SUPPLEMENTARY INFORMATION - California … INFORMATION doi: 10.1038/ngeo977 nature geoscience | 1 1....

30
SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO977 NATURE GEOSCIENCE | www.nature.com/naturegeoscience 1 1. U.S. Geological Survey, Golden, CO 2. California Institute of Technology, Pasadena, CA 3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 4. . U.S. Geological Survey, Menlo Park, CA 5. . U.S. Geological Survey, Pasadena, CA 6. University of Texas Institute of Geophysics, Jackson School of Geosciences, University of Texas, Austin 7. Nagoya University, Japan Supplemental material to accompany Complex rupture during the 12 January 2010 Haiti Earthquake G.P. Hayes 1 , R.W. Briggs 1 , A. Sladen 2 , E.J. Fielding 3 , C. Prentice 4 , K. Hudnut 5, P. Mann 6 , F.W. Taylor 6 , A.J. Crone 1 , R. Gold 1 , T. Ito 2,7 , M. Simons 2 This supplement describes the data collection and processing techniques for each individual component of our multi‐disciplinary analysis of the rupture process of the 12 January 2010 Haiti earthquake (hereafter termed the 2010 Leogane earthquake). First we describe details of the finite fault modeling technique, and results for single‐plane fault models using teleseismic data. Next we discuss InSAR data sources and detailed processing, before presenting details of the geological field deployment and data collection. Finally we present alternate joint inversions to our preferred kinematic rupture model (figure 3), comparing these models to the preferred solution, and discussing the relative merits of each. We present two alternate rupture models; a three‐plane model (figure S5) to show the effects of north vs. south dip for fault B, the Leogane fault; and a three‐plane model exploring the effects of initiating rupture on fault B rather than fault A, the EPGF‐like structure (figures S67). 1. Teleseismic Bodywave Finite fault modeling We invert for the rupture process of the earthquake using broadband teleseismic P‐ and SH‐ body waveforms recorded at GSN stations worldwide. Data were selected based upon quality (high signal‐to‐noise ratios) and azimuthal distribution. Waveforms are first converted to displacement by removing the instrument response and then used to constrain the slip history based on the finite fault inversion algorithm of Ji et al. 1 . To improve our resolution of rupture onset,

Transcript of SUPPLEMENTARY INFORMATION - California … INFORMATION doi: 10.1038/ngeo977 nature geoscience | 1 1....

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

nature geoscience | www.nature.com/naturegeoscience 1

1.U.S.GeologicalSurvey,Golden,CO

2.CaliforniaInstituteofTechnology,Pasadena,CA

3.JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA

4..U.S.GeologicalSurvey,MenloPark,CA

5..U.S.GeologicalSurvey,Pasadena,CA

6.UniversityofTexasInstituteofGeophysics,JacksonSchoolofGeosciences,UniversityofTexas,

