Summer Internship Report At Ril

49
Aman Arora Summer Trainee Reservoir Management Group RIL

Transcript of Summer Internship Report At Ril

Page 1: Summer Internship Report At Ril

Aman AroraSummer Trainee

Reservoir Management GroupRIL

Page 2: Summer Internship Report At Ril

Coring Operations

Laboratory Analysis

Hydraulic Unitization

Estimation of Water Saturation from Capillary Pressure

Generation of Relative Permeability Curve(s) from Capillary Pressure

Page 3: Summer Internship Report At Ril
Page 4: Summer Internship Report At Ril

Conventional Coring ( while drilling)◦ Conventional Core

No sleeve

Aluminum sleeve

Rubber/Plastic sleeve

◦ Sponge Core

◦ Gel Core

◦ Pressure core

Sidewall Coring ( post-drilling)◦ Percussion

◦ Rotary

Page 5: Summer Internship Report At Ril

CT scan Whole Core

GEOLOGIST

Photography

Minipermeability

RESERVOIR ENGG

DS plugs

Plugs

PreservationTo

Laboratory

Page 6: Summer Internship Report At Ril
Page 7: Summer Internship Report At Ril

This includes all the experiments and test procedures on core samples, and the data/results collected.

The two major categories of core analysis or experiments are:◦ conventional or routine core analysis,

◦ special core analysis.

Page 8: Summer Internship Report At Ril

This yields the most basic data about the reservoir. This includes the following:

• UV PhotographyPresence of

Hydrocarbons

• Photography/ Visual Observation Lithology

• Porosity MeasurementStorage Capacity

• Permeability MeasurementFlow Ability

• Water Saturation (Dean Stark)

• Hydrocarbon Saturation (Distillation)Saturation

Page 9: Summer Internship Report At Ril

These are more complex and the data furnished are of wider diversity.

They will require longer core preparation and testing times and more specialized and expensive equipment

Some common SCAL experiments and data are listed in the following table.

Page 10: Summer Internship Report At Ril

Property Test/Experiment

Relative Permeability Steady State Rel Perm

Unsteady State Rel Perm

Capillary Pressure Centrifuge

Porous Plate Technique

Mercury Injection

Pore Throat Size Distribution Mercury Injection

Wettabilty Amott’s Index

USBM Index

Mineral Composition X-Ray Diffraction

ICP

Thin Section Plate Photography

Semi Electron Microscope

CEC Wet Chemistry / Ion Exchange

Technique

Acid Solubility Acid Solubility Test

Grain Size Distribution Sieve Analysis

Laser Particle Size Analysis

Electrical Properties Laboratory Measurement

Rock Strength and properties Triaxial Static/Dynamic Test

Scratch Testing

Pressure Dependence of k, φ NOB Pressure Test

Interfacial Tension IFT Test/ Contact Angle

Fines Migration Critical Velocity Test

Page 11: Summer Internship Report At Ril
Page 12: Summer Internship Report At Ril

Rock properties vary widely in reservoirdepending on sedimentation, diagenesis etc.

Such variations affect reservoir storage andflow behavior, and thus its study.

Reservoir characterization is a prerequisitefor efficient development and management ofthese reservoirs

Page 13: Summer Internship Report At Ril

Reservoir description can be defined as theintegration of microscopic, mesoscopic andmacroscopic scales of data to compilereservoir zonation that accurately describesreservoir and reservoir dynamics.

i.e To discretize the reservoir into subunitssuch as layers and grid blocks and to assignrepresentative values of all petrophysicalparameters to each unit.

Page 14: Summer Internship Report At Ril

Ebanks (1987) defined hydraulic flow units as “amappable portion of the reservoir within whichgeological and petrophysicalproperties, controlling the flow of fluids, areconsistent and predictably different from theproperties of other reservoir rock portion”.

Hydraulic unit are defined by:

1. Mineralogy (type, abundance, morphology, andlocation relative to pore throat)

2. Texture (grain size, grainshape, sorting, packing)

Page 15: Summer Internship Report At Ril

Flow Zone Indicator (FZI) method classifiessection based on their pore throatcharacteristics

Process:◦ Calculate Reservoir Quality Index (RQI)

◦ Calculate φz (ratio of Pore Volume to Grain Volume)

◦ Calculate FZI

Page 16: Summer Internship Report At Ril

◦ Taking a suitable FZI interval, different HU aredecided

◦ On the graph of Log RQI Vs Log φz , all samples ofone HU lie on a straight line of unit slope.

