Bone  Joint  Surg.    2003.  

xxx  Trampuz  A,  Osmon  DR,  Hanssen  AD,  et  al  (2003)  Molecular  and  antibiofilm  approaches  to  prosthetic  joint  infection.  Clin  Orthop;  414:69−88.    

xxxi  S  Hou,  M  Duo,  Y  Han  Y-­‐Y  Luk,  D  Ren.  Materials  and  Processes  for  Medical  Devices.  August  2009.  

xxxii  Donlan  RM.  Biofilms:  Microbial  life  on  surfaces.  Emerg  Infect  Dis;  8(9):881−890.    2002.    

xxxiii  Stewart  PS  Costerton  JW.  Antibiotic  resistance  of  bacteria  in  biofilms.  Lancet.  358(9276):135−138.  26.  2001.        

xxxiv  Darouiche  RO  (2001)  Device-­‐associated  infections:  a  macroproblem  that  starts  with  microadherence.  Clin  Infect  Dis.    33(9):1567−1572.  

xxxv  Zimmerli  W,  Waldvogel  FA,  Vaudaux  P,  et  al  (1982)  Pathogenesis  of  foreign  body  infection:  description  and  characteristics  of  an  animal  model.  J  Infect  Dis.  146(4):487−497.  1982.  

xxxvi  Zimmerli  W,  Lew  PD,  Waldvogel  FA.  Pathogenesis  of  foreign  body  infection:  Evidence  for  a  local  granulocyte  defect.  J  Clin  Invest.  73(4):1191−1200.  1984.  

xxxvii  Gentamicin-­‐eluting  bioresorbable  composite  fibers.  For  wound  healing  applications.  Zilberman  M,  Golerkansky  E,  Elsner  JJ,  Berdicevsky  I.  J  Biomed  Mater  Res  A.  2009  Jun;89(3):654-­‐66.  

xxxviii  Nanoscale  Particle  Therapies  for  Wounds  and  Ulcers.  Roberta  Cortivo;  Vincenzo  Vindigni;  Laura  Iacobellis;  Giovanni  Abatangelo;  Paolo  Pinton;  Barbara  Zavan.  Nanomedicine.  August  2,  2010.  

xxxix  Antibiotic  Eluting  Polypeptide  PLL/PLGA  Nanocoatings  for  the  Potential  Prevention  of  Biomedical  Device-­‐Associated  Infections.  Heather  Ogle.  West  Virginia  University.  May  11,  2008.  

xl  Chitosan  Films.  A  Potential  Local  Drug  Delivery  System  for  Antibiotics.  Scott  P.  Noel  MS,  Harry  Courtney  PhD,  Joel  D.  Bumgardner  PhD,  Warren  O.  Haggard  PhD  Clin  Orthop  Relat  Res  (2008)  466:1377–1382  

xli  Site  Specific  Delivery  -­‐  Global  Impact.    TYRX.  2010.    

Page 10: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       10    

 Table  2:  Examples  of  Potential  Key  Innovation  Leaders  

   

Person's  Name   Title/Expertise  

Albert  Lauritano,  MSc,  CLP   Director,  Business  Development,  Becton  Dickinson  

Dennis  Crowley   Vice  President,  Corporate  Development,  Covidien  

Ted  Davis   Vice  President,  Business  Development,  Wright  Medical  

John  Mack   Senior  Director,  Business  Development  and  Strategy,  Medtronic  CardioVascular  

Matt  Diohep   Director  of  Marketing,  OEM  Products,  Covidien  

Chandan  K.  Sen,  PhD  

Department  of  Surgery  &  Molecular  &  Cellular  Biochemistry;  focuses  on  reactive  oxygen  species  &  anti-­‐oxidant  nutrients  with  emphasis  on  tissue  injury  and  repair;  Executive  Director  of  OSU  Comprehensive  Wound  Center  

Gary  Darnell   Regional  Business  Director,  Novo  Nordisk  

Lisa  Gould,  MD  Chief,  Plastic  Surgery;  Professor  of  Medicine  at  Univ.  of  South  Florida;  Secretary  of  the  Wound  Healing  Society  

Andrew  Purcell  Vice  President  of  US  Sales  and  Marketing,  BD  Diabetes  Care;  Previously  served  as  VP  of  Strategic  Business  Development,  Novo  Nordisk  