Austin

7.NagoyaUniversity,Japan

SupplementalmaterialtoaccompanyComplexruptureduringthe12January1

2010HaitiEarthquake2

G.P.Hayes1,R.W.Briggs1,A.Sladen2,E.J.Fielding3,C.Prentice4,K.Hudnut5,P.Mann6,3

F.W.Taylor6,A.J.Crone1,R.Gold1,T.Ito2,7,M.Simons24

5

Thissupplementdescribesthedatacollectionandprocessingtechniquesforeach6

individualcomponentofourmulti‐disciplinaryanalysisoftheruptureprocessof7

the12January2010Haitiearthquake(hereaftertermedthe2010Leogane8

earthquake).Firstwedescribedetailsofthefinitefaultmodelingtechnique,and9

resultsforsingle‐planefaultmodelsusingteleseismicdata.NextwediscussInSAR10

datasourcesanddetailedprocessing,beforepresentingdetailsofthegeological11

fielddeploymentanddatacollection.Finallywepresentalternatejointinversionsto12

ourpreferredkinematicrupturemodel(figure3),comparingthesemodelstothe13

preferredsolution,anddiscussingtherelativemeritsofeach.Wepresenttwo14

alternaterupturemodels;athree‐planemodel(figureS5)toshowtheeffectsof15

northvs.southdipforfaultB,theLeoganefault;andathree‐planemodelexploring16

theeffectsofinitiatingruptureonfaultBratherthanfaultA,theEPGF‐likestructure17

(figuresS6­7).18

19

1.TeleseismicBodywaveFinitefaultmodeling20

WeinvertfortheruptureprocessoftheearthquakeusingbroadbandteleseismicP‐21

andSH‐bodywaveformsrecordedatGSNstationsworldwide.Datawereselected22

baseduponquality(highsignal‐to‐noiseratios)andazimuthaldistribution.23

Waveformsarefirstconvertedtodisplacementbyremovingtheinstrument24

responseandthenusedtoconstrainthesliphistorybasedonthefinitefault25

inversionalgorithmofJietal.1.Toimproveourresolutionofruptureonset,26

2 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

2

directivityeffectsandthehigh‐frequencyaspectsoftherupturehistory,weinvert27

velocitybodywaveformsinadditiontodisplacementrecords.Weadoptthesource28

parametersofthegCMTsolutionforouranalyses,modifyingthestrikeofthe29

φ=251°faultplanesuchthatitisconsistentwiththestrikeofthegeomorphic30

expressionoftheEnriquilloPlantainGardenfault(EPGF)atthesurface(figure1),31

approximately264°.Weconstraintherupturetopropagatepredominantly32

westwardfromthehypocenteroftheearthquake,favoredbythemajorityof33

aftershockslocatingtothewestofthemainshock(figure1).Suchdirectivityisalso34

suggestedbythevariationinvelocityrecordswithazimuth(figureS1).35

Furthermore,weburythetopofthemodeledfaultplaneby1kmandconstrainthe36

topcellsofthemodeltoslipnomorethan1m,toproduceamodelthatcanmatch37

geologicalobservationsofnosurfacefaultrupturealongtheEPGF(supplementary38

materialSection3).Addingtheseextraconstraintstotheinversionprocessdoes39

notsignificantlyaffectthefitofthemodeltotheinputdata.Wenotethatour40

inversionapproach1islimitedtotheuseofplanarfaults,ratherthannon‐planar41

structures;whileeffortstomodelruptureonnon‐planarstructureshavebeen42

proposed2,thesestillrequireknowledgeoffaultgeometryapriori,whichisnot43

available(norknown)inthecaseofthisearthquake.44

Resultsofthisinitialteleseismic‐data‐onlyfinitefaultmodelareshowninfigureS1.45

Inversionresultsdemonstratepeakslipof~6.0mupdipandclosetothe46

hypocenter.Significantslipextends~25‐30kmwestofthehypocenter,witha47

notabletransitiontowardsthrustmotionwithdistancealongstrikeandupdip.48

49

2.InSARanalysis50

Syntheticapertureradar(SAR)interferometryanalysispresentedhereuseddata51

acquiredbytheJapaneseAerospaceExplorationAgency(JAXA)AdvancedLand52

ObservationSatellite(ALOS),withitsphased‐arrayL‐bandSARinstrument53

(PALSAR)thathasaradarwavelengthof23.5cm.Thedatawasprocessedfromthe54

PALSARLevel1.0rawdatawiththeJPL/CaltechROI_pacSARinterferometry55

nature geoscience | www.nature.com/naturegeoscience 3

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

3

package3.Allsceneswereacquiredinthefine‐beamsingle‐polarization(FBS)mode.56

Thetopographicdatausedtocalculateandremovethetopographicphasewasthe57

ShuttleRadarTopographyMission(SRTM)1‐arcsecondpostingdigitalelevation58

modelwiththedatavoidsfilledbytheASTERGDEM(R.E.Crippen,pers.comm.).59

Interferogramswereanalyzedwithaveraging(looks)of8samplesacross‐trackand60

16samplesalong‐track,andwereunwrappedwithSNAPHU4.61

ALOSPALSARdatawereprocessedfromfoursatellitepaths,threeascending62

(satellitemovingnorthward)pathsandonedescending(satellitemoving63

southward)pathasshowninTableS1.AllthePALSARdatawasacquiredwiththe64

standard34.3°lookangle(atthesatellite)thatresultsinline‐of‐sight(LOS)angles65

relativetotheverticalattheEarth’ssurfacevaryingfrom36°to41°acrossthe66

radarswath.TheLOSunitvectorfromthegroundatthecenteroftheswathtothe67

satelliteontheascendingpathsis(‐0.6080,‐0.1337,0.7826)foreast,north,andup68

components,whilethedescendingpathhasanLOSunitvectorof(0.6080,‐0.1337,69

0.7826).BecausetheLOSvectorsontheascendinganddescendingpathshave70

oppositesignsbutequalmagnitudesfortheeastcomponent,andbecausetheLOS71

doesnotchangemuchacrossthePALSARswath,wecancalculateanapproximation72

oftheeastwardgrounddisplacementsbytakingthedifferencebetweenthe73

descendingandascendingpathinterferogramvaluesateachpointanddividingby74

2*0.608(figure2).Similarly,wecansumthevaluesoftheascendingand75

descendinginterferogramsanddividebysqrt(N^2+U^2)tocalculatetheground76

displacementsinadirectionthatis83%upand17%south(figure2).77

Interferogramsweredownsampledtoabout1000pointseachusingadistribution78

ofsamplesoptimizedfordeterminingthesliponafaultsimilartothemainfault79

usedintheslipinversions5.80

81

82

83

4 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

4

TableS1.ALOSPALSARpairsusedforinterferograms.84

ALOSpath Date1 Date2 Bperp.*(m)

A136 2009/09/12 2010/01/28 800–838

A137 2008/02/09 2010/02/14 ‐400–‐480

A138 2009/02/28 2010/01/16 1040–1141

D447 2009/03/09 2010/01/25 859–777

*Perpendicularcomponentofbaselineatcenterofswathfromtoptobottomof85

interferogram.86

87

3.Geologicobservationsofcoastaldeformation88

Extensivecoastaldeformationaccompaniedthe2010Leoganeearthquake.Analysis89

ofhigh‐resolutionimageryobtainedimmediatelyaftertheeventrevealeduplifted90

coralreefs,widenedbeachfaces,andextensiveshaking‐relatedlateralspreading,91

compaction,andliquefactionalongapprox.50kmofcoastlineextendingfrom92

GressiertoPortRoyal(figure2).Theseobservationswereconfirmedduringfield93

workfrom25Februaryto4March20106.Wecollecteddetailedmeasurementsof94

verticaldeformationat19sites(tableS2),andwesupplementthesemeasurements95

withqualitativeobservationsofverticaldisplacements(tableS3andfigureS2).96

97

Coralmethods98

Coralmicroatollsaresensitiverecordersofverticalfluctuationsinsealevel7and99

thismakesthemusefulinstrumentsforrecordingverticaltectonicdeformation8.100

ColoniesofSiderastreasidereaandDiploriastrigosaformthemostcommonly101

encounteredmicroatollsalongtheaffectedcoast.Severalotherspeciesthatrecord102

clearpre‐earthquakehighestlevelsofsurvival(HLS)werealsousefulforassessing103

nature geoscience | www.nature.com/naturegeoscience 5

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

5

2010verticaldisplacement,includingMilleporacomplanata,Poritesastreoides,104

Poritesporites,Poritesfurcata,Diplorialabyrinthiformis,Montastraeaannularis,and105