◦ Each HU is allotted a color for easy identification.

◦ HU zonation is supported by other evidence likelithology, LPSA etc.

Page 17: Summer Internship Report At Ril

Sample Number

Core Ambient He Gas Horizontal Emp. Klink. Perm Grain

Depth Porosity Perm. 400 psig at 400 psig Density

(m) (% of Vb) (mD) (mD) (g/ml)

11 3198.83 11.9 28.3 23.8 2.91

16 3200.78 22.2 11.0 8.77 2.66

18 3201.51 18.4 0.71 0.48 2.74

DS1 3202.47 26.7 53.2 46.4 2.69

22 3203.97 31.5 2105 2022 2.68

DS2 3205.55 29.3 2799 2698 2.69

28 3206.03 24.0 124 114 2.70

32 3207.23 24.2 361 352 2.66

DS3 3209.30 27.4 1302 1245 2.68

DS4 3212.82 24.7 1435 1373 2.83

46 3213.58 12.6 0.43 0.28 2.67

48 3214.28 30.0 227 216 2.67

DS5 3215.37 23.7 2181 2096 2.71

DS8 3227.81 7.4 0.07 0.04 2.88

DS9 3228.31 31.6 4531 4407 2.74

69 3229.32 27.7 768 733 2.66

72 3230.37 28.1 737 703 2.69

74 3231.02 22.1 31.4 26.5 2.68

75 3232.30 27.0 478 455 2.69

78 3234.29 28.4 1701 1631 2.67

80 3235.10 26.6 3524 3410 2.69

DS11 3236.99 27.8 3560 3445 2.69

85 3237.55 22.7 65.9 58.2 2.65

87 3238.40 15.9 0.74 0.50 3.25

DS12 3239.24 23.4 21.5 17.8 2.66

91 3240.70 25.8 656 625 2.67

93 3241.40 23.4 30.6 25.9 2.67

Page 18: Summer Internship Report At Ril

Sample

Number

Core Ambient He Emp. Klink. Perm Grain frac RQI φz FZI

Depth Porosity at 400 psig Density poro avg perm avg poro LithoogyHU (m) (% of Vb) (mD) (g/ml)

1 97 3245.18 23.6 13583 2.69 0.24 7.53 0.309 24.407coarse1 159 3288.39 25.5 13231 2.67 0.26 7.15 0.343 20.854coarse1 DS42 3299.98 26.0 13433 2.67 0.26 7.13 0.352 20.268coarse1 DS40 3293.70 26.7 12530 2.67 0.27 6.81 0.364 18.716coarse1 DS39 3292.58 23.4 5363 2.66 0.23 4.75 0.305 15.565coarse1 HS3 3215.86 27.4 9463 2.71 0.27 5.84 0.377 15.503coarse1 83 3235.68 27.2 9279 2.67 0.27 10249.19 25.24 5.79 0.375 15.472coarse3 HS5 3226.10 23.0 1666 2.74 0.23 2.67 0.298 8.971coarse3 186 3309.33 28.0 3278 2.69 0.28 3.39 0.390 8.710coarse3 DS9 3228.31 31.6 4407 2.74 0.32 3.71 0.461 8.048coarse3 DS29 3283.20 28.3 2850 2.69 0.28 3.15 0.395 7.965fine3 DS2 3205.55 29.3 2698 2.69 0.29 3.01 0.415 7.249coarse3 129 3267.40 22.7 1022 2.67 0.23 2.11 0.293 7.197coarse3 DS4 3212.82 24.7 1373 2.83 0.25 2.34 0.328 7.136coarse3 154 3284.51 26.1 1561 2.67 0.26 2.43 0.352 6.894fine3 DS27 3278.77 24.3 1174 2.68 0.24 2.18 0.321 6.804coarse3 147 3279.20 25.5 1398 2.69 0.26 2.32 0.342 6.788coarse3 94 3242.14 28.8 2038 2.67 0.29 2.64 0.405 6.521coarse3 149 3280.78 25.6 1283 2.67 0.26 2.22 0.344 6.467medium3 DS13 3241.95 24.2 906 2.69 0.24 1.92 0.319 6.017coarse3 78 3234.29 28.4 1631 2.67 0.28 1900.73 26.08 2.38 0.396 6.014coarse6 16 3200.78 22.2 8.77 2.66 0.22 0.20 0.285 0.691fine6 DS19 3258.59 20.7 6.73 2.68 0.21 0.18 0.261 0.685fine6 135 3271.64 16.8 3.24 2.66 0.17 0.14 0.202 0.683fine6 DS17 3251.45 25.0 4.82 2.69 0.25 6.99 20.58 0.14 0.333 0.414fine7 46 3213.58 12.6 0.28 2.67 0.13 0.05 0.145 0.323fine7 DS8 3227.81 7.4 0.04 2.88 0.07 0.02 0.080 0.296lami7 87 3238.40 15.9 0.50 3.25 0.16 0.06 0.188 0.296clay7 137 3272.79 16.4 0.53 2.65 0.16 0.06 0.196 0.286fine7 DS37 3291.30 8.4 0.05 2.66 0.08 0.02 0.091 0.258fine7 18 3201.51 18.4 0.48 2.74 0.18 0.05 0.225 0.226fine7 114 3260.14 16.9 0.35 2.63 0.17 0.05 0.203 0.222fine7 DS43 3304.00 14.6 0.21 2.74 0.15 0.04 0.171 0.222silty7 DS21 3265.74 9.2 0.04 2.67 0.09 0.02 0.102 0.214fine7 HS1 3201.13 17.0 0.05 3.03 0.17 0.02 0.205 0.081fine7 DS22 3267.60 8.6 0.005 2.71 0.09 0.22 12.91 0.01 0.094 0.078

