Supplementary Material...The final addition (5) was a positive D,D-carboxypeptidase control (DacB)...

16
Supplementary Material Table of Contents: Synthesis of S2d Figure S1. Comparison of previously proposed N-terminal sequences. Figure S2. ORF12 kinetics. Figure S3. Assay for DD-carboxypeptidase activity. Figure S4. Phylogenetic relationships between ORF12, EstB, -lactamases and PBPs. Figure S5. Bocillin assay. Figure S6. Sequence alignment with close homologues of ORF12. Figure S7. Sequence alignment with close homologues of ORF12 including LpqF subfamily. Figure S8. Phylogenetic diagram showing the evolutionary relationship of ORF12. Figure S9. Possible epimerisation role of ORF12. Table S1. Cephalosporin substrates and non-substrates for ORF12. Table S2. Comparison of catalytic residues at the active site of PBP/β-lactamase-fold enzymes. References

Transcript of Supplementary Material...The final addition (5) was a positive D,D-carboxypeptidase control (DacB)...

  • Supplementary Material

    Table of Contents:

    Synthesis of S2d

    Figure S1. Comparison of previously proposed N-terminal sequences.

    Figure S2. ORF12 kinetics.

    Figure S3. Assay for DD-carboxypeptidase activity.

    Figure S4. Phylogenetic relationships between ORF12, EstB, -lactamases and PBPs.

    Figure S5. Bocillin assay.

    Figure S6. Sequence alignment with close homologues of ORF12.

    Figure S7. Sequence alignment with close homologues of ORF12 including LpqF subfamily.

    Figure S8. Phylogenetic diagram showing the evolutionary relationship of ORF12.

    Figure S9. Possible epimerisation role of ORF12.

    Table S1. Cephalosporin substrates and non-substrates for ORF12.

    Table S2. Comparison of catalytic residues at the active site of PBP/β-lactamase-fold

    enzymes.

    References

  • Synthesis of S2d

    (R)-2-((2-benzamidopropanoyl)thio)acetic acid

    To a solution of (R)-2-benzamidopropanoic acid3 (0.1 g, 0.52 mmol) and triethylamine (0.1

    ml, 0.68 mmol) in dry THF (5 ml), ethyl chloroformate (50 μl, 0.57 mmol) was added drop

    wise over 1 min at 0 °C. The mixture was stirred for 40 min and a solution of thioglycolic

    acid (0.11 ml, 1.56 mmol) in THF and triethylamine (0.25 ml, 1.56 mmol) was added

    dropwise over 2 min at the same temperature. The solution was left to warm to r. t. and

    stirred at 323 K for 3 hours. The solvent was removed under reduced pressure. 3 ml of 1M

    HCl were added in the crude and were left to stir for 5 min before it was washed with EtOAc.

    The organic phase was dried MgSO4 and concentrated in-vacuo and the crude was purified by

    HPLC. Trt = 9 min. IR (neat) ν/cm-1

    3345 (NH), 1728 (CH3OC=O), 1667(RHNC=O); 1H

    NMR (500 MHz; CDCl3) δ 8.29-8.24 (1H, m, Ar CH), 7.59-7.53 (

    1H, m, NH), 7.49-7.42 (

    1H,

    m, Ar CH), 6.85 (1H, s, Ar CH), 4.97 (

    2H, d, J = 5.5, CH2), 3.29-3.19 (

    3H, s, CH3),

    13C NMR

    (125MHz, CDCl3) δ 170.0 (C=O), 163.8 (C=O), 149.5, 147.7, 140.0, 124.3, 123.7, 52.4

    (CH3), 41.25 (CH2); MS (ESI+) m/z 273 ([M+H]+, 100%); HRMS calcd. for C9H9BrN2NaO3

    [M+Na]+ 294.9689; Found 294.9689.

  • Figure S1. Alternative N-terminal sequences (a) from Jensen et al. 5 and used in this work;

    (b) from Mellado et al. 7; (c) from Li et al.

    11.

