Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC...

46
Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative Scale: Examples Prostaglandins, Tocopherols DHA / DPA, Phytol On-line Analysis with SFC Chapter 8 Chromatography with Supercritical Fluids

Transcript of Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC...

Page 1: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Supercritical Fluid Chromatography SFC

Chromatographic Fundamentals

Practical Verification of SFC

Theoretical Description of SFC / Scale-up

SFC on a Preparative Scale: Examples Prostaglandins, Tocopherols DHA / DPA, Phytol

On-line Analysis with SFC

Continuous Chromatography: SMB

Chapter 8

Chromatography with Supercritical Fluids

Page 2: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

.

Mode of Operation: Elution chromatography

Page 3: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Elution Chromatography: A Chromatogram

Page 4: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Mass transport high

Solvent power high

Schoenmakers, Uunk 1987

Different Mobile Phases

Page 5: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Composition Trade name Application

Polysiloxane

R, R':

separation according tomolecular weight

100 % methyl OV-1, SE-3095 % methyl, 5 % phenyl OV-3, SE-5294 % methyl, 1 % vinyl, 5 % phenyl SE-5425 % cyanopropyl, 50 % methyl,25 % phenyl

OV-225

polyethylene glycol( CH2 CH2 O )n

Carbowax 20 M separation according to po-larity

SFC: Stationary Phases

Page 6: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Separation of aromatic hydrocarbons with different gases as mobile phase. Aromatic hydrocarbons: 1= benzene; 2 = naphthalene; 3 = fluorene; 4 = anthracene;5 = pyrene. Gases: a = carbon dioxide (CO2); b = nitrous oxide (N2O); c = propane (C3H8); d =propylene (C3H6); Column: 30 x 4.6 mm, unmodified silica gel. Initial pressure 12 MPa; Temperature296.15 K; Flow rate 670 cm3/min at STP (after Pickel /23/).

SFC: Different Gases as Mobile Phase

Page 7: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

1 = caffeine;2 = theophylline;3 = theobromine;4 = xanthine(Randall 1984).

Variation of capacity ratios ofpolycyclic aromatic compounds due to modifier concentration (1.4-dioxane) in the mobilephase (n-pentane).P at column outlet 3.6 MPa;T = 513.15 K(Leyendecker et al. 1986).

SFC: Different Modifiers

Page 8: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Variation of retention times with temperatureof polycyclic aromatic components in n-butane at 4.5 MPa.1 = naphthalene; 2 = anthracene; 3 = pyrene; 4 = chrysene (Klesper and Leyendecker 1986).

Variation of retention timesof chrysene with pressure.Mobile phase n-butane(Klesper, Leyendecker 1986).

SFC: Influence of Pressure and Temperature

Page 9: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

SFC: Pressure And Density Programming

Page 10: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Overloading by volume

Analytical injection

Overloading by concentration

Con

cent

ratio

n

Time

Chromatograms For Different Amounts of Injection

Page 11: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Adsorption Isotherms And Corresponding Chromatograms

Page 12: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

SFC: Flow Scheme of Apparatus

Page 13: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Elution Chromatography: A Chromatogram

Page 14: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

.// imismmr nntttk

,e

m

s K

V

VKk

tm = residence time in the mobile phasetr = retention time of the solutek' = capacity ratio = volumetric phase ratio Vs / Vm

Vs = the volume of the stationary phase, to,.Vm = the volume of the mobile phase

,e

e

m

se

K

n

nKk

./andand smesssmmm vvvnVvnV

.s

me

ms

sme v

vK

Vv

VvKk

e = molar phase ratiov = molar volume of a phaseV = total volume of a phase

Capacity Ratio

Page 15: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Capacity factors of paraffinesas a function of density(after Mollerup et al. /18/).

Capacity Factors

Page 16: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

.

2exp

2

1

/

2

n

nv

nKVV

Fc i

ism

iim

with n = number of stages for p:

Chromatographic Separation

Page 17: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Maximum of the peak: ;nvi

Number of theoretical plates:

;/ ism

i KVV

Vvn

Points of inflection:

nnvnnv rightilefti ,, and

Points of intersection with the base line:

;21and21 ,, nnvnnv rightilefti

Chromatographic Separation

Page 18: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Width of peak:

.4 nb

Time at which the peak maximum appears

.or/1 iiiriiir nktnkt

Number of equilibrium stages

.4

2

i

iri b

tn

Chromatographic Separation

Page 19: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Chromatographic Separation

Page 20: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

./ jiji kks Selectivity

.

