SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye...

9
Supporting Information: Temperature-Dependence of the Dielectric Relaxation of Water using Non-Polarizable Water Models Piotr Zarzycki * and Benjamin Gilbert * Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States E-mail: [email protected]; [email protected] List of Tables S1 Kirkwood factors, HB-dynamics ......................... S-2 List of Figures S1 Slow convergence of the static dielectric constant (TIP4P-FB) ........ S-3 S2 Convergence of the static dielectric constant (TIP3P-FB) ........... S-4 S3 Stochastic variation in ǫ in Langevin dynamics ................. S-4 S4 DRS: simulations vs experiment (H 2 O-DC, SPC-DC) ............. S-5 S5 DRS: simulations vs experiment (OPC, OPC3) ................. S-6 S6 DRS: simulations vs experiment (TI3P-FB, TIP4P-FB) ............ S-7 S7 DRS: simulations vs experiment (TIP4Q, TIP4P/ǫ) .............. S-8 S-1 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Transcript of SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye...

Page 1: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

Supporting Information:

Temperature-Dependence of the Dielectric

Relaxation of Water using Non-Polarizable Water

Models

Piotr Zarzycki∗ and Benjamin Gilbert∗

Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

Berkeley, California 94720, United States

E-mail: [email protected]; [email protected]

List of Tables

S1 Kirkwood factors, HB-dynamics . . . . . . . . . . . . . . . . . . . . . . . . . S-2

List of Figures

S1 Slow convergence of the static dielectric constant (TIP4P-FB) . . . . . . . . S-3

S2 Convergence of the static dielectric constant (TIP3P-FB) . . . . . . . . . . . S-4

S3 Stochastic variation in ǫ in Langevin dynamics . . . . . . . . . . . . . . . . . S-4

S4 DRS: simulations vs experiment (H2O-DC, SPC-DC) . . . . . . . . . . . . . S-5

S5 DRS: simulations vs experiment (OPC, OPC3) . . . . . . . . . . . . . . . . . S-6

S6 DRS: simulations vs experiment (TI3P-FB, TIP4P-FB) . . . . . . . . . . . . S-7

S7 DRS: simulations vs experiment (TIP4Q, TIP4P/ǫ) . . . . . . . . . . . . . . S-8

S-1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.This journal is © the Owner Societies 2019

Page 2: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

Table S1: Calculated Kirkwood factors, rate constant for the hydrogen-bond breaking, andHB-bond energetics of water at 298K (19 non-polarizable water models).

Water Kirkwood factors Hydrogen-bond network dynamics

Model gK GK τHB [ps] kb[ps−1] n

cycleb

(νD) ∆G[kcal/mol]

three-point modelsSPC 2.515 3.744 6.003 0.167 4.94 2.144SPC/E 2.499 3.722 6.888 0.145 5.17 2.226SPC/EB 2.468 3.676 8.742 0.114 5.36 2.367SPC/FW 2.794 4.166 7.417 0.135 5.66 2.270SPC-DC 2.693 4.015 6.306 0.159 4.97 2.173TIP3P 3.605 5.381 3.658 0.273 5.88 1.851TIP3PF 3.278 4.891 4.959 0.202 6.17 2.031TIP3P-FB 2.678 3.993 7.670 0.130 5.93 2.289H2O-DC 2.670 3.980 7.340 0.136 5.37 2.263OPC3 2.655 3.958 7.539 0.133 4.99 2.279

four-point modelsOPC 2.519 3.755 7.354 0.136 4.87 2.264TIP4P 2.127 3.160 5.353 0.187 3.91 2.076TIP4PEW 2.345 3.491 7.160 0.140 4.76 2.249TIP4P-FB 2.545 3.793 8.493 0.118 4.59 2.350TIP4P2005 2.121 3.154 7.966 0.126 4.31 2.312TIP4Q 2.657 3.961 7.630 0.131 5.58 2.286TIP4P/ǫ 2.618 3.902 7.986 0.125 5.32 2.313

five-point modelsTIP5P 3.485 5.199 6.490 0.154 6.93 2.190TIP5PEW 3.646 5.441 6.173 0.162 6.76 2.161