Siderastrearadians.106

AtsiteswherereefsrecordupliftwesurveyedmultiplemicroatollandcoralHLS107

elevationswithrespecttosealevel.Tenormoremeasurementsfromeachcoral108

specieswerecollectedunlessfewerheadswereavailable.Wealsorecordedthe109

elevationdifferencebetweenpre‐andpost‐earthquakeHLS;ineverycasewe110

anticipatethatthiswillunderestimatethefinaldiedownoftheheadsbecausethe111

lowesttidesbetweenthetimeoftheearthquakeandourvisitoccurredmainlyat112

night.DiedownsofthefirecoralMilleporaarefrequentlyobservedandoffer113

minimumestimatesofuplift(tableS2)andqualitativeevidenceofreef114

displacement.115

BecauseHaitilackspermanenttidegauges,weestablishamodeltidalcurveto116

providetidaladatumforoursurveymeasurementsandcalibratethismodeltoa117

temporarytidegaugedeployment.Becauseofthesmalltidalrange(70‐80cm)and118

relativelysimpleshapeofthetidalcurveintheregion,wefirstgenerateaprediction119

fornearbyPort‐au‐PrinceusingtheprogramXtide120

(http://www.flaterco.com/xtide/)tocapturethegeneralshapeofthecurve.We121

thenshiftthecurveinphasetofitobservationsatGonaveisland(RogerBilham,122

personalcomm.).VisualcomparisonofthemodelcurvewiththeGonave123

observations,andcomparisonwithsealevelmeasurementscollectedateachuplift124

site,areconsistentwithlessthan5cmofmisfit,whichwesubsequentlyincorporate125

intothetotalupliftuncertainties.126

WeuseatectonicallystablesiteatIledelaGonavetoestablishhowmicroatollHLS127

relatestoannualextremelowtide(ELT)inthisregion.Gonaveappearstohave128

remainedtectonicallyinactiveforthelast125ka9,andalongperiodoftectonic129

stabilityattheIledelaGonavesitehasledtotheformationofabioerosionnotch130

andoverhangatwaterlevelthatisseveralmetersdeepalongmostofthelimestone131

coast.Wedidnotobserveanyevidenceofupliftatthesiteduetothe2010Leogane132

6 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

6

earthquakerupture.AtthesiteSiderastreasiderea,Diploriastrigosa,andPorites133

astreoidessurviveonaverage6cm,8cm,2cmaboveELT,respectively.Weutilize134

thesecorrectionsinourcalculationsoftotaluplift(tableS2).135

Seasurfaceheight(SSH)anomaliescomplicateassessmentsofmicroatolluplift136

becausetheyimpartaclimaticsignaltocoralheadgrowththatmustberecognized137

andremoved.Aplotofseasurfaceanomaliesatourstudysitesasmeasuredby138

TOPEX/POSEIDONandJason‐1(figureS4)showsthatanomaliesaretypically±7139

cmaboutmeansealevel10.Alargeexcursionin2009/2010of‐15cmisrecordedon140

mostSiderastreamicroatollsasafreshdie‐downofupto8cmpriorto12January.141

BecausetheHLScreatedduringthisSSHexcursionisnottectonicanddoesnot142

representthepre‐earthquakeelevationofthemicroatolls,weusethehigherand143

older2009HLStocalculatetectonicupliftin2010.Becausetherelationship144

betweenSSHanomaliesandmicroatollgrowthappearstobecomplex(thatis,the145

SSHanomaliesdonotexactlyequalobserveddiedowns),weassignalarge146

uncertaintyof±10cmtotheSSHanomalycontributiontoourupliftcalculations.147

Atfoursitescoralsarenotavailable.Atthreeofthese(KayMirak,KayTiyout,and148

TapiondePetitAnglais;tableS2)wederiveupliftestimatesfrombeach149

geomorphicfeatures.Astormduringthenightof25Februarycausedacoarse150

stormbermtoformalongmostofthesurveyedcoast,andwemeasuredthe151

differencebetweenpre‐andpost‐earthquakestormbermsasaproxyforuplift.We152

faceadifferentchallengeatthepierinPetitGoave,wherepossibletectonic153

subsidencealongthecoastismaskedbysecondaryslidingandslumpingdueto154

groundshaking.Heretheconcretepierappearslevelandundeformed,andthereis155

nosignificantsecondarydeformationalongatransectextending1kminland.The156

15cmofsubsidencewereportatthePetitGoavepierisbasedoneyewitness157

accountsandthedepthofstandingwateradjacenttothepierinalocationthatwas158

notpreviouslyfloodedbutwasinundateddailyafter12January.Becausetheseare159

onlycrudeindicatorsofuplift,weapplyanarbitraryuncertaintyof±30%tothese160

measurements.161

nature geoscience | www.nature.com/naturegeoscience 7

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

7

Geologicobservationsofcoseismicdeformation162

Therelativelysimpleverticaldeformationpatternindicatesabulgeofuplift163

centeredbeneaththeLeoganefandeltaandtheoceanfloortothewest(figure2164

andfigureS2).Upliftishighest(0.64±0.11m)atBelocanddecreasestothenorth165

andsouth.Attheeasternmostsurveyedsite(PassionBeachnearGressier)upliftis166

only0.07±0.07m,indicatingthatrelativelylittlefaultslipextendedbeneathand167

eastwardofthispoint.Alongtheeast‐westtrendingcoastbetweenBellevueand168

PetitGoaveupliftisgenerallylessthan0.40m.Upliftdecreasesto0.05±0.05mat169

theLaHatteseawallinPetitGoave,andthenreversesinsigntosubsidenceatthe170

PetitGoavepier.Thehingelinebetweenthesetwopointsappearstomarkthe171

westernextentofthemainrupturezone(figureS2).Asmallamountofupliftis172

observedatPortRoyalisland(0.09±0.09m),wherethereefwasunaffectedatthe173

timeofourvisit.Apparentsubsidenceof‐0.21±0.11madjacenttoPortRoyalPoint174

appearstoreflectdisplacementacrossthePortRoyalfracture,anambiguous175

featurethatmayrepresentcoseismicnormaldisplacement,motionduringan176

aftershock,ortriggeredslip.177

ComparisonofthegeologicandInSAR‐derivedmeasurementsoftectonicuplift178

alongthewesternmarginoftheLeoganefandeltaareshowninfigure2.As179

discussedinthemainmanuscript,theresultsareingeneralagreement.180

181

4.AlternativeKinematicSourceInversions182

Herewepresenttwoalternativerupturemodels,contrastingourfavouredsolution183

(figure3)with:(i)amodelevokingslipona55°south‐dippingplaneratherthanon184

anorth‐dippingblindthrust(figureS5);and(iii),amodelexploringtheeffectsof185

initiatingsliponthenorth‐dippingLeoganefaultratherthanontheEPGF‐like186

structure(figuresS6­7).187

Inthefirstscenario(figureS5),thealternatemodelexplainssomebutnotallofthe188

featuresofthedata,withslightlypoorerresidualsthanourpreferredsolution(an189

8 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

8

increaseinmisfitof15%).However,themodeldoesnotfitthebroadsubsidence190

troughintheInSARdatasouthoftheEPGF,anddoesnotfittheleft‐lateralmotion191

identifiedbyseismology,northepatchofeastwardmotiontothenortheastofthe192

earthquakehypocenter(seemaintextfordiscussionofthesefeatures).Thismodel,193

infact,suggestsalmostentirelypurethrustmotionontheLeoganefault(figure194

S5c),apartfromasmallleft‐lateralcomponentofslipclosetothesurfaceinthebay,195

inviolationofbothseismologicalobservationsandcampaignGPSvectorsinthe196

epicentralregion11.Thepresenceofpurethrustmotionshereisanindicationthat197

themodelprefersright‐lateralmotionsonthisplane,whichourinversion198

constraints(seeMethodssection,mainmanuscript)donotallow.Thismodelalso199

includessignificantmomentreleaselaterthanobservedinseismicinversions200

(figureS1),asaresultoflargeamountsofslipoffshoreandtothewestofthe201

Leoganedelta,whereInSARandgeologicalobservationshavelittleconstraint.202

Significantslipoccursheretosatisfymatchingthemomentreleaseofthe203

earthquakeintheinversion,andbecauseInSARandgeologicalupliftdataconstrain204

welltheloweramountsofsliponthe(nowshallow)faultinthedeltaregionfurther205

east.206

WemotivateoursecondalternatemodelbyperformingCoulombstresstransfer207

calculations12,whichshowfavourablestresstransferconditionsforrupture208

initiatingontheLeoganefaultandsubsequentlytriggeringslipontheEPGF‐like209

structure(figureS6c),butunfavourableconditionsforthereversescenario210

(figuresS6a­b).Therupturemodelforthisinversion(figureS7)reproduceour211

observationswell,marginallylessthanourfavouredsolution(anincreaseinmisfit212

of3%),butcannotexplainthefirstmotionsobservedfortheevent(figureS12),213

whichindicatedilatationalmotionstothenorthandnorthwestoftheepicenterina214

regionofthefocalspherewherethismodelrequirescompressionalmotion.Because215

ofthismajormisfit,wepreferasolutioninwhichtheearthquakenucleatesonthe216

EPGF‐likestructure,dynamicallytriggeringslipapproximately10kmtothenorth217

ontheLeoganefaultafterasmalltimedelay(figure3),thoughwenotethe218

ambiguityinthesesolutionsduetothecompactandcomplexnatureofthisrupture.219

nature geoscience | www.nature.com/naturegeoscience 9

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

9

References220

1.Ji,C.,Wald,D.J.&Helmberger,D.V.Sourcedescriptionofthe1999HectorMine,221

California,earthquake,partI:Waveletdomaininversiontheoryandresolution222

analysis.Bull.Seis.Soc.Amer.92,1192‐1207(2002).223

2.Wald,D.,Ji,C.,andHayes,G.P.,2008.Globalearthquakecharacterizationon224

irregularfaultsurfaces,EosTrans.AGU89(53),FallMeet.Suppl.,AbstractS31C‐01.225

