SUPPL.12 SOUTHWESTERN ENTOMOLOGI ST FEB - …sswe.tamu.edu/files/2017/06/SWE_S12_P095-115.pdf ·...

21
SUPPL.12 SOUTHWESTERN ENTOMOLOGI ST FEB.1989 CONSIRVATIoN AND AUGI'{ENTATTON OI' It{IcRoPLITIs cRocErPEs 1/ FOR CON TROLLI NG HELI OTTiSJ--dP'. _Z Keith R. Hopper V Southern Field Crop Insect Managernent Laboratory ARS, USDA, Stoneville, MississiPPi ABSTRACT Various approaches are available for conservation and augmentation of Mi-croplitis croceipes (Cresson) to control of Heliothis zea (Boddie) and Heliothis virescens (F.). Sirnulations of augmentation with several models of host- parasitoid population dynanics showed that such models could reveal important parameters to measure and could help in design of augmentation programs. In a model with no dispersal between subpopulations, simulated L0-fo1d augmentation of M. croceipes density in spring suppressed H- virescens density throughout the season. Addj,ng density- independent dispersal between subpopulations to this model decreased the impact of augmentation. Incorporating parasitoid aggregation in response to host density caused the behavior of the model with dispersal to return to that with no dispersal. Adding density-dependent nortali-ty from causes other than parasitization had little affect on sirnulated trajectories when such mortality occurred before parasitization, but adding density-dependent nortality after parasitization reduced parasitoid irnpact. Although I was unable to draw on nany data for several processes and parameters, the sinulations suggest that augmentation of l{. croceipes for control of Heliothis spp. would be technically feasible. INTRODUCTION To practice rational conservation or augmentation we need explicit predictions of natural enemy impact. For example, to decide when, where, and in what numbers to release parasitoids in an inoculative release program' one needs to predict what effect date/tfune, p1ace, and density of release have on reductj.on in host density in the generation of release and in subsequent generations. To get such predictions one can use either regression models or mechanistj-c rnodels. To develop a regression model , one trould release vtasps under various conditions and then regress parasitism on numbers released, host density, tirne of season' V Hvmenoptera: Braconidae !, t epiaoftera: Noctuidae l/ Current address: European L3-15 rue de la Masse, 789L0 Parasite Laboratory, ARs. USDA, Orgerus-Behoust, France 95

Transcript of SUPPL.12 SOUTHWESTERN ENTOMOLOGI ST FEB - …sswe.tamu.edu/files/2017/06/SWE_S12_P095-115.pdf ·...

S U P P L . 1 2 SOUTHWESTERN ENTOMOLOGI ST F E B . 1 9 8 9

CONSIRVATIoN AND AUGI'{ENTATTON OI' It{IcRoPLITIs cRocErPEs 1/FOR CON TROLLI NG H E LI O TTiSJ--dP'.

_Z

Keith R. Hopper V

Southern Field Crop Insect Managernent LaboratoryARS, USDA, Stonevi l le, MississiPPi

ABSTRACT

Var ious approaches are ava i lab le fo r conserva t ion andaugmenta t ion o f Mi -c rop l i t i s c roce ipes (Cresson) to cont ro lo f H e l i o t h i s z e a ( B o d d i e ) a n d H e l i o t h i s v i r e s c e n s ( F . ) .S i r n u l a t i o n s o f a u g m e n t a t i o n w i t h s e v e r a l m o d e l s o f h o s t -parasitoid populat ion dynanics showed that such models couldr e v e a l i m p o r t a n t p a r a m e t e r s t o m e a s u r e a n d c o u l d h e l p i nd e s i g n o f a u g m e n t a t i o n p r o g r a m s . I n a m o d e l w i t h n od i s p e r s a l b e t w e e n s u b p o p u l a t i o n s , s i m u l a t e d L 0 - f o 1 daugmentation of M. croceipes density in spring suppressed H-v i rescens dens i ty th roughout the season. Add j ,ng dens i ty -independent d ispersa l be tween subpopu la t ions to th is mode ld e c r e a s e d t h e i m p a c t o f a u g m e n t a t i o n . I n c o r p o r a t i n gp a r a s i t o i d a g g r e g a t i o n i n r e s p o n s e t o h o s t d e n s i t y c a u s e dthe behav io r o f the mode l w i th d ispersa l to re tu rn to tha twith no dispersal. Adding density-dependent nortal i- ty fromc a u s e s o t h e r t h a n p a r a s i t i z a t i o n h a d l i t t l e a f f e c t o ns i rnu la ted t ra jec to r ies when such mor ta l i t y occur red be foreparasit izat ion, but adding density-dependent nortal i ty afterp a r a s i t i z a t i o n r e d u c e d p a r a s i t o i d i r n p a c t . A l t h o u g h I w a su n a b l e t o d r a w o n n a n y d a t a f o r s e v e r a l p r o c e s s e s a n dparameters, the sinulat ions suggest that augmentation of l{ .croceipes for control of Heliothis spp. would be technical lyfeas ib le .

INTRODUCTION

To prac t ice ra t iona l conserva t ion or augmenta t ion wen e e d e x p l i c i t p r e d i c t i o n s o f n a t u r a l e n e m y i m p a c t . F o re x a m p l e , t o d e c i d e w h e n , w h e r e , a n d i n w h a t n u m b e r s t ore lease paras i to ids in an inocu la t i ve re lease program' oneneeds to predict what effect date/tfune, p1ace, and density ofre lease have on reduc t j .on in hos t dens i ty in the genera t iono f r e l e a s e a n d i n s u b s e q u e n t g e n e r a t i o n s . T o g e t s u c hp r e d i c t i o n s o n e c a n u s e e i t h e r r e g r e s s i o n m o d e l s o rmechanistj-c rnodels. To develop a regression model , one trouldr e l e a s e v t a s p s u n d e r v a r i o u s c o n d i t i o n s a n d t h e n r e g r e s sparasit ism on numbers released, host density, t i rne of season'

V Hvmenoptera: Braconidae

!, t epiaoftera: Noctuidael/ Current address: EuropeanL3-15 rue de la Masse, 789L0

Parasite Laboratory, ARs. USDA,Orgerus-Behoust, France

9 5

t e m p e r a t u r e a n d o t h e r b i o t i c a n d a b i o t i c f a c t o r s . T h i sapproach can be very expensive because of the many variablesi n v o l v e d a n d b e c a u s e o f t h e l a r g e a r e a s n e e d e d f o re x p e r i m e n t s w i t h h i g h l y n o b i l e h o s t s a n d p a r a s i t o i d s .F u r t h e r m o r e , o n e c a n n o t s a f e l y e x t r a p o l a t e r e g r e s s i o ne q u a t i o n s t o c o n d i t i o n s b e y o n d t h o s e o f t h e e x p e r i m e n t a lre leases .

Mechanistic rnodels, rirhich are based on understanding ofthe causa l in te rac t ions be tween dependent and independentvariables, provide an alternative to regression models. Hereone has to rneasure the paraneters of the component processesa f f e c t i n g d a n a g e a n d p o p u l a t i o n d y n a m i c s , e . g . f e e d i n g ,s e a r c h , d e v e l o p m e n t , d i s p e r s a l , n a t a l i t y , a n d n o r t a l i t y .A l though these measurements a re expens ive , they are o f tenless expens ive than the la rge sca le exper inents needed fo rregress ion mode ls . Fur thernore , i f rnechan is t i c node ls a redesigned well , they can apply to a wide range of condit ions.

I n t h i s p a p e r , I r e v i e w t h e f o r m s c o n s e r v a t i o n a n da u g m e n t a t i o n c o u l d t a k e w i t h M i c r o p l i t i s c r o c e i p e s(c resson) (Hyrnenoptera : Bracon idae) aga ins t He l io th is zea( B o d d i e ) a n d H e l i o t h i s v i r e s c e n s ( F . ) ( L e p i d o p t e r a :N o c t u i d a e ) . I t h e n d e s c r i b e s i r n u l a t i o n s w i t h s e v e r a lmechanist ic models of host-parasitoid populat ion dynarnics anddraw in fe rences about impor tan t paraneters to measure anda b o u t t h e p r o s p e c t s f o r a u g m e n t a t i o n . H . z e a a n d H .v i r e s c e n s a r e m a j o r i n s e c t p e s t s i n t h e U n i t e d s t a t e s( S c h w a r t z 1 9 8 4 , H e a d 1 9 8 4 ) , a n d H e l i o t h i s s p p . a r e m a j o rpes ts nor ldwide (Nevrson 19?2, Anonymous 1981) . M. c roce ipesis often the most abundant parasitoid of the larvae of thesemoths in f ie ld surveys (Lewis and Brazze l L968, Mue l le r andP h i l l i p s l - 9 8 3 , S t a d e l b a c h e r e t a l . 1 9 8 4 , K i n g e t a l . l - 9 8 5 ) ,and as this paper r{r i l l shovr, i t is a promising candidate forcontrol of these pests.