S-2

Page 3: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

ǫ(0) at time t=

Simulation 8 ns 10 ns 30 ns 60 ns 100 ns

0 78.16 78.34 76.781 79.41 78.07 78.68 78.33 79.012 80.59 78.79 77.57 77.16 77.673 80.26 79.18 79.54 78.77 79.414 77.59 76.47 76.98 77.67 77.515 79.17 79.71 78.03 78.10 77.636 79.64 81.00 80.63 78.70 78.647 80.85 82.48 80.83 80.72 80.348 77.54 80.02 79.51 79.67 79.279 79.49 80.01 79.88 79.91 79.50

79.27 79.41 78.84 78.78 78.78Variance σ 1.39 2.76 2.14 1.30 0.98

Average 〈ǫ(0)〉

3.32

4.05

2.83

6.01

3.56

ǫ(0)max − ǫ(0)min︸ ︷︷ ︸

static

dielectricconstan

tǫ(0)

time [ns]

60 ns30 ns

Figure S1: Slow convergence of the static dielectric constant (illustrated for the TIP4P-FB water model at 298 K). The results presented in tables are averages of the dielectricproperties over last nanosecond of 30 ns simulations.

S-3

Page 4: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

static

dielectricconstantǫ(0)

time [ns]

81.4281.8583.1 82.0 81.2 81.5

Figure S2: Slow convergence of the static dielectric constant (illustrated for the TIP3P-FBwater model at 298 K).

40

50

60

70

80

90

100

0 5 10 15 20 25 30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

time [ns]time [ns]

static

dielectricconstantǫ(0)

(a) (c)

40

50

60

70

80

90

100

0 5 10 15 20 25 30

(b)

30 ns 30 ns

Self-guided Langevin dynamicscollision frequency γ

γ = 0.1 ps−1 γ = 1.0 ps−1 γ = 2.0 ps−1

Simulation ǫ(0)1 78.51 77.72 77.052 77.26 78.73 80.773 78.15 77.80 79.274 75.88 77.47 78.575 78.56 78.35 80.276 75.89 80.13 76.73

average 77.37 78.37 78.78

std. dev. 1.25 0.98 1.65variance 1.56 0.95 2.74

30 ns

γ = 0.1 ps−1 γ = 1.0 ps−1 γ = 2.0 ps−1

time [ns]

Figure S3: Stochastic variation in ǫ in Langevin dynamics for varying collision frequency γ

in Langevin thermostat (TIP4P-FB water model): (a) 0.1 ps−1, (b) 1.0 ps

−1, (c) 2.0 ps−1.

S-4

Page 5: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

(b) H2ODC

dielectricloss

ǫ′′(ν)

dielectricconstan

tǫ′(ν)

0

10

20

30

40

50

60

70

80

90

100

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

0

10

20

30

40

50

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

dielectricloss

ǫ′′(ν)

dielectricconstan

tǫ′(ν)

(d) SPCDC

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

(c) SPCDC

(a) H2ODC

frequency ν (Hz)frequency ν (Hz)

1

2

3

4

12

31

2

3

4

4

1

2

3

4

Figure S4: Comparison of the Debye function fit to the experimental data and the simulateddielectric spectra obtained for H2ODC and SPCDC water models.S1 The difference betweenexperimental and simulated static dielectric constants are within the simulation error (2-3%). The simulates predict the water relaxation is simulated at higher frequencies andshorter relaxation times (τD) than the Debye-function fitted to the experimental data.