    (a) MAEGRQGAMMKKADSVPTPAEAALAAQTALAADDSPMGDAARWAMGLLTSSGLPRPEDVA

    (b) MGDAARWAMGLLTSSGLPRPEDVA

    (c) MAEGRQGAMMKKADSVPTPAEAALAAQTALAADDSPMGDAARWAMGLLTSSGLPRPEDVA

  • Figure S2. ORF12 kinetics. (a) Michaelis-Menten plot of kinetic data obtained for wild type

    ORF12 with cephalosporin C as determined by HPLC with (b) residual plot, (c) Lineweaver-

    Burk plot with (d) residuals, ((e) Hanes-Woolf and (f) NMR monitoring of ORF12 activity in

    real time; signals for cephalosporin C and acetate.

    .

  • Figure S3. Assay of Streptomyces clavuligerus ORF12 for D,D-carboxypeptidase activity with peptidoglycan precursor pentapeptides. Assays were performed in a final volume of

    0.2 ml, containing 50 mM HEPES, 10 mM MgCl2, 50 mM KCl, 0.1 mM amplex Red, 0.27

    mg.ml-1

    horse radish peroxidase, 0.38 mg·ml-1

    D-amino acid oxidase with ORF12 added to

    0.11 mg·ml-1

    at 1. Absorbance at 555 nm at 310 K was followed and the assay was

    supplemented in (a) with 3.2 mM UDP-MurNAc pentapeptide (lys) at 2, a further 0.44

    mg.ml-1

    ORF12 at 3, 3.2 mM UDP-MurNAc pentapeptide (DAP) at 4 and 82 g.ml-1

    E. coli

    DacB at 5. The final addition (5) was a positive D,D-carboxypeptidase control (DacB) to test

    the functionality of the assay or, in (b) with 3.2 mM UDP-MurNAc pentapeptide (DAP) at 2

    and 82 g·ml-1

    E. coli DacB at 3. The final addition (3) was a positive D,D-carboxypeptidase

    control (82 g·ml-1

    E. coli DacB) to test the functionality of the assay.

  • Figure S4. Phylogenetic tree adapted from both Koch 15

    and Massova and Mobashery 17

    showing the relationship of ORF12 with PBPs, -lactamases, and the esterase EstB.

  • Figure S5. Bocillin assay. Comparative reactivity of Streptomyces clavuligerus ORF12, E.

    coli DacB, PBP2b and PBP2x from Streptococcus pneumoniae with fluorescent bocillin:

    PBPs (20 µg) were incubated in 20 µl in 50 mM HEPES, 10 mM MgCl2, pH 7.6, for 30 min

    (Room Temp.) with or without 0.1 mM ampicillin. Samples were then supplemented with

    bocillin at a 5:1 molar ratio of protein to bocillin and incubated for a further 1 hr. Samples

    were then subjected to SDS PAGE (10% acrylamide). a. Polyacrylamide gel analysed for

    bocillin-labelled PBP protein fluorescence using a Syngene GelSnap G Box Gel Doc with a

    blue light converter and filter for detecting fluorescence emission at 520 nm. b. Gel in Figure

    S5 (a) subsequently stained for total protein with Coomassie Blue.

    Figure S6. Sequence alignment of the two closest homologues to ORF12 identified in the

  • NCBI database. StrepC (ORF12), gi|254387594, ref|ZP_05002833.1, Streptomyces

    clavuligerus ATCC 27064; StrepF, gi|320007159, gb|ADW02009.1, Streptomyces

    flavogriseus ATCC 33331; SaccV, gi|257057305, ref|YP_003135137.1, Saccharomonospora

    viridis DSM 43017.