CONSERVATTON

s e v e r a l f o r r n s o f c o n s e r v a t i o n a r e p o s s i b l e f o r M .c r o c e i p e s : ( 1 ) u s i n g c u l t u r a l p r a c t i c e s , e s p e c i a l l y w e e dcont roL , w i th min inum impact on l , { . c roce ipes , (2 ) app ly ingi n s e c t i c i d e s l e a s t t o x i c t o M . c r o c e i p e s , ( 3 ) a p p l y i n ginsec t ic ides on ly s rhen sampled Eg! jg ! -b ; !s - spp . dens i tyexceeds the econorn ic th resho ld , and (4 ) us ing [ . c roce ipesdensity and potential inpact of i t and other natural enemiesi n d e c i d i n g h r h e t h e r t o a p p l y a n i n s e c t i c i d e . C o n c e r n i n gc u l t u r a l p r a c t i c e s , s t a d e l b a c h e r ( 1 9 8 L ) h a s r e c o m m e n d e ddestruction of non-crop hosts plants in the spring to reduceH e l i o t h i s s p p . n u m b e r s i n c r o p s l a t e r i n t h e s e a s o n .Ho l tever , th is p rac t ice cou ld a lso reduce the dens i ty o f U .c r o c e i p e s a n d o t h e r n a t u r a l e n e n i e s . w h e t h e r t h e i n p a c ton Heliothis spp. of noncrop host plant destruction is vtorththe loss o f na tura l enemies depends on the re la t i ve inpac ton Heliot,his spp. and natural enerny populations in subsequentgenerations and on the irnportance of Heliothis spp. rnortal i tyfron natural enemies.

A s w i t h s o m e o t h e r p r e d a t o r s a n d p a r a s i t o i d s , M .c r o c e i p e s i s r e l a t i v e l y t o l e r a n t o f p y r e t h r o i d s a n dcarbamates and in to le ran t o f o rganophosphates (Powel l andScott 1986), rrhich suggests use of pyrethroids and carbamatesr a t h e r t h a n o r g a n o p h o s p a t e s t o c o n s e r v e t h i s a n d o t h e r

9 6

n a t u r a l e n e m i e s . H o n e v e r , u s i n g p y r e t h o i d s c o u l d m e a n aconf l i c t w i th res is tance management : sorne researchers a ren o w r e c o m n e n d i n g u s e o f o r g a n o p h o s p h a t e s i n e a r l y s e a s o nand reduced use o f pyre thro ids to p revent deve lopment o fpyrethroid resistance in Heliothis spp.

S o m e g r o w e r s a n d c o n s u l t a n t s a l r e a d y s a m p l e p e s td e n s i t i e s a n d u s e e c o n o n i c t h r e s h o l d s . F u r t h e r m o r e ,H a r t s t a c k e t a l . ( 1 9 7 6 ' ) , B r o w n e t a l . ( 1 9 8 3 ) , a n d H o p p e rand Stark (1987) deve loped mode ls fo r use in He l io th is spp.m a n a g e m e n t t h a t i n c l u d e t h e i n p a c t o f n a t u r a l e n e m i e s .H o w e v e r , a g r e a t p r o b l e m w i t h a n y e x p l i c j - t u s e o f M .croceipes in decisions about Heliothis spp. management l ieswith the dif f iculty of sarnpl ing parasitoid density. Rearingh o s t l a r v a e u n t i l p a r a s i t o i d s e m e r g e t a k e s t o o l o n g f o rshor t - te rm dec is ions t d issec t ion is too labor in tens ive andr e q u i r e s t o o n u c h e x p e r t i s e ; a n d a d u l t s a r e d i f f i c u l t t os a m p l e w i t h c o n v e n t i o n a l t e c h n i q u e s ( e . 9 . w h o l e p l a n texaminat ions , suc t ion co l lec to rs ) . Beyond us ing re la t i ve lynon- tox ic insec t ic ides and economic th resho lds , improvedconservation of M. croceipes for control of Heliothis spp.at this point does not look prornising.

AT'GII{ENTATION

T h r e e f o r m s o f a u g r n e n t a t i o n a r e l i k e l y f o r M .c r o c e i p e s : i n u n d a t i v e r e l e a s e s , i n o c u l a t i v e r e l e a s e s , a n dnursery crops.

I n u n d a t i v e r e l e a s e s . N o p a r a s i t o j " d r e p r o d u c t i o n i sa s s u m e d f o r i n u n d a t i v e r e l e a s e s . T h u s t h e y a r e l i k eapp l ica t ions o f se lec t j . ve insec t ic ides and are assoc ia tedmore w i th reduc ing danage by the hos t popu la t ion presentat release than with suppressing host density in subseguentg e n e r a t i o n s . l t . c r o c e i p e s r e d u c e s d a m a g e t o c o t t o n b yr e d u c i n g t h e f e e d i n g r a t e o f p a r a s i t i z e d H e l i o t h i s s p p .l a r v a e , a l t h o u g h p a r a s i t i z a t i o n d o e s n o t r e d u c e t h e t i r n etha t hos t la rvae spend on the hos t p lan t (Hopper and K ingL 9 8 4 b ) . I t i s u n k n o w n w h e t h e r p a r a s i t i z e d l a r v a e s u f f e rh igher o r lower nor ta l i t y than unparas i t i zed la rvae in thef i e l d , b u t C h r v s o p e r l a c a r n e a ( S t e p h e n s ) d o e s n o t p r e f e re i t h e r t y p e o f l - a r v a i n f i e l d c a g e e x p e r i m e n t s o n c o t t o n(Stark and Hopper 1988) .

I n t r a g e n e r a t i o n m o d e l s c a n b e u s e d t o p r e d i c t t h eirnpact of inundatj.ve releases. Applying data frorn field cagee x p e r i m e n t s o n h o s t i n s t a r p r e f e r e n c e s , H o p p e r a n d K i n g( 1984a) descr ibed a s imp le node l o f the re la t ion be th teent h e d e n s i t y o f f e n a l e p a r a s i t o i d s , h o s t i n s t a r , a n d t h ep r o p o r t i o n o f h o s t s p a r a s i t i z e d . T h e y u s e d a m o d i f i e dversion of the search model proposed by Nicholson and Bailey( L 9 3 5 ) i

jx i /ni : 1 - exP (-P. : a1T1) ( 1 ) ,

where l f l i s t he dens i t y o f pa ras i t i zed hos ts , 8 .1 i s t hedensi ty 'o f unparasi t ized hosts, P is the densi ty of feura leparasi to ids, a{ is the search rate (area/ t ine) per femaleparasitoid for host larvae in instar l, and T1 is developnentL ine for host instar i . An inpor tant assu:mpt ion of th is

9 7

model i s tha t the propor t ion o f hos ts paras i t i zed per fe rna lep a r a s i t o i d i s i n d e p e n d e n t o f h o s t d e n s i t y , a n d H o p p e r a n dK i n g ( l - 9 8 6 ) d e m o n s t r a t e d t h i s i n d e p e n d e n c e i n f i e l d c a g ee x p e r i m e n t s ( F i g . l - ) . T h i s m o d e l p r e d i c t s e t e l l t h ep r o p o r t i o n o f h o s t s p a r a s i t i z e d v s . h o s t i n s t a r , g i v e n a ne s t i m a t e o f f e m a l e p a r a s i t o i d d e n s i t y ( F i g . 2 , H o p p e r a n dK i n g L 9 8 4 a ) .

l 0

=d 8a

tL!')<

ri-- 1

GLrlm z2=z.

z I 6 I t 0

NUMBER AVAILABLE ( /SO. M)

F I G . 1 . D e n s i t y o f H . z e a a n d H . v i r e s c e n s l a r v a ep a r a s i t i z e d b y M . c r o c e i p e s v e r s u s d e n s i t y o f l a r v a ea v a i l a b l e . E a c h p o i n t r e p r e s e n t s a t l e a s t o n e c a g e dp o p u l a t i o n . L i n e i s l e a s t - s q u a r e s r e g r e s s i o n ( f r o r n H o p p e ra n d K i n g 1 9 8 6 ) .

w i th th is mode l , one can pred ic t the i rnpac t o f var iousdens i t ies o f M. c roce ipes on the propor t ion o f He l io th is spp.l a r v a e p a r a s i t i z e d a t e a c h i n s t a r ( F i g . 3 , H o p p e r a n d K i n g1 9 8 4 a ) . T h i s p r e d i c t i o n c a n b e c o n b i n e d w i t h d a t a o n t h eef fec t o f paras i t i za t ion on feed ing to p red ic t the darnage toa c rop :

6 6D =

. X D p i N i + . : D , ' 1 ( H 1 - N 1 )i= f i= l

( 2 ) ,

w h e r e D i s t o t a l d a m a g e r a t e ( n u m b e r o r b i c - m a s s o f f r u i td a m a g e d p e r u n i t t i r n e ) , D ^ { i s t h e d a m a g e b y p a r a s i t i z e dh o s t s i n i n s t a r i , N i i s t h - e - d e n s i t y o f p a r a s i t i z e d h o s t s ,P u i i = t h e d a m a g e b y - u n p a r a s i t i z e d h o s t i n i n s t a r i , a n d H 1i s t h e d e n s i t y o f h o s t s i n i n s t a r i . H o p p e r a n l S t a r k ( l - 9 8 7 tused these components in a dec is ion mode l fo r He l io th is spp.nanagement, in cotton.

