Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK =...

10
Mitochondria, oxygen and cardiac PCr/ATP 1 Supplementary materials There now follows a complete mathematical description of the basic model used in the present study. Subscripts: e, external (cytosolic); i, internal (mitochondrial); t, total; f, free; m, magnesium complex; j, monovalent. All reaction rates are expressed in M min -1 . The Mathematica notebook file of the basic model can be downloaded here: http://dl.dropbox.com/u/1998606/heart_model_molbiosyst2011.nb Kinetic equations Substrate dehydrogenation: v k K NAD NADH DH DH mN p D 1 1 k DH = 96293 M min -1 , K mN =100, p D =0.8 Complex I: 1 1 1 C C C G k v k C1 = 819.61 M mV -1 min -1 Complex III: 3 3 3 C C C G k v k C3 = 467.90 M mV -1 min -1 Complex IV: v k a c K O C C mO 4 4 2 2 2 1 1 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2011

Transcript of Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK =...

Page 1: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

1

Supplementary materials

There now follows a complete mathematical description of the basic model used in the

present study. Subscripts: e, external (cytosolic); i, internal (mitochondrial); t, total; f, free; m,

magnesium complex; j, monovalent. All reaction rates are expressed in M min-1

. The

Mathematica notebook file of the basic model can be downloaded here:

http://dl.dropbox.com/u/1998606/heart_model_molbiosyst2011.nb

Kinetic equations

Substrate dehydrogenation:

v kK

NAD NADH

DH DH

mN

pD

1

1

kDH= 96293 M min-1

, KmN=100, pD=0.8

Complex I:

111 CCC Gkv

kC1= 819.61 M mV-1

min-1

Complex III:

333 CCC Gkv

kC3= 467.90 M mV-1

min-1

Complex IV:

v k a cK

O

C CmO

4 4

2 2

2

1

1

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 2: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

2

kC4= 12.348 M -1

min-1

, KmO=120 M (apparent KmO=0.8 M)

ATP synthase:

v kSN SN

1

1

kSN= 117706 M min-1

, ZGSN /

10

ATP/ADP carrier:

femADP

Z

fifi

fi

Z

fefe

fe

EXEXADPKATPADP

ADP

ATPADP

ADPkv

ie 1

1

1010//

kEX= 187185 M min-1

, KmADP=3.5 M

Phosphate carrier:

ijiejePIPI HPiHPikv

kPI= 238.11 M -1

min-1

ATP usage:

v kK

ATP

UT UTmA

te

1

1

kUT= 12244 M min-1

(low work) – 61220 M min-1

(high work), KmA=150 M

Proton leak:

12

1 pk

LKLKLKekv

kLK1= 8.5758 M min-1

, kLK2=0.038 mV-1

Adenylate kinase:

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 3: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

3

v k ADP ADP k ATP AMPAK fAK fe me bAK me e

kfAK= 862.10 M -1

min-1

, kbAK= 22.747 M -1

min-1

Creatine kinase:

CrATPkHPCrADPkv tebCKetefCKCK

kfCK = 1.9258 M -2

min-1

, kbCK = 0.00087538 M -1

min-1

Set of differential equations

NcmCDH BRvvNADH

1

cmCC RvvUQH

312

cmCC Rvvc 22 43

2

O2 0

(constant saturated oxygen concentration = 240 M, or

42 CvO

)

buffi

cmLKPIEXSNACCC

i

r

Rvvuvuvnvvuvu

H

/1424222 134

cmEXSNti RvvATP

cmSNPIti RvvPi

CKAKUTEXte vvvvATP

CKAKEXUTte vvvvADP

2

Pi v vte UT PI

CKvPCr

Rcm = 3.35 (cell volume/mitochondria volume ratio)

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 4: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

4

BN = 5 (buffering capacity coefficient for NAD)

Calculations

c3+

= ct - c2+

ct = 270 M (= c2+

+ c3+

, total concentration of cytochrome c)

