Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

27
Surface Es+mates of the Atlan+c Overturning in Density Space in an EddyPermi=ng Ocean Model Jeremy Grist 1 , Simon Josey 1 Robert Marsh 2 1 Na+onal Oceanography Centre, UK 2 University of Southampton, UK Funded by Natural Environment Research Council, UK

Transcript of Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Page 1: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Surface  Es+mates  of  the  Atlan+c  Overturning  in  Density  Space  in  an  Eddy-­‐Permi=ng  Ocean  Model  

Jeremy  Grist1,  Simon  Josey1  

Robert  Marsh2    

1Na+onal  Oceanography  Centre,  UK  2University  of  Southampton,  UK  

Funded  by  Natural  Environment  Research  Council,  UK  

Page 2: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Context  

Marsh (2000) described (but did not test) a method that might allow ‘the meridional stream function to be largely inferred from surface fluxes alone”. We’ve examined this possibility using output from:

1)  Three IPCC coupled climate models. (100-400 years of GFDL2.1, BCM, HadCM3) (Grist et al. 2009; Josey et al. 2009).

2)  Eddy-permitting (1/4 º) ocean only model (78 years of ORCA-025, ‘NEMO’) (Grist et al., 2012).

Page 3: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Method  

Net diapycnal volume flux, G (Θ,ρ) and Diapycnal density fluxes D (Θ,ρ) in an idealized North Atlantic.

Marsh  (2000),  Walin  (1982)  

F (θ,ρ)

Page 4: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Net diapycnal volume flux, G (Θ,ρ) and Diapycnal density fluxes D (Θ,ρ) in an idealized North Atlantic.

Marsh  (2000),  Walin  (1982)  

F (θ,ρ)

!

G(", #) = F(", #) - $Ddiff (",# )$# + C(", #)

!

F(", #) = $Din (",# )$#

Method  

Page 5: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Net diapycnal volume flux, G (Θ,ρ) and Diapycnal density fluxes D (Θ,ρ) in an idealized North Atlantic.

Assuming  incompressibility  and  steady  state  of  water  masses,  the  meridional  streamfunc+on  then:  ψ  (Θ,ρ)  =  G  (Θ,ρ)    

Marsh  (2000),  Walin  (1982)  

F (θ,ρ)

!

F(", #) = $Din (",# )$#

Method  

!

G(", #) = F(", #) - $Ddiff (",# )$# + C(", #)

Page 6: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Net diapycnal volume flux, G (Θ,ρ) and Diapycnal density fluxes D (Θ,ρ) in an idealized North Atlantic.

Assuming  incompressibility  and  steady  state  of  water  masses,  the  meridional  streamfunc+on  then:  ψ  (Θ,ρ)  =  G  (Θ,ρ)    

Marsh  (2000),  Walin  (1982)  

F (θ,ρ)

!

G(", #) = F(", #) - $Ddiff (",# )$# + C(", #)

!

F(", #) = $Din (",# )$#

Method  

Page 7: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

   !

G(", #) $ F(", #) = %Din (",# )%#

‘Surface-­‐Forced’  Streamfunc+on  (Sv)    

Latitude (ºN) 20 40 60 80

20 40 60 80 Latitude (ºN)

Latitude (ºN) 20 40 60 80

GFDL2.1 25.5  26.0  26.5  27.0  27.5  28.0  

25.5  26.0  26.5  27.0  27.5  28.0  

HadCM3

25.5  26.0  26.5  27.0  27.5  28.0  

BCM2.0

σ0  

σ0  

σ0  

Grist  et  al.  (2009)  

Marsh  (2000)  

Page 8: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Correla+on  of  AMOC  (48N)  vs  Surface  Forced  Index  (SFI)    

GFDL2.1 HadCM3

BCM2.0

• Year on year SFI ≠ AMOC

•  But significant correlation when SFI leads by a few years in all models.

•  Averaging the SFI over preceding years may give a useful estimate of AMOC variability.

Correla+ons  Maximum  ‘Surface-­‐Forced’  (SFI)  &  Overturning  Stream  func+ons  

Page 9: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

GFDL2.1

HadCM3

BCM2.0

AMOC  (48N)  solid  lines  and  past  average  of  SFI  (dashed) 3  yrs   15  yrs  10  yrs  6  yrs  

0.38

0.37 0.38 0.06

0.59 0.66 0.60

0.19

0.31 0.44 0.51 0.56

15-44% of interannual variability

SFI  &  AMOC  in  the  Coupled  Models  

Page 10: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

We compared our estimate to AMOC (z,θ)

The theory suggests compare With MOC (σ or ρ,θ). (Density as a vertical coordinate!)