A prob le rn w i th th is fo rmula t ion o f M. c roce ipes i rnpac ton He l io th is spp. i s tha t the paras i to id and hos t a re assurnedt o b e r a n d o n l y d i s t r i b u t e d i n t h e f i e l d . I n f i e l d

9 8

o . 4

I

z

ouJTtrg,

(L

z9F

ooCEo-

0 . 6

o . 2

3

H O S T I N S T A R

f I G . 2 . M . c r o c e i p e s p a r a s i t i z a t i o ni n s t a r ( I i n e ) p r e d i c t e d u s i n g e q u a t i o nd a t a ( b a r s ) r e p o r t e d b y M u e l l e r a n dHopper and K ing L984a) .

versus He l io th is spp.l" compared with f ield

P h i I I i p s ( 1 9 8 3 ) ( f r o m

0 . 8

3

H O S T I N S T A R

F I G . 3 . P r e d i c t e d p a r a s i t i z a t i o n b y M . c r o c e i p e s v e r s u sHel io th is spp. ins ta r fo r var ious dens i t ies o f fena le nasps(number /ha) ( f ron Hopper and K ing 1984a) .

T

z

o 0 . 6utN

=U>

t o .oIL

zotr5 o . ,otr(L

o

9 9

exper iments w i th f ree- rang ing \ tasps female ' M- ' .g roce lpesagjregated in areas of high

-host aeniity, although the search

-' iL" -p"r

female parasitold was independent of host density

lunpu ' f t i shed da ia ) . The nex t s tep in - deve- Io -p ] t9 . t mode l

i o r ' i n u n d a t i v e , i n t r a g e n e r a t i o n c o n t r o l o f H e l i g t h i s s p p '

ly U.. croceipes hrould 6e to incorporate spatial distributiono i nos t ana paras i to id . Be low, I descr ibe one apProach to

i n c o r p o r a t l n g s p a t i a l d i s t r i b u t i o n i n a m o d e l f o r

inocul i t ive, in€ergLneration control of Heliothis spp. by M'croceipes.

lnocu la t i ve re leases and Nurserv Crops . A f requentprobleur with biotogical control of insect pests is that pestpopulat ions often increase to high densit ies before naturale n L r n y d e n s i t i e s r e a c h s u f f i c i e n t l e v e I s f o r c o n t r o l .tnocu la t i ve re leases , h lh ich un l i ke inundat ive re leases doassume parasitoid reproduction in the f ield, are intended tosolve this probfern by start ing parasitoid populat ions r^Ihenand where needed in suff icient numbers to keep up with hostpopu la t ions . such re leases are assoc ia ted more o f ten w i thluppress ing the hos t popu la t ion in subsequent genera t ionsthan with reducing damage by the host population in the fielda t the t ime o f re lease. Th is tac t i c i s c lose ly re la ted tot h e u s e o f n u r s e r y h o s t p l a n t s t o p r o v i d e r e s e r v o i r s o fparasitoids: nursery plants provide an insectary in the f ieldfrom which parasitoids can disperse to attack host larvae.

Intergeneration models are needed to predict the irnpacto f b o t h i n o c u l a t i v e r e l e a s e s a n d n u r s e r y c r o p s . H e r e , Idescribe simulat ions of augnentation with several nodels ofin te rgenera t ion dynamics o f E . v i rescens and U. c roce ipes( T h e n o d e l s a l s o a p p l y t o H . z e a . , I d i s c u s s ( 1 ) a n o d e lhr i thout d i .spersa l be tween subpopu la t ions , (2 ) node ls v i thv a r i o u s L e v e l s o f d e n s i t y - i n d e p e n d e n t d i s p e r s a l b e t w e e ns u b p o p u l a t i o n s , ( 3 ) a m o d e l w i t h d i s p e r s a l b e t w e e nsubpopuJ-ations in which parasitoid dispersal depends on hostd e n s i t y , a n d ( 4 ) a m o d e l w i t h d i s p e r s a l b e t w e e nsubpopulat ions, density-dependent parasitoid dispersal, andd e n s i t y - d e p e n d e n t h o s t m o r t a l i t y f r o m o t h e r c a u s e s . T h ep e r i o d s i r n u l a t e d r / a s o n e s e a s o n , r t h i c h i s f i v e H e l i o t h i sspp. genera t ions in Miss iss ipp i .

T h e g o a l s w e r e t o e x p l o r e t h e p o s s i b l e r e s u l t s o finoculative releases and to find where further research hrouldmost inprove such releases. I report simulated trajectorieso f h o s t d e n s i t y a n d p r o p o r t i o n o f h o s t l a r v a e p a r a s i t i z e db e c a u s e t h e s e a r e f r e q u e n t l y r n e a s u r e d a n d m o s t r e a d i l ycompared with experi-ence.

Mode l w i th No D ispersa l be tween Subpopu la t ions . Theequations for dynamics of host and parasitoid were:

-aPtHte ( 3 ) ,

( 4 ) ,

( s ) ,

( 6 ) ,

Ht+t7z =

-aPtPt+t1z = sHt( l -e )

-aP

Ht+L = r1t+t12e t+L/2

-aPE+r/2Pt+l - = sHg*r72(1-e )

1 0 0

yhefe Hg is . the dens i ty o f hos t la rvae a t the beg inn ing o fnosE genera t lon t , .E iL+L/2 is the dens i ty o f hos t la rvae a tthe nidpoint of host lef i6iat ion t, pe is Lhe densitv of adultf e m a l e p a r a s i t o i d s . a t t h e b e g i n n i r i g o f h o s t g e n & a t i o n t ,P l + t / , 1 s t h e d e n s i t y o f a d u l t f e m a l e p a r a s i t o i d s a t t h enrqp 'o rn t o f hos t genera t ion t . a i s the area searched perfernale. parasitoid during her l i fet ime, s is the proport io; ofp a r a s i t i z e d l a r v a e t h a t p r o d u c e a d u l t f e r n a l e p a ' r a s i t o i d s( thus i t combines surv iva l and sex ra t io ) , and r i s the hos trate of increase per generation in the absence of parasit ismby ! ! . . c roce ipes . The te r rn e rp( -ap+) i s the prop-or t ion o fhos ts escap ing paras i t i sm, and the te rm t -exp1-an* ) i s thepropor t ion o f hos ts paras i t i zed a t reas t once-1 i l t i ch81son andB a i r e y l - 9 3 5 , R o y a r n a 1 - 9 7 1 ) . r n t h e r e s u r t s o i s i m u l a t i o n sr e p o r t e d h e r e , t h e h o s t d e n s i t i e s a r e E + d r t d H + r r l , f r o mequat ions 3 and 5 and the propor t ions o f hos ts p?- . ' J r ' i t i " "dare 1--exp1-aPg) and l-ex-p(-apg.a172) from equationJ a and 6.. t l . c rocerpes c teve lops th r iCe as fas t as He l io th is spp.(Nadgauda and P i t re l_983, Jones and Lewis t -SZf , nopper anaK 1 . S 1 9 8 4 a ) , a n d a s y n c h r o n y o f H e l i o t h i s s p p . d e v i l o p r n e n twithin a generation means ttrat M. steqeipesi idutts ern6rgingfrom a generation of host larvae-can atEEEk-that generationlT h e r e f o r e , I a s s u m e d t w o p a r a s i t o i d g e n e r a t i o n J p e r h o s tgeneration. I used host generation as the t ime unit.