2

ji

rirjji bb

ttR

Resolution

Resolution of two peaks of similar compounds

.1

1

4

2/1

k

k

s

snR

ij

ijij

Chromatographic Separation

Page 21: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

.1

116

2

2

k

k

s

sRn

ij

ijij

Chromatographic Separation

Page 22: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

,1

822 2

2

uDk

dk

u

DdH

isi

Fiimps

Van Deemter

Chromatographic Separation

Page 23: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Height of theoretical stage Hs

for SFC and HPLCfor packed columnswith different particle diameters(after Gere et al.)

Chromatographic Separation

Page 24: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

SFC Analytical Scale, hp

Page 25: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Influence of temperature

20 MPa; mobile phase:CO2/methanol (5.3 wt.%);column: 125 x 4 mm; 5 m LiChrosorb Si 60.

Preparative separation

Chromatograms of fractions

Upnmoor

1992

Separation of Prostaglandins

Page 26: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Shapes of peaks under overloading conditionsChromatograms of -tocopherol mixture under overloading conditionsUpnmoor, Brunner, 1992

Separation of Tocopherols

Page 27: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Influence of modifier concentration

Solutions of -tocopherol in chloroform.Injected volume: 10 ml;mobile phase: CO2/methanol;15 MPa; 293 K; column: 125 x 4 mm;5 m LiChrosorb Si 60.Upnmoor 1992

Separation of Tocopherols

Page 28: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

82

84

86

88

90

92

94

96

98

0 1 2 3 4 5 6 7

250 x 4.6 pS 250 x 8.0 pS

specific productivity DHA [mg/cm3 h]

Are

a D

HA

G

C [

%]

1mg DHA/(h,cm3) * 500 ml = 0,5 g DHA/h

Some kg DHA: Fully automatized plant !

RF=0,842

Productivity: DHA / DPA Separation by SFC

Page 29: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Dynamic axial compressed SFC column;

Dimensions:ID = 30 mm, length of packing: 0 to 190 (type I), 0 to 450 mm (type II) Pmax 400 bar, Tmax 200 °C.

SMB- Plant: Separation Columns

Page 30: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

SFC, Preparative Scale

Page 31: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Rotating column Rotating ports

Continuous Chromatography

Page 32: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

ExtractA + D

RaffinateB + D

FeedA + B + D

Desorbent D

Zone 1Purification of Adsorbent

Zone 3Enrichment of B

Zone 4 Purification of Desorbent

Zone 2Enrichment of A

True Moving Bed (TMB) Process

Page 33: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Principle of Simulated Countercurrent Separation

Mazzotti, ETH-Z

Page 34: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

ExtractA+D

RaffinateB+D

FeedA+B

DesorbensD

Concentration A, B

Simulated Moving Bed-Process

Page 35: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Gottschall: PREP 95

Performance SMB vs Elution (99.5 % Purity)

Page 36: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Preparative SMB-Plant

Depta, 2000

Page 37: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,60

10

20

30

40

50

concentration [mg/ml]

q [

mg

iso

mer/m

l stat

ion

ary

ph

ase]

Measurements

20

22

24

26

28

30

32

34

dq/dc

dq

/dc

0,0 0,5 1,0 1,5 2,0 2,5 3,00

20

40

60

80

100

120

dq/dc

concentration [mg/ml]

q [

mg

iso

mer/m

l stat

ion

ary

ph

ase]

Measurements

30

32

34

36

38

40

42

44

dq

/dc

Adsorption isotherms for Phytol cis- and trans- isomer (black lines) and derivatives (red lines). 225 bar, 40 °C, 1.8 mass% isopropanol as modifier.

Isotherms exhibit a point of inflection for each isomer.

221

21s cbcb1

)cb2b(cqq

Adsorption Isotherms

Page 38: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

3 4 5 6 7 8 90,0

0,2

0,4

0,6

0,8

1,0

1,2feed concentration:

2 mg/ml 5 mg/ml 10 mg/ml 20 mg/ml 50 mg/ml

conc

entr

atio

n [m

g/m

l]

retention time [min]

Experimental and simulated phytol chromatogramssymbols: experimental data; lines: simulations.