UQ = Ut - UQH2

Ut = 1350 M (= UQH2 + UQ, total concentration of ubiquinone)

NAD+ = Nt - NADH

Nt = 2970 M (= NADH + NAD+, total concentration of NAD)

AMPe = AeSUM - ATPte - ADPte

AeSUM = 6700.2 M (= ATPte + ADPte + AMPe, total external adenine

nucleotide concentration)

ADPti = AiSUM - ATPti

AiSUM = 16260 M (= ATPti + ADPti, total internal adenine nucleotide

concentration)

Cr = CSUM – PCr

CSUM = 25000 M (= Cr + PCr, total creatine concentration)

PSUM = 45582 M (=PCr+3ATPte+2ADPte+AMPe+Pite+(3ATPti+2ADPti+

Piti)/Rcm, total phosphate pool)

Mgfe = 4000 M (free external magnesium concentration)

ATPfe = ATPte/(1+Mgfe/kDTe)

kDTe = 24 M (magnesium dissociation constant for external ADP)

ATPme = ATPte - ATPfe

ADPfe = ADPte/(1+Mgfe/kDDe)

kDDe = 347 M (magnesium dissociation constant for external ATP)

ADPme = ADPte - ADPfe

Mgfi = 380 M (free internal magnesium concentration)

ATPfi = ATPti/(1+Mgfi/kDTi)

kDTi = 17 M (magnesium dissociation constant for internal ATP)

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 5: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

5

ATPmi = ATPti - ATPfi

ADPfi = ADPti/(1+Mgfi/kDDi)

kDDi = 282 M (magnesium dissociation constant for internal ADP)

ADPmi = ADPti - ADPfi

T = 298

R = 0.0083 kJ*mol-1

*K-1

F = 0.0965 kJ*mol-1

*mV-1

S = 2.303*R*T

Z = 2.303*R*T/F

u = 0.861 (=/p)

pHe = 7.0 (= constant)

pHi = -log(Hi/1000000) (Hi expressed in M)

pH = Z (pHi-pHe)

p = 1/(1-u) pH

= - (p - pH)

i = 0.65*

e = - 0.35*

c0i = (10-pHi

-10-pHi-dpH

)/dpH (‘natural’ buffering capacity for H+ in matrix)

dpH = 0.001

rbuffi = cbuffi/c0i (buffering capacity coefficient for H+ in matrix)

cbuffi = 0.022 M H+/pH unit (buffering capacity for H

+ in matrix)

c0e = (10-pHe

-10-pHe-dpH

)/dpH (‘natural’ buffering capacity for H+ in cytosol)

dpH = 0.001

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 6: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

6

Pije = Pite/(1+10pHe-pKa

)

Piji = Piti/(1+10pHi-pKa

)

pKa = 6.8

GSN = nA*Dp - DGP (thermodynamic span of ATP synthase)

GP = DGP0/F + Z * log(1000000*ATPti/(ADPti*Piti)) (concentrations expressed in M)

nA = 2.5 (phenomenological H+/ATP stoichiometry of ATP

synthase)

GP0 = 31.9 kJ *mol-1

EmN = EmN0+Z/2 * log(NAD+/NADH) (NAD redox potential)

EmN0 = -320 mV

EmU = EmU0+Z/2 * log(UQ/UQH2) (ubiquinone redox potential)

EmU0 = 85 mV

Emc = Emc0+Z * log(c3+

/c2+

) (cytochrome c redox potential)

Emc0 = 250 mV

Ema = Emc+p*(2+2u)/2 (cytochrome a3 redox potential)

A3/2 = 10(Ema-Ema0)/Z

(a3+

/a2+

ratio)

a2+

= at/(1+A3/2) (concentration of reduced cytochrome a3)

a3+

= at – a2+

at = 135 M

Ema0 = 540 mV

GC1 = EmU-EmN-p*4/2 (thermodynamic span of complex I)

GC3 = Emc-EmU-p*(4-2u)/2 (thermodynamic span of complex III)

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 7: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

Mitochondria, oxygen and cardiac PCr/ATP

7

Supplementary figure legends

Figure S1: The effect of changes in the activity of proteins that either contribute to (A-C) or

consume (D-F) the proton gradient on mitochondrial ATP synthesis flux (VATP in M/min)

and the mitochondrial membrane potential (ΔΨ). (A, D) saturating [O2]; (B, D) normoxia; (C,

F) hypoxia.