S-5

Page 6: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

(d) OPC(c) OPC

dielectricloss

ǫ′′(ν)

dielectricconstantǫ′(ν)

0

10

20

30

40

50

60

70

80

90

100

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

0

10

20

30

40

50

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

dielectricloss

ǫ′′(ν)

dielectricconstan

tǫ′(ν)

frequency ν (Hz)frequency ν (Hz)

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

(b) OPC3(a) OPC3

Figure S5: Comparison of the Debye function fit to the experimental data and the simulateddielectric spectra obtained for OPC3 and OPC water models.S2,S3 The difference betweenexperimental and simulated static dielectric constants are within the simulation error (2-3%). The simulates predict the water relaxation is simulated at higher frequencies andshorter relaxation times (τD) than the Debye-function fitted to the experimental data.

S-6

Page 7: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

(a) TIP4Q (b) TIP4Q

0

10

20

30

40

50

60

70

80

90

100

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

0

10

20

30

40

50

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

dielectricloss

ǫ′′(ν)

dielectricconstan

tǫ′(ν)

dielectricloss

ǫ′′(ν)

dielectricconstan

tǫ′(ν)

(d) TIP4P/ε

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

frequency ν (Hz)frequency ν (Hz)

(c) TIP4P/ε

Figure S6: Comparison of the Debye function fit to the experimental data and the simulateddielectric spectra obtained for TIP3P-FB and TIP4P-FB water models.S4 The differencebetween experimental and simulated static dielectric constants are within the simulationerror (2-3%). The simulates predict the water relaxation is simulated at higher frequenciesand shorter relaxation times (τD) than the Debye-function fitted to the experimental data.

S-7

Page 8: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

dielectricloss

ǫ′′(ν)

dielectricconstantǫ′(ν)

frequency ν (Hz)

0

10

20

30

40

50

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

0

10

20

30

40

50

60

70

80

90

100

1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

frequency ν (Hz)

dielectricloss

ǫ′′(ν)

dielectricconstantǫ′(ν)

(a) TIP3P-FB (b) TIP3P-FB

(c) TIP4P-FB (d) TIP4P-FB

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

Debye Fit-exp. simulationsT [K]

269.06

293.16

313.16

333.16

Figure S7: Comparison of the Debye function fit to the experimental data and the simulateddielectric spectra obtained for TIP4Q and TIP4P/ǫ water models.S5,S6 The difference betweenexperimental and simulated static dielectric constants are within the simulation error (2-3%).The simulates predict the water relaxation is simulated at higher frequencies and shorterrelaxation times (τD) than the Debye-function fitted to the experimental data.

S-8

Page 9: SupportingInformation: Temperature ... · (a) OPC3 (b) OPC3 Figure S5: Comparison of the Debye function fit to the experimental data and the simulated dielectric spectra obtained

ACKNOWLEDGEMENTS

This work was supported by funding from U.S. Department of Energy (DOE) Chemical

Sciences, Geosciences, and Biosciences Division under Contract DE-AC02- 05CH11231.

References

(S1) Fennell, C. J.; Li, L.; Dill, K. A. Simple Liquid Models with Corrected Dielectric

Constants. J. Phys. Chem. B 2012, 116, 6936–6944.

(S2) Izadi, S.; Onufriev, A. V. Accuracy Limit of Rigid 3-Point Water Models. J. Chem.

Phys. 2016, 145, 074501–11.

(S3) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water Models: A Different

Approach. J. Phys. Chem. Lett 2014, 5, 3863–3871.

(S4) Wang, L.-P.; Martinez, T. J.; Pande, V. S. Building Force Fields: An Automatic,

Systematic, and Reproducible Approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891.

(S5) Alejandre, J.; Chapela, G. A.; Saint-Martin, H.; Mendoza, N. A Non-Polarizable Model

of Water That Yields the Dielectric Constant and the Density Anomalies of the Liquid:

TIP4Q. Phys. Chem. Chem. Phys. 2011, 13, 19728–13.

(S6) Fuentes-Azcatl, R.; Alejandre, J. Non-Polarizable Force Field of Water Based on the

Dielectric Constant: TIP4P/ε. J. Phys. Chem. B 2014, 118, 1263–1272.

S-9