Page 19: Summer Internship Report At Ril

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

log R

QI

log φz

FZI

1

2

3

4

5

6

7

Page 20: Summer Internship Report At Ril

y = 0.029x3.970

R² = 0.415

y = 0.019x3.766

R² = 0.637

y = 0.018x3.538

R² = 0.656

y = 0.000x4.418

R² = 0.824

y = 0.001x3.331

R² = 0.868

y = 0.001x2.689

R² = 0.641

y = 4E-05x3.192

R² = 0.552

0.001

0.01

0.1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35

K (

mD

)

PHI (%)

1

2

3

4

5

6

7

Power (1)

Power (2)

Power (3)

Power (4)

Power (5)

Power (6)

Power (7)

Page 21: Summer Internship Report At Ril

HU FZI Developed Correlation Average Average

Range K-φ Coefficient K φ

Correlation (md) (%)

1 >15.00 k = 0.0298φ3.9704 R² = 0.4158 10249.19 25.2

2 9.00-15.00 k = 0.0197φ3.7662 R² = 0.6377 2932.46 23.8

3 6.00-9.00 k = 0.018φ3.5385 R² = 0.6566 1900.73 26.1

4 4.00-6.00 k = 0.0004φ4.4188 R² = 0.8243 909.92 26.4

5 1.00-4.00 k = 0.0018φ3.3318 R² = 0.8687 81.72 19.8

6 0.40-1.00 k = 0.0017φ2.6893 R² = 0.6417 6.99 20.6

7 0.00-0.40 k = 4E-05φ3.1928 R² = 0.5529 0.22 12.9

Page 22: Summer Internship Report At Ril

Sample

Number

Core Ambient He Emp. Klink. Perm Grain

Depth Porosity at 400 psig Density RQI φz FZI Lithology(m) (% of Vb) (mD) (g/ml) HU