  • Figure S7. Sequence alignment of ORF12 with close homologs. Orf12, gi|254387594,

    ref|ZP_05002833.1, Streptomyces clavuligerus ATCC 27064; StrepF, gi|320007159,

    gb|ADW02009.1, Streptomyces flavogriseus ATCC 33331; SaccV, gi|257057305,

    ref|YP_003135137.1, Saccharomonospora viridis DSM 43017; MycbSpyr1, gi|315446233,

    ref|YP_004079112.1, Mycobacterium sp. Spyr1; MycbG, gi|145222026,

    ref|YP_001132704.1, Mycobacterium gilvum PYR-GCK; MycbV,

    gi|120406301, ref|YP_956130.1, Mycobacterium vanbaalenii PYR-1; MycbKMS,

    gi|119870866, ref|YP_940818.1, Mycobacterium sp. KMS; MycbMCS, gi|108801715,

    ref|YP_641912.1, Mycobacterium sp. MCS; MycbA, gi|169627656, ref|YP_001701305.1,

    Mycobacterium abscessus ATCC 19977; MycbJLS, gi|126437702, ref|YP_001073393.1,

    Mycobacterium sp. JLS; MycbK, gi|240172186, ref|ZP_04750845.1, Mycobacterium kansasii

    ATCC 12478; MycbS, gi|118470558, ref|YP_890308.1, Mycobacterium smegmatis str. MC2

    155; ClavM, gi|148271516, ref|YP_001221077.1, Clavibacter michiganensis subsp.

    michiganensis NCPPB 382; SanguK, gi|269793742, ref|YP_003313197.1, Sanguibacter

    keddieii DSM 10542.

  • Figure S8. Phylogenetic relationship of ORF12 with its closest homologues labelled by taxa.

    ORF12 is marked with a red star. Background color indicates grouping into subfamilies.

    Phylogenetic analysis performed using NCBI BLAST Tree View Widget (settings were Fast

    Minimum Evolution, Max Sequence Difference 0.7, Distance Grishin (protein). Figure

    generated using FigTree v1.3.1 (options – radial tree layout, trees:order nodes increasing,

    cladogram). Note: Mycobacterium subfamily (pink) poses the “KTG” motif but the active

    site Ser378

    in ORF12 is replaced with an aspargine. The cyanobacterium subfamily members

    (green) do not have a “KTG” motif nor a conserved Ser378

    . All but the cyanobacterium

    subfamily are high GC content gram(+) bacteria. gi|254387594, ref|ZP_05002833.1,

    Streptomyces clavuligerus ATCC 27064; gi|320007159, gb|ADW02009.1, Streptomyces

    flavogriseus ATCC 33331; gi|257057305, ref|YP_003135137.1, Saccharomonospora viridis

    DSM 43017; gi|315446233, ref|YP_004079112.1, Mycobacterium sp. Spyr1; gi|145222026,

    ref|YP_001132704.1, Mycobacterium gilvum PYR-GCK; gi|120406301, ref|YP_956130.1,

    Mycobacterium vanbaalenii PYR-1; gi|119870866, ref|YP_940818.1, Mycobacterium sp.

    KMS; gi|108801715, ref|YP_641912.1, Mycobacterium sp. MCS; gi|169627656,

    ref|YP_001701305.1, Mycobacterium abscessus ATCC 19977; gi|126437702,

    ref|YP_001073393.1, Mycobacterium sp. JLS; gi|240172186, ref|ZP_04750845.1,

    Mycobacterium kansasii ATCC 12478; gi|118470558, ref|YP_890308.1, Mycobacterium

    smegmatis str. MC2 155; gi|148271516, ref|YP_001221077.1, Clavibacter michiganensis

    subsp. michiganensis NCPPB 382; gi|269793742, ref|YP_003313197.1, Sanguibacter

    keddieii DSM 10542; gi|56750069, ref|YP_170770.1, Synechococcus elongatus PCC 6301;

    gi|81300412, ref|YP_400620.1, Synechococcus elongatus PCC 7942; gi|257059487,

    ref|YP_003137375.1, Cyanothece sp. PCC 8802; gi|254416694, ref|ZP_05030444.1,

    Microcoleus chthonoplastes PCC 7420; gi|218246445, ref|YP_002371816.1, Cyanothece sp.