Our surface forced streamfunction shows similarities to MOC (σ,θ).

AMOC(z,θ)

MOC(σ,θ)

F(σ,θ)

1000

3000

5000 Dep

th (m

)

21 23 25 27

Pot

. Den

sity

, σ (k

g m

-3)

21 23 25

27 P

ot. D

ensi

ty, σ

(kg

m-3

)

20 30 40 50 60 70

20 30 40 50 60 70

20 30 40 50 60 70 Latitude

Latitude

Latitude

AMOC in ¼º NEMO Model

Page 11: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

We compared our estimate to AMOC (z,θ)

The theory suggests compare With AMOC (σ or ρ,θ). (Density as a vertical coordinate)

Our surface forced streamfunction shows similarities to MOC (σ,θ).

AMOC(z,θ)

AMOC(σ,θ)

F(σ,θ)

1000

3000

5000 Dep

th (m

)

21 23 25 27

Pot

. Den

sity

, σ (k

g m

-3)

21 23 25

27 P

ot. D

ensi

ty, σ

(kg

m-3

)

20 30 40 50 60 70

20 30 40 50 60 70

20 30 40 50 60 70 Latitude

Latitude

Latitude

AMOC in ¼º NEMO Model

Page 12: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

We compared our estimate to AMOC (z,θ)

The theory suggests compare With AMOC (σ or ρ,θ). (Density as a vertical coordinate)

Our surface forced streamfunction shows similarities to AMOC (σ,θ).

AMOC in ¼º NEMO Model AMOC(z,θ)

AMOC(σ,θ)

F(σ,θ)

1000

3000

5000 Dep

th (m

)

21 23 25 27

Pot

. Den

sity

, σ (k

g m

-3)

21 23 25

27 P

ot. D

ensi

ty, σ

(kg

m-3

)

20 30 40 50 60 70

20 30 40 50 60 70

20 30 40 50 60 70 Latitude

Latitude

Latitude

Page 13: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude

0.9

0.7

0.5

0.3

0.1

r2

20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1

r2

Fraction AMOC explained By Surface Fluxes

AMOC (Z) HadCM3 Climate Model Josey et al. 2009

Page 14: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1

r2

AMOC (z) NEMO Ocean Model

Fraction AMOC explained By Surface Fluxes

AMOC (Z) HadCM3 Climate Model Josey et al. 2009

Page 15: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1

AMOC (σ) NEMO Ocean Model

r2

AMOC (z) NEMO Ocean Model

Fraction AMOC Explained By Surface Fluxes

AMOC (Z) HadCM3 Climate Model Josey et al. 2009

Page 16: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1

AMOC (σ) NEMO Ocean Model

r2

AMOC (z) NEMO Ocean Model

Fraction AMOC Explained By Surface Fluxes

20 30 40 50 60 70 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

MHT vs AMOC (σ)

MHT vs AMOC (z)

AMOC (Z) HadCM3 Climate Model Josey et al. 2009

Page 17: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1

AMOC (σ) NEMO Ocean Model

r2

AMOC (z) NEMO Ocean Model

Fraction AMOC Explained By Surface Fluxes

AMOC (Z) HadCM3 Climate Model Josey et al. 2009

Page 18: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1 AMOC (Z) HadCM3 Climate Model Josey et al. 2009

AMOC (σ) NEMO Ocean Model

AMOC (σ) Ocean Model + Ekman wind variability

r2

AMOC (z) NEMO Ocean Model

Fraction AMOC Explained By Surface Fluxes

Page 19: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Theory  

Theory + Surface Observations

Page 20: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Theory  

-100 -50 0-60

-40

-20

0

20

40

60

80

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Theory + Surface Observations SSS   SST   Wind  Stress  

Net  Heat   E-­‐P  

Page 21: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Updated  from  Grist  et  al.  (2009)  

1960 1970 1980 1990 2000 2010

-4

-2

0

2

4

Surface-Forced Overturning Anomaly (Sv) at 48ºN (solid)

with Ekman Contribution (dashed)

Updated  from  Grist  et  al.  (2009)  