The search . ra te p .e r fena le M.^ c roce ipes measured inf ie ld cage exper i rnents i s about f rnZZaaV tUopper and K ingL986) , and the nea.n longev i ty o f adu l t fe rna le -M. c roce ipe iin the laboratory is 28 days lnopper r.986). assuninl fernaleil i v e a b o u t L / 3 X o L / 2 a s 1 o n 9 i n t h e f i e l d a s i n t h eIabora tory , I used. a search area (a ) o f 10 n2 ( : t fn27aay11fO9 . y " 1 ) . M . c r o c e i p e s f e r n a l e s p r e f e r t o p a r a s i t i i e t h i r a linstar larvae (Hopper and King l_-984a), and Hogg and Nordhefun( l -983) found tha t about 60A o f He l io t .h is spp. Ia rvae wh ichreached the end of the third instar survived to sixth instari n t h e f i e l d ( i . e . e s s e n t i a l l y t o p u p a t i _ o n ) . I a s s u m e dthat M. c roce ipes la rvae in H. v i rescens la rvae surv ive a tthis rate. Pupal survival for l t . SlgSgipeg in laboratorye x p e r i n e n t s v l r i e s b e t w e e n O . S s a n a l l g F a e p e n d i n g o n t h eh o s t i n s t a r p a r a s i t i z e d ( H o p p e r 1 9 8 6 ) . T h e s e x r i t i o h . =b e e n 1 : L i n t h e c o l o n i e s a t S t o n e v i l l e a n d i n f i e l dcol lect ions of parasit ized rarvae. putt ing these paramet,erst o g e t h e r , I u s e d s = 0 . 2 ( = t 0 . 5 1 t O . 7 5 l t O . 5 l )

The rate of increase of the H. virescens populat ior int h e , a b s e n c e o f M . c r o c e i p e s ( r ) i s t h e r n o s t

- a i t f i c u l t t o

e s t i m a t e o f t h e s e p a r a r n e t e r s . ' f t d e p e n d s o n n a t a l i t y a n dnortal i ty of Helipthis spp. in the f ield, which are l ike1y tobe h igh ly var iab le and fo r wh ich there are few es t ina tes .He l io th is spp. na ta l i t y var ies w i th spec ies , agef d ie t , andternperature (Lukefahr and Mart in 1954, Frostrotd 6t 'al . Lgt2,N a d g a u d a a n d p i t r e L 9 8 3 , T o l l e f s o n a n d W a t s o n 1 9 8 1 - l .However, 10O eggslday appears an adequate approximation fort h e m o d e l s p r e s e n t e d h e r e . S n o h r e t a t . ( l - 9 5 9 ) r e p o r Enor ta r i t y o f adur t no ths tha t ind ica tes a su iv iva i ra te o fO.5 /Aay . , assuming cons tan t rnor ta l i t y . Las ter e t a I . ( j .gg- i )r e p o r t a d u l t n a l e s u r v i v a t r J t e s i n t h e f i e l d o ; "0 . 8 3 - 0 . 8 7 / d a y . w i t h t h e s e v a l u e s , e a c h f e m a r e n o t h w o u r dl a y . a l . a v e r a g e o f 2 0 0 - 7 6 9 e g g s o v e r h e r l i f e t i r n e . I fn o r t a l i t y d u r i n g t h e p e r i o d f r o m o v i p o s i l i ; ; - ; ; a d u l t

1 0 1

ec los ion were 95 -99 t and the sex ra t i o \ t e re 1 : l - ' t he ra te

o f i nc rease wou ld be 5 - fo ld pe r gene ra t i on ' These va lues

for juveni re nor tar i ty . t " 1 i : , 'o t labre g iven,egg-.ar :d rarvalmort -a l i ty observed i . i t t re f ie ld (4oSS an-d Nordhein 1983) '

Therefore-, I used r=5 in the sinulations below'Heliothis tp;. i;;ai a"n"it i"" ringe f r9n p Eo 4o/m2

on sprT6f-I-o"t f,r i" i, in rhe detta region o-f..Mississippi

lsta-aefUicher rg-at and stadelbacher et .aI-'^ 199a)-: -Holtlever'most of ten densi t ies 1 ie between o.a and Lo/mz so I used an

in i t i a l hos t dens i t y o f 5 l a r vae /n2 . Las te r e t a1 . (1987 )

found tha t 5 .7 t ; i 43 o r " t r i n te r i ng H ' v i r escens .ene rgedpe r ha o f l and a rea . I f 160 hos t l a r vae /ha su rv i ved the

ii"t.t, ="* i i t i" for IrI . croceipes \tere .l-:L' -and about half

in" - o.tit,ointering hosf larvae ltere. parasitized,, ld"lt fernale

p"t""i i" iJ dlnsitf would be loo/ha in sprirrg, which is what I

irsed for the ini€ial parasitoid density'In the del ta r :egion of u iss iss ippi , host p lant area

increases greatly irot-the first neliothis spp' -ge-neration'r-ni.tt- i" oi spriirq tron"rop pfants, to tne second Heliothis;n; . : gen" iat ion, which i i

-on summer crop p lants ' thus the

nirirber-ot insects per unit area of suitable habitat decreases

d ra rna t i ca l l y ( s t ; de lbache r e t a1 . L984 ) ' I . assumed hos t

;i;;t n"-u-ilii ].ncreasea 20-fo1d between the firsr and secondffeliothis sPP. generations.

Sufpo@ese paraneter est imates, in i t ia lA;eIEGns, and equat ions 3-6, s imulat ion of 5 H' v i rescens

; ; ; ; ; ; t i ; t i " y i " rd"d the sol id-r ine t ra jector ies for hostdensity and p-roportion of hosts parasitized in Fig' 4' Thei i i j " 6 t " r y o f h o s t d e n s i t y m i m i c s r e a s o n a b l y w e L l t h edyni rn ics of H. v i rescens i -n t t re f ie ld. The precip i touse;;i i ;" rrornJirs-I-E6 second generation resul-ted fron theincrease in host ptant habita€, not fro4 para-s-i^t. isn' The

i ; " ; i h gene ra t i on dens i t y o f . 4 l a r vae /m2 (40 ,000 /ha ) f a l l s

in the iange found in t f re f ie ld, a l though- i t considerablyexceeds 5odo/ha, a f requent ly used econonic threshold for

ieiiotnis spi. l-n cott6n. rne decline from fourth to fifthg"ndatio" i isufiea from the high level of parasitisn (Fig'

ifj.- S""tt declines are sometirneJ observed, but they probablyrarely result from parasitisrn alone.

Aug rnen t i ng p -a ras i t o i d dens i t i es t o 1o0o fena les /ha(P (0 ) =

-o . r ) gav i t he do t ted - l i ne t r a j ec to - r i e -1 i n F ig - ' 4 '

i n ' t f r i s s i n i u l a t i on , f i r s t gene ra t i on f ema le M . c roce ipesparlsit ized such a high proportion of f irst generation hosts

i;;;-f;; E. -ysesssE.-

poprtration did not exceed the economic

threshold inFo€Ton-to.s inz1 by the end of the season' Thepa ras i t o i d popu la t i on a l so ' f a i l ea t o recove r , as shon tn by

the Iow l eve l s o i pa ias i t i s rn a f t e r t he f i r s t gene ra t i on .

n i in""eh th is resr i l t is encouraging qqr the prospects .ofiulrnentlt ion, this model tends to-let the parasitoids drive

t h e h o s t t o v e i y 1 o w l e v e l s t h r o u g h h i g h l e v e l s o fparasitism. This inay fe because the rnodel is overty sinple;i o p i .C i "u la r , 11 r i c r s d i spe r . sa r and dens i t y -dependen tp r o c e s s e s , s u c h a s p a r l a s i t o i d a g g r e g a t - i o n a n d

Sensity-aepenaeni-nottirity from other causes' Berow r rr'irl

add each of tnese f'tr"nor"tri to test the effects on simulated

augrentation. I n s . Ioccuredassumea that the popufat ions of host and

L U L

1 . 5

P ( 0 ) - 0 . 0 1

P ( D - 0 . 1

2 ? 1 5 -

HOST GENERATION

3 1.:6 3 .s

3

= z.sUI

A zoF 1 . 5UIA r-,

0 . 5

E

H 0 . 8F

6f o .E(L

zg 0 . 1FaEL

P o-2L

FIG. 4. Sinru lated host densi ty (A) and proport ion of hostsparasitizgd (B) versus host gener'ation as-sunlng no dispersalo r . d ^ e n s i t y d e p e n d e n c e . p ( b 1 = 9 . 0 1 a n d p ( O ) = O . t i n d i c a t ein i t ia l parasi to id densi t ies of O.OI/m2 and 6. t /m2