3.Rosen,P.A.,Hensley,S.,Peltzer,G.,&Simons,M.Updatedrepeatorbit226

interferometrypackagereleased:EosTrans.Amer.Geophys.Union85,47(2004).227

4.Chen,C.W.,&Zebker,H.A.PhaseunwrappingforlargeSARinterferograms:228

statisticalsegmentationandgeneralizednetworkmodels.IEEETrans.Geosc.Remote229

Sensing40,1709‐1719(2002).230

231

5.Lohman,R.B.,&Simons,M.SomethoughtsontheuseofInSARdatatoconstrain232

modelsofsurfacedeformation:Noisestructureanddatadownsampling.Geochem.233

Geophys.Geosyst.6,doi:10.1029/2004GC000841(2005).234

235

6.Prentice,C.S.,etal.SeismichazardoftheEnriquillo‐PlantainGardenFaultinHaiti236

inferredfrompaleoseismology.NatureGeosci.,doi:10.1038/ngeo991(inpress).237

7.Scoffin,T.P.,Stoddart,D.R.&Rosen,B.R.Thenatureandsignificanceof238

microatolls.Philos.Trans.R.Soc.LondonSer.B284,99‐122(1978).239

8.Taylor,F.W.,Frohlich,C.,Lecolle,J.&Strecker,M.Analysisofpartiallyemerged240

coalsandreefterracesinthecentralVanuatuarc:comparisonofcontemporary241

coseismicandnonseismicwithQuaternaryverticalmovements.J.Geophys.Res.92,242

4905‐4933(1987).243

9.Mann,P.,Taylor,F.W.,Edwards,R.L.&Ku,T‐L.Activelyevolvingmicroplate244

formationbyobliquecollisionandsidewaysmotionalongstrike‐slipfaults:An245

examplefromthenortheasternCaribbeanplatemargin.Tectonophys.246,1‐69246

(1995).247

10.Leuliette,E.W,R.S.Nerem,andG.T.Mitchum.CalibrationofTOPEX/Poseidon248

andJasonaltimeterdatatoconstructacontinuousrecordofmeansealevelchange.249

MarineGeodesy,27(1‐2),79‐94(2004).250

11.Calais,E.,etal.Transpressionalruptureofanunmappedfaultduringthe2010251

Haitiearthquake.NatureGeosci.,doi:10.1038/ngeo992(inpress).252

12.Lin,J.andR.S.Stein.Stresstriggeringinthrustandsubductionearthquakes,and253

stressinteractionbetweenthesouthernSanAndreasandnearbythrustandstrike‐254

slipfaults,J.Geophys.Res.,109,doi:10.1029/2003JB002607(2004).255

256

10 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

10

FigureCaptions256

FigureS1:2010LeoganeEarthquakeTeleseismicRuptureModel.(a)Preferred257

single‐planesourceinversionusingteleseismicbody‐wavedata.Faultmodeled258

usinganadjustedplanefromthegCMTmomenttensorsolution,withstrike,φ=264°259

anddip,∂=70°,unilateralruptureonaplaneburiedtoadepthof1km,andtapered260

slipintheshallowestsubfaults.Colorrepresentssubfaultslipmagnitude;black261

arrowsrepresentslipdirection.Contoursrepresentthepositionoftherupturefront262

withtime,plottedat5sintervals.Therateofmomentreleasewithtimeisshownin263

(b).Waveformfitsareshownin(c),bothforP‐andSH‐wavedisplacement(top)264

andvelocity(bottom)records.Relativeweightsarerepresentedbythicknessofdata265

(black)andsynthetics(red).Dashedrecordshavezeroweight.Numbersatthe266

beginningofeachrecordrepresentdistance(bottom)andazimuth(top)tostation,267

whilenumbersattheendofeachrecordrepresentthepeakamplitudeofthedata.268

269

FigureS2.Qualitativeobservationsofcoastaluplift.Zonesofuplift,subsidence,270

secondary(shaking‐related)subsidence,ornoapparentchangearedenoted.Site271

numbersarefromTableS3.Atransitionfromuplifttostabilityandapparent272

tectonicsubsidenceoccursatPetitGoave.Theobservationsarenotexhaustivebut273

areintendedtocomplementthequantitativemeasurementsofupliftpresentedin274

Figure2andTableS2.275

276

FigureS3.Multipledissolutionnotchesonlimestonerockfallblockadjacentto277

theTapionRidge.Indicatedbyarrows;theuppernotchmayrepresentsealevel278

priortoupliftduringprevious2010‐typeevents.279

280

FigureS4.Sea­surfaceheight(SSH)anomalies.Anomaliesfrom1993‐2010inthe281

studyarea10,derivedfromTOPEX/POSEIDONandJason‐1altimetrydata.282

nature geoscience | www.nature.com/naturegeoscience 11

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

11

283

FigureS5.Alternativekinematicrupturemodel1.Fromthejointinversionofall284

data,usinga45°southdippingfaultplaneinplaceofthenorth‐dipping(Leogane)285

faultmostdominantintheearthquakeruptureofourpreferredsolution.Panel(a)286

showsthemodeledslipdistribution,contouredin50cmincrements.Thickcoloured287

lines(red,blue,purple)representthetopofeachfault(A,B,C,respectively).288

Numberedbluesquaresrepresentmajorpopulationcenters:1=PortauPrince,2=289

Leogane,3=PortRoyal.Panel(b)showstherupturemodelinplanview;arrows290

representtheslipdirectiononeachsubfault,scaledbyslipamplitude.The6s291

rupturecontour(dashedlines)islabelledforreference.(c)Showsthemoment292

tensorsolution(top)andmomentratefunction(bottom)forthissolution.293

294

FigureS6.Coulombstresstransferbetweenprimaryfaults.Modelsofstatic295

stresstransfertoinvestigatethemostlikelyruptureorderforfaultA,thesteep296

lateralEPGF‐typestructure,andfaultB,theblindthruststructure(Leoganefault).297

(a)and(b)showtheCoulombstresschangeimposedby1.0mofleft‐lateralslipon298

theeasternhalfoftheEPGF‐typefault,ontothrustfaultsoriented257°/55°/90°299

(theeasternhalfofslipontheLeoganefault).(c)and(d)showtheCoulombstress300

changeimposedby1.0mofleft‐lateralslipontheeasternhalfoftheEPGF‐typefault,301

ontothrustfaultsoriented257°/55°/45°(thewesternhalfofslipontheLeogane302

fault).(e)and(f)showtheCoulombstresschangeimposedby2.0mofreverseslip303

ontheeasternhalfoftheLeoganefault,ontoleft‐lateralstrikeslipfaultsoriented304

83°/70°/0°(theeasternhalfofslipontheEPGF‐typefault).Faultsareoutlinedin305

black;surfacefaultexpressionsareshownbygreenlines.In(e),slipontheLeogane306

faultistaperedtowardsthesurfacefrom2.0‐0.0mfrom5‐0kmalongthedip‐307

directionofthefault.Bluedashedlinesin(b),(d)and(f)showthecalculation308

depthsin(a),(c)and(e).309

310

12 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

12

FigureS7.Alternativekinematicrupturemodel2.Fromthejointinversionofall311

data,nucleatingruptureonthenorth‐dipping(Leogane)fault.Panel(a)showsthe312

modeledslipdistribution,contouredin50cmincrements.Thickcolouredlines(red,313

blue,purple)representthetopofeachfault(A,B,C,respectively).Numberedblue314

squaresrepresentmajorpopulationcenters:1=PortauPrince,2=Leogane,3=315

PortRoyal.Panel(b)showstherupturemodelinplanview;arrowsrepresentthe316

slipdirectiononeachsubfault,scaledbyslipamplitude.The6srupturecontour317

(dashedlines)islabelledforreference.TheviewoffaultB,theLeoganefault,is318

throughtheplane(i.e.viewedfrombelowthenorthdippingplane).(c)Showsthe319

momenttensorsolution(top)andmomentratefunction(bottom)forthissolution.320

321

FigureS8.Teleseismicwaveformfitsforproposedkinematicrupturemodel.322

Data(black)andsynthetic(red)seismogramsarealignedonthePorSHarrivals.323

Thenumberattheendofeachtraceisthepeakamplitudeofthedata.Thenumber324

abovethebeginningofeachtraceisthesourceazimuthandbelowistheepicentral325

distance.Intheinversionprocess,P‐wavesareweighted2xSH‐waves.326

327

FigureS9.InSARdatafitsforproposedkinematicrupturemodel.Modelfitsare328

shownforeachofthe4unwrappedascendinganddescending(top),andwrapped329

descending(bottom)ALOSPALSARinterferograms.Thefirstandsecondcolumns330

showthedataandmodel.Thethirdcolumndescribestheresidualbetweenthe331

modelanddata.“Ramp”describesthecorrectionappliedtotheInSARimagesto332

accountforuncertaintiesinthesignal,suchasorbitalerrors.333

334

FigureS10.Coastalupliftobservationfitsforproposedrupturemodel.335

Observations(black),comparedtopredictions(red)fromourproposedmodel,336

overlainonsurfaceprojectionofthecoseismicslipdistribution.337

nature geoscience | www.nature.com/naturegeoscience 13

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

13

338

FigureS11.AssessmentofLeoganeearthquakeW­PhaseCMTsolution339

sensitivitytofaultplanedip.(a)Mechanismsconstrainedtoapuredouble‐couple.340

RMSplottedrelativetobest‐fittingnondouble‐couplesolution(star).Blue=relative341

RMSmeasure,red=absolute.In(b),weshowtheCMTsolutionsforourbest‐fitting342

rupturemodel,gCMT,theUSGSW‐Phaseinversion,andtheUSGSfirstmotion343

double‐couplesolution.344

345

FigureS12.FirstmotionfocalmechanismoftheLeoganeearthquake.Bestfitto346

teleseismicP‐wavefirst‐motions,courtesyofGeorgeChoy,USGSNEIC,andtheNEIC347

PreliminaryDeterminationofEpicentersBulletin348

(http://earthquake.usgs.gov/research/data/pde.php).Bluecirclesrepresent349

dilatational(negative)firstmotions,redtrianglescompressional(positive),and350

whitesquaresnodalobservations.Grayshadingrepresentsthecompressional351

quadrantsofthebestdouble‐couplesolution.Dottedlinerepresentsthebest352

double‐coupleofthegCMTmomenttensorsolution.“P”and“T”representtheP‐353

andT‐axesofeachsolution.354

14 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

(a) (b)