Michael  Barszcz   Director  of  Customer  Segment  Marketing,  Novo  Nordisk  

Manas  Kanungo  Innovation  Marketing  Director,  Global  Strategic  Marketing,  WW  Hospital  and  Emerging  Markets,  Abbott  Diabetes  Care  

Charles  Grubsztajn   Vice  President,  Business  Development,  MethylGene  

Nicole  Gibran,  MD  

Research  emphasizes  aberrant  healing  process  including  hypertrophic  scar  formation  and  chronic  non-­‐healing  wounds  seen  with  diabetes;  has  over  100  publications  in  wound  repair,  response  to  injury  and  burns;  Director  of  the  UW  Burn  Center  

Paul  Fuller   Executive  Vice  President,  Stat  Medical  Devices,  Inc.  

Diane  Lever   Director,  Business  Development  &  Licensing,  DSM  Biologics    

Page 11: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       11    

Person's  Name   Title/Expertise  

Peter  Hill,  MD  

At  Johns  Hopkins  University  -­‐  Assistant  Chief  of  Service;  co-­‐founder  and  Medical  Director,    Emergency-­‐Acute  Care  Unit;  Physician  leader,  Department  of  Emergency  Medicine's  'Mid-­‐Level  Provider  Group,'  consisting  of  Nurse  Practitioners  and  Physician  Assistants  who  work  in  all  three  of  the  department's  clinical  venues;      Clinical  Director  since  2005  

Heather  Steinman,  PhD,  MBA   Senior  Associate  Director,  Life  Sciences  Licensing,  University  of  Pennsylvania    

Pamela  A.  Lipsett,  MD,  FCCM  

Professor  of  Surgery,  Anesthesia,  and  Critical  Care,  and  Nursing,  and  Co-­‐Director,  Surgical  Intensive  Care  Units,  Johns  Hopkins  University  Schools  of  Medicine  and  Nursing;  Program  Director  for  General  Surgery  &  Surgical  Critical  Care  Fellowship  

Robert  Kirsner,  MD,  PhD  

Director  Univ.  of  Miami  Hospital  Wound  Center;  Chief,  Dermatology  Dep’t,  Univ.  of  Miami  Hospital;  Co-­‐directs  Symposium  for  Advanced  Wound  Care;  serves  on  planning  committee  for  several  meetings;  editorial  boards  for  dermatology  and  wound  care  journals;  board  member  of  Wound  Healing  Society;  past  president  Association  for  the  Advancement  of  Wound  Care;  chairs  Medical  Advisory  Board  for  National  Healing  Corp  

Mitchell  M.  Levy  MD  FCCM  

Professor  of  Medicine,  Warren  Alpert  Medical  School,  Brown  University;  Medical  Director,  Medical  Intensive  Care  Unit  at  Rhode  Island  Hospital;  Director  of  Critical  Care  Services,  Rhode  Island  Hospital  &  Miriam  Hospital,  Providence,  Rhode  Island  

Kristen  Belmonte  Director,  Business  Development  &  Licensing,  Stiefel,  a  GSK  Company  Adjunct  Assistant  Professor,  Johns  Hopkins  University    

Sam  Stupp,  Ph.D.    Board  of  Trustees  Professor  of  Materials  Science,  Chemistry,  and  Medicine;  Director,  Institute  for  BioNanotechnology  in  Medicine  

David  Lewin   Associate  Director,  Yale  University  Office  of  Cooperative  Research    

Ryan  Bradley     Global  Licensing  Director  -­‐  Global  Marketing  &  Commercial  Development,  Amgen    

Shuming  Nie,  Ph.D.  The  Wallace  H.  Coulter  Distinguished  Faculty  Chair  in  Biomedical  Engineering  &  Professor,  Director  for  Emory-­‐Georgia  Tech  Cancer  Nanotechnology  Center    

Stephen  Hemsley  President  and  Chief  Executive  Officer  of  United  Health  Group.    Prior  to  2006,  Chief  Operating  Officer  at  United  Health  Group.  