103

in a 4ox4o km area, divided into subpopulat ions in cel ls L krn

on a siae, and tnat interactions be€ween host and parasitoid

occured within each subpopulat ion according to equations 3-6'

This system size ana sfadial subdivision are reasonable given

a i " p " . ! " f d i s t a n c e s o - t t t e l i o t h i s s p p ' ( ! 1 o n e t a I ' L 9 6 9 '

H e n ' d r i c k s e t a l . L g 7 3 , I { a i l e e t a 1 ' r g z s , S p a r k s e t a I '

L g 7 5 , s p a r k s L g 7 9 , H a r t s t a c k a n d W i t z L 9 8 1 ) a n d a n d M '

croceipes (unPublished data)--Dr=pdr=ir bethreen subpopulations can be rnodeled in rnany

vrays. fo'r sirnpl ici ty ' I aslumed that rnoths disperse between

; ; ; ; " p n r . t i o i t . o n c e p e r g e n e r a t i o n a n d o v i p o s i t a f t e r

ai=p^Lrl i"g and that r.=^ps disperse twice per host_generation

i"-a-pir"" i t ize after ais^persi irq. T\to extrenes of dispersal

; ; ; ' p " s s i b r e

u n d e r t h e s e a s s u r n p t i o n s : . s t e p p i n g - s t o n e

d ispe- rsa l where d ispersers can on l t move to ad jacent ce l l s '

an-a- isr"na aispeisai lrhere disperseis can move to any cerl in

i ; ; ; t J " ; w i€n equar p robab i l i t y , no ma. t te r .h .ow f a r f rom

i n e l - r s t a r t i n g c e i t . - B e l o w ,

I i e p o r t s i n u l a t i o n s o f f o u r

' " a " r s o f d i s - p e r s a l i n v o l v i n g v a r i o u s c o m b i n a t i o n s o f.t"ppi-t tg-stone and island disperslt , but f i rst I describe how

tneie forrns of dispersal were represented'ro i s tepp in i -s tone, dens i ty - indep.endent d ispersa l o f

host and p...si toi ls ' I used these equations for novernent:

H ( x , y ) = t H ( x - L , y ) + H ( x + L ' y ) + H ( x ' y - L ) + H ( x , y + 1 ) ) / 4 ( 7 ) '

P ( x , y ) = [ P ( x - 1 , y ) + P ( x + ] - ' y ) + P ( x ' y - 1 ) + P ( x , y + L ) l / 4 ( 8 ) '

where H(xrY) and P(xry ) a re the dens i ty o f hos t la rvae

and adult fernale'paiasitoid!-, respectively, in subpopulat ion

;;t " i iat dispers^al. Host and pJrasitoids dispersing beyond

tn-e foraers oi the system were considered lost'For dens i ty - in lependent , i s land d ispersa l o f hos ts and

parasitoids, I uied these equations for movement:

H ( x , y ) : R ( x , Y )

P ( x , y ) = R ( x ' Y )

K I: ti j

k 1t ti j

H ( i , i ) / n

P ( i , 1 ) / n

( 9 ) ,

( 1 0 ) '

l r h e r e R ( x r Y ) i s a r a n d o m n u m b e r b e t w e e n 0 a n d 2 c h o s e n

inaepena"ntiy for each subpopulation (with the condition that

[n" ir"^ler of dispersers is- l irnited to the number availableto d i spe rse ) ; r 1 i a61 and I (=40 ) a re t he d inens ions o f t he

"v" i " . ; and n is ' the number of subpopulat ions in the systen

( = 1 6 o 0 ) .6 i r n u l a t i o n s w i t h M o d e l s w i t h D i s p e r s a l - b e t v r e e n

sulpoiu lEt ions. r used the same paralet .e-rs and the same

mern init ial densities of host and parasitoid as in the model

without dispersaitJt"".t subpopul;t ions' r distributed the

i i .= l - i "a pa^rasi - to ids across subpoputat ions at the star t o f

; ; ; h ; i t . i t a t i on -u ; i n t

r andon i a i ues d rawn f rom a un i ro rm

d :s t r i bu t i on f e twee -n -o

ana tw i ce t he mean dens i t y ' S ince

island dispersal nade the rnodel stochastic' I repeatedly ran

; ; ; ; ; t d ; i w i t h i ; i ; " d d i spe rsa ' r t o t es t f o r d i f f e rences

between runs ' Th;h; ; ' d t "Si tv for the whore svstem ( i 'e '

1 0 4

averaged across subpopulat ions) dif fered l i t t le between runs( F i S . 5 ) . T h e r e f o r e , b e l o w I r e p o r t t h e r e s u l t s o f o n erepresentative run for each simulat ion.

When the in i t ia l paras i to id dens i ty was o .oL /nz , thet r a j e c t o r i e s f o r h o s t d e n s i t y ( a v e r a g e d a c r o s ssubpopulat ions) with island dispersal for host and parasitoidd id no t d i f fe r much f ro rn those w i thout d ispersa l (cornpareF i g . 4 a a n d 5 a ) . H o \ d e v e r , w h e n p a r a s i t o i d d e n s i t y - w a saugrnented to 0 .L /m2, the behav io r was very d i f fe ren t f romthat without dispersal (cornpare Fig. 4a and 5b).

F i g . 5 s h o w s s i m u l a t e d t r a j e c t o r i e s o f h o s t d e n s i t ya n d p r o p o r t i o n o f h o s t s p a r a s i t i z e d ( b o t h a v e r a g e d a c r o s ssubpopu la t ions) fo r augrnented paras i to id dens i ty (p (o) :0 .1 )w i th (1 - ) no d ispersa l , (2 ) s tepp ing-s tone d ispersa l fo r hos tand paras i to id , (3 ) i s land d ispersa l fo r hos t and s tepp ing-s tone d ispersa l fo r paras i to id , and (4 ) i s land d ispersa l fo rbo th spec ies . The increase in hos t dens i ty f ro rn t ra jec to ry1 to 4 in the fourth and f i f th host generation indicate thata d d i n g d i s p e r s a l t o t h e m o d e l d e c r e a s e d t h e i r n p a c t o f M .c r o c e i p e s o n H . v i r e s c e n s . F u r t h e r m o r e , t h e g r e a t e r t h ed i s p e r s a l , w h e t h e r i t w a s o f h o s t o r p a r a s i t o i d , t h e l e s sthe parasitoid inpact on host dynarnics. Host density exceedseconon ic th resho ld in genera t ion f i ve w i th s tepp ing-s tonedispersal for one or both species and in generation four withi s l a n d d i s p e r s a l f o r b o t h s p e c i e s . T h e r e a s o n f o r t h i se f fec t o f d ispersa l was tha t augmenta t ion succeeded in themodel without dispersal by driving host density so low thati t did not recover by the end of the season. In models withdensity- independent dispersal, the host had refuges with 1owor zero parasitoid density frorn which moths could recolonizeareas where the parasitoids had driven thern to low density.

S i n c e b o t h h o s t s a n d p a r a s i t o i d s d i s p e r s e di n d e p e n d e n t t y i n t h e s e m o d e l s , t h e p a r a s i t o i d s c o u l d n o td i f f e r e n t i a l l y e x p l o i t a r e a s v r h e r e h o s t d e n s i t y w a s h i g h .However , as po in ted ou t above, f ie ld exper iments show tha tM . c r o c e i p e s a g g r e q a t e s i n a r e a s o f h i g h h o s t d e n s i t y .There fore , I added paras i to id aggregat ion to a node l w i thi s l a n d d i s p e r s a l t o t e s t v r h e t h e r s u c h a g g r e g a t i o nc o u l d c o u n t e r a c t t h e e f f e c t s o f d i s p e r s a l .

M o d e l w i t h D e n s i t v - D e p e n d e n t P a r a s i t o i d D i s p e r s a l .In this model-, parasi-toids dispersed into a subpopulat ion inp r o p o r t i o n t o t h e r e l a t i v e h o s t d e n s i t y i n t h a tsubpopulat ion. Thus parasitoid abundance after dispersal wasg iven by :

P ( x , y ) P ( i , j ) I H ( x , y ) / H ( i , i ) ( 1 1 ) ,k 1t ti j

k l= [ : t

i j

t there the var iab les are as descr ibed above. Such a per fec tresponse to hos t dens i ty i s un l i ke ly g iven tha t paras i to idsw o u l - d n o t h a v e c o m p l e t e k n o w l e d g e o f h o s t d i s t r i b u t i o n .H o w e v e r , w i t h o u t a f i r r n e r u n d e r s t a n d i n g o f p a r a s i t o i da g g r e g a t i o n , t h i s n o d e l s e r v e s a s a l i m i t i n g c a s e . I u s e dis land d ispersa l fo r the hos t and equat ions 3-6 to descr ibeinteractj .ons within a subpopulat ion.