11 3198.83 11.9 23.8 2.91 0.44 0.136 3.264 coarse 5

16 3200.78 22.2 8.77 2.66 0.20 0.285 0.691 fine 6

HS1 3201.13 17.0 0.05 3.03 0.02 0.205 0.081 fine 7

18 3201.51 18.4 0.48 2.74 0.05 0.225 0.226 fine 7

DS1 3202.47 26.7 46.4 2.69 0.41 0.363 1.140 fine 5

HS2 3203.28 26.9 45.9 2.71 0.41 0.368 1.115 medium 5

22 3203.97 31.5 2022 2.68 2.51 0.461 5.456 medium 4

26 3205.30 21.7 36.1 2.79 0.40 0.277 1.461 medium 5

DS2 3205.55 29.3 2698 2.69 3.01 0.415 7.249 coarse 3

28 3206.03 24.0 114 2.70 0.68 0.315 2.170 coarse 5

32 3207.23 24.2 352 2.66 1.20 0.319 3.765 medium 5

DS3 3209.30 27.4 1245 2.68 2.12 0.378 5.594 medium 4

DS4 3212.82 24.7 1373 2.83 2.34 0.328 7.136 coarse 3

46 3213.58 12.6 0.28 2.67 0.05 0.145 0.323 fine 7

48 3214.28 30.0 216 2.67 0.84 0.429 1.961 fine 5

DS5 3215.37 23.7 2096 2.71 2.95 0.310 9.514 coarse 2

HS3 3215.86 27.4 9463 2.71 5.84 0.377 15.503 coarse 1

HS5 3226.10 23.0 1666 2.74 2.67 0.298 8.971 coarse 3

DS8 3227.81 7.4 0.04 2.88 0.02 0.080 0.296 lami 7

DS9 3228.31 31.6 4407 2.74 3.71 0.461 8.048 coarse 3

69 3229.32 27.7 733 2.66 1.62 0.382 4.227 coarse 4

72 3230.37 28.1 703 2.69 1.57 0.391 4.018 coarse 4

74 3231.02 22.1 26.5 2.68 0.34 0.284 1.212 medium 5

75 3232.30 27.0 455 2.69 1.29 0.369 3.494 coarse 5

DS10 3232.63 28.6 1196 2.69 2.03 0.400 5.078 medium 4

78 3234.29 28.4 1631 2.67 2.38 0.396 6.014 coarse 3

80 3235.10 26.6 3410 2.69 3.55 0.363 9.801 coarse 2

83 3235.68 27.2 9279 2.67 5.79 0.375 15.472 coarse 1

84 3236.38 27.8 6780 2.70 4.90 0.385 12.731 coarse 2

DS11 3236.99 27.8 3445 2.69 3.50 0.385 9.084 coarse 2

85 3237.55 22.7 58.2 2.65 0.50 0.293 1.715 fine 5

87 3238.40 15.9 0.50 3.25 0.06 0.188 0.296 clay 7

DS12 3239.24 23.4 17.8 2.66 0.27 0.306 0.893 6

Page 23: Summer Internship Report At Ril

7 Hydraulic Units were formed.

Most of the core samples taken from gas zoneare of HU 5. (avg. φ=19.8% , avg. k=81.72md)

Most of the core samples takes from oil zoneare of HU 3. (avg. φ=26% , avg. k=1900.73md)

Page 24: Summer Internship Report At Ril
Page 25: Summer Internship Report At Ril

Part A: Generation of Global J-function curve◦ Get capillary pressure data from core samples.

◦ Convert Pc to J-Function using the formula:

◦ Plot all “J(Sw) Vs. Sw” on the same graphs, andfind a representative curve for the family. This iscalled the Global Curve.

Page 26: Summer Internship Report At Ril

Sample No. DS 33 Sample No. 156 Sample No. 149

Porosity: 0.239 Porosity: 0.248 Porosity: 0.256

Permeability 2647.4 Permeability 1914.0 Permeability 1283.0

σ cos θ 26.0 σ cos θ 26.0 σ cos θ 26.0

Pc Sw J Pc Sw J Pc Sw J

[psi] [-] [-] [psi] [-] [-] [psi] [-] [-]

0.41 0.894 0.3570 0.40 0.380 0.2923 0.39 0.918 0.230199

1.02 0.278 0.8950 1.00 0.284 0.7328 0.98 0.918 0.577096

2.06 0.245 1.8073 2.02 0.259 1.4799 1.98 0.358 1.165383

4.99 0.222 4.3732 4.90 0.239 3.5809 4.78 0.307 2.819938

8.87 0.208 7.7746 8.70 0.223 6.3661 8.51 0.280 5.013224

13.08 0.195 11.4635 12.83 0.210 9.3868 12.54 0.264 7.391947

18.11 0.176 15.8664 17.76 0.191 12.9921 17.36 0.248 10.23107

Sample No. 91 Sample No. 140 Sample No. 32

Porosity: 0.258 Porosity: 0.213 Porosity: 0.239

Permeability 625.5 Permeability 350.0 Permeability 2647.4

σ cos θ 26.0 σ cos θ 26.0 σ cos θ 26.0

Pc Sw J Pc Sw J Pc Sw J

[psi] [-] [-] [psi] [-] [-] [psi] [-] [-]