−14

−7

0

7

Dis

tanc

e Al

ong

Dip

(km

)

0 13 25 38 50

Distance Along Strike (km)

30

0 120 240 360 480 600cm

Dep

th (k

m)10

20

Figure S1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Mom

ent r

ate

(dyn

e.cm

/sec

)

0 2010 30Time (s)

−10 0 10 20 30 40 50

s

KBSP 29.011

70

DAGP 31.411

64

LVZP 38.621

79

KONOP 38.132

70

OBNP 35.133

85

SUWP 36.336

78

KIEVP 33.638

83

BFOP 38.744

70

ANTOP 20.347

89

PABP 46.754

61

MACIP 27.568

51

−10 0 10 20 30 40 50

s

ASCNP 102.2109

63

RCBRP 54.6120

43

TRQAP 58.3170

57

LVCP 69.5174

41

LCOP 65.6177

47

PTCNP 33.2234

70

XMASP 45.5270

84

SLBSP 89.3285

35

POHAP 38.4286

77

TUCP 75.6299

37

−10 0 10 20 30 40 50

s

ANMOP 67.3305

34

CORP 63.3313

49

RSSDP 34.8321

36

COLAP 33.2333

67

TIXIP 23.4353

88

−10 0 10 20 30 40 50

s

SUMGSH 156.011

57

DAGSH 65.311

64

KEVSH 64.520

76

LVZSH 70.221

79

BORGSH 200.623

57

KONOSH 91.332

70

OBNSH 75.733

85

ESKSH 143.036

63

SUWSH 124.636

78

KIEVSH 137.738

83

BFOSH 110.144

70

−10 0 10 20 30 40 50

s

ANT OSH 88.347

89

PABSH 121.954

61

MACISH 84.468

51

ASCNSH 143.8109

63

RCBRSH 89.1120

43

LVCSH 120.1174

41

PMSASH 99.7176

83

LCOSH 181.3177

47

PTCNSH 236.0234

70

XMASSH 314.9270

84

−10 0 10 20 30 40 50

s

KIPSH 52.0289

79

TUCSH 98.6299

37

PFOSH 101.9299

41

ANMOSH 170.0305

34

CORSH 177.1313

49

RSSDSH 207.7321

36

COLASH 158.7333

67

FFCSH 169.3335

42

(c)

−10 0 10 20 30 40 50

s

KBSP 14.511

70

DAGP 14.911

64

LVZP 20.221

79

KONOP 14.532

70

OBNP 21.133

85

SUWP 18.036

78

KIEVP 16.938

83

BFOP 16.244

70

ANTOP 11.447

89

PABP 23.254

61

MACIP 22.268

51

−10 0 10 20 30 40 50

s

ASCNP 23.3109

63

RCBRP 30.4120

43

TRQAP 21.5170

57

LVCP 24.3174

41

LCOP 26.5177

47

PTCNP 29.9234

70

XMASP 47.5270

84

SLBSP 81.6285

35

POHAP 44.4286

77

TUCP 63.8299

37

−10 0 10 20 30 40 50

s

ANMOP 55.4305

34

CORP 69.6313

49

RSSDP 42.4321

36

KDAKP 40.8325

69

COLAP 28.3333

67

TIXIP 14.6353

88

SUMGSH 44.811

57

DAGSH 21.411

64

KEVSH 24.720

76

−10 0 10 20 30 40 50

s

SUMGSH 44.811

57

DAGSH 21.411

64

KEVSH 24.720

76

LVZSH 26.621

79

BORGSH 30.923

57

KONOSH 31.932

70

OBNSH 26.133

85

ESKSH 26.236

63

SUWSH 31.336

78

KIEVSH 39.138

83

BFOSH 22.844

70

−10 0 10 20 30 40 50

s

ANT OSH 19.647

89

PABSH 29.254

61

MACISH 16.668

51

ASCNSH 23.9109

63

RCBRSH 17.9120

43

LVCSH 28.9174

41

PMSASH 37.9176

83

LCOSH 33.0177

47

PTCNSH 46.2234

70

XMASSH 26.6270

84

−10 0 10 20 30 40 50

s

KIPSH 17.6289

79

TUCSH 25.5299

37

PFOSH 29.9299

41

ANMOSH 31.9305

34

CORSH 32.9313

49

RSSDSH 35.7321

36

COLASH 32.8333

67

FFCSH 34.9335

42

nature geoscience | www.nature.com/naturegeoscience 15

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

9

8

76

54

3 21

63

62

61

60

3231

3 029

28

2726

1413

12

11

10

18.6

6° N

59 5857 56

55

5453

52

5150

49

484746

4544

43

4241

40

3938

3736

353433

32

2524

2322

21

20

19

1817

16

15

05

102.

5km

01

20.

5km

No

clea

r ve

rtic

al c

hang

e (<

±10

cm

)

Qua

litat

ive

obse

rvat

ions

of c

oast

al c

hang

e

see

deta

il

deta

il

Port

Roy

al

Petit

Goa

ve

Upl

ift

Subs

iden

ce

Seco

ndar

y su

bsid

ence

Gre

ssie

r

Leog

ane

Belle

vue

Gra

nd G

oave

Ile d

e la

Gon

ave

Hinge

line

18.5

° N

72.8

3°W

72.6

6°W

72.5

° W

72.9

0°W

72.8

7°W

18.4

3°N

Figure S2

16 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

Figure S3

nature geoscience | www.nature.com/naturegeoscience 17

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

Figure S4

18 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

-73.0˚ -72.5˚ -72.0˚

18.6˚

18.8˚

18.4˚

18.2˚

Slip (cm)

12

3

Slip (cm)

0 100 200 300 400 500

0

10

−20 0

0

10

200 0-20

0

106s

6s

6s

0 100 200 300 400 500

Dep

th (k

m)

(a)

(b) (c)

1

2

3

4

5

0 4 8 12 16 20

Mom

ent R

ate

(x10

18 N

-m)

Time (s)

Figure S5

nature geoscience | www.nature.com/naturegeoscience 19

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

A

B

(a) (b)

(c) (d)

(e) (f)

X (km)

Y (k

m)

−50 −40 −30 −20 −10 0 10 20 30 40 50−50

−40

−30

−20

−10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40−30

−25

−20

−15

−10

−5

0

Distance(km)

Dow

n−di

p di

stan

ce (k

m)

−5−4−3−2−1012345

Cou

lom

b St

ress

Cha

nge

(bar

s)

Figure S6

A B

A

B

X (km)

Y (k

m)

−50 −40 −30 −20 −10 0 10 20 30 40 50−50

−40

−30

−20

−10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40−30

−25

−20

−15

−10

−5

0

Distance(km)