Simulation with Model with Densitv-Dependent ParasitoidDispersa l . Aga in , I used the sane parameters and the samemean init ial densit ies of host and parasitoid as in the model

1 0 5

-c i 1It

F

tnz.l J 2t:t

F(.rI

E r

-d 1U'

F

UIz.ttJ 2u

F1n

? ,

I z ? {HOST GENERATION

F I G . 5 . R e p e a t e d s i m u l a t i o n s o f h o s t d e n s i t y v e r s u s h o s tg e n e r a t i o n a s s u m i n g i s l a n d d i s p e r s a l . b u t n o d e n . s i t yd e p e n d e n c e . ( A ) i n i t i a l p a r a s i t o i d d e n s i t y = o . o 1 , / n z a n d(B) in i t ia l paras i to id dens i ty = o -L /mz-

1.06

5

{ . 5

{

3 . 5

3

? . 5

2

1 . 5

I

0 . 5

0

I

0 . 8

0 . 8

0 . f

0 . 2

0

3 f

HOST GENERATION

F I G . 6 . S i r n u l a t e d h o s t d e n s i t y ( A ) a n d p r o p o r t i o n o f h o s t sp a r a s i t i z e d ( B ) v e r s u s h o s t g e n e r a t i - o n f o r v a r i o u sa s s u m p t i o n s c o n c e r i n g d i s p e r s a l : ( L ) n o d i s p e r s a l , ( 2 )s tepp ing-s tone d ispersa l fo r hos t and paras i to id , (3 ) i s landd i s p e r s a l f o r h o s t a n d s t e p p i n g - s t o n e d i s p e r s a l f o rp a r a s i t o i d , ( 4 ) i s l a n d d i s p e r s a l f o r h o s t a n d p a r a s i t o i d .In i t ia l paras i to id dens i ty = 0 .L /mz.

-C]LT'

F

tnz.tr.loFU'Cf

cltrlN

F

UI

(ro-z.ctF(Ecl(Lo&.o-

L O 7

w i t h o u t d i s p e r s a l b e t w e e n s u b p o p u l a t i o n s ' A g a i n , I

d i s t r i b u t e a t n e h o s t a n d p a r a s i t o i d s a c r o s s

subpopulat ions at the start of each simulat ion using random

valuet drawn from a uniform distribution between 0 and twice

the mean density.si-mulated trajectories of host density and proport ion

of hosts parasit ize-a l lottr averaged across subpopulat ions)w i t h t h i J m o d e l ( F i 9 . 7 ) r e s e m b l e d t r a j e c t o r i e s f r o r n t h emodel with no dispersl l (Fig. 4). The refuge from parasit isnf o u n d w i t h d e n s i t y - i n a e p e n d e n t , i s l a n d d i s p e r s a l w a s n oI o n g e r a v a i l a b l e , s o t h e p a r a s i t o i d s a g a i n . r e d u c e d h o s tdens i t ies to 10w leve ls . There r i re re two na in d i f fe rencesb e t w e e n t h e s i r n u l a t i o n s w i t h n o d e l s w i t h n o p a r a s i t o i d

d ispersa l and w i th dens i ty -dependent paras i to id d ispersa l 'r i r s t , d e n s i t y - d e p e n d e n t d i s p e r s a l p r e v e n t e d t h e h o s tpopulation frorn incieasing so rapidty when parasitoid densityw a s l o w , i . e . t h e p a r a s i t o i d s h r e r e m o r e e f f i c i e n t a tp revent ing an ou tbre lk . Second, d ispersa l -p revented h ighd e n s i t y p a r a s i t o i d p o p u l a t i o n s f r o m d r i v i n g t h e h o s tpopu la t ion to such low leve ls tha t i t cou ld no t recover a ta l I b e f o r e t h e e n d o f t h e s e a s o n .

Model with Densitv-Dependent Host Mortalitv fron otherC a u s e s . A s W a n g a n d G u t i e r r e z ( L 9 8 0 ) , M a y e t a l . ( l - 9 8 L ) ,laay ana Hassell (L988) have pointed out, the relat ive t imingo f d e n s i t y - d e p e n d e n t p r o c e s s e s i n a n i n s e c t r s l i f e - c y c 1 ecan greatly af iect the irnpact of a natural enemy. To testwhether density-dependent mortal i ty frorn causes other thanp a r a s i t i z a t i o n b y M . c r o c e i D e s a f f e c t e d s i m u l a t e da u g m e n t a t i o n . I I n o d i f i e d e q u a t i o n s 3 - 5 . F o r h o s tsubpopu la t ion dynarn ics w i th dens i ty -dependent nor ta l i t ybefore parasit izat ion, I used the fol lowing equations:

-aPtHt+tyz : Ht(1-Ht,/c)e

-aPt+L/zHr+j . = G/ (L-L/c))Ht+t /ze

\ there c i s the nax imum nunber o f hos t la rvae tha t can besupported per unit area of host p1ant. The other variablesand parameters were as described previously. The equationsfor parasitoid dynarnics remained unchanged with this rnodel.

F o r d y n a m i c s o f h o s t a n d p a r a s i t o i d w i t h n o r t a l i t yafter parasit izat ion, I used the fol lowing equations:

-aPt -aPtH t + t y z = H g ( l - H g [ 1 + ( l - e ) ) / c ) e

-lP+ -aP+

P t + r 1 z - = H r ( L - H g t L + ( L - e -

) l / c ) ( 1 - e - )

- -aPt+ t12 . - . -aPt+ t /z

na*1: G/ Q-L/ c, I Ht+t/ zQ-tra:r17 21 1+ ( l-e ) I / e) e

Ht+yz l1+(1- - iP t+1 /2 ) l / c ) ( r . ;aPt+L/2 ,

where the parameters and variables were as described above.

(12) ,

( 1 3 ) '

ToU'

3

FHU'zr ! 2

FU'o

I

IUNHFHa

zoH

F.

oo

o

1 . 0

0 . 8

0 . 6

0 . 4

o . 2

0

A

P ( 0 ) - 0 . 0 1

P ( o ) - o . L , , '

B

P ( o ) - o . o l

P ( o ) - 0 . 1

HOST GENEFATION

F I G . ? . S i m u l a t e d h o s t d e n s i t y v e r s u s h o s t g e n e r a t i o na s s u m i n g i s l a n d d i s p e r s a l a n d p a r a s i t o i d a g g r e g a t i o n -P ( O ) = s . 0 1 ^ a n d P ( O ) : q . L i n d i c a t e i n i t i a l p a r a s i t o i d d e n s i t i e so f O . O L / m z a n d o . I / m z .

1 0 9

T h e m a x i r n u m h o s t d e n s i t y ( c ) i n t h e s e m o d e l s c o u l dresult either from cornpeti t ion between host larvae or fromp r e d a t i o n b y n a t u r a l e n e - m i e s o t h e r t h a n M . c r o c e i p e s . Il s s u m e d a = L 0 l a r v a e / r n 2 , w h i c h h t a s d o u b l e t h e i n i t i a ldens i ty in spr ing . For bo th node ls , I used equat ions 7 and1 L f o r h o s t a n d p a r a s i t o i d d i s p e r s a l , r e s p e c t i v e l y , i . € .island dispersal hri th parasitoid aggregation.

Morta l i tv f rom other causes. Densi ty-dependent nor ta l i tyb e f o r e p a r a s i t o i d a t t a c k h a d l i t t l e a f f e c t o n s i m u l a t e dtrajectories of host density and proport ion parasit ized bothw i t h n o r n a l p a r a s i t o i d d e n s i t y ( F i S . 8 ) a n d a u g f t e n t e dp a r a s i t o i d d e n s i t y ( l ' i q . 9 ) . T h i s i s n o t s u r p r i s i n g s i n c es u c h m o r t a l i t y o n l y l i n i t s t h e g r o w t h r a t e o f t h e h o s tpopulat ion. On the other hand, density-dependent nortal i tya f t e r p a r a s i t o i d a t t a c k r e d u c e d t h e i m p a c t o f n o r m a lp a r a s i t o i d d e n s i t y ( F i S . 8 ) a n d o f a u g m e n t e d p a r a s i t o i dd e n s i t y ( F i g . 9 ) . E v e n w i t h a u g n e n t a t i o n , t h e h o s tpopu la t ion exceeded the economic th resho ld in co t ton by thefour th genera t ion when dens i ty -dependent nor ta l i t y occuredafter parasitoid attack.