0.40 0.752 0.1650 0 0.689 0 0 0.837 0

1.12 0.397 0.4585 0.56 0.212 0.1898 1.10 0.382 0.3502

1.89 0.329 0.7748 0.81 0.148 0.2733 1.59 0.314 0.5043

4.48 0.273 1.8338 1.10 0.135 0.3720 3.98 0.251 1.2641

10.07 0.224 4.1261 1.82 0.077 0.6149 12.00 0.173 3.8134

19.74 0.192 8.0872 3.80 0.073 1.2830 54.00 0.135 17.1587

47.28 0.147 19.3699 11.90 0.056 4.0160 99.47 0.098 31.6036

18.92 0.039 6.3846 148.30 0.083 47.1199

Page 27: Summer Internship Report At Ril

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

J (S

w)

Sw

J Vs Sw

J

DS 33

156

149

91

140

32

Page 28: Summer Internship Report At Ril

Part 2:Calculation of Free Water Level (FWL)◦ Take a number of samples, and calculate their

threshold/displacement pressure using empiricalformula:

◦ Convert Pt into Height

◦ The Pt of the most comparable sample to theGOC is considered.

◦ Depth of FWL = GOC + H

Page 29: Summer Internship Report At Ril

Plug Id K (mD) PHI (%)

Depth

(m) Pt h * (m)

72 703 28.1 3230.37 0.4398 0.7751

150 1628 24.0 3281.42 0.3065 0.5402

154 1561 26.1 3284.51 0.3121 0.5500

162 933 16.4 3290.96 0.3894 0.6863

37V 2085 25.4 3210.66 0.2756 0.4857

h*= height of WOC above free water level

OWC = 3291.7 mMDBRT

FWL = 3291.7 + 0.6862 = 3292.39

Page 30: Summer Internship Report At Ril

Part 3: Calculation of Water Saturation◦ For each sample, calculate Height above Free Water Level

(FWL)

◦ Convert Height above FWL into capillary pressure inreservoir condition

◦ Convert Pc at reservoir conditions to Pc at laboratoryconditions

◦ Change Pc (lab) to J(Sw)

◦ Calculate Sw by correlating from Global J-FunctionCurve.

Page 31: Summer Internship Report At Ril

Rho-oil = 0.247 σ . CosθRho-water = 0.42 Air/Gas-Hg Air/Gas-Brine Air/Gas-Oil Oil-Brine

rho gas = 0.129 [dynes/cm] [dynes/cm] [dynes/cm] [dynes/cm]Laboratory 368 72 24 42Reservoir 50 26