Dow

n−di

p di

stan

ce (k

m)

−5−4−3−2−1012345

Cou

lom

b St

ress

Cha

nge

(bar

s)A B

A

B

X (km)

Y (k

m)

−50 −40 −30 −20 −10 0 10 20 30 40 50−50

−40

−30

−20

−10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40−30

−25

−20

−15

−10

−5

0 A B

Distance(km)

Dow

n−di

p di

stan

ce (k

m)

−5−4−3−2−1012345

Cou

lom

b St

ress

Cha

nge

(bar

s)

20 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

-73.0˚ -72.5˚ -72.0˚

18.6˚

18.4˚

18.2˚

18.8˚

0 100 200 300 400Slip (cm)

12

3

10

20

0-20

10

−40 −20 0

0

100

0 50 100 150 200 250 300 350 400

6s

6s

6s

Dep

th (k

m)

Slip (cm)

(a)

(b) (c)

1

2

3

4

5

6

7

8

9

10

0 4 8 12 16 20

Mom

ent R

ate

(x10

18 N

-m)

Time (s)

Figure S7

nature geoscience | www.nature.com/naturegeoscience 21

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

−10 0 10 20 30 40

Time (s)

ALEP

42.1164

SFJDP

63.01050

KBSP

32.51170

LVZP

36.72179

KONOP

42.43270

OBNP

32.83385

ESKP

50.43663

BFOP

39.74470

MACIP

27.16851

TAMP

32.77172

SACVP

41.68646

MSKUP

17.49286

ASCNP

37.910963

RCBRP

61.712043

TRISP

59.913579

HOPEP

30.915978

TRQAP

37.917057

PMSAP

39.717683

−10 0 10 20 30 40

Time (s)

LCOP

75.517747

NNAP

125.818830

RPNP

54.221957

PTCNP

39.223470

PPTFP

27.924983

XMASP

46.327084

POHAP

43.128677

KIPP

78.928979

PFOP

63.629942

RSSDP

43.532036

KDAKP

39.132569

COLAP

35.633367

TIXIP

23.135388

ALESH

129.2164

KBSSH

80.61170

LVZSH

70.82179

OBNSH

93.53385

ESKSH

269.23663

−10 0 10 20 30 40

Time (s)

BFOSH

163.84470

TAMSH

169.97172

SACVSH

218.18646

TRISSH

147.613579

HOPESH

82.415978

PMSASH

217.117683

LCOSH

433.117747

RPNSH

152.921957

PTCNSH

235.323470

PPTFSH

203.724983

XMASSH

117.527084

POHASH

53.428677

KIPSH

91.628979

PFOSH

366.329942

KDAKSH

293.932569

TIXISH

172.735388

Figure S8

22 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

0 10

20

Dat

a−ra

mp

−60 −

30 0

30

60

cm

Mod

el

−60 −

30 0

30

60

cm

Diff

eren

ce

−60 −

30 0

30

60

cm

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

18.0

˚

18.5

˚

19.0

˚

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

18.0

˚

18.5

˚

19.0

˚

010

20

Dat

a−ra

mp

0 4

812

cm

Mod

el

0 4

812

cm

Diff

eren

ce

0 4

812

cm

Figure S9(a

)

(b)

nature geoscience | www.nature.com/naturegeoscience 23

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

18.0

˚

18.5

˚

19.0

˚

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

-73.

0˚-7

2.5˚

18.0

˚

18.5

˚

19.0

˚

0 10

20

Dat

a−ra

mp

−60 −

30 0

30

60

cm

Mod

el

−60 −

30 0

30

60

cm

Diff

eren

ce

−60 −

30 0

30

60

cm

010

20

Dat

a−ra

mp

0 4

812

cm

Mod

el

0 4

812

cm

Diff

eren

ce

0 4

812

cm

Figure S9(c

)

(d)

24 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

010

20

Data−ramp

−60−30

030

60

cm

Mod

el

−60−30

030

60

cm

Difference

−60−30

030

60

cm

010

20

Data−ramp

0 4

812

cm

Mod

el

0 4

812

cm

Difference

0 4

812

cm

-73.0˚

-72.5˚

-73.0˚

-72.5˚

-73.0˚

-72.5˚

18.0˚

18.5˚

19.0˚

-73.0˚

-72.5˚

-73.0˚

-72.5˚

-73.0˚

-72.5˚

18.0˚

18.5˚

19.0˚

Figure S9(e

)

(f)

nature geoscience | www.nature.com/naturegeoscience 25

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

010

20

Data−ramp

−60−30

030

60

cm

Mod

el

−60−30

030

60

cm

Difference

−60−30

030

60

cm

010

20

Data−ramp

0 4

812

cm

Mod

el

0 4

812

cm

Difference

0 4

812

cm

-73.0˚

-72.5˚

-73.0˚

-72.5˚

-73.0˚

-72.5˚

18.0˚

18.5˚

19.0˚

-73.0˚

-72.5˚

-73.0˚

-72.5˚

-73.0˚

-72.5˚

18.0˚

18.5˚

19.0˚

Figure S9(g

)

(h)

26 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977-73.0˚

-72.5˚

18.6˚

18.4˚

Figure S10

Slip

(cm

)0

100

200

300

400

nature geoscience | www.nature.com/naturegeoscience 27

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

95

100

105

110

115

120

12545.0 60.0 75.0 90.0 75.0 60.0 45.0

45.0 60.0 75.0 90.0 75.0 60.0 45.0

North DipSouth Dip

North DipSouth Dip

Solution Fault Plane Dip[Strike = 251, Rake = 28 (gCMT)]

RM

S R

elat

ive

to B

est-F

ittin

g So

lutio

n(a)

(b)

Figure S11

New Kinematic Solution Global CMT Solution

W-Phase SolutionFirst Motion Solution

28 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

gCMT

gCMT

First Motions

CompressionalDilatationalNodal

N

E

P

P

T

T

Azimuth PlungeP-axis 37.9 5.2T-axis 131.6 35.0B-axis 300.6 54.5

P1 Strike, Dip, Rake: 270, 70, 30P2 Strike, Dip, Rake: 169, 62, 157

Azimuth PlungeP-axis 19.7 4.0T-axis 112.4 33.6B-axis 283.8 56.1

P1 Strike, Dip, Rake: 251, 70, 28P2 Strike, Dip, Rake: 151, 64, 158

Figure S12

nature geoscience | www.nature.com/naturegeoscience 29

SUPPLEMENTARY INFORMATIONdoi: 10.1038/ngeo977

gCMT

gCMT

First Motions

CompressionalDilatationalNodal

N

E

P

P

T

T

Azimuth PlungeP-axis 37.9 5.2T-axis 131.6 35.0B-axis 300.6 54.5

P1 Strike, Dip, Rake: 270, 70, 30P2 Strike, Dip, Rake: 169, 62, 157

Azimuth PlungeP-axis 19.7 4.0T-axis 112.4 33.6B-axis 283.8 56.1

P1 Strike, Dip, Rake: 251, 70, 28P2 Strike, Dip, Rake: 151, 64, 158

Figure S12

Table

S2.

C

oasta

l uplif

t valu

es d

ete

rmin

ed fro

m c

ora

l m

icro

ato

ll and b

each g

eom

orp

hic

measure

ments

Sit

eL

at.

Lo

n.