ST'MMARY AND CONCLUSIONS

M. croceipes can be conserved by using insecticj .des towhich i t is relat ively tolerant and by applying insecticideso n l y w h e n H e l i o t h i s s p p . p o p u l a t i o n s e x c e e d e c o n o m i cthreshold. The dif f iculty of measuring M. croceipes densityprevents expl ici t use of parasitoid density data in decidinglthether to spray insecticides.

S i r n u l a t i o n s w i t h s e v e r a l m o d e l s o f t h e p o p u l a t i o nd y n a m i c s o f I { . c r o c e i p e s a n d H e l i o t h i s s p p . s h o h r e d t h a taugmenta t ive cont ro l nay be techn ica l l y feas ib le . w i th amode l incorpora t ing hos t d ispersa l and dens i ty -dependentparas i to id d ispersa l , Lo- fo ld augtnenta t ion o f M. c roce ipesdensity in spring suppressed H. virescens below the economicthreshold in cotton.

S i r n u l a t i o n s a l s o s h o h r e d t h a t t h e g r e a t e r t h e l e v e lo f dens i ty - independent d ispersa l o f hos t and paras i to id theless the i rnpac t o f augmenta t ive re leases on hos t dens i ty .However , dependence o f paras i to id d ispersa l on hos t dens i tyi n c r e a s e d p a r a s i t o i d i r n p a c t o n h o s t p o p u l a t i o n d y n a r n i c s .Furthermore, the t ining of other density-dependent processesw a s c r u c i a l : d e n s i t y - d e p e n d e n t h o s t r n o r t a l i t y b e f o r eparas i t i sn had l i t t le e f fec t on hos t dynamics , bu t dens i ty -d e p e n d e n t m o r t a l i t y a f t e r p a r a s i t i s n g r e a t l y r e d u c e dparasitoid irnpact on host dynarnics.

Eventua l l y , mode ls such as those descr ibed here cou ldpredict where, when, and how many M. croceipes to release tocontrol Heliothis spp.

ACKNOWIEEEI{ENT

E . c . K i n g p r o v i d e d I n u c h s u p p o r t a n d c o n t i n u o u se n c o u r a g e m e n t d u r i n g n y t i n e i n S t o n e v i l l e , M i s s i s s i p p i .T h i s r e s e a r c h w a s s u p p o r t e d i n p a r t b y g r a n t s 8 5 - C R C R - 1 -u 1 7 1 5 a n d 8 ? - C R C R - 1 " - 2 4 7 3 f r o m t h e U s D A C o r n p e t i t i v e G r a n t sProgram.

1 1 0

5 . 5

- 4 . sat n L

3 . 5

F ?

az . 2 .5UJc r zFa 1 . 5o- l

0 . 5

oH o . gF

u't& 0 . 6(L

z.c l 0 . 4

Fu.o(Lq o . 2Eo-

. - - - - - \/ ir.ror, /, ' A T T A c x

t

I

AFTER ATTACK

3 4

HOST GENERATION

FIG. 8 . S i rnu la ted hos t dens i ty (A) and propor t ion o f hos tsp a r a s i t i z e d ( B ) v e r s u s h o s t g e n e r a t i o n a s s u m i n g i s l a n dd i s p e r s a l a n d p a r a s i t o i d a g g r e g a t i o n . N o N E i n d i c a t e s n odensity-dependent nortal i ty. from other causesi BEFoRE ATTACKind ica tes dens i ty -depende i t nor ta l i t y be fore paras i t j -za t ion ;A F T E R A T T A C K i n d i c a t e s d e n s i t y - d e p e n d e n t m o r t a l i t y a f t e rparas i t i za t ion . In i t ia l paras i to id dens i ty : o .OL/m' -

1 1 1

4 . 5

3 1

6 3 .s

3

5 z . sa

6 2o. t . 5lnO r-

0 . 5

oH o . BF

UI

f 0 .6(L

z.a o . {F(xoTL9 o . 2ETL

3 4

H O S T G E N E R A T I O N

F I G . 9 . S i m u l a t e d h o s t d e n s i t y ( A ) a n d p r o p o r t i o n o f h o s t sp a r a s i t i z e d ( B ) v e r s u s h o s t g e n e r a t i o n a s s u m i n g i s l a n dd i s p e r s a l a n d p a r a s i t o i d a g g r e g a t i o n . N O N E i n d i c a t e s n odensity-dependent rnortal i ty frorn other causes; BEFORE ATTACKind ica t .es dens i ty -dependent nor ta l i t y be fore paras i t i za t ion ;A F T E R A T T A C K i n d i c a t e s d e n s i t y - d e p e n d e n t n o r t a l i t y a f t e rparas i t i za t ion . In i t ia l paras i to id dens i ty = o . I /m2.

\AFTEn rrncx /

1/ \

/ aeroneATTACX

I . - - -

J y' NBNE

t t 2

LITERATURE CITED

Anonymous. 1981. . A look a v ror ld pes t ic ide marke ts . FarmChem. September, p55-58.

B r o w n , L . G . , R . W . M c C l e n d o n , a n d J . W . J o n e s . l - 9 8 3 -Cotton and insect nanagement simulat ion model,4 7 9 . I n R . L . R i d g w a y , E . P . L l o y d , a n d W .(eds.), cotton Insect l tanagement with Specialto the BoII weevi l . usDA-ARs Handbook 589.

H a i l e , D . G . , J . W . S n o w , a n d J . R . Y o u n g . L 9 7 5 .b y a d u l t H e l i o t h i s r e l e a s e d o n S t . C r o i xis lands . Env i ron . Entorno l . 4 . 225-226.

p p . 4 3 7 -H. CrossReference

Movementt o o t h e r

H a r t s t a c k , A . W . , J . A . w i t z , J . P . H o l l i n g s w o r t h , R . L .R idgway, and J . D . Lopez . L976. MOTHZV-2, A computers i n u l a t i o n o f H e l i o t h i s z e a a n d H e l i o t h i s v i r e s c e n spopulat ion dynamics. USDA-ARS-S-L27.

u a r t s l a c k , A . W . , a n d J . A . l { i t z . 1 9 8 L - E s t i m a t i n g f i e l dpopu la t ions o f tobacco budwor rn no ths f rom pheromonetrap catches. Environ. Entornol . l"o: 908-91-4-

H e a d , R . B . 1 9 8 4 . R e p o r t o f t h e c o t t o n i n s e c t l o s scommi t tee o f the th i r ty seventh annua l con ference onc o t t o n i n s e c t r e a r i n g a n d c o n t r o l . P r o c . B e l t w i d eCot ton Prod. Res . Conf . PL80.

H e n d r i c k s , D . 8 . , H . M . G r a h a n , a n d J . R . R a u l s t o n . 1 9 7 3 'D i s p e r s a l o f s t e r i l e t o b a c c o b u d w o r m s f r o m r e l e a s ep o i n t s i n n o r t h e a s t e r n M e x i c o a n d s o u t h e r n T e x a s 'Env i ron . Entorno l . 2 : 1085-1088.

H o g g , D . B . , a n d E . V . N o r d h e i n - l - 9 8 3 . A g e - s p e c i f i csurv ivorsh ip ana lys is o f He l io th is spp. popu la t ions onc o t t o n . R e s . P o p u l . E c o l . 2 5 i 2 a O - 2 9 7 -

H o p p e r , K . R . L 9 8 6 . i r e f e r e n c e , a c c e p t a n c e ' a n d f i t n e s sc o m p o n e n t s o f M i c r o D l i t i s c r o c e i p e s ( H y m e n o p t e r a :B r a i o n i d a e ) a t t a c k i n g v a r i o u s i n s t a r s o f H e l i o t h i sv i r e s c e n s ( L e p i d o p t e r a : N o c t u i d a e ) . E n v i r o n . E n t o m o l '1 5 : 2 7 4 - 2 A O .

H o p p e r , K . R . ' a n d E . G . K i n g . L 9 8 4 a . P r e f e r e n c e o f- - M ic rop l i t i s c roce iDes (Hyrnenoptera : Braco.n idae) fo ri n s t a r s a n d s p e c i e s o f H e l i o t h i s ( L e p i d o p t e r a :Noctu idae) . Env i ron . Entomol . 13 : 1145-1150.

H o p p e r , K . R . , a n d E . G . K i n g . L 9 8 4 b - F e e d i n g a n d n o v e m e n ton co t ton o f He l io th is spp. (Lep idoptera : Noc tu idae)p a r a s i t i z e d b y M i c r o p l i t i s c r o c e i p e s ( H y r n e n o p t e r a :Bracon idae) . Env i ron . Entomol . 13 : 1554-L66o.