Sample

Number

Core Sw from Height PC (res) (tcosθ)lab Pc (lab) J Sw

Depth φ K Dean above H*Δρ*3.28 (tcosθ)res

(m) Stark FWL

11 3198.83 11.9 23.8 93.56 89.301 72/50 128.594 7.854 0.228

16 3200.78 22.2 8.77 91.61 87.440 1.44 125.913 3.425 0.268

HS1 3201.13 17.0 0.05 91.26 87.106 1.44 125.432 0.288 0.384

18 3201.51 18.4 0.48 90.88 86.743 1.44 124.910 0.876 0.332

DS1 3202.47 26.7 46.4 20.5 89.92 85.827 1.44 123.591 7.059 0.233

HS2 3203.28 26.9 45.9 89.11 85.054 1.44 122.477 6.924 0.234

22 3203.97 31.5 2022 88.42 84.395 1.44 121.529 42.117 0.149

26 3205.30 21.7 36.1 87.09 83.126 1.44 119.701 6.681 0.236

DS2 3205.55 29.3 2698 8.8 86.84 82.887 1.44 119.357 49.547 0.141

28 3206.03 24.0 114 86.36 82.429 1.44 118.698 11.195 0.212

32 3207.23 24.2 352 85.16 81.284 1.44 117.048 19.355 0.186

DS3 3209.30 27.4 1245 16.9 83.09 79.308 1.44 114.203 33.305 0.160

DS4 3212.82 24.7 1373 11.4 79.57 75.948 1.44 109.365 35.299 0.158

46 3213.58 12.6 0.28 78.81 75.223 1.44 108.320 0.698 0.343

48 3214.28 30.0 216 78.11 74.554 1.44 107.358 12.460 0.207

DS5 3215.37 23.7 2096 8.9 77.02 73.514 1.44 105.860 43.105 0.148

HS3 3215.86 27.4 9463 76.53 73.046 1.44 105.187 84.684 0.116

HS5 3226.10 23.0 1666 66.29 63.272 1.44 91.112 33.592 0.160

DS8 3227.81 7.4 0.04 75.2 64.58 61.636 1.44 88.756 0.289 0.384

DS9 3228.31 31.6 4407 12.3 64.08 61.163 1.44 88.075 45.056 0.146

69 3229.32 27.7 733 63.07 60.199 1.44 86.687 19.317 0.186

72 3230.37 28.1 703 62.02 59.197 1.44 85.243 18.460 0.188

74 3231.02 22.1 26.5 61.37 58.576 1.44 84.350 4.001 0.260

75 3232.30 27.0 455 60.09 57.355 1.44 82.591 14.691 0.199

DS10 3232.63 28.6 1196 11.6 59.76 57.040 1.44 82.137 23.003 0.178

Page 32: Summer Internship Report At Ril

3190

3210

3230

3250

3270

3290

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Dep

th (m

MD

BR

T)

Sw

Sw From Pc

Sw

Page 33: Summer Internship Report At Ril

3190

3210

3230

3250

3270

3290

0 0.1 0.2 0.3 0.4 0.5 0.6

Dep

th (m

MD

TR

T)

Sw

Comparison of Saturation from Log and Pc

Sw (log)

Sw (J)

Page 34: Summer Internship Report At Ril

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

0 10 20 30 40 50 60 70 80

Dep

th (m

MD

BR

T)

Sw %

Comparison of Saturation from Dean Stark and Pc

Sw (DS)

Sw (J)

Page 35: Summer Internship Report At Ril

The saturation profile does not show anypredictable behavior, because;◦ The reservoir is highly heterogeneous◦ The petrophysical properties show huge variation

The Sw values from Dean Stark are morecomparable to values from J-function thanlog.

The log values are initial readings withouttuning with electrical properties from SCAL.

Page 36: Summer Internship Report At Ril
Page 37: Summer Internship Report At Ril

Permeability is defined as the ability of amedium to allow a fluid flow. It is a measureof fluid conductivity of a material.

Page 38: Summer Internship Report At Ril

When two or more fluids flow in areservoir, they impede the flow of oneanother.

Relative permeability is the fluid conductivityof one fluid in the presence of anotherfluid(s).

Relative Permeability is expressed aspermeability on one fluid over the absolutepermeability.

Page 39: Summer Internship Report At Ril

There are two ways to get relativepermeability values:

1. Experimental Results Steady State Measurement

Unsteady State Measurement

2. Estimation from Capillary Pressure data

Page 40: Summer Internship Report At Ril

Drainage applies to processes where thewetting phase is reducing in concentration.

Imbibition applies to process where thewetting phase is increasing in concentration.

DRAINAGE IMBIBITION

Gas displacing oil(gas drive)

Water-flood Calculations(Water displaces oil and gas)

Gas replacing oil (gravity drainage)

Water Influx calculations(Water displaces Oil or gas)

Oil or gas displacing water

Page 41: Summer Internship Report At Ril

Procedure

1. Get Centrifuge Capillary Pressure Data.

2. Plot Pc Vs. Sw* and calculate the Pore Size Distribution Index, λ.

3. Put the value of λ in the equations of Krwand Krn.

4. Plot the relative permeability curves and average them.

Page 42: Summer Internship Report At Ril

Sample No. 91Swir 0.182Sor 0.226

Pc Sw Sw*[psi] [-] [-]0.40 0.752 0.9631.12 0.397 0.3621.89 0.329 0.2494.48 0.273 0.153

10.07 0.224 0.07019.74 0.192 0.017

λ = 1 Swi 0.182(2+3λ)/λ (2+λ)/λ Sor [-] : 0.226

4.78571 2.78571 1-Sor = Sm 0.774Sm - Swi 0.592

18.20 0.000 0.00000 0.85380 1.0000 1.0000 0.85380

20.00 0.030 5.49342E-08 0.85380 0.94011 0.9999 0.80262

30.00 0.199 0.00044 0.85380 0.64108 0.9888 0.54123

40.00 0.368 0.00839 0.85380 0.39912 0.9381 0.31969

50.00 0.537 0.05109 0.85380 0.21422 0.8229 0.15051

60.00 0.706 0.18909 0.85380 0.08639 0.6207 0.04578

70.00 0.875 0.52780 0.85380 0.01563 0.3106 0.00414

77.43 1.000 1.00217 0.85380 0.00000 -0.0013 0.00000

0.1

1

10

100

0.01 0.1 1

Pc

Sw*

Pc vs Sw*

Pc vs Sw*

Power (Pc vs Sw*)

