Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A....

17
Surface UV from TOMS/OMI Surface UV from TOMS/OMI measurements measurements N. Krotkov 1 , J. Herman 2 , P.K. Bhartia 2 , A. Tanskanen 3 , A. Arola 4 1. Goddard Earth Sciences and Technology (GEST) Center, UMBC, Baltimore, MD 2. Laboratory for Atmospheres, NASA GSFC, Greenbelt, MD 3. Finnish Meteorological Institute , Helsinki, Finland 4. Finnish Meteorological Institute , Kuopio, Finland

Transcript of Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A....

Page 1: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Surface UV from TOMS/OMI Surface UV from TOMS/OMI measurementsmeasurements

N. Krotkov1, J. Herman2, P.K. Bhartia2 , A. Tanskanen3 , A. Arola4

1. Goddard Earth Sciences and Technology (GEST) Center, UMBC, Baltimore, MD

2. Laboratory for Atmospheres, NASA GSFC, Greenbelt, MD

3. Finnish Meteorological Institute , Helsinki, Finland

4. Finnish Meteorological Institute , Kuopio, Finland

Page 2: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

OMI Science questions

• Is the ozone layer recovering ?

• What are sources and distributions of aerosols and trace gases that affect global air quality?

• What are the roles of tropospheric ozone and aerosols in climate change?

• What are the causes of surface UV-B change ?

Levelt et al “ Science objectives of Ozone Monitoring Instrument “ in IEEE- TGRS AURA special issue

Page 3: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

UV products: noon irradiance + Daily CIE dose (305nm, 310nm, 324nm, 380nm, CIE - UV index)

305nm 324nm

380nmErythemal – UV index

Page 4: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Current Applications of TOMS/OMI UV data

1. Sun burn and skin cancer PHS, NIH, WHO2. Eye cataracts PHS, NIH, WHO3. Plant damage - Crop yields USDA4. Food chain - Land – Oceans USDA, NOAA5. Effect on insect population NIH, PHS, WHO

Page 5: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

TOMS/OMI UV algorithm

OMI Ozone

Clouds

Aerosols

Fc ~ FO3(1 – R)

ASeFF OG 210/

3

ROeFF oO 3

3

Absorbing aerosols are still a major problem

Clouds and non-absorbing aerosols are well corrected

Sun: Fo ( ~ 3% uncertainty )

Page 6: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Cloud correction algorithm (CT)

TOMSISCCP

Ground CT measurement

Sat

elli

te C

T e

stim

ate

daily

10 day

monthly

(1:1)UV- Williams et al GRL 2004 (1:1)

PAR - Dye et al GRL 1995

Page 7: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Clouds over snow correction

• Surface albedo is a crucial parameter for estimation of the surface UV in regions with temporary snow or ice.

• OMI UV algorithm applies an albedo climatology derived from the N7/TOMS reflectivity data using the moving time window method.

• The accuracy of the surface UV estimates for high latitudes has improved.However, the estimates for albedo transient periods are still uncertain.

http://promote.fmi.fi/MTW_www/MTW.html

Page 8: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

The TOMS-Brewer difference for erythemally weighted UV irradiance and for UV irradiance at 305, 310, and 324 nm.

Summer noon values for mostly clear sky conditions (TOMS reflectivity <0.2)

-10

0

10

20

30

She

nand

oah

The

odor

eS

atur

naB

ig B

end

Can

yonl

ands

Alb

uque

rque

Mon

treal

G. S

mok

ey M

tG

laci

er

Oly

mpi

cA

cadi

a

Den

ali

Atla

nta

Goo

se B

ay

Chi

cago

Chu

rchi

ll

Gai

ther

sbur

gH

alifa

xE

dmon

ton

Win

nipe

gS

aska

toon

Reg

ina

Toro

nto

Roc

ky M

t

Bou

lder

Res

.Tri.

Par

k

Virg

in Is

land

sS

equo

iaR

iver

side

Eve

rgla

des

TOM

S-B

rew

er d

iffer

ence

(%

)

UV 324 nm

UV 310 nm

UV 305 nm

CIE

Page 9: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

-10

0

10

20

30

40

Riverside Canyonlands Res.Tri.Park Shenandoah Gaithersburg Saturna Toronto

TO

MS

-Bre

we

r d

iffe

ren

ce

(%

)

1989

1990

1991

1992

1996

1997

1998

1999

2000

2001

The TOMS-Brewer difference for erythemally weighted summer noon UV irradiance for mostly clear sky conditions (TOMS reflectivity <0.2)

Urban locations

Page 10: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

TOMS AI examples of high-density smoke aerosols that affect various coastal regions in the US, India, and Southeast Asia. Lesser amounts of smoke, dust, and carbonaceous aerosols frequently cause overestimations of UV irradiance if ignored.

US

India

Southeast Asia

Long-range ABSORBING aerosol transport in free troposphere is uniquely tracked by OMI/TOMS Aerosol Index (AI)

AI cannot detect boundary layer UV absorbing aerosols resulting in overestimates of UV irradiance that are frequently 10% and sometimes 20%.

Page 11: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

UV reduction due to absorbing aerosols in free troposphere (dust, smoke) is corrected using positive AI >0.5 data

Industrial aerosols close to the ground are not seen in AI data (AI <0), so they are treated as thin clouds, which leads to positive UV bias

Page 12: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Since 2002, the NASA TOMS, AERONET and USDA UVB programs have shared equipment, personnel and analysis tools to quantify aerosol UV-VIS absorption using a combination of ground based radiation measurements.

Ground AEROSOL absorption measurements

Brewer spectrometer ozone, SO2, NO2 [Cede and Herman]

UV Multifilter Rotating Shadowband Radiometer

AERONET CIMEL sun-sky radiometers

Page 13: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Time series of aerosol absorption optical thickness tabs at 368nm, derived from 17 months UV-MFRSR operation at NASA GSFC site in Maryland, US. The data are for cloud-free and snow-free conditions and tabs(440)>0.1. Individual tabs(368) values were averaged over 1-hour period of time within ±60min of the AERONET inversion.

The ratio between satellite estimated (by TOMS UV algorithm7-10) and measured (by UVMFRSR) total (direct plus diffuse) surface UV irradiance at 325nm versus aerosol absorption optical thickness at 325nm inferred from combined UV-MFRSR and AERONET measurements at NASA/GSFC site. The line shows theoretical relationship derived from radiative transfer modeling10.

1Krotkov et al. Opt. Engineering 2005

TOMS UV Correction for Absorbing Aerosols in Greenbelt, USA 1

TO

MS

/Gro

und

UV

AB

S a

t 325

nm

ABS at 325nm

Page 14: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

The ratio of TOMS to Brewer irradiance at 324nm against aerosol absorption optical thickness in Thessaloniki, Greece

1Arola et al. accepted JGR 2005

TOMS UV Correction for Absorbing Aerosols in 2 urban sites 1

The ratio of TOMS to Brewer irradiance at 324nm against aerosol absorption optical thickness at Ispra, Italy

SZA=20-30

SZA=40-50

SZA=60-70

Page 15: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Future Applications of OMI data

1. Global mapping of PAR (400-700nm) 2. Actinic flux profile and J-rates for photochemistry models3. UV irradiance on tilted surfaces4. Global mapping of underwater UV-PAR irradiance5. Global primary production estimates6. Global carbon cycle models

Page 16: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

Erythemal Irradiance Trend 1980 to 2002

O3R360

Page 17: Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)

305 nm Irradiance Trend 1980 to 2002

R360O3