H o p p e t , K . R . , a n d E . G . K i n g . 1 9 8 6 . L i n e a r f u n c t i o n a lr e s p o n s e o f M i c r o p l i t i s c r o c e i D e s ( H y m e n o p t e r a :e r a c o n i d a e ) f o r i n s t a r s a n d s p e c i e s o f H e l i o t h i s(Lep idoptera : Noc tu idae) . Env i ron . Entorno l . 13 : 1 l -45-1 1 5 0 .

H o p p e r , K . R . , a n d S . B . S t a r k . L 9 8 7 . A s i m u l a t i o n r n o d e lf o r m a k i n g d e c i s i o n s a b o u t H e l i o t h i s c o n t r o l . P r o c 'B e l t w i d e c o t t o n P r o d . R e s . c o n f . , D a l l a s , T e x a s . p p .286-290.

J o n e s , R . L . , a n d W . J . L e w i s . L 9 7 1 . P h y s i o l o g y o f t h e h o s t -p a r a s i t e r e l a t i o n s h i p b e t w e e n H e l i o t h i s z e a a n di l i c rop l i t i s c roce iPes . J . Insec t Phys io l . L7 . 92L-927.

K i n g , f . e . - , J . E . P o w e l l , a n d R . J . C o 1 e m a n . 1 9 8 5 . A h i g h- ' inc idence o f paras i t i sm o f Ee- l io ! -h i -s . spp . la rvae inco t ton in southeas tern Arkansas . Entomophaga 30 : 419-4 2 6 .

1 1 3

L a s t e r , M . L . , W . F . K i t t e n , E . F . K n i p l i n g , D . F . M a r t h , J .C . S c h n e i d e r , a n d J . W . S n i t h . 1 9 a 7 . E s t i n a t e s o foverw i tner ing popu la t ion dens i ty and adu l t surv iva l -rates for IIqI:LqtbdF viresceng (Lepidpotera: Noctuidae)in the Miss iss ipp i de l ta . Env i ron . Entomol . L62 LO76-1 .081_.

L e w i s , W . J . , a n d J . R . B r a z z e ] - . L 9 6 8 . A t h r e e y e a r s t u d yof paras i tes o f the bo l lworn and the tobacco budwormin Miss iss ipp i . J . Econ. Entomol . 6L : 673-6 .

L u k e f a h r , M . J . , a n d D . r ' . M a r t i n . L 9 6 4 . T h e e f f e c t s o fvar ious la rva l and adu l t d ie ts on the fecund i ty andlongevity of the bol lworm, tobacco budworm, and cottonlea fwonn. J . Econ. Entono l . 57 : . 233-235.

M a y , R . M . , M . P . H a s s e l l , R . A n d e r s o n , a n d D . W . T o n k y n .L981. Density dependence in host-parasitoid rnodels. J.A n i m . E c o l . 5 0 : 8 5 5 - 8 6 5 .

M a y , R . M . , a n d M . P . H a s s e l l . 1 9 8 8 . P o p u l a t i o n d y n a m i c sand b io log ica l con t ro l . Ph i l . T rans . R. Soc . Lond. B3 1 8 : L 2 9 - L 6 9 -

Mue l le r , T . F . , and J . R . Ph i l l i ps . t -983. Popu la t ion dynamicsof Heliothis spp. in spring weed hosts in southeasternA r k a n s a s a n d s t a g e - s p e c i f i c p a r a s i t i s n . E n v j - r o n .Entomol . L2 . LA46-1-850.

N a d g u a d a , D . , a n d H . P i t r e . 1 9 8 3 . D e v e l o p m e n t , f e c u n d i t y ,a n d l o n g e v i t y o f t h e t o b a c c o b u d w o r m ( L e p i d o p t e r a :N o c t u i d a e ) f e d s o y b e a n , c o t t o n , a n d a r t i f i c i a l d i e tat three ternperatures. Environ. Entomol. l-2: 582-585.

N e w s o m , L . D . L 9 7 2 . T h e o r y o f p o p u l a t i o n n a n a g e m e n t f o rHe l io th is spp. in co t ton , pp . 30-92 . In D is t r ibu t ion ,Abundance, and Control of Heliothis in Cotton and otherHost P lan ts . South . Coop. Ser . Bu l l . L59 . 92 pp .

N i c h o l s o n , A . J . , a n d V . A . B a i l e y . l - 9 3 5 . T h e b a l a n c e o fa n i m a l p o p u l a t i o n s . P a r t I . P r o c . Z o o L . S o c . L o n d o n1 " 9 3 5 : 5 5 1 - - 5 9 8 .

P o w e l l , J . 8 . , a n d W . P . S c o t t . 1 9 8 6 . E f f e c t o f i n s e c t i c i d er e s i d u e s o n s u r v i v a l o f M i c r o p l i t i s c r o c e i p e s(Hyrnenoptera : Bracon idae) in co t ton . F la . Entomol . 68 :592-693.

P r o s h o l d , F . I . , C . P . K a r p e n k o , a n d C . K . G r a h a m . L 9 8 2 .Egg production and oviposit ion in the tobacco budworm:effect of age at mating. Ann. Entonol. Soc. An. 75: 5L-5 5 .

Royama, I . L97L. A comparative study of models for predationand paras i t i sm. Res. Popu l . Eco l . , Supp l . L : L -9L .

S c h w a r t z , P . Z . 1 9 7 4 . L o s s e s i n y i e l d o f c o t t o n d u e t oi n s e c t s , p p . 3 2 9 - 3 5 8 . I n R . L . R i d g w a y , E . P . L l o y d ,a n d W . H . C r o s s ( e d s . ) , C o t t o n I n s e c t l l a n a g e m e n tw i th Spec ia l Reference to the Bo11 Weev i l . USDA-ARSHandbook 589.

S n o h r , J . W . , W . W . C a n t e l l o , a n d l , t . C . B o w m a n . 1 9 6 9 .D i s t r i b u t i o n o f t h e c o r n e a r v r o r r n o n s t . C r o i x , U . S .V i r g i n I s l a n d s , a n d i t s r e l a t i o n t o s u p p r e s s i o nprograms. J. Econ. Entomol. 62. 6O6-6LL.

Sparks , A . N. L979. An in t roduc t ion to the s ta tus , cur ren tk n o w l e d g e , a n d r e s e a r c h o n m o v e m e n t o f s e l e c t e dlep idoptera in south-eas tern Un i ted Sta tes . In R. L .R a b b a n d c . c . K e n n e d y ( e d s . ) , I ' { o v e m e n t o f H i q h l yIt lobi le Insects: Concepts and Uethodology in Research.University Graphics, North Carol ina State University,

LL4

Raleigh, North carol ina.S p a r k s , A . - N . , R . D . J a c k s o n , a n d C . L . A L l e n ' L 9 7 5 ' c o r n

earworms: capture of adults in l ight traps on unmanned

oil platforni in the Gulf of i lexico. J. Econ' Entomol'6 8 . 4 3 L - 4 3 2 .

S t a d e l b a c h e r , E . A . 1 9 8 L . R o l e o f e a r l y - s e a s o n w i l d a n d

n a t u r a l i z e d h o s t p l a n t s i n t h e b u i l d u p o f t h e F l -generation of re.t i-&.!S- zea and Heliolhis- virescensin the delta of Mississippi. Environ. Entomol' 10: 756-

7 7 0 .S t a d e t b a c h e r ' E . A . , J . E . P o w e I I , a n d E . G . K i n g ' 1 9 8 4 '

P a r a s i t i s n r o f H e l i o t h i s Z - 4 - a n d L - v i r e s c e n s(Lepidoptera: Noctuidae) larvae in l i l i ld and cult ivatedf r o s t p t a n t s i n t h e d e l t a o f M i s s i s s i p p i . E n v i r o n 'Entono l . 13 : 1167 -LL12 .

S t a r k , S . B . , a n d K . R . H o p p e r . l ' 9 8 8 . c h r v s o D e r l A c a r n e a

ireaati6n on Heliothi i virescens larvae parasit ized byMicropl i t is croceioes. Entornol. Exp. ApPl. 48.. 69-72'

T o l l e f E o n , l , t . s . , a n d T . F . w a t s o n . 1 9 8 1 - . s e a s o n a l e f f e c t so n t h e b i o l o g y o f a n d d a n a g e b y t o b a c c o b u d w o r m i nco t ton . J . Econ. Entono l . 74r 7L4-7 I7 .

wang, Y. H. , and A. P. Gut ierrez. 1980. An assesnent ofuse of s tabi l i ty analyses in populat ion ecology.A n i m . E c o l . 4 9 : 4 3 5 - 4 5 2 .

theJ .

1 1 5