Supercollision cooling of electrons in graphenejonckhee/VietnamPresentations/Quy...PhD Andreas Betz...

28
Supercollision cooling of electrons in graphene Mesogroup : A.C. Betz, E. Pallecchi, SH. Jhang, G. Fève, JM. Berroir, B. Plaçais Opticgroup : D. Drunel, F. Vialla, C. Voisin, R. Ferreira Laboratoire Pierre Aigrain – Ecole Normale Supérieure 24 rue Lhomond, 75231 Paris Cedex 05 France www.lpa.ens.fr h-BN Drain Si++ Gate SiO 2 Source 1

Transcript of Supercollision cooling of electrons in graphenejonckhee/VietnamPresentations/Quy...PhD Andreas Betz...

  • Supercollision cooling of electrons in graphene

    Meso‐group : A.C. Betz, E. Pallecchi, S‐H. Jhang, G. Fève, J‐M. Berroir, B. Plaçais      Optic‐group : D. Drunel, F. Vialla, C. Voisin, R. Ferreira

    Laboratoire Pierre Aigrain – Ecole Normale Supérieure24 rue Lhomond, 75231 Paris Cedex 05 France

    www.lpa.ens.fr

    h-BN

    Drain

    Si++ Gate SiO2

    Source

    1

  • Why studying cooling processes ?

    2EDISON-18, Matsue, 25/7/2013

    1. Hot carriers affect resolution detectors 

    2. Can be useful as bolometers

    3. Graphene   lab for electron‐phonon physics

    4. Acoustic phonon bottleneck

  • Acoustic phonon bottleneck

    F. Wu et al. , APL 97, 262115  (2010) (nanotube)A. Fay et al., PRB 84, 245427 (2011)  (Bilayer)K.C. Fong, K. C. Schwab, PRX, 031006  (2012)A.C. Betz  et al.,  PRL  109, 056805 (2012)A.C. Betz, et al.  nphys 19, 109 (2013)

    Optical absorption (2.3%)

    N.M. Gabor et al., Science 334 , 648 (2011)S. Winnerl et al. PRL 107, 237401 (2011)J. Yan et al., nnano 7, 472 (2012)M. Freitag et al., nphoto 453 (2013)M.W. Graham et al., nphys 19,  103 (2013)

    optical-phonons(200 meV)

    Joule heating

    photons

    photo‐current or pump‐probe noise thermometry  (this work)

    acoustic-phonons

    Electric field + scattering

    3Nanophysics, Quy-Nhon, 7/8/2013

    acoustic-phonons only

    C  = 3x108 m/sVF = 1x106 m/sS   = 2x104 m/s

    + fast electron-electron

  • 4

    SI=4kB/R

    VI

    P=V2/R

    W

    L

    Nanophysics, Quy-Nhon, 7/8/2013

    noise thermometry

    Steady state Heat conduction Joule heating phonon P=Tα

  • 5

    SI=4kB/R

    VI

    P=V2/R

    W

    L

    Nanophysics, Quy-Nhon, 7/8/2013

    noise thermometry

    electron-electron

    electron-impurity

    Electron-p

    Fano factor

    α=5 in 3D metals (Wellstood, Urbina, Clarke, PRB 1994)α=3 in 1D CNTs (Wu, …, Hakonen, APL 2010)

    α=d+2 => α=4 in 2D graphene ???

    Steady state Heat conduction Joule heating phonon P=Tα

  • Outline

    6Nanophysics, Quy-Nhon, 7/8/2013

    1. Introduction : the Bloch‐Grüneisen phonon resistivity

    2. Relaxation by acoustic phonons Betz et al., PRL 109, 056805 (2012).  

    3. Disorder assisted relaxation : supercollisionsBetz et al., Nature Physics 9, 109  (2013)

  • Phonon resistivity

    GR/BN

    Chen-Fuhrer., Nat. Nano 2008 Efetov-Kim PRL 2010

    OP‐phononsirrelevant

    large AC‐phononsvelocity 

    (s = 2x104 m/s)

    weakAC‐phonons

    effect

    7Nanophysics, Quy-Nhon, 7/8/2013

  • Phonon resistivity in (2D) graphene

    GR/BN

    Chen-Fuhrer., Nat. Nano 2008 Efetov-Kim PRL 2010

    OP‐phononsirrelevant

    large AC‐phononsvelocity 

    (s = 2x104 m/s)