Date

(U

TC

)T

ime (

UT

C)

Tid

al

sta

ge

(m)1

Co

rr. to

ELT

(m)2

Ap

p.

up

lift

(m)3

Su

rviv

al

co

rrecti

on

(m)4

UP

LIF

T

(m)5

Err

or

(+/-

)6

Mille

po

ra

die

do

wn

7H

LS

to

HL

S8

Co

mm

en

ts

Belo

c18.4

79070°

-72.6

68659°

02.2

5.2

010

16:0

8:0

00.1

30.3

10.7

0.0

60.6

40.1

1n/r

0.4

5 (

Sid

.)A

bundant

Sid

. sid

ere

a m

icro

ato

lls

Cassagne (

Baussin

) 1

8.4

94491°

-72.6

63347°

02.2

5.2

010

18:3

0:0

00.1

80.3

60.5

9n/a

0.5

90.1

8n/o

n/a

Sid

. sid

ere

a w

/o c

lear

HLS

; m

in. uplif

t

Leogane

18.5

25851°

-72.6

51021°

02.2

5.2

010

20:0

2:0

00.2

60.4

40.4

50.0

60.3

90.1

1n/o

0.1

8 (

Sid

.)O

nly

surv

ivin

g p

re-E

Q S

id. sid

ere

a m

icro

ato

ll in

pla

ce a

t Leogane

Kay M

irak

18.5

39581°

-72.6

37173°

02.2

5.2

010

21:0

0:0

00.2

90.4

70.4

n/a

0.4

00.1

2n/a

n/a

Beach g

eom

orp

h

Kay T

iyout

18.5

51034°

-72.6

26712°

02.2

5.2

010

21:3

0:0

00.2

90.4

70.3

n/a

0.3

00.0

9n/a

n/a

Beach g

eom

orp

h

Tapio

n d

e P

etit A

ngla

is 1

8.4

31660°

-72.7

94754°

02.2

6.2

010

14:5

5:0

00.2

20.4

0.3

5n/a

0.3

50.1

1n/a

n/a

Beach g

eom

orp

h

Port

Royal is

land

18.4

38644°

-72.8

94166°

02.2

6.2

010

19:3

6:0

00.1

90.3

70.1

50.0

60.0

90.0

9n/o

n/a

No s

ign o

f re

ef die

-dow

n; sta

ble

or

only

slig

htly u

p

Boyer

Isla

nd

18.4

32698°

-72.7

51661°

02.2

7.2

010

14:3

9:0

00.2

10.3

90.2

50.0

20.2

30.1

10.1

2n/a

No S

id.; fro

m P

orite

s H

LS

One H

ors

e T

err

ace

18.4

31487°

-72.7

85005°

02.2

7.2

010

17:3

0:0

00.0

80.2

60.4

30.0

60.3

70.1

10.1

70.1

4 (

Sid

.)F

rom

Sid

. ra

dia

ns H

LS

; valu

e fro

m D

iplo

ria

is 4

cm

hig

her

La H

atte

18.4

43492°

-72.8

43347°

02.2

7.2

010

19:1

8:0

00.1

0.2

80.5

0.0

60.4

40.1

10.1

40.2

2 (

Sid

.)S

id. sid

ere

a m

icro

ato

lls

L'a

cul

18.4

45996°

-72.6

89605°

02.2

7.2

010

21:0

3:0

00.2

40.4

20.6

20.0

60.5

60.1

10.1

0.2

1 (

Sid

.)S

id. sid

ere

a m

icro

ato

lls

Fauche

18.4

33165°

-72.7

13084°

02.2

8.2

010

15:2

4:0

00.2

80.4

60.3

60.0

80.2

80.1

10.1

50.1

5 (

Dip

.)D

iplo

ria

mic

roato

lls

Belle

vue

18.4

37596°

-72.6

99797°

02.2

8.2

010

16:4

7:0

00.1

40.3

20.4

20.0

80.3

40.1

10.1

90.1

5 (

Dip

.)D

iplo

ria

mic

roato

lls

Gra

nd G

oave s

eaw

all

18.4

33123°

-72.7

73273°

02.2

8.2

010

18:3

1:0

00.0

30.2

10.3

0.0

80.2

20.1

10.1

6n/a

Dip

loria

mic

roato

lls

La H

atte s

eaw

all

18.4

41517°

-72.8

58818°

03.0

2.2

010

15:1

6:0

00.3

60.5

40.1

10.0

60.0

50.0

5n/o

n/o

Reef healthy; no d

ie-d

ow

n

Port

Royal poin

t 1

8.4

44990°

-72.8

93583°

03.0

2.2

010

20:4

7:0

0-0

.03

0.1

5-0

.15

0.0

6-0

.21

0.1

1n/o

n/o

Reef healthy; no d

ie-d

ow

n. A

ppare

nt subsid

ence m

ay b

e d

ue to n

orm

al

dis

pla

cem

ent acro

ss P

ort

Royal fr

actu

re featu

re.

Petit G

oave p

ier

18.4

30988°

-72.8

70051°

03.0

2.2

010

15:4

5:0

00.3

20.5

-0.1

5n/a

-0.1

50.1

5n/a

n/a

Estim

ate

fro

m u

ndefo

rmed p

ier,

sta

ndin

g w

ate

r, a

nd e

yew

itness

accounts

Passio

n B

each

18.5

45808°

-72.5

36580°

03.0

3.2

010

17:0

0:0

00.2

40.4

20.0

7n/a

0.0

70.0

70.0

7.0

3 (

P. ast.

)S

id. sid

ere

a s

how

s z

ero

uplif

t, b

ut avera

ge 7

cm

die

-dow

n o

f M

illepora

,

som

e s

tressed s

ea g

rass.

Ile d

e la G

onave

18.6

99632°

-72.8

13333°

03.0

4.2

010

15:3

8:0

00.3

10.4

90

00.0

00.1

1n/o

n/a

This

refe

rence s

ite is u

sed to e

valu

ate

HLS

wrt

ELT

and thus u

plif

t is

defined a

s z

ero

1 T

idal sta

ge a

t tim

e o

f m

easure

ment is

arb

itra

ry. T

ide m

odel is

derived fro

m p

redic

tion a

t P

ort

-au-P

rince a

dju

ste

d to fit Ile

de la G

onave tem

pora

ry d

eplo

ym

ent (R

oger

Bilh

am

, pers

onal com

munic

ation)

2 A

bsolu

te c

orr

ection to r

each E

xtr

em

e L

ow

Tid

e (

ELT

) as p

redic

ted fro

m inte

rval 2000 -

2010 (

-0.1

8 m

in this

arb

itra

ry d

atu

m).

3 A

ppare

nt uplif

t is

with r

espect to

wate

r le

vel at tim

e o

f observ

ation a

nd n

ot corr

ecte

d for

futu

re d

ie-d

ow

n4 S

urv

ival corr

ection for

expecte

d c

ora

l surv

ival above E

LT

as c

alib

rate

d b

y Ile

de la G

onave o

bserv

ations (

2 c

m for

Porite

s, 6 c

m for

Sid

era

str

ea

, 8 c

m for

Dip

loria

)5 U

plif

t is

vert

ical dis

pla

cem

ent w

ith r

espect to

pre

-eart

hquake e

levation

6 F

or

cora

l m

easure

ments

, err

or

is c

alc

ula

ted a

s r

oot of th

e s

um

of th

e s

quare

s o

f in

str

um

ent err

or

(1 c

m),

tid

e m

odel err

or

(5 c

m),

and s

ea level anom

aly

uncert

ain

ty (

10 c

m).

For

non-c

ora

l m

easure

ments

, uncert

ain

ty is a

ssum

ed to b

e 3

0%

of m

easure

d v

alu

e.

7D

iedow

n o

f M

illepora

com

pla

nata

cora

ls is a

min

imum

measure

of uplif

t. n/r

= n

ot re

cord

ed, n/o

= n

ot observ

ed

8D

iffe

rences in p

re-

and p

ost-

EQ

HLS

(H

ighest Level of S

urv

ival) a

re a

min

imum

estim

ate

of uplif

t; furt

her

die

-dow

ns a

re p

redic

ted.