    PCC 8801; gi|86605517, ref|YP_474280.1, Synechococcus sp. JA-3-3Ab; gi|317970457,

    ref|ZP_07971847.1, Synechococcus sp. CB0205; gi|119494566, ref|ZP_01624704.1, Lyngbya

    sp. PCC 8106; gi|86609350, ref|YP_478112.1, Synechococcus sp. JA-2-3B'a(2-13);

    gi|227825073, ref|ZP_03989905.1, Acidaminococcus sp. D21; gi|307151215,

    ref|YP_003886599.1, Cyanothece sp. PCC 7822; gi|334117135, ref|ZP_08491227.1,

    Microcoleus vaginatus FGP-2;

  • Figure S9. Three possible mechanisms (a, b, and c) by which ORF12 may be involved in the

    epimerisation process required to convert (3S,5S)-clavaminic acid to (3R,5R)-CA.

  • Table S1: Potential cephalosporin substrates tested with ORF12.

    Compounds tested with ORF12 esterase activity

    observed

  • enzymes. Classification based on Sauvage et al. 20

    Class/Type/ Subtype Protein PDB code Serine/Lysine

    (SXXK)

    Serine

    ([S/Y]DN)

    KTG

    box

    β-Lactamase Class A TEM-1 1M40 1 Ser

    70/ Lys

    73 Ser

    130 Lys

    234

    Esterase family X ORF12 2XEP Ser173

    / Lys176

    Ser234

    Lys375

    PBP Class C / Type-5 PBP5 1Z6F 2 Ser

    44/Lys

    47 Ser

    110 Lys

    213

    PBP Class C / Type-4 R39 DD-peptidase 1W79 4 Ser49/Lys52 Ser298 Lys410

    PBP Class B / Type-B1 PBP2a 1VQQ 6 Ser403/Lys406 Ser462 Lys597

    PBP Class A / Type-A3 PBP1a 2C6W 8 Ser

    370/Lys

    373 Ser

    428 Lys

    557

    PBP Class C /Type-7 K15 DD-peptidase 1SKF 9 Ser25/Lys38 Ser96 Lys213

    β-Lactamase Class D OXA10 1E3U 10

    Ser67

    / Lys70

    Ser119

    Lys214

    β-Lactamase Class C P99 1BLS 12

    Ser64

    / Lys67

    Tyr150

    Lys315

    PBP Class C / Type-

    AmpH

    R61

    DD-peptidase/

    transpeptidase

    3PTE 13

    Ser62

    /Lys65

    Tyr159

    His298

    D-Aminopeptidase DAP 1EI5 14

    Ser62

    /Lys65

    Tyr153

    His287

    D-Amino acid amidase DAA 2DRW 16

    Ser60

    /Lys63

    Tyr149

    His307

    Esterase family VIII EstB 1CI8 18

    Ser75

    / Lys78

    Tyr133

    Tyr181

    Nylon amidase NylC 1WYC 19

    Ser112

    /Lys115

    Ser217

    Tyr215

    Table S2. Catalytic residues (highlighted red) at the active site of PBP/β-lactamase-fold

  • References

    1. Minasov, G., Wang, X. & Shoichet, B. K. (2002). An ultrahigh resolution structure of

    TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation. J.

    Am. Chem. Soc. 124, 5333-40.

    2. Nicola, G., Peddi, S., Stefanova, M., Nicholas, R. A., Gutheil, W. G. & Davies, C.

    (2005). Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a

    tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. Biochemistry 44,

    8207-17.

    3. Llinas, A., Ahmed, N., Cordaro, M., Laws, A. P., Frere, J. M., Delmarcelle, M.,

    Silvaggi, N. R., Kelly, J. A. & Page, M. I. (2005). Inactivation of bacterial DD-

    peptidase by beta-sultams. Biochemistry 44, 7738-7746.

    4. Sauvage, E., Herman, R., Petrella, S., Duez, C., Bouillenne, F., Frere, J. M. &

    Charlier, P. (2005). Crystal structure of the Actinomadura R39 DD-peptidase reveals

    new domains in penicillin-binding proteins. J. Biol. Chem. 280, 31249-56.