    AC‐phononsweak effect

    8

    0.1Ω/K

    Nanophysics, Quy-Nhon, 7/8/2013

    Bloch-Gruneisencrossover

  • The Bloch‐Grüneisen crossover

    Fermi surface Available phonon space

    kFq

    qmax α T2 kF >

    T < TBG (cold)

    qmax2 kF =

    T = TBG=(2s/VF)TF

    q=kT/s

    (Efetov-Kim PRL2010)

    2 kF qmax<

    T > TBG(hot)

    (Hwang-Das-Sarma PRB2008)

    4%

    9

  • Outline

    10Nanophysics, Quy-Nhon, 7/8/2013

    1. Introduction : the Bloch‐Grüneisen phonon resistivity

    2. Relaxation by acoustic phonons Betz et al., PRL 109, 056805 (2012).  

    3. Disorder assisted relaxation : supercollisionsBetz et al., Nature Physics 9, 109  (2013)

  • acoustic‐phonon cooling (theory)

    (Viljas-Heikkila PRB 2010) 11Nanophysics, Quy-Nhon, 7/8/2013

    kF

    q

    T < TBG (cold phonons)

    T > TBG (hot phonons)

    (non-degenerate electrons)

    Electron-Phonon conductance

    Bloch-Gruneisencrossover

  • AC‐phonon cooling (principles)

    phonon thermal conductance

    12

    phonon cooling power

    Nanophysics, Quy-Nhon, 7/8/2013

    Σph ~10 mW/m2/K4

    KapitzaΣK ~ 10 W/m2/K4

  • phonon thermal conductance

    13

    T0 = 4 K

    phonon cooling power

    Tph ~ 40 K

    Te ~ 400 K

    AC‐phonon cooling (practicals)

    P ~100 µW/µm2

    Nanophysics, Quy-Nhon, 7/8/2013

    Σph ~10 mW/m2/K4

    KapitzaΣK ~ 10 W/m2/K4

  • Device fabrication

    Gr/BN (diffusive) CVD (doped and diffusive)

    Schneider et al., Nano Letters 2010 10 (5)

    Wedging transfer: polymer CAB & water

    CVD grown on Cu (A. Madouri, LPN)

    Length (μm)

    R (k

    Ω)

    14

    Mitutoyo

    Nanophysics, Quy-Nhon, 7/8/2013

  • Noise thermometry

    SI=4kBTe(P)/R

    15

    P=V2/R

    linear sub-linear linear

    Te(x)

  • Relaxation by « cold AC phonons »

    WF-dip

    Agreement with T4 dependence for 2D acoustic phonons

    Σ* =0.5-2 mW/m2K4 is disorder dependent and Σ* < Σ = 10mW/m2K4

    ΣT4 plateaus

    16Nanophysics, Quy-Nhon, 7/8/2013

    Sample GR/BN1kF

    q

    Tph < TBG (cold phonons)

  • Outline

    17Nanophysics, Quy-Nhon, 7/8/2013

    1. Introduction : the Bloch‐Grüneisen phonon resistivity

    2. Relaxation by acoustic phonons Betz et al., PRL 109, 056805 (2012).  

    3. Disorder assisted relaxation : supercollisionsBetz et al., Nature Physics 9, 109  (2013)

  • Crossing the Bloch‐Gruneisen temperature

    Fermi surface Available phonon space

    kFq

    qmax2 kF >

    T > TBG

    qmax2 kF =

    T = TBG=(2s/VF)TF

    q=kT/c

    2 kF qmax<

    T > TBG

    4%

    18

    electrons Te

    phonons Tph

    substrate To

    I I=V/R

    P=ΣK Tph4P

    decrease µ

  • Relaxation at the Charge Neutrality Point 

    0,0 -0,5 -1,0 -1,50,0

    0,5

    1,0

    1,5

    2,0

    0 V

    -20 V

    -10 V

    -32 V

    +12 V (CNP)

    T4 /

    P (K

    4 /mW

    )Vds (V)

    Sample GR/BN2

    0

    200

    400

    600

    800

    Tph

    -55 V

    -43 V-32 V

    -20 V-10 V

    0 VVg = +12 V (CNP)

    T e (K

    )