Page 12: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       12    

Person's  Name   Title/Expertise  

Wendy  R.  Sanhai,  PhD  

Senior  Scientific  Advisor,  Immediate  Office  of  the  Commissioner,  FDA,  Nanotechnology  Sub-­‐Committee  of  the  Interagency  Oncology  Task  Force  (IOTF)  between  FDA  and  NCI.  

William  S.  Dynan,  Ph.D.  Professor  and  GRA  Eminent  Scholar,  Chief,  Nanomedicine  and  Gene  Regulation  Program,  Institute  of  Molecular  Medicine  and  Genetics  

Tom  Fenwick     Strategic  Sourcing  Manager  -­‐  Chemicals  &  Biologicals,  BD    

Kathleen  Greene  Director,  BDSI  Strategic  Sourcing,  Process  Improvement,  &  Records  Information  Management,  Genzyme    

Scott  E.  McNeil,  PhD  

Director,  Nanotechnology  Characterization  Laboratory  for  the  National  Cancer  Institute,  Frederick;  coordinates  pre-­‐clinical  characterization  of  nanomaterials  intended  for  cancer  therapeutics  &  diagnostics;  advisor  to  Industry,  State  &  US  Governments  on  development  of  nanotechnology;  member  of  several  governmental  and  industrial  working  groups  related  to  nanotechnology  policy;  standardization  and  commercialization.  

Alice  Ting,  Ph.D.  Associate  Professor,  Department  of  Chemistry.  Development  of  molecular  probes  for  the  study  of  cellular  biochemistry  

Bill  Crow   HTC  Entrepreneur  in  Residence  for  NanoEnergy  &  NanoHealth  

JP  Scott,  MD  

Practicing  physician  and  Professor  of  Medicine,  Mayo  Clinic.    Interests  include  Cystic  Fibrosis,  Pulmonary  Hypertension,  Lung  Transplantation  Immunology,  Pulmonary  Connective  Tissue  Diseases,  Medical  Ethics.  

John  Buckley,  MD,  FCCP  

Chair,  Bylaws  Committee  and  President,  Association  of  Pulmonary  and  Critical  Care  Medicine  Program  Directors;  Vice  Chair  for  Quality  -­‐  Department  of  Internal  Medicine,  Indiana  University  School  of  Medicine.  

Jeffrey  Korsmo   Executive  Director,  Mayo  Clinic  Health  Policy  Center    

Chiming  Wei,  M.D.,  Ph.D.,    

Director,  Cardiothoracic-­‐Renal  Nanomedicine  Program,  Chairman  of  AANM,  Editor-­‐in-­‐Chief,  NANOMEDICINE,  Editor-­‐in-­‐Chief,  Journal  of  Cardiothoracic-­‐Renal  Research  (JCRR)  

Jeffery  Schloss,  Ph.D.  Technology  Development,  Division  of  Extramural  Research,  National  Human  Genome  Research  Institute  

Page 13: Surgical Site Infection and Implications on the Orthopedic Implant Market

                                       13    

Person's  Name   Title/Expertise  

Christina  Catlett,  MD  

Associate  Director  for  Health  System  Preparedness,  The  Johns  Hopkins  Office  of  Critical  Event  Preparedness  &  Response  (CEPAR);  Assistant  Professor,  Department  of  Emergency  Medicine.  

Jeffrey  Houpt,  MD  

Chairman  of  the  Board,  Blue  Cross  Blue  Shield  of  North  Carolina;  Immediate  past  CEO  of  UNC  Health  Care  System  and  Dean  of  the  School  of  Medicine,  University  of  North  Carolina  at  Chapel  Hill.  

Jeroen  de  Wilt     Regulatory  Affairs  Coordinator  European  Procedures,  Merck  Sharp  &  Dohme    

Kevin  Carroll     Director,  Data  Operations  and  Global  Standards,  Bristol-­‐Myers  Squibb    

Susan  Deitch     AD  Policies  and  Procedures,  Wyeth    

Mary  Kane     Director,  Financial  Compliance  &  Procedures,  Johnson  &  Johnson    

Louis-­‐André  Villeneuve   International  Business  Unit  Leader,  Roche  Pharmaceuticals  

Jos  Verest   Director  of  Strategic  Operations,  Novo  Nordisk  

David  Harrison   Regional  Business  Director,  Boehringer  Ingelheim