Page 43: Summer Internship Report At Ril

Sample No. DS 33Swir 0.180Sor 0.098

Pc Sw Sw*[psi] [-] [-]

0.4 0.894 0.98827

1.0 0.278 0.13635

2.1 0.245 0.09015

5.0 0.222 0.05860

8.9 0.208 0.03831

13.1 0.195 0.02028

λ = 0.93 Swi 0.18(2+3λ)/λ (2+λ)/λ Sor [-] : 0.0985.15054 3.15054 1-Sor = Sm 0.902

Sm - Swi 0.722

18.00 0.000 0.0000 0.85655 1.00000 1.0000 0.85655

20.00 0.028 0.0000 0.85655 0.94537 9.9999 0.80974

30.00 0.166 0.0001 0.85655 0.69521 0.9965 0.59340

40.00 0.305 0.0022 0.85655 0.48343 0.9763 0.40428

50.00 0.443 0.0151 0.85655 0.31001 0.9230 0.24509

60.00 0.582 0.0614 0.85655 0.17496 0.8186 0.12267

70.00 0.720 0.1844 0.85655 0.07828 0.6444 0.04321

80.00 0.859 0.4564 0.85655 0.01996 0.3811 0.00652

90.00 0.997 0.9858 0.85655 0.00001 0.0087 0.00320

90.17 1.000 0.9976 0.85655 0.00000 0.0015 0.00000

0.1

1.0

10.0

100.0

0.01 0.1 1

Pc

Sw*

Pc Vs Sw*

Pc Vs Sw*

Power (Pc Vs Sw*)

Page 44: Summer Internship Report At Ril

Sample No. 127 VSwir 0.185Sor 0.171

Pc Sw Sw*[psi] [-] [-]

0.4 0.829 1.000

1.1 0.443 0.400

1.9 0.388 0.316

4.4 0.333 0.230

9.9 0.289 0.162

19.4 0.262 0.119

46.5 0.228 0.066

Swi 0.18λ = 1.22 Sor [-] : 0.098

(2+3λ)/λ (2+λ)/λ 1-Sor = Sm 0.9024.63934 2.63934 Sm - Swi 0.722

18.50 0.000 0.00000 0.84967 1.0000 1.0000 0.84967

20.00 0.023 0.00000 0.84967 0.9537 1.0000 0.81051

30.00 0.179 0.00034 0.84967 0.6747 0.9894 0.56723

40.00 0.334 0.00616 0.84967 0.4438 0.9447 0.35620

50.00 0.489 0.03624 0.84967 0.2610 0.8485 0.18817

60.00 0.644 0.13021 0.84967 0.1264 0.6864 0.07375

70.00 0.800 0.35450 0.84967 0.0401 0.4457 0.01519

80.00 0.955 0.80754 0.84967 0.0020 0.1145 0.00020

82.91 1.000 1.00051 0.84967 0.0000 0.0000 0.00000

0.1

1.0

10.0

100.0

0.01 0.1 1

Pc

Sw*

Pc Vs Sw*

Pc Vs Sw*

Power (Pc Vs Sw*)

Page 45: Summer Internship Report At Ril

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Kr

Sw*

127 V

Krn

Krw

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Kr

Sw*

DS 33

Krn

Krw

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Kr

Sw*

91

Krn

Krw

Page 46: Summer Internship Report At Ril

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Krw

Krn

Sw*

Relative Permeability

Krn

Krw

Page 47: Summer Internship Report At Ril

Basics of coring operations were covered.

Various experiments conducted were studied.

The reservoir was characterized based on flow behavior.

7 HU were formed.

Due to insufficient data, only ONE J-Function was defined, and using it the saturation distribution was obtained.

Relative permeability was also calculated using capillary pressure.

Page 48: Summer Internship Report At Ril

The when, why and how of coring and core analysis.

The planning and execution of a coring program.

The importance and applications of core analysis.

Page 49: Summer Internship Report At Ril

Thank You