    P (mW [m]-2)

    -30 0 301

    2

    3

    R (k

    )

    Vg (V)

    0.00 0.05 0.10 0.15 0.20

    ReplotSample GR/BN2

    19Nanophysics, Quy-Nhon, 7/8/2013

  • We measure PαT3 instead of PαT

    1

    4 47 56 62 67

    TBG

    0.200.150.100.050

    0.5

    43

    2

    40Tph (K)

    -55 V-43 V-32 V

    -20 V

    -10 V0 V

    Vg = +12 V (CNP)

    P (mW [m]-2)

    T e3 /

    P (K

    3 m2 /W

    )

    Replot

    0,0 -0,5 -1,0 -1,50,0

    0,5

    1,0

    1,5

    2,0

    0 V

    -20 V

    -10 V

    -32 V

    +12 V (CNP)

    T4 /

    P (K

    4 /mW

    )

    Vds (V)

    T2T4

    T3

    20Nanophysics, Quy-Nhon, 7/8/2013

  • Supercollisions

    2 kF qmax<

    Tph > TBG

    electron‐impurity 

    Theory : Song-Reizer-Levitov, PRL 109, 106602 (2012)

    21Nanophysics, Quy-Nhon, 7/8/2013

    Ordinary collision

  • supercollisions

    Theory : Song-Reizer-Levitov, PRL 109, 106602 (2012)

    22Nanophysics, Quy-Nhon, 7/8/2013

    1

    4 47 56 62 67

    TBG

    0.200.150.100.050

    0.5

    43

    2

    40Tph (K)

    -55 V-43 V-32 V

    -20 V

    -10 V0 V

    Vg = +12 V (CNP)

    P (mW [m]-2)

    T e3 /

    P (K

    3 m2 /W

    )

  • supercollisions

    23Nanophysics, Quy-Nhon, 7/8/2013

    1

    4 47 56 62 67

    TBG

    0.200.150.100.050

    0.5

    43

    2

    40Tph (K)

    -55 V-43 V-32 V

    -20 V

    -10 V0 V

    Vg = +12 V (CNP)

    P (mW [m]-2)

    T e3 /

    P (K

    3 m2 /W

    )

    Experiment  

  • Effect of disorder on relaxation

    24Nanophysics, Quy-Nhon, 7/8/2013

    Te3

    Te4

    Theory clean  ‐‐‐‐‐‐‐‐Exp. disorder _____

    Electron-Phonon conductance

    ?

  • Conclusion

    1

    4 47 56 62 67

    TBG

    0.200.150.100.050

    0.5

    43

    2

    40Tph (K)

    -55 V-43 V-32 V

    -20 V

    -10 V0 V

    Vg = +12 V (CNP)

    P (mW [m]-2)T e

    3 / P

    (K3 m

    2 /W)

    Te4

    Te3

    “ordinary collisions” rule momentum  “Supercollisions” rule energy

    25

    Te2

    Nanophysics, Quy-Nhon, 7/8/2013

  • Supercollision in the photocurrent(Graham et al. Nat Phys. 2013)

    26Nanophysics, Quy-Nhon, 7/8/2013

    ~µ2~µ ~100 ps

  • Conclusions and perspectives 

    27

    • Ordinary phonon collisions observed at low temp (T4 law)

    • Phonon bottelneck (T law) is overcomed by supercollisions (T3 law)

    • Need for a theoretical approach for disorder

    • Hot electrons useful for photodetection (from UV to THz)C. McKitterick et al., JAP 2013  and  arXiv:1307.5012v1

    Nanophysics, Quy-Nhon, 7/8/2013

  • Graphene teams at LPA‐ENS

    Gwendal Fève Bernard PlaçaisJean-Marc BerroirPhD Andreas Betz(Hitachi Cambridge)

    Emiliano Pallecchi(Assist-Prof, IEMN)

    post‐doc positions at ENS‐LPA !!!!

    Dr.Sung-Ho Jhang(Assist-Prof. Seoul)

    PhD Fabien Viala Christophe VoisinDr David Brunel

    Coherent and Non Linear Optics team

    Mesoscopic physics team

    28Nanophysics, Quy-Nhon, 7/8/2013

    Robson Ferreira