Batch-Simulations

Page 39: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Model: equilibrium, axially dispersed plug flow with variable velocity of mobile phase,

Pressure drop: Ergun equation,

Properties of mobile phase (CO2) calculated with equation of state.

t

q

z

cD

z

uc

z

cu

t

c iiapi

ii

1

02

2

SMB process modeled with four key parameters: the net flow ratios mj:

Ruthven, Storti.

)1()1( totalcolumn

totalcolumnshiftSMB

zone

solid

solidTMBzone

zone V

VtQ

Q

QQm

SMB-Simulation

Page 40: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

SMB- SFC: Volume-flow is a function of column length.Therefore, net flow ratios are not constant in each zone.

)1(_*

totalcolumn

totalcolumnshift

phasemobileSMBzone

zone V

VtQm

New parameter:

Representation of SMB-SFC process in a (m2*-m3

*)-plane,

solution of mass balance equations with finite difference method [Kniep et al.], adapted to variable velocity of mobile phase.

The algorithm is fast enough to calculate the region of complete separation in the (m2

*-m3*)-plane numerically, taking into account:

• any type of isotherm equation

• axial dispersion

• number of used columns

• change in mobile phase density

SMB-Simulation

Page 41: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

242526272829303132333424

26

28

30

32

34

36

242526272829303132333424

26

28

30

32

34

36

operating point

raffinate (cis-isomer) pure

extract (trans-isomer) pureraffinate +extract pure

black triangles:infinite dilution situation and infinite number of theoretical plates same parameter set

as operating point in figure 5

Region of complete separation for phytol Cfeed=5.0 mg/ml 230 bar, no pressure drop, columns: 2/2/2/2; 300 plates per column

Columns: 1/1/1/1; 1000 plates per column

SMB-Simulation: Phytol Separation

Page 42: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

242526272829303132333424

26

28

30

32

34

36

242526272829303132333424

26

28

30

32

34

36

operating point

raffinate (cis-isomer) pure

extract (trans-isomer) pureraffinate +extract pure

black triangles:infinite dilution situation and infinite number of theoretical plates same parameter set

as operating point in figure 5

Region of complete separation for phytol Cfeed=5.0 mg/ml 230 bar, no pressure drop, columns: 2/2/2/2; 300 plates per column

Columns: 1/1/1/1; 1000 plates per column

SMB-Simulation: Phytol Separation

Page 43: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

20 25 30

20

25

30

35

20 25 30

20

25

30

35

Influence of pressure drop:

raffinate (cis-isomer) pure

extract (trans-isomer) pureraffinate +extract pure

Region of complete separation for phytol, infinite dilution, columns: 2/2/2/2; 300 plates per column, 230 bar, no pressure drop

Same as in left figure but calculations with pressure drop

Pressure drop leads to a shift of the complete separation region to lower values of m2

* and m3*

SMB-Simulation: Phytol Separation

Page 44: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

1 2 3 4 5 6 7 80

1

2

Run N

Extract FeedRaffinate

1 2 3 4 5 6 7 80

1

Run M

1 2 3 4 5 6 7 80,0

0,5

1,0

1,5

2,0

2,5

Run O

ExtractFeedRaffinate Extract FeedRaffinate

7 8 9 10 117

8

9

10

11

m3

m2

low concentration in Feedlinear Adsorption isothermIdeal model

1 23

Experimental Results of Ibuprofen Separation

Page 45: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

-10 0 10 20 30 40 50 60 70 80

0123456789

101112

peak

are

a [m

V*m

in]

conc

entr

atio

n [g

/l]

length [cm]

Sim S(+) Sim R(-) Exp S(+) Exp R(-)

0

2

4

6

raffinateextract

140 mgRacemate/min; 2/2/3/1 configuration

Separation of Ibuprofen

Page 46: Supercritical Fluid Chromatography SFC Chromatographic Fundamentals Practical Verification of SFC Theoretical Description of SFC / Scale-up SFC on a Preparative.

Verunreinigungen PhytolisomereConditions of separation:

240 bar, 50°C,column 4 x 250 mm packed withLiChrospher 100 (Silica),flow 2,56 g carbon dioxide / min,modifier 3 wt.- % EtOH,productivity 45 mg/(ml, h).

17mg pur

0,85 mg in Hexan

OH

CH3

CH3

CH3

CH3H H CH3

Phytol

• Diterpene-alcohol,• Intermediate for vitamin E, K1• esterified lipophilic compound

of chlorophyll