Figure S2: The effect of changes in oxygen concentration on ΔΨ (delta psi in mV) and

mitochondrial ATP synthesis flux (VATP in M/min) at various rates of proton leak

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 8: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

-180

-160

-140

-120

-100

-80 0

3000

6000

9000

12000

0 0.2 0.4 0.6 0.8 1

VAT

P

Enzyme function ( normal)

-180

-160

-140

-120

-100

-80 0

3000

6000

9000

12000

0 0.2 0.4 0.6 0.8 1

VAT

P

-180

-170

-160

-150

-140 0

3000

6000

9000

12000

0 0.2 0.4 0.6 0.8 1

VAT

P

-180

-170

-160

-150

-140 0

3000

6000

9000

12000

0 0.2 0.4 0.6 0.8 1

VAT

P

Comp I Comp III Comp IV Substrate DH Comp I (ΔΨ) Comp III (ΔΨ) Comp IV (ΔΨ) Substrate DH (ΔΨ)

ΔΨ

(mV

)ΔΨ

(mV

)

ΔΨ

(mV

)

ΔΨ

(mV

)ΔΨ

(mV

)

ΔΨ

(mV

)

A B

D E F

Figure S1

Comp V

ANT

PT

Comp V (ΔΨ)

ANT (ΔΨ)

PT (ΔΨ)

Enzyme function ( normal)

Enzyme function ( normal) Enzyme function ( normal) Enzyme function ( normal)

Figure S1: The effect of changes in the activity of proteins that either contribute to (A-C) or consume (D-F) the proton gradient on mitochondrial ATP synthesis flux (VATP in uM/min) and the mitochondrial membrane potential (ΔΨ)

-180

-160

-140

-120

-100

-80 0

3000

6000

9000

12000

0 0.2 0.4 0.6 0.8 1

VAT

P

Enzyme function ( normal)

C

-180

-170

-160

-150

-140 0

3000

6000

9000

12000

0 0.2 0.4 0.6 0.8 1

VAT

P

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 9: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

!"#$%

!"&&%

!"&$%

!"'&%

!"'$%

!"(&%

!"($%$% &$% "$$% "&$% )$$% )&$% ($$%

*+,-.%/01%2345%

67)8%29:5%

"";'$%

"";&$%

"";#$%

"";<$%

"";=$%

$% &$% "$$% "&$% )$$% )&$% ($$%

4>?/%29:@31A5%

67)8%29:5%

%%BCD3.,%,+.E%

%%(F%ACD3.,%,+.E%

%%&F%ACD3.,%,+.E%

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011

Page 10: Supplementary materials - Royal Society of ChemistryCK k fCK ADP te PCr H e k bCK ATP te Cr k fCK = 1.9258 M-2 min-1, k bCK = 0.00087538 M-1 min-1 Set of differential equations NADH

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

mM

Enzyme function ( normal)

Comp I Comp III Comp IV Substrate DH Comp I (PCr) Comp III (PCr) Comp IV (PCr) Substrate DH (PCr)

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1 Enzyme function ( normal)

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1 Enzyme function ( normal)

A B C

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

mM

Enzyme function ( normal)

Comp V ANT PT Comp V (PCr) ANT (PCr) PT (PCr)

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1 Enzyme function ( normal)

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1 Enzyme function ( normal)

D E F

Figure S3

Figure S3: The effect of changes in the activity of proteins that either contribute to (A-C) or consume (D-F) the proton gradient on [ATP] (in black) and [PCr] (in red).

Electronic Supplementary Material (ESI) for Molecular BioSystemsThis journal is © The Royal Society of Chemistry 2011