    5. Jensen, S. E., Paradkar, A. S., Mosher, R. H., Anders, C., Beatty, P. H., Brumlik, M.

    J., Griffin, A. & Barton, B. (2004). Five additional genes are involved in clavulanic

    acid biosynthesis in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 48,

    192-202.

    6. Lim, D. & Strynadka, N. C. (2002). Structural basis for the beta lactam resistance of

    PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9, 870-6.

    7. Mellado, E., Lorenzana, L. M., Rodriguez-Saiz, M., Diez, B., Liras, P. & Barredo, J.

    L. (2002). The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus:

    genetic organization of the region upstream of the car gene. Microbiol. 148, 1427-

    1438.

    8. Contreras-Martel, C., Job, V., Di Guilmi, A. M., Vernet, T., Dideberg, O. & Dessen,

    A. (2006). Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a

    mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae.

    J. Mol. Biol. 355, 684-96.

    9. Fonze, E., Vermeire, M., Nguyen-Disteche, M., Brasseur, R. & Charlier, P. (1999).

    The crystal structure of a penicilloyl-serine transferase of intermediate penicillin

    sensitivity. The DD-transpeptidase of streptomyces K15. J. Biol. Chem. 274, 21853-

    60.

    10. Maveyraud, L., Golemi, D., Kotra, L. P., Tranier, S., Vakulenko, S., Mobashery, S. &

    Samama, J. P. (2000). Insights into class D beta-lactamases are revealed by the crystal

    structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8, 1289-98.

    11. Li, R., Khaleeli, N. & Townsend, C. A. (2000). Expansion of the clavulanic acid gene

    cluster: identification and in vivo functional analysis of three new genes required for

    biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol. 182, 4087-

    4095.

    12. Lobkovsky, E., Billings, E. M., Moews, P. C., Rahil, J., Pratt, R. F. & Knox, J. R.

    (1994). Crystallographic structure of a phosphonate derivative of the Enterobacter

    cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase

    transition-state analog. Biochemistry 33, 6762-6772.

    13. Kelly, J. A. & Kuzin, A. P. (1995). The refined crystallographic structure of a DD-

    peptidase penicillin-target enzyme at 1.6 A resolution. J. Mol. Biol. 254, 223-36.

    14. Bompard-Gilles, C., Remaut, H., Villeret, V., Prange, T., Fanuel, L., Delmarcelle, M.,

    Joris, B., Frere, J. & Van Beeumen, J. (2000). Crystal structure of a D-aminopeptidase

    from Ochrobactrum anthropi, a new member of the 'penicillin-recognizing enzyme'

  • family. Structure 8, 971-80.

    15. Koch, A. L. (2000). Penicillin binding proteins, beta-lactams, and lactamases:

    offensives, attacks, and defensive countermeasures. Crit. Rev. Microbiol. 26, 205-20.

    16. Okazaki, S., Suzuki, A., Komeda, H., Yamaguchi, S., Asano, Y. & Yamane, T.

    (2007). Crystal structure and functional characterization of a D-stereospecific amino

    acid amidase from Ochrobactrum anthropi SV3, a new member of the penicillin-

    recognizing proteins. J. Mol. Biol. 368, 79-91.

    17. Massova, I. & Mobashery, S. (1998). Kinship and diversification of bacterial

    penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42,

    1-17.

    18. Wagner, U. G., Petersen, E. I., Schwab, H. & Kratky, C. (2002). EstB from

    Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric

    factors to discriminate between esterolytic and beta-lactam cleaving activity. Protein

    Sci. 11, 467-478.

    19. Negoro, S., Ohki, T., Shibata, N., Sasa, K., Hayashi, H., Nakano, H., Yasuhira, K.,

    Kato, D., Takeo, M. & Higuchi, Y. (2007). Nylon-oligomer degrading

    enzyme/substrate complex: catalytic mechanism of 6-aminohexanoate-dimer

    hydrolase. J. Mol. Biol. 370, 142-56.

    20. Sauvage, E., Kerff, F., Terrak, M., Ayala, J. A. & Charlier, P. (2008). The penicillin-

    binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol.

    Rev. 32, 234-58.