Sid

. =

Sid

ere

a s

idera

str

ea, D

ip. =

Dip

loria s

trig

osa, P. ast. =

Porite

s a

ste

roid

es

30 nature geoscience | www.nature.com/naturegeoscience

SUPPLEMENTARY INFORMATION doi: 10.1038/ngeo977

Table S3. Qualitative indicators of vertical motion

Site Lat Long Date Description

Qualitative assessment of

vertical motion

1 18.4307019 -72.71918605 24-FEB-10 3:16:06PM Reef shallow, beach widened up

2 18.4317162 -72.71681271 24-FEB-10 3:18:31PM Reef shallow, beach widened up

3 18.4333789 -72.71688446 24-FEB-10 3:24:34PM Millepora exposed up

4 18.434604 -72.71355266 24-FEB-10 3:29:36PM Reef exposed, beach widened up

5 18.4355972 -72.71106675 24-FEB-10 3:32:56PM Coral exposed and dying up

6 18.437789 -72.6981727 24-FEB-10 3:43:04PM Secondary failure of delta front 2nd down

7 18.4374697 -72.69686094 24-FEB-10 3:53:08PM Reef exposed at Beloc site up

8 18.4945245 -72.66335771 25-FEB-10 12:44:29PM Small exposed patch reef at Cassagne (Baussin) site up

9 18.5258676 -72.65101385 25-FEB-10 2:06:28PM Exposed reef at Leogane microatoll site up

10 18.5395808 -72.63717332 25-FEB-10 3:01:22PM Widened beach face at Kay Mirak site up

11 18.5510345 -72.62671195 25-FEB-10 3:35:36PM Widened beach face at Kay Tiyout site up

12 18.4316604 -72.79475385 26-FEB-10 9:14:50AM Widened beach face, exposed boulders at Tapion de Petit Anglais site up

13 18.4394314 -72.80415365 26-FEB-10 9:25:49AM Double notch in boulder - sequential uplift up

14 18.4437524 -72.83337054 26-FEB-10 9:39:52AM Clear coastal emergence from here to west up

15 18.4389291 -72.8624394 26-FEB-10 9:56:03AM Stranded stairs indicate uplift up

16 18.4300102 -72.87143754 26-FEB-10 10:09:07AM Pier stable or down; then down to west down

17 18.4252956 -72.88012362 26-FEB-10 10:16:38AM Minor subsidence, not clearly secondary down

18 18.4256964 -72.8866553 26-FEB-10 10:19:14AM Severe slumping delta front 2nd down

19 18.4282844 -72.89536167 26-FEB-10 10:23:01AM Still subs from prev. point; veg drowned; storm berm breached down

20 18.4345478 -72.89798269 26-FEB-10 10:25:47AM Still subs from prev. point; veg drowned; storm berm breached down

21 18.4387266 -72.89876162 26-FEB-10 10:28:14AM Drowned vegetation (clearly secondary on imagery) 2nd down

22 18.4460768 -72.89418644 26-FEB-10 11:34:06AM Healthy reef, no obvious uplift 0

23 18.4459045 -72.89414755 26-FEB-10 11:51:25AM Notch in reef suggests no sig. uplift 0

24 18.4381306 -72.89951683 26-FEB-10 12:43:02PM Drowned veg (clearly secondary on imagery) 2nd down

25 18.4390874 -72.89594161 26-FEB-10 3:17:10PM No clear change at Port Royal Island site 0

26 18.4329545 -72.75116058 27-FEB-10 9:04:10AM Exposed reef at Boyer Island site up

27 18.4314869 -72.78500469 27-FEB-10 10:18:28AM Exposed reef at One Horse Terrace site up

28 18.4434922 -72.84334701 27-FEB-10 1:22:21PM Exposed reef at La Hatte site up

29 18.4331645 -72.71308394 28-FEB-10 9:40:12AM Exposed reef at Fauche site up

30 18.4375957 -72.69979653 28-FEB-10 11:21:14AM Exposed reef at Bellevue site up

31 18.4331229 -72.77327296 28-FEB-10 1:18:10PM Exposed reef at Grand Goave seawall site up

32 18.4413898 -72.85838641 02-MAR-10 9:44:13AM Reef not stressed at La Hatte seawall site; beach slightly widened up

33 18.4397028 -72.86119904 02-MAR-10 10:31:54AM Stairs stranded up

34 18.4387702 -72.86210806 02-MAR-10 10:32:43AM Stairs stranded

35 18.4376805 -72.86371579 02-MAR-10 10:33:54AM Apparently stable 0

36 18.4364551 -72.86592007 02-MAR-10 10:35:28AM Canal seems stable 0

37 18.4348208 -72.86734449 02-MAR-10 10:37:44AM Berm forming on landward terrace down

38 18.4343465 -72.86846808 02-MAR-10 10:38:54AM Canal mouth flooded down

39 18.4343554 -72.86797833 02-MAR-10 10:41:22AM Accelerated cliff retreat down

40 18.4286098 -72.86775076 02-MAR-10 11:02:54AM To here from pier no prom. secondary deformation 0

41 18.4282031 -72.86874468 02-MAR-10 11:07:51AM Canal wall is stable, not displaced 0

42 18.4298827 -72.87107351 02-MAR-10 11:30:25AM Begin drowned trees to W 2nd down

43 18.429464 -72.87146646 02-MAR-10 11:31:08AM Drowned palms 2nd down

44 18.4264393 -72.87405152 02-MAR-10 11:36:30AM Base of structure inund. at 11:35 am local time 2nd down

45 18.4257852 -72.87450565 02-MAR-10 11:38:22AM Building flooded 20 cm at 11:38 am local time 2nd down

46 18.4253564 -72.87548164 02-MAR-10 11:56:58AM Canal deformed by shaking, back-rotated 2nd down

47 18.4246776 -72.87793091 02-MAR-10 12:00:09PM No obvious secondary deformation but drowned vegetation down

48 18.4247059 -72.87896289 02-MAR-10 12:01:32PM Canal flooded, only minor secondary def 2nd down

49 18.4249045 -72.88020082 02-MAR-10 12:03:12PM Palms appear in normal position wrt tide 0

50 18.4252482 -72.88198038 02-MAR-10 12:05:39PM Normal looking palms 0

51 18.4255881 -72.88687818 02-MAR-10 12:12:23PM To here from previous, normal or <20-30 cm subs 0

52 18.4271556 -72.89423229 02-MAR-10 12:17:52PM Coast appears normal 0

53 18.4296255 -72.8962214 02-MAR-10 12:20:08PM Coast appears normal 0

54 18.4318622 -72.89769779 02-MAR-10 12:22:06PM Beach face appears slightly widened up

55 18.4351176 -72.89909539 02-MAR-10 12:36:15PM Oficier: Locals say up 20 cm up

56 18.4406925 -72.89229641 02-MAR-10 1:06:07PM Mangroves not distressed - no apparent change 0

57 18.4430648 -72.89244728 02-MAR-10 1:18:16PM Stable or slightly up - no clear change 0

58 18.4431674 -72.89338698 02-MAR-10 1:32:52PM Slightly up? Dead Thalassia 0

59 18.4484779 -72.89493126 02-MAR-10 4:23:37PM Coast normal 0

60 18.5447588 -72.53769471 03-MAR-10 10:53:38AM Stressed reef at Passion Beach up

61 18.5635406 -72.59934529 03-MAR-10 12:54:38PM Coast up, secondary deformation imprint up

62 18.6934526 -72.82142314 04-MAR-10 9:30:36AM Gonave - stable with deep notch 0

63 18.4460811 -72.68968293 04-MAR-10 3:10:37PM Exposed reef at L'acul site up