Theory  

-100 -50 0-60

-40

-20

0

20

40

60

80

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

AM

OC

Ano

mal

y (S

v)

420-2 -4

Year

Theory + Surface Observations SSS   SST   Wind  Stress  

Net  Heat   E-­‐P  

1960 1970 1980 1990 2000 2010

Page 22: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Surface-Forced Overturning Anomaly (Sv) at 48ºN (solid)

with Ekman Contribution (dashed)

Updated  from  Grist  et  al.  (2009)  

Theory  

-100 -50 0-60

-40

-20

0

20

40

60

80

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1960 1970 1980 1990 2000 2010

-4

-2

0

2

4

1960 1970 1980 1990 2000 2010

-4

-2

0

2

4

AM

OC

Ano

mal

y (S

v)

420-2 -4

1960 1970 1980 1990 2000 2010 Year

Theory + Surface Observations SSS   SST   Wind  Stress  

Net  Heat   E-­‐P  

GECCO  

Balmaseda  et  al  (2007)  

Bingham  &  Hughes  (2009)  

Hobbs  &  Willis(2012)  

Page 23: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Summary  •  In ¼º NEMO ocean model, the water mass transformation method

can be used to estimate AMOC variability. •  In sub-polar regions the method explains much more variability in

AMOC (σ0) than AMOC (z). •  The surface density fluxes capture much of the decadal signal

while the additional calculation of Ekman transport allows the higher frequency variability to be captured

•  The method shows greatest potential between 33ºN and 54ºN where 70-84% of the AMOC (σ0) variance is explained.

•  As the method relies only on surface observations, estimate of AMOC variability can be made for the reanalysis era.

•  We seek to determine the spread in time series resulting from the different reanalysis / salinity products & reconcile the surface forced signal with other mid-latitude AMOC estimates.

Page 24: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

100yr Mean MOC (Sv) GFDL2.1

HadCM3

MOC (Sv) at 48ºN MOC  vs  SFOC  in  Coupled  Climate  Models  

•  BCM2.0

100yr Mean SFOC (Sv)

SFOC Index (Sv)

Dep

th (m

) D

epth

(m)

Dep

th (m

)

σ0

σ0

σ0

Latitude

Latitude

Latitude

Latitude

20N

20N

20N

20N

20N

20N

70N

70N

70N

70N

70N 70N

Page 25: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

A  

r2 – Surface Forced Estimate vs AMOC (σ0)

         20              30              40              50                60              70            La+tude  

0.2  0.4  0.6  0.8  

0.0  

1.0  

 Grist,  Josey,  Marsh  (JGR-­‐Oceans,  under  review,  2012)  

Model AMOC (σ0) (black) & Surface Forced Estimates (red) at 50ºN  

AMOC (σ0) Surface Fluxes Surface Fluxes (with Ekman)

Surface Fluxes Surface Fluxes (with Ekman)

0

19  10          20          30          40          50          60          70  Model  Year  

r2  

0  2  4  

-­‐2  -­‐4  A

MO

C A

nom

aly

(Sv)

4.  Influence  of  Surface  Fluxes  on  AMOC  Variability  

Page 26: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

20 30 40 50 60 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r2

Latitude20 30 40 50 60 70 Latitude

0.9

0.7

0.5

0.3

0.1 AMOC (Z) HadCM3 Climate Model

AMOC (σ) Ocean Model

AMOC (σ) Ocean Model + Ekman wind variability

r2

AMOC (z) NEMO Ocean Model

Fraction AMOC explained By Surface Fluxes

Page 27: Surface(Es+mates(of(the(Atlan+c( Overturning(in(Density ...

Updated  from  Grist  et  al.  (2009)  

1960 1970 1980 1990 2000 2010

-4

-2

0

2

4

1960 1970 1980 1990 2000 2010

-4

-2

0

2

4

Surface-Forced Overturning Anomaly (Sv) at 48ºN (solid)

with Ekman Contribution (dashed)

Updated  from  Grist  et  al.  (2009)  

Theory  

-100 -50 0-60

-40

-20

0

20

40

60

80

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

AM

OC

Ano

mal

y (S

v)

420-2 -4

Year

Theory + Surface Observations SSS   SST   Wind  Stress  

Net  Heat   E-­‐P  

GECCO  

Balmaseda  et  al  (2007)   1960 1970 1980 1990 2000 2010